1 /*
2 * Processor cache information made available to userspace via sysfs;
3 * intended to be compatible with x86 intel_cacheinfo implementation.
4 *
5 * Copyright 2008 IBM Corporation
6 * Author: Nathan Lynch
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 */
12
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/kernel.h>
16 #include <linux/kobject.h>
17 #include <linux/list.h>
18 #include <linux/notifier.h>
19 #include <linux/of.h>
20 #include <linux/percpu.h>
21 #include <linux/slab.h>
22 #include <asm/prom.h>
23
24 #include "cacheinfo.h"
25
26 /* per-cpu object for tracking:
27 * - a "cache" kobject for the top-level directory
28 * - a list of "index" objects representing the cpu's local cache hierarchy
29 */
30 struct cache_dir {
31 struct kobject *kobj; /* bare (not embedded) kobject for cache
32 * directory */
33 struct cache_index_dir *index; /* list of index objects */
34 };
35
36 /* "index" object: each cpu's cache directory has an index
37 * subdirectory corresponding to a cache object associated with the
38 * cpu. This object's lifetime is managed via the embedded kobject.
39 */
40 struct cache_index_dir {
41 struct kobject kobj;
42 struct cache_index_dir *next; /* next index in parent directory */
43 struct cache *cache;
44 };
45
46 /* Template for determining which OF properties to query for a given
47 * cache type */
48 struct cache_type_info {
49 const char *name;
50 const char *size_prop;
51
52 /* Allow for both [di]-cache-line-size and
53 * [di]-cache-block-size properties. According to the PowerPC
54 * Processor binding, -line-size should be provided if it
55 * differs from the cache block size (that which is operated
56 * on by cache instructions), so we look for -line-size first.
57 * See cache_get_line_size(). */
58
59 const char *line_size_props[2];
60 const char *nr_sets_prop;
61 };
62
63 /* These are used to index the cache_type_info array. */
64 #define CACHE_TYPE_UNIFIED 0 /* cache-size, cache-block-size, etc. */
65 #define CACHE_TYPE_UNIFIED_D 1 /* d-cache-size, d-cache-block-size, etc */
66 #define CACHE_TYPE_INSTRUCTION 2
67 #define CACHE_TYPE_DATA 3
68
69 static const struct cache_type_info cache_type_info[] = {
70 {
71 /* Embedded systems that use cache-size, cache-block-size,
72 * etc. for the Unified (typically L2) cache. */
73 .name = "Unified",
74 .size_prop = "cache-size",
75 .line_size_props = { "cache-line-size",
76 "cache-block-size", },
77 .nr_sets_prop = "cache-sets",
78 },
79 {
80 /* PowerPC Processor binding says the [di]-cache-*
81 * must be equal on unified caches, so just use
82 * d-cache properties. */
83 .name = "Unified",
84 .size_prop = "d-cache-size",
85 .line_size_props = { "d-cache-line-size",
86 "d-cache-block-size", },
87 .nr_sets_prop = "d-cache-sets",
88 },
89 {
90 .name = "Instruction",
91 .size_prop = "i-cache-size",
92 .line_size_props = { "i-cache-line-size",
93 "i-cache-block-size", },
94 .nr_sets_prop = "i-cache-sets",
95 },
96 {
97 .name = "Data",
98 .size_prop = "d-cache-size",
99 .line_size_props = { "d-cache-line-size",
100 "d-cache-block-size", },
101 .nr_sets_prop = "d-cache-sets",
102 },
103 };
104
105 /* Cache object: each instance of this corresponds to a distinct cache
106 * in the system. There are separate objects for Harvard caches: one
107 * each for instruction and data, and each refers to the same OF node.
108 * The refcount of the OF node is elevated for the lifetime of the
109 * cache object. A cache object is released when its shared_cpu_map
110 * is cleared (see cache_cpu_clear).
