1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
27 */
28
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/uaccess.h>
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44
arch_prepare_kprobe(struct kprobe * p)45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
46 {
47 int ret = 0;
48 kprobe_opcode_t insn = *p->addr;
49
50 if ((unsigned long)p->addr & 0x03) {
51 printk("Attempt to register kprobe at an unaligned address\n");
52 ret = -EINVAL;
53 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
54 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
55 ret = -EINVAL;
56 }
57
58 /* insn must be on a special executable page on ppc64. This is
59 * not explicitly required on ppc32 (right now), but it doesn't hurt */
60 if (!ret) {
61 p->ainsn.insn = get_insn_slot();
62 if (!p->ainsn.insn)
63 ret = -ENOMEM;
64 }
65
66 if (!ret) {
67 memcpy(p->ainsn.insn, p->addr,
68 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
69 p->opcode = *p->addr;
70 flush_icache_range((unsigned long)p->ainsn.insn,
71 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
72 }
73
74 p->ainsn.boostable = 0;
75 return ret;
76 }
77
arch_arm_kprobe(struct kprobe * p)78 void __kprobes arch_arm_kprobe(struct kprobe *p)
79 {
80 *p->addr = BREAKPOINT_INSTRUCTION;
81 flush_icache_range((unsigned long) p->addr,
82 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
83 }
84
arch_disarm_kprobe(struct kprobe * p)85 void __kprobes arch_disarm_kprobe(struct kprobe *p)
86 {
87 *p->addr = p->opcode;
88 flush_icache_range((unsigned long) p->addr,
89 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
90 }
91
arch_remove_kprobe(struct kprobe * p)92 void __kprobes arch_remove_kprobe(struct kprobe *p)
93 {
94 if (p->ainsn.insn) {
95 free_insn_slot(p->ainsn.insn, 0);
96 p->ainsn.insn = NULL;
97 }
98 }
99
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
101 {
102 enable_single_step(regs);
103
104 /*
105 * On powerpc we should single step on the original
106 * instruction even if the probed insn is a trap
107 * variant as values in regs could play a part in
108 * if the trap is taken or not
109 */
110 regs->nip = (unsigned long)p->ainsn.insn;
111 }
112
save_previous_kprobe(struct kprobe_ctlblk * kcb)113 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
114 {
115 kcb->prev_kprobe.kp = kprobe_running();
116 kcb->prev_kprobe.status = kcb->kprobe_status;
117 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
118 }
119
restore_previous_kprobe(struct kprobe_ctlblk * kcb)120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
121 {
122 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123 kcb->kprobe_status = kcb->prev_kprobe.status;
124 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
125 }
126
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)127 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128 struct kprobe_ctlblk *kcb)
129 {
130 __this_cpu_write(current_kprobe, p);
131 kcb->kprobe_saved_msr = regs->msr;
132 }
133
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)134 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135 struct pt_regs *regs)
136 {
137 ri->ret_addr = (kprobe_opcode_t *)regs->link;
138
139 /* Replace the return addr with trampoline addr */
140 regs->link = (unsigned long)kretprobe_trampoline;
141 }
142
kprobe_handler(struct pt_regs * regs)143 static int __kprobes kprobe_handler(struct pt_regs *regs)
144 {
145 struct kprobe *p;
146 int ret = 0;
147 unsigned int *addr = (unsigned int *)regs->nip;
148 struct kprobe_ctlblk *kcb;
149
150 /*
151 * We don't want to be preempted for the entire
152 * duration of kprobe processing
153 */
154 preempt_disable();
155 kcb = get_kprobe_ctlblk();
156
157 /* Check we're not actually recursing */
158 if (kprobe_running()) {
159 p = get_kprobe(addr);
160 if (p) {
161 kprobe_opcode_t insn = *p->ainsn.insn;
162 if (kcb->kprobe_status == KPROBE_HIT_SS &&
163 is_trap(insn)) {
164 /* Turn off 'trace' bits */
165 regs->msr &= ~MSR_SINGLESTEP;
166 regs->msr |= kcb->kprobe_saved_msr;
167 goto no_kprobe;
168 }
169 /* We have reentered the kprobe_handler(), since
170 * another probe was hit while within the handler.
