• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
15 
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/idle.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mipsmtregs.h>
23 #include <asm/pm.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
26 #include <asm/uasm.h>
27 
28 /*
29  * cps_nc_entry_fn - type of a generated non-coherent state entry function
30  * @online: the count of online coupled VPEs
31  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
32  *
33  * The code entering & exiting non-coherent states is generated at runtime
34  * using uasm, in order to ensure that the compiler cannot insert a stray
35  * memory access at an unfortunate time and to allow the generation of optimal
36  * core-specific code particularly for cache routines. If coupled_coherence
37  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38  * returns the number of VPEs that were in the wait state at the point this
39  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40  * the entry function for CPS_PM_NC_WAIT.
41  */
42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
43 
44 /*
45  * The entry point of the generated non-coherent idle state entry/exit
46  * functions. Actually per-core rather than per-CPU.
47  */
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
49 				  nc_asm_enter);
50 
51 /* Bitmap indicating which states are supported by the system */
52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
53 
54 /*
55  * Indicates the number of coupled VPEs ready to operate in a non-coherent
56  * state. Actually per-core rather than per-CPU.
57  */
58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
59 
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62 
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68 
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71 
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32];
74 static struct uasm_reloc relocs[32];
75 
76 enum mips_reg {
77 	zero, at, v0, v1, a0, a1, a2, a3,
78 	t0, t1, t2, t3, t4, t5, t6, t7,
79 	s0, s1, s2, s3, s4, s5, s6, s7,
80 	t8, t9, k0, k1, gp, sp, fp, ra,
81 };
82 
cps_pm_support_state(enum cps_pm_state state)83 bool cps_pm_support_state(enum cps_pm_state state)
84 {
85 	return test_bit(state, state_support);
86 }
87 
coupled_barrier(atomic_t * a,unsigned online)88 static void coupled_barrier(atomic_t *a, unsigned online)
89 {
90 	/*
91 	 * This function is effectively the same as
92 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
93 	 * there's no cpuidle device.
94 	 */
95 
96 	if (!coupled_coherence)
97 		return;
98 
99 	smp_mb__before_atomic();
100 	atomic_inc(a);
101 
102 	while (atomic_read(a) < online)
103 		cpu_relax();
104 
105 	if (atomic_inc_return(a) == online * 2) {
106 		atomic_set(a, 0);
107 		return;
108 	}
109 
110 	while (atomic_read(a) > online)
111 		cpu_relax();
112 }
113 
cps_pm_enter_state(enum cps_pm_state state)114 int cps_pm_enter_state(enum cps_pm_state state)
115 {
116 	unsigned cpu = smp_processor_id();
117 	unsigned core = current_cpu_data.core;
118 	unsigned online, left;
119 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
120 	u32 *core_ready_count, *nc_core_ready_count;
121 	void *nc_addr;
122 	cps_nc_entry_fn entry;
123 	struct core_boot_config *core_cfg;
124 	struct vpe_boot_config *vpe_cfg;
125 
126 	/* Check that there is an entry function for this state */
127 	entry = per_cpu(nc_asm_enter, core)[state];
128 	if (!entry)
129 		return -EINVAL;
130 
131 	/* Calculate which coupled CPUs (VPEs) are online */
132 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
133 	if (cpu_online(cpu)) {
134 		cpumask_and(coupled_mask, cpu_online_mask,
135 			    &cpu_sibling_map[cpu]);
136 		online = cpumask_weight(coupled_mask);
137 		cpumask_clear_cpu(cpu, coupled_mask);
138 	} else
139 #endif
140 	{
141 		cpumask_clear(coupled_mask);
142 		online = 1;
143 	}
144 
145 	/* Setup the VPE to run mips_cps_pm_restore when started again */