111 *
112 * A cache object is on two lists: an unsorted global list
113 * (cache_list) of cache objects; and a singly-linked list
114 * representing the local cache hierarchy, which is ordered by level
115 * (e.g. L1d -> L1i -> L2 -> L3).
116 */
117 struct cache {
118 struct device_node *ofnode; /* OF node for this cache, may be cpu */
119 struct cpumask shared_cpu_map; /* online CPUs using this cache */
120 int type; /* split cache disambiguation */
121 int level; /* level not explicit in device tree */
122 struct list_head list; /* global list of cache objects */
123 struct cache *next_local; /* next cache of >= level */
124 };
125
126 static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
127
128 /* traversal/modification of this list occurs only at cpu hotplug time;
129 * access is serialized by cpu hotplug locking
130 */
131 static LIST_HEAD(cache_list);
132
kobj_to_cache_index_dir(struct kobject * k)133 static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
134 {
135 return container_of(k, struct cache_index_dir, kobj);
136 }
137
cache_type_string(const struct cache * cache)138 static const char *cache_type_string(const struct cache *cache)
139 {
140 return cache_type_info[cache->type].name;
141 }
142
cache_init(struct cache * cache,int type,int level,struct device_node * ofnode)143 static void cache_init(struct cache *cache, int type, int level,
144 struct device_node *ofnode)
145 {
146 cache->type = type;
147 cache->level = level;
148 cache->ofnode = of_node_get(ofnode);
149 INIT_LIST_HEAD(&cache->list);
150 list_add(&cache->list, &cache_list);
151 }
152
new_cache(int type,int level,struct device_node * ofnode)153 static struct cache *new_cache(int type, int level, struct device_node *ofnode)
154 {
155 struct cache *cache;
156
157 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
158 if (cache)
159 cache_init(cache, type, level, ofnode);
160
161 return cache;
162 }
163
release_cache_debugcheck(struct cache * cache)164 static void release_cache_debugcheck(struct cache *cache)
165 {
166 struct cache *iter;
167
168 list_for_each_entry(iter, &cache_list, list)
169 WARN_ONCE(iter->next_local == cache,
170 "cache for %s(%s) refers to cache for %s(%s)\n",
171 iter->ofnode->full_name,
172 cache_type_string(iter),
173 cache->ofnode->full_name,
174 cache_type_string(cache));
175 }
176
release_cache(struct cache * cache)177 static void release_cache(struct cache *cache)
178 {
179 if (!cache)
180 return;
181
182 pr_debug("freeing L%d %s cache for %s\n", cache->level,
183 cache_type_string(cache), cache->ofnode->full_name);
184
185 release_cache_debugcheck(cache);
186 list_del(&cache->list);
187 of_node_put(cache->ofnode);
188 kfree(cache);
189 }
190
cache_cpu_set(struct cache * cache,int cpu)191 static void cache_cpu_set(struct cache *cache, int cpu)
192 {
193 struct cache *next = cache;
194
195 while (next) {
196 WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
197 "CPU %i already accounted in %s(%s)\n",
198 cpu, next->ofnode->full_name,
199 cache_type_string(next));
200 cpumask_set_cpu(cpu, &next->shared_cpu_map);
201 next = next->next_local;
202 }
203 }
204
cache_size(const struct cache * cache,unsigned int * ret)205 static int cache_size(const struct cache *cache, unsigned int *ret)
206 {
207 const char *propname;
208 const __be32 *cache_size;
209
210 propname = cache_type_info[cache->type].size_prop;
211
212 cache_size = of_get_property(cache->ofnode, propname, NULL);
213 if (!cache_size)
214 return -ENODEV;
215
216 *ret = of_read_number(cache_size, 1);
217 return 0;
218 }
219
