• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 
31 #include <asm/processor.h>
32 #include <asm/sn/addrs.h>
33 #include <asm/sn/agent.h>
34 #include <asm/sn/arch.h>
35 #include <asm/sn/hub.h>
36 #include <asm/sn/intr.h>
37 
38 /*
39  * Linux has a controller-independent x86 interrupt architecture.
40  * every controller has a 'controller-template', that is used
41  * by the main code to do the right thing. Each driver-visible
42  * interrupt source is transparently wired to the appropriate
43  * controller. Thus drivers need not be aware of the
44  * interrupt-controller.
45  *
46  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
47  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
48  * (IO-APICs assumed to be messaging to Pentium local-APICs)
49  *
50  * the code is designed to be easily extended with new/different
51  * interrupt controllers, without having to do assembly magic.
52  */
53 
54 extern asmlinkage void ip27_irq(void);
55 
56 /*
57  * Find first bit set
58  */
ms1bit(unsigned long x)59 static int ms1bit(unsigned long x)
60 {
61 	int b = 0, s;
62 
63 	s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
64 	s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
65 	s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
66 	s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
67 	s =  1; if (x >>  1 == 0) s = 0; b += s;
68 
69 	return b;
70 }
71 
72 /*
73  * This code is unnecessarily complex, because we do
74  * intr enabling. Basically, once we grab the set of intrs we need
75  * to service, we must mask _all_ these interrupts; firstly, to make
76  * sure the same intr does not intr again, causing recursion that
77  * can lead to stack overflow. Secondly, we can not just mask the
78  * one intr we are do_IRQing, because the non-masked intrs in the
79  * first set might intr again, causing multiple servicings of the
80  * same intr. This effect is mostly seen for intercpu intrs.
81  * Kanoj 05.13.00
82  */
83 
ip27_do_irq_mask0(void)84 static void ip27_do_irq_mask0(void)
85 {
86 	int irq, swlevel;
87 	hubreg_t pend0, mask0;
88 	cpuid_t cpu = smp_processor_id();
89 	int pi_int_mask0 =
90 		(cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
91 
92 	/* copied from Irix intpend0() */
93 	pend0 = LOCAL_HUB_L(PI_INT_PEND0);
94 	mask0 = LOCAL_HUB_L(pi_int_mask0);
95 
96 	pend0 &= mask0;		/* Pick intrs we should look at */
97 	if (!pend0)
98 		return;
99 
100 	swlevel = ms1bit(pend0);
101 #ifdef CONFIG_SMP
102 	if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
103 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
104 		scheduler_ipi();
105 	} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
106 		LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
107 		scheduler_ipi();
108 	} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
109 		LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
110 		irq_enter();
111 		generic_smp_call_function_interrupt();
112 		irq_exit();
113 	} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
114 		LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
115 		irq_enter();
116 		generic_smp_call_function_interrupt();
117 		irq_exit();
118 	} else
119 #endif
120 	{
121 		/* "map" swlevel to irq */
122 		struct slice_data *si = cpu_data[cpu].data;
123 
124 		irq = si->level_to_irq[swlevel];
125 		do_IRQ(irq);
126 	}
127 
128 	LOCAL_HUB_L(PI_INT_PEND0);
129 }
130 
ip27_do_irq_mask1(void)131 static void ip27_do_irq_mask1(void)
132 {
133 	int irq, swlevel;
134 	hubreg_t pend1, mask1;
135 	cpuid_t cpu = smp_processor_id();
136 	int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
137 	struct slice_data *si = cpu_data[cpu].data;
138 
139 	/* copied from Irix intpend0() */
140 	pend1 = LOCAL_HUB_L(PI_INT_PEND1);
141 	mask1 = LOCAL_HUB_L(pi_int_mask1);
142 
143 	pend1 &= mask1;		/* Pick intrs we should look at */
144 	if (!pend1)
145 		return;
146 
147 	swlevel = ms1bit(pend1);
148 	/* "map" swlevel to irq */
149 	irq = si->level_to_irq[swlevel];
150 	LOCAL_HUB_CLR_INTR(swlevel);
151 	do_IRQ(irq);
152 
153 	LOCAL_HUB_L(PI_INT_PEND1);
154 }
155 
ip27_prof_timer(void)156 static void ip27_prof_timer(void)
157 {
158 	panic("CPU %d got a profiling interrupt", smp_processor_id());
159 }
160 
ip27_hub_error(void)161 static void ip27_hub_error(void)
162 {
163 	panic("CPU %d got a hub error interrupt", smp_processor_id());
164 }
165 
plat_irq_dispatch(void)166 asmlinkage void plat_irq_dispatch(void)
167 {
168 	unsigned long pending = read_c0_cause() & read_c0_status();
169 	extern unsigned int rt_timer_irq;
170 
171 	if (pending & CAUSEF_IP4)
172 		do_IRQ(rt_timer_irq);
173 	else if (pending & CAUSEF_IP2)	/* PI_INT_PEND_0 or CC_PEND_{A|B} */
174 		ip27_do_irq_mask0();
175 	else if (pending & CAUSEF_IP3)	/* PI_INT_PEND_1 */
176 		ip27_do_irq_mask1();
177 	else if (pending & CAUSEF_IP5)
178 		ip27_prof_timer();
179 	else if (pending & CAUSEF_IP6)
180 		ip27_hub_error();
181 }
182 
arch_init_irq(void)183 void __init arch_init_irq(void)
184 {
185 }
186 
install_ipi(void)187 void install_ipi(void)
188 {
189 	int slice = LOCAL_HUB_L(PI_CPU_NUM);
190 	int cpu = smp_processor_id();
191 	struct slice_data *si = cpu_data[cpu].data;
192 	struct hub_data *hub = hub_data(cpu_to_node(cpu));
193 	int resched, call;
194 
195 	resched = CPU_RESCHED_A_IRQ + slice;
196 	__set_bit(resched, hub->irq_alloc_mask);
197 	__set_bit(resched, si->irq_enable_mask);
198 	LOCAL_HUB_CLR_INTR(resched);
199 
200 	call = CPU_CALL_A_IRQ + slice;
201 	__set_bit(call, hub->irq_alloc_mask);
202 	__set_bit(call, si->irq_enable_mask);
203 	LOCAL_HUB_CLR_INTR(call);
204 
205 	if (slice == 0) {
206 		LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
207 		LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
208 	} else {
209 		LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
210 		LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
211 	}
212 }
213