146 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
147 		/* Power gating relies upon CPS SMP */
148 		if (!mips_cps_smp_in_use())
149 			return -EINVAL;
150 
151 		core_cfg = &mips_cps_core_bootcfg[core];
152 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
153 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
154 		vpe_cfg->gp = (unsigned long)current_thread_info();
155 		vpe_cfg->sp = 0;
156 	}
157 
158 	/* Indicate that this CPU might not be coherent */
159 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
160 	smp_mb__after_atomic();
161 
162 	/* Create a non-coherent mapping of the core ready_count */
163 	core_ready_count = per_cpu(ready_count, core);
164 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
165 				   (unsigned long)core_ready_count);
166 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
167 	nc_core_ready_count = nc_addr;
168 
169 	/* Ensure ready_count is zero-initialised before the assembly runs */
170 	ACCESS_ONCE(*nc_core_ready_count) = 0;
171 	coupled_barrier(&per_cpu(pm_barrier, core), online);
172 
173 	/* Run the generated entry code */
174 	left = entry(online, nc_core_ready_count);
175 
176 	/* Remove the non-coherent mapping of ready_count */
177 	kunmap_noncoherent();
178 
179 	/* Indicate that this CPU is definitely coherent */
180 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
181 
182 	/*
183 	 * If this VPE is the first to leave the non-coherent wait state then
184 	 * it needs to wake up any coupled VPEs still running their wait
185 	 * instruction so that they return to cpuidle, which can then complete
186 	 * coordination between the coupled VPEs & provide the governor with
187 	 * a chance to reflect on the length of time the VPEs were in the
188 	 * idle state.
189 	 */
190 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
191 		arch_send_call_function_ipi_mask(coupled_mask);
192 
193 	return 0;
194 }
195 
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)196 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
197 				  struct uasm_reloc **pr,
198 				  const struct cache_desc *cache,
199 				  unsigned op, int lbl)
200 {
201 	unsigned cache_size = cache->ways << cache->waybit;
202 	unsigned i;
203 	const unsigned unroll_lines = 32;
204 
205 	/* If the cache isn't present this function has it easy */
206 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
207 		return;
208 
209 	/* Load base address */
210 	UASM_i_LA(pp, t0, (long)CKSEG0);
211 
212 	/* Calculate end address */
213 	if (cache_size < 0x8000)
214 		uasm_i_addiu(pp, t1, t0, cache_size);
215 	else
216 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
217 
218 	/* Start of cache op loop */
219 	uasm_build_label(pl, *pp, lbl);
220 
221 	/* Generate the cache ops */
222 	for (i = 0; i < unroll_lines; i++) {
223 		if (cpu_has_mips_r6) {
224 			uasm_i_cache(pp, op, 0, t0);
225 			uasm_i_addiu(pp, t0, t0, cache->linesz);
226 		} else {
227 			uasm_i_cache(pp, op, i * cache->linesz, t0);
228 		}
229 	}
230 
231 	if (!cpu_has_mips_r6)
232 		/* Update the base address */
233 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
234 
235 	/* Loop if we haven't reached the end address yet */
236 	uasm_il_bne(pp, pr, t0, t1, lbl);
237 	uasm_i_nop(pp);
238 }
239 
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)240 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
241 			     struct uasm_reloc **pr,
242 			     const struct cpuinfo_mips *cpu_info,
243 			     int lbl)
244 {
245 	unsigned i, fsb_size = 8;
246 	unsigned num_loads = (fsb_size * 3) / 2;
247 	unsigned line_stride = 2;
248 	unsigned line_size = cpu_info->dcache.linesz;
249 	unsigned perf_counter, perf_event;
250 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
251 
252 	/*
253 	 * Determine whether this CPU requires an FSB flush, and if so which
254 	 * performance counter/event reflect stalls due to a full FSB.