cache_size_kb(const struct cache * cache,unsigned int * ret)220 static int cache_size_kb(const struct cache *cache, unsigned int *ret)
221 {
222 unsigned int size;
223
224 if (cache_size(cache, &size))
225 return -ENODEV;
226
227 *ret = size / 1024;
228 return 0;
229 }
230
231 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(const struct cache * cache,unsigned int * ret)232 static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
233 {
234 const __be32 *line_size;
235 int i, lim;
236
237 lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
238
239 for (i = 0; i < lim; i++) {
240 const char *propname;
241
242 propname = cache_type_info[cache->type].line_size_props[i];
243 line_size = of_get_property(cache->ofnode, propname, NULL);
244 if (line_size)
245 break;
246 }
247
248 if (!line_size)
249 return -ENODEV;
250
251 *ret = of_read_number(line_size, 1);
252 return 0;
253 }
254
cache_nr_sets(const struct cache * cache,unsigned int * ret)255 static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
256 {
257 const char *propname;
258 const __be32 *nr_sets;
259
260 propname = cache_type_info[cache->type].nr_sets_prop;
261
262 nr_sets = of_get_property(cache->ofnode, propname, NULL);
263 if (!nr_sets)
264 return -ENODEV;
265
266 *ret = of_read_number(nr_sets, 1);
267 return 0;
268 }
269
cache_associativity(const struct cache * cache,unsigned int * ret)270 static int cache_associativity(const struct cache *cache, unsigned int *ret)
271 {
272 unsigned int line_size;
273 unsigned int nr_sets;
274 unsigned int size;
275
276 if (cache_nr_sets(cache, &nr_sets))
277 goto err;
278
279 /* If the cache is fully associative, there is no need to
280 * check the other properties.
281 */
282 if (nr_sets == 1) {
283 *ret = 0;
284 return 0;
285 }
286
287 if (cache_get_line_size(cache, &line_size))
288 goto err;
289 if (cache_size(cache, &size))
290 goto err;
291
292 if (!(nr_sets > 0 && size > 0 && line_size > 0))
293 goto err;
294
295 *ret = (size / nr_sets) / line_size;
296 return 0;
297 err:
298 return -ENODEV;
299 }
300
301 /* helper for dealing with split caches */
cache_find_first_sibling(struct cache * cache)302 static struct cache *cache_find_first_sibling(struct cache *cache)
303 {
304 struct cache *iter;
305
306 if (cache->type == CACHE_TYPE_UNIFIED ||
307 cache->type == CACHE_TYPE_UNIFIED_D)
308 return cache;
309
310 list_for_each_entry(iter, &cache_list, list)
311 if (iter->ofnode == cache->ofnode && iter->next_local == cache)
312 return iter;
313
314 return cache;
315 }
316
317 /* return the first cache on a local list matching node */
cache_lookup_by_node(const struct device_node * node)318 static struct cache *cache_lookup_by_node(const struct device_node *node)
319 {
320 struct cache *cache = NULL;
321 struct cache *iter;
322
323 list_for_each_entry(iter, &cache_list, list) {
324 if (iter->ofnode != node)
325 continue;
326 cache = cache_find_first_sibling(iter);
327 break;
328 }
329
330 return cache;
331 }
332
cache_node_is_unified(const struct device_node * np)333 static bool cache_node_is_unified(const struct device_node *np)
334 {
335 return of_get_property(np, "cache-unified", NULL);
336 }
337
338 /*
339 * Unified caches can have two different sets of tags. Most embedded
340 * use cache-size, etc. for the unified cache size, but open firmware systems
341 * use d-cache-size, etc. Check on initialization for which type we have, and
342 * return the appropriate structure type. Assume it's embedded if it isn't
343 * open firmware. If it's yet a 3rd type, then there will be missing entries
344 * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
345 * to be extended further.