171 * We here save the original kprobes variables and
172 * just single step on the instruction of the new probe
173 * without calling any user handlers.
174 */
175 save_previous_kprobe(kcb);
176 set_current_kprobe(p, regs, kcb);
177 kcb->kprobe_saved_msr = regs->msr;
178 kprobes_inc_nmissed_count(p);
179 prepare_singlestep(p, regs);
180 kcb->kprobe_status = KPROBE_REENTER;
181 return 1;
182 } else {
183 if (*addr != BREAKPOINT_INSTRUCTION) {
184 /* If trap variant, then it belongs not to us */
185 kprobe_opcode_t cur_insn = *addr;
186 if (is_trap(cur_insn))
187 goto no_kprobe;
188 /* The breakpoint instruction was removed by
189 * another cpu right after we hit, no further
190 * handling of this interrupt is appropriate
191 */
192 ret = 1;
193 goto no_kprobe;
194 }
195 p = __this_cpu_read(current_kprobe);
196 if (p->break_handler && p->break_handler(p, regs)) {
197 goto ss_probe;
198 }
199 }
200 goto no_kprobe;
201 }
202
203 p = get_kprobe(addr);
204 if (!p) {
205 if (*addr != BREAKPOINT_INSTRUCTION) {
206 /*
207 * PowerPC has multiple variants of the "trap"
208 * instruction. If the current instruction is a
209 * trap variant, it could belong to someone else
210 */
211 kprobe_opcode_t cur_insn = *addr;
212 if (is_trap(cur_insn))
213 goto no_kprobe;
214 /*
215 * The breakpoint instruction was removed right
216 * after we hit it. Another cpu has removed
217 * either a probepoint or a debugger breakpoint
218 * at this address. In either case, no further
219 * handling of this interrupt is appropriate.
220 */
221 ret = 1;
222 }
223 /* Not one of ours: let kernel handle it */
224 goto no_kprobe;
225 }
226
227 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
228 set_current_kprobe(p, regs, kcb);
229 if (p->pre_handler && p->pre_handler(p, regs))
230 /* handler has already set things up, so skip ss setup */
231 return 1;
232
233 ss_probe:
234 if (p->ainsn.boostable >= 0) {
235 unsigned int insn = *p->ainsn.insn;
236
237 /* regs->nip is also adjusted if emulate_step returns 1 */
238 ret = emulate_step(regs, insn);
239 if (ret > 0) {
240 /*
241 * Once this instruction has been boosted
242 * successfully, set the boostable flag
243 */
244 if (unlikely(p->ainsn.boostable == 0))
245 p->ainsn.boostable = 1;
246
247 if (p->post_handler)
248 p->post_handler(p, regs, 0);
249
250 kcb->kprobe_status = KPROBE_HIT_SSDONE;
251 reset_current_kprobe();
252 preempt_enable_no_resched();
253 return 1;
254 } else if (ret < 0) {
255 /*
256 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
257 * So, we should never get here... but, its still
258 * good to catch them, just in case...
259 */
260 printk("Can't step on instruction %x\n", insn);
261 BUG();
262 } else if (ret == 0)
263 /* This instruction can't be boosted */
264 p->ainsn.boostable = -1;
265 }
266 prepare_singlestep(p, regs);
267 kcb->kprobe_status = KPROBE_HIT_SS;
268 return 1;
269
270 no_kprobe:
271 preempt_enable_no_resched();
272 return ret;
273 }
274
275 /*
276 * Function return probe trampoline:
277 * - init_kprobes() establishes a probepoint here
278 * - When the probed function returns, this probe
279 * causes the handlers to fire
280 */
281 asm(".global kretprobe_trampoline\n"
282 ".type kretprobe_trampoline, @function\n"
283 "kretprobe_trampoline:\n"
284 "nop\n"
285 ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
286
287 /*
288 * Called when the probe at kretprobe trampoline is hit
289 */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)290 static int __kprobes trampoline_probe_handler(struct kprobe *p,
291 struct pt_regs *regs)
292 {
293 struct kretprobe_instance *ri = NULL;
294 struct hlist_head *head, empty_rp;
295 struct hlist_node *tmp;
296 unsigned long flags, orig_ret_address = 0;
297 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
298
299 INIT_HLIST_HEAD(&empty_rp);
300 kretprobe_hash_lock(current, &head, &flags);
301
302 /*
303 * It is possible to have multiple instances associated with a given
304 * task either because an multiple functions in the call path
305 * have a return probe installed on them, and/or more than one return
306 * return probe was registered for a target function.