255 	 */
256 	switch (__get_cpu_type(cpu_info->cputype)) {
257 	case CPU_INTERAPTIV:
258 		perf_counter = 1;
259 		perf_event = 51;
260 		break;
261 
262 	case CPU_PROAPTIV:
263 		/* Newer proAptiv cores don't require this workaround */
264 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
265 			return 0;
266 
267 		/* On older ones it's unavailable */
268 		return -1;
269 
270 	default:
271 		/* Assume that the CPU does not need this workaround */
272 		return 0;
273 	}
274 
275 	/*
276 	 * Ensure that the fill/store buffer (FSB) is not holding the results
277 	 * of a prefetch, since if it is then the CPC sequencer may become
278 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
279 	 */
280 
281 	/* Preserve perf counter setup */
282 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
283 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
284 
285 	/* Setup perf counter to count FSB full pipeline stalls */
286 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
287 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
288 	uasm_i_ehb(pp);
289 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
290 	uasm_i_ehb(pp);
291 
292 	/* Base address for loads */
293 	UASM_i_LA(pp, t0, (long)CKSEG0);
294 
295 	/* Start of clear loop */
296 	uasm_build_label(pl, *pp, lbl);
297 
298 	/* Perform some loads to fill the FSB */
299 	for (i = 0; i < num_loads; i++)
300 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
301 
302 	/*
303 	 * Invalidate the new D-cache entries so that the cache will need
304 	 * refilling (via the FSB) if the loop is executed again.
305 	 */
306 	for (i = 0; i < num_loads; i++) {
307 		uasm_i_cache(pp, Hit_Invalidate_D,
308 			     i * line_size * line_stride, t0);
309 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
310 			     i * line_size * line_stride, t0);
311 	}
312 
313 	/* Barrier ensuring previous cache invalidates are complete */
314 	uasm_i_sync(pp, STYPE_SYNC);
315 	uasm_i_ehb(pp);
316 
317 	/* Check whether the pipeline stalled due to the FSB being full */
318 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
319 
320 	/* Loop if it didn't */
321 	uasm_il_beqz(pp, pr, t1, lbl);
322 	uasm_i_nop(pp);
323 
324 	/* Restore perf counter 1. The count may well now be wrong... */
325 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
326 	uasm_i_ehb(pp);
327 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
328 	uasm_i_ehb(pp);
329 
330 	return 0;
331 }
332 
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)333 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
334 				struct uasm_reloc **pr,
335 				unsigned r_addr, int lbl)
336 {
337 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
338 	uasm_build_label(pl, *pp, lbl);
339 	uasm_i_ll(pp, t1, 0, r_addr);
340 	uasm_i_or(pp, t1, t1, t0);
341 	uasm_i_sc(pp, t1, 0, r_addr);
342 	uasm_il_beqz(pp, pr, t1, lbl);
343 	uasm_i_nop(pp);
344 }
345 
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)346 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
347 {
348 	struct uasm_label *l = labels;
349 	struct uasm_reloc *r = relocs;
350 	u32 *buf, *p;
351 	const unsigned r_online = a0;
352 	const unsigned r_nc_count = a1;
353 	const unsigned r_pcohctl = t7;
354 	const unsigned max_instrs = 256;
355 	unsigned cpc_cmd;
356 	int err;
357 	enum {
358 		lbl_incready = 1,
359 		lbl_poll_cont,
360 		lbl_secondary_hang,
361 		lbl_disable_coherence,
362 		lbl_flush_fsb,
363 		lbl_invicache,
364 		lbl_flushdcache,
365 		lbl_hang,
366 		lbl_set_cont,
367 		lbl_secondary_cont,
368 		lbl_decready,
369 	};
370 
371 	/* Allocate a buffer to hold the generated code */
372 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
373 	if (!buf)
374 		return NULL;
375 
376 	/* Clear labels & relocs ready for (re)use */
377 	memset(labels, 0, sizeof(labels));
378 	memset(relocs, 0, sizeof(relocs));
379 
380 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
381 		/* Power gating relies upon CPS SMP */
382 		if (!mips_cps_smp_in_use())
383 			goto out_err;
384 
385 		/*
386 		 * Save CPU state. Note the non-standard calling convention
387 		 * with the return address placed in v0 to avoid clobbering
388 		 * the ra register before it is saved.