346 */
cache_is_unified_d(const struct device_node * np)347 static int cache_is_unified_d(const struct device_node *np)
348 {
349 return of_get_property(np,
350 cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
351 CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
352 }
353
354 /*
355 */
cache_do_one_devnode_unified(struct device_node * node,int level)356 static struct cache *cache_do_one_devnode_unified(struct device_node *node, int level)
357 {
358 pr_debug("creating L%d ucache for %s\n", level, node->full_name);
359
360 return new_cache(cache_is_unified_d(node), level, node);
361 }
362
cache_do_one_devnode_split(struct device_node * node,int level)363 static struct cache *cache_do_one_devnode_split(struct device_node *node,
364 int level)
365 {
366 struct cache *dcache, *icache;
367
368 pr_debug("creating L%d dcache and icache for %s\n", level,
369 node->full_name);
370
371 dcache = new_cache(CACHE_TYPE_DATA, level, node);
372 icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node);
373
374 if (!dcache || !icache)
375 goto err;
376
377 dcache->next_local = icache;
378
379 return dcache;
380 err:
381 release_cache(dcache);
382 release_cache(icache);
383 return NULL;
384 }
385
cache_do_one_devnode(struct device_node * node,int level)386 static struct cache *cache_do_one_devnode(struct device_node *node, int level)
387 {
388 struct cache *cache;
389
390 if (cache_node_is_unified(node))
391 cache = cache_do_one_devnode_unified(node, level);
392 else
393 cache = cache_do_one_devnode_split(node, level);
394
395 return cache;
396 }
397
cache_lookup_or_instantiate(struct device_node * node,int level)398 static struct cache *cache_lookup_or_instantiate(struct device_node *node,
399 int level)
400 {
401 struct cache *cache;
402
403 cache = cache_lookup_by_node(node);
404
405 WARN_ONCE(cache && cache->level != level,
406 "cache level mismatch on lookup (got %d, expected %d)\n",
407 cache->level, level);
408
409 if (!cache)
410 cache = cache_do_one_devnode(node, level);
411
412 return cache;
413 }
414
link_cache_lists(struct cache * smaller,struct cache * bigger)415 static void link_cache_lists(struct cache *smaller, struct cache *bigger)
416 {
417 while (smaller->next_local) {
418 if (smaller->next_local == bigger)
419 return; /* already linked */
420 smaller = smaller->next_local;
421 }
422
423 smaller->next_local = bigger;
424 }
425
do_subsidiary_caches_debugcheck(struct cache * cache)426 static void do_subsidiary_caches_debugcheck(struct cache *cache)
427 {
428 WARN_ON_ONCE(cache->level != 1);
429 WARN_ON_ONCE(strcmp(cache->ofnode->type, "cpu"));
430 }
431
do_subsidiary_caches(struct cache * cache)432 static void do_subsidiary_caches(struct cache *cache)
433 {
434 struct device_node *subcache_node;
435 int level = cache->level;
436
437 do_subsidiary_caches_debugcheck(cache);
438
439 while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
440 struct cache *subcache;
441
442 level++;
443 subcache = cache_lookup_or_instantiate(subcache_node, level);
444 of_node_put(subcache_node);
445 if (!subcache)
446 break;
447
448 link_cache_lists(cache, subcache);
449 cache = subcache;
450 }
451 }
452
cache_chain_instantiate(unsigned int cpu_id)453 static struct cache *cache_chain_instantiate(unsigned int cpu_id)
454 {
455 struct device_node *cpu_node;
456 struct cache *cpu_cache = NULL;
457
458 pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
459
460 cpu_node = of_get_cpu_node(cpu_id, NULL);
461 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
462 if (!cpu_node)
463 goto out;
464
465 cpu_cache = cache_lookup_or_instantiate(cpu_node, 1);
466 if (!cpu_cache)
467 goto out;
468
469 do_subsidiary_caches(cpu_cache);
470
471 cache_cpu_set(cpu_cache, cpu_id);
472 out:
