1 /* IEEE754 floating point arithmetic
2 * single precision
3 */
4 /*
5 * MIPS floating point support
6 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 *
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 * for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21
22 #include <linux/compiler.h>
23
24 #include "ieee754sp.h"
25
ieee754sp_class(union ieee754sp x)26 int ieee754sp_class(union ieee754sp x)
27 {
28 COMPXSP;
29 EXPLODEXSP;
30 return xc;
31 }
32
ieee754sp_isnan(union ieee754sp x)33 static inline int ieee754sp_isnan(union ieee754sp x)
34 {
35 return ieee754_class_nan(ieee754sp_class(x));
36 }
37
ieee754sp_issnan(union ieee754sp x)38 static inline int ieee754sp_issnan(union ieee754sp x)
39 {
40 int qbit;
41
42 assert(ieee754sp_isnan(x));
43 qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1);
44 return ieee754_csr.nan2008 ^ qbit;
45 }
46
47
48 /*
49 * Raise the Invalid Operation IEEE 754 exception
50 * and convert the signaling NaN supplied to a quiet NaN.
51 */
ieee754sp_nanxcpt(union ieee754sp r)52 union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r)
53 {
54 assert(ieee754sp_issnan(r));
55
56 ieee754_setcx(IEEE754_INVALID_OPERATION);
57 if (ieee754_csr.nan2008) {
58 SPMANT(r) |= SP_MBIT(SP_FBITS - 1);
59 } else {
60 SPMANT(r) &= ~SP_MBIT(SP_FBITS - 1);
61 if (!ieee754sp_isnan(r))
62 SPMANT(r) |= SP_MBIT(SP_FBITS - 2);
63 }
64
65 return r;
66 }
67
ieee754sp_get_rounding(int sn,unsigned xm)68 static unsigned ieee754sp_get_rounding(int sn, unsigned xm)
69 {
70 /* inexact must round of 3 bits
71 */
72 if (xm & (SP_MBIT(3) - 1)) {
73 switch (ieee754_csr.rm) {
74 case FPU_CSR_RZ:
75 break;
76 case FPU_CSR_RN:
77 xm += 0x3 + ((xm >> 3) & 1);
78 /* xm += (xm&0x8)?0x4:0x3 */
79 break;
80 case FPU_CSR_RU: /* toward +Infinity */
81 if (!sn) /* ?? */
82 xm += 0x8;
83 break;
84 case FPU_CSR_RD: /* toward -Infinity */
85 if (sn) /* ?? */
86 xm += 0x8;
87 break;
88 }
89 }
90 return xm;
91 }
92
93
94 /* generate a normal/denormal number with over,under handling
95 * sn is sign
96 * xe is an unbiased exponent
97 * xm is 3bit extended precision value.
98 */
ieee754sp_format(int sn,int xe,unsigned xm)99 union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
100 {
101 assert(xm); /* we don't gen exact zeros (probably should) */
102
103 assert((xm >> (SP_FBITS + 1 + 3)) == 0); /* no excess */
104 assert(xm & (SP_HIDDEN_BIT << 3));
105
106 if (xe < SP_EMIN) {
107 /* strip lower bits */
108 int es = SP_EMIN - xe;
109
110 if (ieee754_csr.nod) {
111 ieee754_setcx(IEEE754_UNDERFLOW);
112 ieee754_setcx(IEEE754_INEXACT);
113
114 switch(ieee754_csr.rm) {
115 case FPU_CSR_RN:
116 case FPU_CSR_RZ:
117 return ieee754sp_zero(sn);
118 case FPU_CSR_RU: /* toward +Infinity */
119 if (sn == 0)
120 return ieee754sp_min(0);
121 else
122 return ieee754sp_zero(1);
123 case FPU_CSR_RD: /* toward -Infinity */
124 if (sn == 0)
125 return ieee754sp_zero(0);
126 else
127 return ieee754sp_min(1);
128 }
129 }
130
131 if (xe == SP_EMIN - 1 &&
132 ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3))
133 {
134 /* Not tiny after rounding */
135 ieee754_setcx(IEEE754_INEXACT);
136 xm = ieee754sp_get_rounding(sn, xm);
137 xm >>= 1;
138 /* Clear grs bits */
139 xm &= ~(SP_MBIT(3) - 1);
140 xe++;
141 } else {
142 /* sticky right shift es bits
143 */
144 xm = XSPSRS(xm, es);
145 xe += es;
146 assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
147 assert(xe == SP_EMIN);
148 }
149 }
150 if (xm & (SP_MBIT(3) - 1)) {
151 ieee754_setcx(IEEE754_INEXACT);
152 if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
153 ieee754_setcx(IEEE754_UNDERFLOW);
154 }
155
156 /* inexact must round of 3 bits
157 */
158 xm = ieee754sp_get_rounding(sn, xm);
159 /* adjust exponent for rounding add overflowing
160 */
161 if (xm >> (SP_FBITS + 1 + 3)) {
162 /* add causes mantissa overflow */
163 xm >>= 1;
164 xe++;
165 }
166 }
167 /* strip grs bits */
168 xm >>= 3;
169
170 assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */
171 assert(xe >= SP_EMIN);
172
173 if (xe > SP_EMAX) {
174 ieee754_setcx(IEEE754_OVERFLOW);
175 ieee754_setcx(IEEE754_INEXACT);
176 /* -O can be table indexed by (rm,sn) */
177 switch (ieee754_csr.rm) {
178 case FPU_CSR_RN:
179 return ieee754sp_inf(sn);
180 case FPU_CSR_RZ:
181 return ieee754sp_max(sn);
182 case FPU_CSR_RU: /* toward +Infinity */
183 if (sn == 0)
184 return ieee754sp_inf(0);
185 else
186 return ieee754sp_max(1);
187 case FPU_CSR_RD: /* toward -Infinity */
188 if (sn == 0)
189 return ieee754sp_max(0);
190 else
191 return ieee754sp_inf(1);
192 }
193 }
194 /* gen norm/denorm/zero */
195
196 if ((xm & SP_HIDDEN_BIT) == 0) {
197 /* we underflow (tiny/zero) */
198 assert(xe == SP_EMIN);
199 if (ieee754_csr.mx & IEEE754_UNDERFLOW)
200 ieee754_setcx(IEEE754_UNDERFLOW);
201 return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
202 } else {
203 assert((xm >> (SP_FBITS + 1)) == 0); /* no excess */
204 assert(xm & SP_HIDDEN_BIT);
205
206 return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
207 }
208 }
209