389 		 */
390 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
391 		uasm_i_jalr(&p, v0, t0);
392 		uasm_i_nop(&p);
393 	}
394 
395 	/*
396 	 * Load addresses of required CM & CPC registers. This is done early
397 	 * because they're needed in both the enable & disable coherence steps
398 	 * but in the coupled case the enable step will only run on one VPE.
399 	 */
400 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
401 
402 	if (coupled_coherence) {
403 		/* Increment ready_count */
404 		uasm_i_sync(&p, STYPE_SYNC_MB);
405 		uasm_build_label(&l, p, lbl_incready);
406 		uasm_i_ll(&p, t1, 0, r_nc_count);
407 		uasm_i_addiu(&p, t2, t1, 1);
408 		uasm_i_sc(&p, t2, 0, r_nc_count);
409 		uasm_il_beqz(&p, &r, t2, lbl_incready);
410 		uasm_i_addiu(&p, t1, t1, 1);
411 
412 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
413 		uasm_i_sync(&p, STYPE_SYNC_MB);
414 
415 		/*
416 		 * If this is the last VPE to become ready for non-coherence
417 		 * then it should branch below.
418 		 */
419 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
420 		uasm_i_nop(&p);
421 
422 		if (state < CPS_PM_POWER_GATED) {
423 			/*
424 			 * Otherwise this is not the last VPE to become ready
425 			 * for non-coherence. It needs to wait until coherence
426 			 * has been disabled before proceeding, which it will do
427 			 * by polling for the top bit of ready_count being set.
428 			 */
429 			uasm_i_addiu(&p, t1, zero, -1);
430 			uasm_build_label(&l, p, lbl_poll_cont);
431 			uasm_i_lw(&p, t0, 0, r_nc_count);
432 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
433 			uasm_i_ehb(&p);
434 			if (cpu_has_mipsmt)
435 				uasm_i_yield(&p, zero, t1);
436 			uasm_il_b(&p, &r, lbl_poll_cont);
437 			uasm_i_nop(&p);
438 		} else {
439 			/*
440 			 * The core will lose power & this VPE will not continue
441 			 * so it can simply halt here.
442 			 */
443 			if (cpu_has_mipsmt) {
444 				/* Halt the VPE via C0 tchalt register */
445 				uasm_i_addiu(&p, t0, zero, TCHALT_H);
446 				uasm_i_mtc0(&p, t0, 2, 4);
447 			} else if (cpu_has_vp) {
448 				/* Halt the VP via the CPC VP_STOP register */
449 				unsigned int vpe_id;
450 
451 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
452 				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
453 				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
454 				uasm_i_sw(&p, t0, 0, t1);
455 			} else {
456 				BUG();
457 			}
458 			uasm_build_label(&l, p, lbl_secondary_hang);
459 			uasm_il_b(&p, &r, lbl_secondary_hang);
460 			uasm_i_nop(&p);
461 		}
462 	}
463 
464 	/*
465 	 * This is the point of no return - this VPE will now proceed to
466 	 * disable coherence. At this point we *must* be sure that no other
467 	 * VPE within the core will interfere with the L1 dcache.
468 	 */
469 	uasm_build_label(&l, p, lbl_disable_coherence);
470 
471 	/* Invalidate the L1 icache */
472 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
473 			      Index_Invalidate_I, lbl_invicache);
474 
475 	/* Writeback & invalidate the L1 dcache */
476 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
477 			      Index_Writeback_Inv_D, lbl_flushdcache);
478 
479 	/* Barrier ensuring previous cache invalidates are complete */
480 	uasm_i_sync(&p, STYPE_SYNC);
481 	uasm_i_ehb(&p);
482 
483 	if (mips_cm_revision() < CM_REV_CM3) {
484 		/*
485 		* Disable all but self interventions. The load from COHCTL is
486 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
487 		*  operation resulting from the preceding store is complete.