473 of_node_put(cpu_node);
474
475 return cpu_cache;
476 }
477
cacheinfo_create_cache_dir(unsigned int cpu_id)478 static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
479 {
480 struct cache_dir *cache_dir;
481 struct device *dev;
482 struct kobject *kobj = NULL;
483
484 dev = get_cpu_device(cpu_id);
485 WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
486 if (!dev)
487 goto err;
488
489 kobj = kobject_create_and_add("cache", &dev->kobj);
490 if (!kobj)
491 goto err;
492
493 cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
494 if (!cache_dir)
495 goto err;
496
497 cache_dir->kobj = kobj;
498
499 WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
500
501 per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
502
503 return cache_dir;
504 err:
505 kobject_put(kobj);
506 return NULL;
507 }
508
cache_index_release(struct kobject * kobj)509 static void cache_index_release(struct kobject *kobj)
510 {
511 struct cache_index_dir *index;
512
513 index = kobj_to_cache_index_dir(kobj);
514
515 pr_debug("freeing index directory for L%d %s cache\n",
516 index->cache->level, cache_type_string(index->cache));
517
518 kfree(index);
519 }
520
cache_index_show(struct kobject * k,struct attribute * attr,char * buf)521 static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
522 {
523 struct kobj_attribute *kobj_attr;
524
525 kobj_attr = container_of(attr, struct kobj_attribute, attr);
526
527 return kobj_attr->show(k, kobj_attr, buf);
528 }
529
index_kobj_to_cache(struct kobject * k)530 static struct cache *index_kobj_to_cache(struct kobject *k)
531 {
532 struct cache_index_dir *index;
533
534 index = kobj_to_cache_index_dir(k);
535
536 return index->cache;
537 }
538
size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)539 static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
540 {
541 unsigned int size_kb;
542 struct cache *cache;
543
544 cache = index_kobj_to_cache(k);
545
546 if (cache_size_kb(cache, &size_kb))
547 return -ENODEV;
548
549 return sprintf(buf, "%uK\n", size_kb);
550 }
551
552 static struct kobj_attribute cache_size_attr =
553 __ATTR(size, 0444, size_show, NULL);
554
555
line_size_show(struct kobject * k,struct kobj_attribute * attr,char * buf)556 static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
557 {
558 unsigned int line_size;
559 struct cache *cache;
560
561 cache = index_kobj_to_cache(k);
562
563 if (cache_get_line_size(cache, &line_size))
564 return -ENODEV;
565
566 return sprintf(buf, "%u\n", line_size);
567 }
568
569 static struct kobj_attribute cache_line_size_attr =
570 __ATTR(coherency_line_size, 0444, line_size_show, NULL);
571
nr_sets_show(struct kobject * k,struct kobj_attribute * attr,char * buf)572 static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
573 {
574 unsigned int nr_sets;
575 struct cache *cache;
576
577 cache = index_kobj_to_cache(k);
578
579 if (cache_nr_sets(cache, &nr_sets))
580 return -ENODEV;
581
582 return sprintf(buf, "%u\n", nr_sets);
583 }
584
585 static struct kobj_attribute cache_nr_sets_attr =
586 __ATTR(number_of_sets, 0444, nr_sets_show, NULL);
587
associativity_show(struct kobject * k,struct kobj_attribute * attr,char * buf)588 static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
589 {
590 unsigned int associativity;
591 struct cache *cache;
592
593 cache = index_kobj_to_cache(k);
594
595 if (cache_associativity(cache, &associativity))
596 return -ENODEV;
597
598 return sprintf(buf, "%u\n", associativity);
599 }
600
601 static struct kobj_attribute cache_assoc_attr =
602 __ATTR(ways_of_associativity, 0444, associativity_show, NULL);
603
type_show(struct kobject * k,struct kobj_attribute * attr,char * buf)604 static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
