1 /*
2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3 *
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7 */
8
9 #undef DEBUG
10
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30
31 #include <asm/processor.h>
32 #include <asm/sn/addrs.h>
33 #include <asm/sn/agent.h>
34 #include <asm/sn/arch.h>
35 #include <asm/sn/hub.h>
36 #include <asm/sn/intr.h>
37
38 /*
39 * Linux has a controller-independent x86 interrupt architecture.
40 * every controller has a 'controller-template', that is used
41 * by the main code to do the right thing. Each driver-visible
42 * interrupt source is transparently wired to the appropriate
43 * controller. Thus drivers need not be aware of the
44 * interrupt-controller.
45 *
46 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
47 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
48 * (IO-APICs assumed to be messaging to Pentium local-APICs)
49 *
50 * the code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic.
52 */
53
54 extern asmlinkage void ip27_irq(void);
55
56 /*
57 * Find first bit set
58 */
ms1bit(unsigned long x)59 static int ms1bit(unsigned long x)
60 {
61 int b = 0, s;
62
63 s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
64 s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
65 s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
66 s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
67 s = 1; if (x >> 1 == 0) s = 0; b += s;
68
69 return b;
70 }
71
72 /*
73 * This code is unnecessarily complex, because we do
74 * intr enabling. Basically, once we grab the set of intrs we need
75 * to service, we must mask _all_ these interrupts; firstly, to make
76 * sure the same intr does not intr again, causing recursion that
77 * can lead to stack overflow. Secondly, we can not just mask the
78 * one intr we are do_IRQing, because the non-masked intrs in the
79 * first set might intr again, causing multiple servicings of the
80 * same intr. This effect is mostly seen for intercpu intrs.
81 * Kanoj 05.13.00
82 */
83
ip27_do_irq_mask0(void)84 static void ip27_do_irq_mask0(void)
85 {
86 int irq, swlevel;
87 hubreg_t pend0, mask0;
88 cpuid_t cpu = smp_processor_id();
89 int pi_int_mask0 =
90 (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
91
92 /* copied from Irix intpend0() */
93 pend0 = LOCAL_HUB_L(PI_INT_PEND0);
94 mask0 = LOCAL_HUB_L(pi_int_mask0);
95
96 pend0 &= mask0; /* Pick intrs we should look at */
97 if (!pend0)
98 return;
99
100 swlevel = ms1bit(pend0);
101 #ifdef CONFIG_SMP
102 if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
103 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
104 scheduler_ipi();
105 } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
106 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
107 scheduler_ipi();
108 } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
109 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
110 irq_enter();
111 generic_smp_call_function_interrupt();
112 irq_exit();
113 } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
114 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
115 irq_enter();
116 generic_smp_call_function_interrupt();
117 irq_exit();
118 } else
119 #endif
120 {
121 /* "map" swlevel to irq */
122 struct slice_data *si = cpu_data[cpu].data;
123
124 irq = si->level_to_irq[swlevel];
125 do_IRQ(irq);
126 }
127
128 LOCAL_HUB_L(PI_INT_PEND0);
129 }
130
ip27_do_irq_mask1(void)131 static void ip27_do_irq_mask1(void)
132 {
133 int irq, swlevel;
134 hubreg_t pend1, mask1;
135 cpuid_t cpu = smp_processor_id();
136 int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
137 struct slice_data *si = cpu_data[cpu].data;
138
139 /* copied from Irix intpend0() */
140 pend1 = LOCAL_HUB_L(PI_INT_PEND1);
141 mask1 = LOCAL_HUB_L(pi_int_mask1);
142
143 pend1 &= mask1; /* Pick intrs we should look at */
144 if (!pend1)
145 return;
146
147 swlevel = ms1bit(pend1);
148 /* "map" swlevel to irq */
149 irq = si->level_to_irq[swlevel];
150 LOCAL_HUB_CLR_INTR(swlevel);
151 do_IRQ(irq);
152
153 LOCAL_HUB_L(PI_INT_PEND1);
154 }
155
ip27_prof_timer(void)156 static void ip27_prof_timer(void)
157 {
158 panic("CPU %d got a profiling interrupt", smp_processor_id());
159 }
160
ip27_hub_error(void)161 static void ip27_hub_error(void)
162 {
163 panic("CPU %d got a hub error interrupt", smp_processor_id());
164 }
165
plat_irq_dispatch(void)166 asmlinkage void plat_irq_dispatch(void)
167 {
168 unsigned long pending = read_c0_cause() & read_c0_status();
169 extern unsigned int rt_timer_irq;
170
171 if (pending & CAUSEF_IP4)
172 do_IRQ(rt_timer_irq);
173 else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
174 ip27_do_irq_mask0();
175 else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
176 ip27_do_irq_mask1();
177 else if (pending & CAUSEF_IP5)
178 ip27_prof_timer();
179 else if (pending & CAUSEF_IP6)
180 ip27_hub_error();
181 }
182
arch_init_irq(void)183 void __init arch_init_irq(void)
184 {
185 }
186
install_ipi(void)187 void install_ipi(void)
188 {
189 int slice = LOCAL_HUB_L(PI_CPU_NUM);
190 int cpu = smp_processor_id();
191 struct slice_data *si = cpu_data[cpu].data;
192 struct hub_data *hub = hub_data(cpu_to_node(cpu));
193 int resched, call;
194
195 resched = CPU_RESCHED_A_IRQ + slice;
196 __set_bit(resched, hub->irq_alloc_mask);
197 __set_bit(resched, si->irq_enable_mask);
198 LOCAL_HUB_CLR_INTR(resched);
199
200 call = CPU_CALL_A_IRQ + slice;
201 __set_bit(call, hub->irq_alloc_mask);
202 __set_bit(call, si->irq_enable_mask);
203 LOCAL_HUB_CLR_INTR(call);
204
205 if (slice == 0) {
206 LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
207 LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
208 } else {
209 LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
210 LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
211 }
212 }
213