488 		*/
489 		uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
490 		uasm_i_sw(&p, t0, 0, r_pcohctl);
491 		uasm_i_lw(&p, t0, 0, r_pcohctl);
492 
493 		/* Barrier to ensure write to coherence control is complete */
494 		uasm_i_sync(&p, STYPE_SYNC);
495 		uasm_i_ehb(&p);
496 	}
497 
498 	/* Disable coherence */
499 	uasm_i_sw(&p, zero, 0, r_pcohctl);
500 	uasm_i_lw(&p, t0, 0, r_pcohctl);
501 
502 	if (state >= CPS_PM_CLOCK_GATED) {
503 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
504 					lbl_flush_fsb);
505 		if (err)
506 			goto out_err;
507 
508 		/* Determine the CPC command to issue */
509 		switch (state) {
510 		case CPS_PM_CLOCK_GATED:
511 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
512 			break;
513 		case CPS_PM_POWER_GATED:
514 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
515 			break;
516 		default:
517 			BUG();
518 			goto out_err;
519 		}
520 
521 		/* Issue the CPC command */
522 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
523 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
524 		uasm_i_sw(&p, t1, 0, t0);
525 
526 		if (state == CPS_PM_POWER_GATED) {
527 			/* If anything goes wrong just hang */
528 			uasm_build_label(&l, p, lbl_hang);
529 			uasm_il_b(&p, &r, lbl_hang);
530 			uasm_i_nop(&p);
531 
532 			/*
533 			 * There's no point generating more code, the core is
534 			 * powered down & if powered back up will run from the
535 			 * reset vector not from here.
536 			 */
537 			goto gen_done;
538 		}
539 
540 		/* Barrier to ensure write to CPC command is complete */
541 		uasm_i_sync(&p, STYPE_SYNC);
542 		uasm_i_ehb(&p);
543 	}
544 
545 	if (state == CPS_PM_NC_WAIT) {
546 		/*
547 		 * At this point it is safe for all VPEs to proceed with
548 		 * execution. This VPE will set the top bit of ready_count
549 		 * to indicate to the other VPEs that they may continue.
550 		 */
551 		if (coupled_coherence)
552 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
553 					    lbl_set_cont);
554 
555 		/*
556 		 * VPEs which did not disable coherence will continue
557 		 * executing, after coherence has been disabled, from this
558 		 * point.
559 		 */
560 		uasm_build_label(&l, p, lbl_secondary_cont);
561 
562 		/* Now perform our wait */
563 		uasm_i_wait(&p, 0);
564 	}
565 
566 	/*
567 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
568 	 * will run this. The first will actually re-enable coherence & the
569 	 * rest will just be performing a rather unusual nop.
570 	 */
571 	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
572 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
573 				: CM3_GCR_Cx_COHERENCE_COHEN_MSK);
574 
575 	uasm_i_sw(&p, t0, 0, r_pcohctl);
576 	uasm_i_lw(&p, t0, 0, r_pcohctl);
577 
578 	/* Barrier to ensure write to coherence control is complete */
579 	uasm_i_sync(&p, STYPE_SYNC);
580 	uasm_i_ehb(&p);
581 
582 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
583 		/* Decrement ready_count */
584 		uasm_build_label(&l, p, lbl_decready);
585 		uasm_i_sync(&p, STYPE_SYNC_MB);
586 		uasm_i_ll(&p, t1, 0, r_nc_count);
587 		uasm_i_addiu(&p, t2, t1, -1);
588 		uasm_i_sc(&p, t2, 0, r_nc_count);
589 		uasm_il_beqz(&p, &r, t2, lbl_decready);
590 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
591 
592 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
593 		uasm_i_sync(&p, STYPE_SYNC_MB);
594 	}
595 
596 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
597 		/*
598 		 * At this point it is safe for all VPEs to proceed with
599 		 * execution. This VPE will set the top bit of ready_count
600 		 * to indicate to the other VPEs that they may continue.