605 {
606 struct cache *cache;
607
608 cache = index_kobj_to_cache(k);
609
610 return sprintf(buf, "%s\n", cache_type_string(cache));
611 }
612
613 static struct kobj_attribute cache_type_attr =
614 __ATTR(type, 0444, type_show, NULL);
615
level_show(struct kobject * k,struct kobj_attribute * attr,char * buf)616 static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
617 {
618 struct cache_index_dir *index;
619 struct cache *cache;
620
621 index = kobj_to_cache_index_dir(k);
622 cache = index->cache;
623
624 return sprintf(buf, "%d\n", cache->level);
625 }
626
627 static struct kobj_attribute cache_level_attr =
628 __ATTR(level, 0444, level_show, NULL);
629
shared_cpu_map_show(struct kobject * k,struct kobj_attribute * attr,char * buf)630 static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
631 {
632 struct cache_index_dir *index;
633 struct cache *cache;
634 int ret;
635
636 index = kobj_to_cache_index_dir(k);
637 cache = index->cache;
638
639 ret = scnprintf(buf, PAGE_SIZE - 1, "%*pb\n",
640 cpumask_pr_args(&cache->shared_cpu_map));
641 buf[ret++] = '\n';
642 buf[ret] = '\0';
643 return ret;
644 }
645
646 static struct kobj_attribute cache_shared_cpu_map_attr =
647 __ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
648
649 /* Attributes which should always be created -- the kobject/sysfs core
650 * does this automatically via kobj_type->default_attrs. This is the
651 * minimum data required to uniquely identify a cache.
652 */
653 static struct attribute *cache_index_default_attrs[] = {
654 &cache_type_attr.attr,
655 &cache_level_attr.attr,
656 &cache_shared_cpu_map_attr.attr,
657 NULL,
658 };
659
660 /* Attributes which should be created if the cache device node has the
661 * right properties -- see cacheinfo_create_index_opt_attrs
662 */
663 static struct kobj_attribute *cache_index_opt_attrs[] = {
664 &cache_size_attr,
665 &cache_line_size_attr,
666 &cache_nr_sets_attr,
667 &cache_assoc_attr,
668 };
669
670 static const struct sysfs_ops cache_index_ops = {
671 .show = cache_index_show,
672 };
673
674 static struct kobj_type cache_index_type = {
675 .release = cache_index_release,
676 .sysfs_ops = &cache_index_ops,
677 .default_attrs = cache_index_default_attrs,
678 };
679
cacheinfo_create_index_opt_attrs(struct cache_index_dir * dir)680 static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
681 {
682 const char *cache_name;
683 const char *cache_type;
684 struct cache *cache;
685 char *buf;
686 int i;
687
688 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
689 if (!buf)
690 return;
691
692 cache = dir->cache;
693 cache_name = cache->ofnode->full_name;
694 cache_type = cache_type_string(cache);
695
696 /* We don't want to create an attribute that can't provide a
697 * meaningful value. Check the return value of each optional
698 * attribute's ->show method before registering the
699 * attribute.
700 */
701 for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
702 struct kobj_attribute *attr;
703 ssize_t rc;
704
705 attr = cache_index_opt_attrs[i];
706
707 rc = attr->show(&dir->kobj, attr, buf);
708 if (rc <= 0) {
709 pr_debug("not creating %s attribute for "
710 "%s(%s) (rc = %zd)\n",
711 attr->attr.name, cache_name,
712 cache_type, rc);
713 continue;
714 }
715 if (sysfs_create_file(&dir->kobj, &attr->attr))
716 pr_debug("could not create %s attribute for %s(%s)\n",
717 attr->attr.name, cache_name, cache_type);
718 }
719
720 kfree(buf);
721 }
722
cacheinfo_create_index_dir(struct cache * cache,int index,struct cache_dir * cache_dir)723 static void cacheinfo_create_index_dir(struct cache *cache, int index,
724 struct cache_dir *cache_dir)
725 {
726 struct cache_index_dir *index_dir;
727 int rc;
728
729 index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
