1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
3 /*
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/cpumask.h>
12 #include <linux/percpu.h>
13
14 struct vmemmap_backing {
15 struct vmemmap_backing *list;
16 unsigned long phys;
17 unsigned long virt_addr;
18 };
19 extern struct vmemmap_backing *vmemmap_list;
20
21 /*
22 * Functions that deal with pagetables that could be at any level of
23 * the table need to be passed an "index_size" so they know how to
24 * handle allocation. For PTE pages (which are linked to a struct
25 * page for now, and drawn from the main get_free_pages() pool), the
26 * allocation size will be (2^index_size * sizeof(pointer)) and
27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
28 *
29 * The maximum index size needs to be big enough to allow any
30 * pagetable sizes we need, but small enough to fit in the low bits of
31 * any page table pointer. In other words all pagetables, even tiny
32 * ones, must be aligned to allow at least enough low 0 bits to
33 * contain this value. This value is also used as a mask, so it must
34 * be one less than a power of two.
35 */
36 #define MAX_PGTABLE_INDEX_SIZE 0xf
37
38 extern struct kmem_cache *pgtable_cache[];
39 #define PGT_CACHE(shift) ({ \
40 BUG_ON(!(shift)); \
41 pgtable_cache[(shift) - 1]; \
42 })
43
44 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO
45
46 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
47 extern void pte_fragment_free(unsigned long *, int);
48 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
49 #ifdef CONFIG_SMP
50 extern void __tlb_remove_table(void *_table);
51 #endif
52
radix__pgd_alloc(struct mm_struct * mm)53 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
54 {
55 #ifdef CONFIG_PPC_64K_PAGES
56 return (pgd_t *)__get_free_page(PGALLOC_GFP);
57 #else
58 struct page *page;
59 page = alloc_pages(PGALLOC_GFP | __GFP_REPEAT, 4);
60 if (!page)
61 return NULL;
62 return (pgd_t *) page_address(page);
63 #endif
64 }
65
radix__pgd_free(struct mm_struct * mm,pgd_t * pgd)66 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
67 {
68 #ifdef CONFIG_PPC_64K_PAGES
69 free_page((unsigned long)pgd);
70 #else
71 free_pages((unsigned long)pgd, 4);
72 #endif
73 }
74
pgd_alloc(struct mm_struct * mm)75 static inline pgd_t *pgd_alloc(struct mm_struct *mm)
76 {
77 if (radix_enabled())
78 return radix__pgd_alloc(mm);
79 return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
80 }
81
pgd_free(struct mm_struct * mm,pgd_t * pgd)82 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
83 {
84 if (radix_enabled())
85 return radix__pgd_free(mm, pgd);
86 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
87 }
88
pgd_populate(struct mm_struct * mm,pgd_t * pgd,pud_t * pud)89 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
90 {
91 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
92 }
93
pud_alloc_one(struct mm_struct * mm,unsigned long addr)94 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
95 {
96 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE), GFP_KERNEL);
97 }
98
pud_free(struct mm_struct * mm,pud_t * pud)99 static inline void pud_free(struct mm_struct *mm, pud_t *pud)
100 {
101 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
102 }
103
pud_populate(struct mm_struct * mm,pud_t * pud,pmd_t * pmd)104 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
105 {
106 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
107 }
108
__pud_free_tlb(struct mmu_gather * tlb,pud_t * pud,unsigned long address)109 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
110 unsigned long address)
111 {
112 /*
113 * By now all the pud entries should be none entries. So go
114 * ahead and flush the page walk cache
115 */
116 flush_tlb_pgtable(tlb, address);
117 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE);
118 }
119
pmd_alloc_one(struct mm_struct * mm,unsigned long addr)120 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
121 {
122 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX), GFP_KERNEL);
123 }
124
pmd_free(struct mm_struct * mm,pmd_t * pmd)125 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
126 {
127 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
128 }
129
__pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd,unsigned long address)130 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
131 unsigned long address)
132 {
133 /*
134 * By now all the pud entries should be none entries. So go
135 * ahead and flush the page walk cache
136 */
137 flush_tlb_pgtable(tlb, address);
138 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
139 }
140
pmd_populate_kernel(struct mm_struct * mm,pmd_t * pmd,pte_t * pte)141 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
142 pte_t *pte)
143 {
144 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
145 }
146
pmd_populate(struct mm_struct * mm,pmd_t * pmd,pgtable_t pte_page)147 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
148 pgtable_t pte_page)
149 {
150 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
151 }
152
pmd_pgtable(pmd_t pmd)153 static inline pgtable_t pmd_pgtable(pmd_t pmd)
154 {
155 return (pgtable_t)pmd_page_vaddr(pmd);
156 }
157
158 #ifdef CONFIG_PPC_4K_PAGES
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)159 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
160 unsigned long address)
161 {
162 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
163 }
164
pte_alloc_one(struct mm_struct * mm,unsigned long address)165 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
166 unsigned long address)
167 {
168 struct page *page;
169 pte_t *pte;
170
171 pte = pte_alloc_one_kernel(mm, address);
172 if (!pte)
173 return NULL;
174 page = virt_to_page(pte);
175 if (!pgtable_page_ctor(page)) {
176 __free_page(page);
177 return NULL;
178 }
179 return pte;
180 }
181 #else /* if CONFIG_PPC_64K_PAGES */
182
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)183 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
184 unsigned long address)
185 {
186 return (pte_t *)pte_fragment_alloc(mm, address, 1);
187 }
188
pte_alloc_one(struct mm_struct * mm,unsigned long address)189 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
190 unsigned long address)
191 {
192 return (pgtable_t)pte_fragment_alloc(mm, address, 0);
193 }
194 #endif
195
pte_free_kernel(struct mm_struct * mm,pte_t * pte)196 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
197 {
198 pte_fragment_free((unsigned long *)pte, 1);
199 }
200
pte_free(struct mm_struct * mm,pgtable_t ptepage)201 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
202 {
203 pte_fragment_free((unsigned long *)ptepage, 0);
204 }
205
__pte_free_tlb(struct mmu_gather * tlb,pgtable_t table,unsigned long address)206 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
207 unsigned long address)
208 {
209 /*
210 * By now all the pud entries should be none entries. So go
211 * ahead and flush the page walk cache
212 */
213 flush_tlb_pgtable(tlb, address);
214 pgtable_free_tlb(tlb, table, 0);
215 }
216
217 #define check_pgt_cache() do { } while (0)
218
219 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */
220