307 *
308 * We can handle this because:
309 * - instances are always inserted at the head of the list
310 * - when multiple return probes are registered for the same
311 * function, the first instance's ret_addr will point to the
312 * real return address, and all the rest will point to
313 * kretprobe_trampoline
314 */
315 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
316 if (ri->task != current)
317 /* another task is sharing our hash bucket */
318 continue;
319
320 if (ri->rp && ri->rp->handler)
321 ri->rp->handler(ri, regs);
322
323 orig_ret_address = (unsigned long)ri->ret_addr;
324 recycle_rp_inst(ri, &empty_rp);
325
326 if (orig_ret_address != trampoline_address)
327 /*
328 * This is the real return address. Any other
329 * instances associated with this task are for
330 * other calls deeper on the call stack
331 */
332 break;
333 }
334
335 kretprobe_assert(ri, orig_ret_address, trampoline_address);
336 regs->nip = orig_ret_address;
337
338 reset_current_kprobe();
339 kretprobe_hash_unlock(current, &flags);
340 preempt_enable_no_resched();
341
342 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
343 hlist_del(&ri->hlist);
344 kfree(ri);
345 }
346 /*
347 * By returning a non-zero value, we are telling
348 * kprobe_handler() that we don't want the post_handler
349 * to run (and have re-enabled preemption)
350 */
351 return 1;
352 }
353
354 /*
355 * Called after single-stepping. p->addr is the address of the
356 * instruction whose first byte has been replaced by the "breakpoint"
357 * instruction. To avoid the SMP problems that can occur when we
358 * temporarily put back the original opcode to single-step, we
359 * single-stepped a copy of the instruction. The address of this
360 * copy is p->ainsn.insn.
361 */
post_kprobe_handler(struct pt_regs * regs)362 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
363 {
364 struct kprobe *cur = kprobe_running();
365 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
366
367 if (!cur)
368 return 0;
369
370 /* make sure we got here for instruction we have a kprobe on */
371 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
372 return 0;
373
374 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
375 kcb->kprobe_status = KPROBE_HIT_SSDONE;
376 cur->post_handler(cur, regs, 0);
377 }
378
379 /* Adjust nip to after the single-stepped instruction */
380 regs->nip = (unsigned long)cur->addr + 4;
381 regs->msr |= kcb->kprobe_saved_msr;
382
383 /*Restore back the original saved kprobes variables and continue. */
384 if (kcb->kprobe_status == KPROBE_REENTER) {
385 restore_previous_kprobe(kcb);
386 goto out;
387 }
388 reset_current_kprobe();
389 out:
390 preempt_enable_no_resched();
391
392 /*
393 * if somebody else is singlestepping across a probe point, msr
394 * will have DE/SE set, in which case, continue the remaining processing
395 * of do_debug, as if this is not a probe hit.
396 */
397 if (regs->msr & MSR_SINGLESTEP)
398 return 0;
399
400 return 1;
401 }
402
kprobe_fault_handler(struct pt_regs * regs,int trapnr)403 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
404 {
405 struct kprobe *cur = kprobe_running();
406 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
407 const struct exception_table_entry *entry;
408
409 switch(kcb->kprobe_status) {
410 case KPROBE_HIT_SS:
411 case KPROBE_REENTER:
412 /*
413 * We are here because the instruction being single
414 * stepped caused a page fault. We reset the current
415 * kprobe and the nip points back to the probe address
416 * and allow the page fault handler to continue as a
417 * normal page fault.