601 		 */
602 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
603 
604 		/*
605 		 * This core will be reliant upon another core sending a
606 		 * power-up command to the CPC in order to resume operation.
607 		 * Thus an arbitrary VPE can't trigger the core leaving the
608 		 * idle state and the one that disables coherence might as well
609 		 * be the one to re-enable it. The rest will continue from here
610 		 * after that has been done.
611 		 */
612 		uasm_build_label(&l, p, lbl_secondary_cont);
613 
614 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
615 		uasm_i_sync(&p, STYPE_SYNC_MB);
616 	}
617 
618 	/* The core is coherent, time to return to C code */
619 	uasm_i_jr(&p, ra);
620 	uasm_i_nop(&p);
621 
622 gen_done:
623 	/* Ensure the code didn't exceed the resources allocated for it */
624 	BUG_ON((p - buf) > max_instrs);
625 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
626 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
627 
628 	/* Patch branch offsets */
629 	uasm_resolve_relocs(relocs, labels);
630 
631 	/* Flush the icache */
632 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
633 
634 	return buf;
635 out_err:
636 	kfree(buf);
637 	return NULL;
638 }
639 
cps_pm_online_cpu(unsigned int cpu)640 static int cps_pm_online_cpu(unsigned int cpu)
641 {
642 	enum cps_pm_state state;
643 	unsigned core = cpu_data[cpu].core;
644 	void *entry_fn, *core_rc;
645 
646 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
647 		if (per_cpu(nc_asm_enter, core)[state])
648 			continue;
649 		if (!test_bit(state, state_support))
650 			continue;
651 
652 		entry_fn = cps_gen_entry_code(cpu, state);
653 		if (!entry_fn) {
654 			pr_err("Failed to generate core %u state %u entry\n",
655 			       core, state);
656 			clear_bit(state, state_support);
657 		}
658 
659 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
660 	}
661 
662 	if (!per_cpu(ready_count, core)) {
663 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
664 		if (!core_rc) {
665 			pr_err("Failed allocate core %u ready_count\n", core);
666 			return -ENOMEM;
667 		}
668 		per_cpu(ready_count, core) = core_rc;
669 	}
670 
671 	return 0;
672 }
673 
cps_pm_init(void)674 static int __init cps_pm_init(void)
675 {
676 	/* A CM is required for all non-coherent states */
677 	if (!mips_cm_present()) {
678 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
679 		return 0;
680 	}
681 
682 	/*
683 	 * If interrupts were enabled whilst running a wait instruction on a
684 	 * non-coherent core then the VPE may end up processing interrupts
685 	 * whilst non-coherent. That would be bad.
686 	 */
687 	if (cpu_wait == r4k_wait_irqoff)
688 		set_bit(CPS_PM_NC_WAIT, state_support);
689 	else
690 		pr_warn("pm-cps: non-coherent wait unavailable\n");
691 
692 	/* Detect whether a CPC is present */
693 	if (mips_cpc_present()) {
694 		/* Detect whether clock gating is implemented */
695 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
696 			set_bit(CPS_PM_CLOCK_GATED, state_support);
697 		else
698 			pr_warn("pm-cps: CPC does not support clock gating\n");
699 
700 		/* Power gating is available with CPS SMP & any CPC */
701 		if (mips_cps_smp_in_use())
702 			set_bit(CPS_PM_POWER_GATED, state_support);
703 		else
704 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
705 	} else {
706 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
707 	}
708 
709 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PM_CPS_CPU_ONLINE",
710 				 cps_pm_online_cpu, NULL);
711 }
712 arch_initcall(cps_pm_init);
713