730 if (!index_dir)
731 goto err;
732
733 index_dir->cache = cache;
734
735 rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
736 cache_dir->kobj, "index%d", index);
737 if (rc)
738 goto err;
739
740 index_dir->next = cache_dir->index;
741 cache_dir->index = index_dir;
742
743 cacheinfo_create_index_opt_attrs(index_dir);
744
745 return;
746 err:
747 kfree(index_dir);
748 }
749
cacheinfo_sysfs_populate(unsigned int cpu_id,struct cache * cache_list)750 static void cacheinfo_sysfs_populate(unsigned int cpu_id,
751 struct cache *cache_list)
752 {
753 struct cache_dir *cache_dir;
754 struct cache *cache;
755 int index = 0;
756
757 cache_dir = cacheinfo_create_cache_dir(cpu_id);
758 if (!cache_dir)
759 return;
760
761 cache = cache_list;
762 while (cache) {
763 cacheinfo_create_index_dir(cache, index, cache_dir);
764 index++;
765 cache = cache->next_local;
766 }
767 }
768
cacheinfo_cpu_online(unsigned int cpu_id)769 void cacheinfo_cpu_online(unsigned int cpu_id)
770 {
771 struct cache *cache;
772
773 cache = cache_chain_instantiate(cpu_id);
774 if (!cache)
775 return;
776
777 cacheinfo_sysfs_populate(cpu_id, cache);
778 }
779
780 /* functions needed to remove cache entry for cpu offline or suspend/resume */
781
782 #if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
783 defined(CONFIG_HOTPLUG_CPU)
784
cache_lookup_by_cpu(unsigned int cpu_id)785 static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
786 {
787 struct device_node *cpu_node;
788 struct cache *cache;
789
790 cpu_node = of_get_cpu_node(cpu_id, NULL);
791 WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
792 if (!cpu_node)
793 return NULL;
794
795 cache = cache_lookup_by_node(cpu_node);
796 of_node_put(cpu_node);
797
798 return cache;
799 }
800
remove_index_dirs(struct cache_dir * cache_dir)801 static void remove_index_dirs(struct cache_dir *cache_dir)
802 {
803 struct cache_index_dir *index;
804
805 index = cache_dir->index;
806
807 while (index) {
808 struct cache_index_dir *next;
809
810 next = index->next;
811 kobject_put(&index->kobj);
812 index = next;
813 }
814 }
815
remove_cache_dir(struct cache_dir * cache_dir)816 static void remove_cache_dir(struct cache_dir *cache_dir)
817 {
818 remove_index_dirs(cache_dir);
819
820 /* Remove cache dir from sysfs */
821 kobject_del(cache_dir->kobj);
822
823 kobject_put(cache_dir->kobj);
824
825 kfree(cache_dir);
826 }
827
cache_cpu_clear(struct cache * cache,int cpu)828 static void cache_cpu_clear(struct cache *cache, int cpu)
829 {
830 while (cache) {
831 struct cache *next = cache->next_local;
832
833 WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
834 "CPU %i not accounted in %s(%s)\n",
835 cpu, cache->ofnode->full_name,
836 cache_type_string(cache));
837
838 cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
839
840 /* Release the cache object if all the cpus using it
841 * are offline */
842 if (cpumask_empty(&cache->shared_cpu_map))
843 release_cache(cache);
844
845 cache = next;
846 }
847 }
848
cacheinfo_cpu_offline(unsigned int cpu_id)849 void cacheinfo_cpu_offline(unsigned int cpu_id)
850 {
851 struct cache_dir *cache_dir;
852 struct cache *cache;
853
854 /* Prevent userspace from seeing inconsistent state - remove
855 * the sysfs hierarchy first */
856 cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
857
858 /* careful, sysfs population may have failed */
859 if (cache_dir)
860 remove_cache_dir(cache_dir);
861
862 per_cpu(cache_dir_pcpu, cpu_id) = NULL;
863
864 /* clear the CPU's bit in its cache chain, possibly freeing
865 * cache objects */
866 cache = cache_lookup_by_cpu(cpu_id);
867 if (cache)
868 cache_cpu_clear(cache, cpu_id);
869 }
870 #endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */
871