418 */
419 regs->nip = (unsigned long)cur->addr;
420 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
421 regs->msr |= kcb->kprobe_saved_msr;
422 if (kcb->kprobe_status == KPROBE_REENTER)
423 restore_previous_kprobe(kcb);
424 else
425 reset_current_kprobe();
426 preempt_enable_no_resched();
427 break;
428 case KPROBE_HIT_ACTIVE:
429 case KPROBE_HIT_SSDONE:
430 /*
431 * We increment the nmissed count for accounting,
432 * we can also use npre/npostfault count for accounting
433 * these specific fault cases.
434 */
435 kprobes_inc_nmissed_count(cur);
436
437 /*
438 * We come here because instructions in the pre/post
439 * handler caused the page_fault, this could happen
440 * if handler tries to access user space by
441 * copy_from_user(), get_user() etc. Let the
442 * user-specified handler try to fix it first.
443 */
444 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
445 return 1;
446
447 /*
448 * In case the user-specified fault handler returned
449 * zero, try to fix up.
450 */
451 if ((entry = search_exception_tables(regs->nip)) != NULL) {
452 regs->nip = entry->fixup;
453 return 1;
454 }
455
456 /*
457 * fixup_exception() could not handle it,
458 * Let do_page_fault() fix it.
459 */
460 break;
461 default:
462 break;
463 }
464 return 0;
465 }
466
467 /*
468 * Wrapper routine to for handling exceptions.
469 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)470 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
471 unsigned long val, void *data)
472 {
473 struct die_args *args = (struct die_args *)data;
474 int ret = NOTIFY_DONE;
475
476 if (args->regs && user_mode(args->regs))
477 return ret;
478
479 switch (val) {
480 case DIE_BPT:
481 if (kprobe_handler(args->regs))
482 ret = NOTIFY_STOP;
483 break;
484 case DIE_SSTEP:
485 if (post_kprobe_handler(args->regs))
486 ret = NOTIFY_STOP;
487 break;
488 default:
489 break;
490 }
491 return ret;
492 }
493
arch_deref_entry_point(void * entry)494 unsigned long arch_deref_entry_point(void *entry)
495 {
496 return ppc_global_function_entry(entry);
497 }
498
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)499 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
500 {
501 struct jprobe *jp = container_of(p, struct jprobe, kp);
502 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503
504 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
505
506 /* setup return addr to the jprobe handler routine */
507 regs->nip = arch_deref_entry_point(jp->entry);
508 #ifdef PPC64_ELF_ABI_v2
509 regs->gpr[12] = (unsigned long)jp->entry;
510 #elif defined(PPC64_ELF_ABI_v1)
511 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
512 #endif
513
514 /*
515 * jprobes use jprobe_return() which skips the normal return
516 * path of the function, and this messes up the accounting of the
517 * function graph tracer.
518 *
519 * Pause function graph tracing while performing the jprobe function.
520 */
521 pause_graph_tracing();
522
523 return 1;
524 }
525
jprobe_return(void)526 void __used __kprobes jprobe_return(void)
527 {
528 asm volatile("trap" ::: "memory");
529 }
530
jprobe_return_end(void)531 static void __used __kprobes jprobe_return_end(void)
532 {
533 };
534
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)535 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
536 {
537 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
538
539 /*
540 * FIXME - we should ideally be validating that we got here 'cos
541 * of the "trap" in jprobe_return() above, before restoring the
542 * saved regs...
543 */
544 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
545 /* It's OK to start function graph tracing again */
546 unpause_graph_tracing();
547 preempt_enable_no_resched();
548 return 1;
549 }
550
551 static struct kprobe trampoline_p = {
552 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
553 .pre_handler = trampoline_probe_handler
554 };
555
arch_init_kprobes(void)556 int __init arch_init_kprobes(void)
557 {
558 return register_kprobe(&trampoline_p);
559 }
560
arch_trampoline_kprobe(struct kprobe * p)561 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
562 {
563 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
564 return 1;
565
566 return 0;
567 }
568