• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/types.h>
2 #include <linux/i8253.h>
3 #include <linux/interrupt.h>
4 #include <linux/irq.h>
5 #include <linux/smp.h>
6 #include <linux/time.h>
7 #include <linux/clockchips.h>
8 
9 #include <asm/sni.h>
10 #include <asm/time.h>
11 
12 #define SNI_CLOCK_TICK_RATE	3686400
13 #define SNI_COUNTER2_DIV	64
14 #define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
15 
a20r_set_periodic(struct clock_event_device * evt)16 static int a20r_set_periodic(struct clock_event_device *evt)
17 {
18 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
19 	wmb();
20 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
21 	wmb();
22 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
23 	wmb();
24 
25 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
26 	wmb();
27 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
28 	wmb();
29 	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
30 	wmb();
31 	return 0;
32 }
33 
34 static struct clock_event_device a20r_clockevent_device = {
35 	.name			= "a20r-timer",
36 	.features		= CLOCK_EVT_FEAT_PERIODIC,
37 
38 	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
39 
40 	.rating			= 300,
41 	.irq			= SNI_A20R_IRQ_TIMER,
42 	.set_state_periodic	= a20r_set_periodic,
43 };
44 
a20r_interrupt(int irq,void * dev_id)45 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
46 {
47 	struct clock_event_device *cd = dev_id;
48 
49 	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
50 	wmb();
51 
52 	cd->event_handler(cd);
53 
54 	return IRQ_HANDLED;
55 }
56 
57 static struct irqaction a20r_irqaction = {
58 	.handler	= a20r_interrupt,
59 	.flags		= IRQF_PERCPU | IRQF_TIMER,
60 	.name		= "a20r-timer",
61 };
62 
63 /*
64  * a20r platform uses 2 counters to divide the input frequency.
65  * Counter 2 output is connected to Counter 0 & 1 input.
66  */
sni_a20r_timer_setup(void)67 static void __init sni_a20r_timer_setup(void)
68 {
69 	struct clock_event_device *cd = &a20r_clockevent_device;
70 	struct irqaction *action = &a20r_irqaction;
71 	unsigned int cpu = smp_processor_id();
72 
73 	cd->cpumask		= cpumask_of(cpu);
74 	clockevents_register_device(cd);
75 	action->dev_id = cd;
76 	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
77 }
78 
79 #define SNI_8254_TICK_RATE	  1193182UL
80 
81 #define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
82 
dosample(void)83 static __init unsigned long dosample(void)
84 {
85 	u32 ct0, ct1;
86 	volatile u8 msb;
87 
88 	/* Start the counter. */
89 	outb_p(0x34, 0x43);
90 	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
91 	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
92 
93 	/* Get initial counter invariant */
94 	ct0 = read_c0_count();
95 
96 	/* Latch and spin until top byte of counter0 is zero */
97 	do {
98 		outb(0x00, 0x43);
99 		(void) inb(0x40);
100 		msb = inb(0x40);
101 		ct1 = read_c0_count();
102 	} while (msb);
103 
104 	/* Stop the counter. */
105 	outb(0x38, 0x43);
106 	/*
107 	 * Return the difference, this is how far the r4k counter increments
108 	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
109 	 * clock (= 1000000 / HZ / 2).
110 	 */
111 	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
112 	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
113 }
114 
115 /*
116  * Here we need to calibrate the cycle counter to at least be close.
117  */
plat_time_init(void)118 void __init plat_time_init(void)
119 {
120 	unsigned long r4k_ticks[3];
121 	unsigned long r4k_tick;
122 
123 	/*
124 	 * Figure out the r4k offset, the algorithm is very simple and works in
125 	 * _all_ cases as long as the 8254 counter register itself works ok (as
126 	 * an interrupt driving timer it does not because of bug, this is why
127 	 * we are using the onchip r4k counter/compare register to serve this
128 	 * purpose, but for r4k_offset calculation it will work ok for us).
129 	 * There are other very complicated ways of performing this calculation
130 	 * but this one works just fine so I am not going to futz around. ;-)
131 	 */
132 	printk(KERN_INFO "Calibrating system timer... ");
133 	dosample();	/* Prime cache. */
134 	dosample();	/* Prime cache. */
135 	/* Zero is NOT an option. */
136 	do {
137 		r4k_ticks[0] = dosample();
138 	} while (!r4k_ticks[0]);
139 	do {
140 		r4k_ticks[1] = dosample();
141 	} while (!r4k_ticks[1]);
142 
143 	if (r4k_ticks[0] != r4k_ticks[1]) {
144 		printk("warning: timer counts differ, retrying... ");
145 		r4k_ticks[2] = dosample();
146 		if (r4k_ticks[2] == r4k_ticks[0]
147 		    || r4k_ticks[2] == r4k_ticks[1])
148 			r4k_tick = r4k_ticks[2];
149 		else {
150 			printk("disagreement, using average... ");
151 			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
152 				   + r4k_ticks[2]) / 3;
153 		}
154 	} else
155 		r4k_tick = r4k_ticks[0];
156 
157 	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
158 		(int) (r4k_tick / (500000 / HZ)),
159 		(int) (r4k_tick % (500000 / HZ)));
160 
161 	mips_hpt_frequency = r4k_tick * HZ;
162 
163 	switch (sni_brd_type) {
164 	case SNI_BRD_10:
165 	case SNI_BRD_10NEW:
166 	case SNI_BRD_TOWER_OASIC:
167 	case SNI_BRD_MINITOWER:
168 		sni_a20r_timer_setup();
169 		break;
170 	}
171 	setup_pit_timer();
172 }
173 
read_persistent_clock(struct timespec * ts)174 void read_persistent_clock(struct timespec *ts)
175 {
176 	ts->tv_sec = -1;
177 	ts->tv_nsec = 0;
178 }
179