• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *  Derived from "arch/i386/kernel/process.c"
3   *    Copyright (C) 1995  Linus Torvalds
4   *
5   *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6   *  Paul Mackerras (paulus@cs.anu.edu.au)
7   *
8   *  PowerPC version
9   *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10   *
11   *  This program is free software; you can redistribute it and/or
12   *  modify it under the terms of the GNU General Public License
13   *  as published by the Free Software Foundation; either version
14   *  2 of the License, or (at your option) any later version.
15   */
16  
17  #include <linux/errno.h>
18  #include <linux/sched.h>
19  #include <linux/kernel.h>
20  #include <linux/mm.h>
21  #include <linux/smp.h>
22  #include <linux/stddef.h>
23  #include <linux/unistd.h>
24  #include <linux/ptrace.h>
25  #include <linux/slab.h>
26  #include <linux/user.h>
27  #include <linux/elf.h>
28  #include <linux/prctl.h>
29  #include <linux/init_task.h>
30  #include <linux/export.h>
31  #include <linux/kallsyms.h>
32  #include <linux/mqueue.h>
33  #include <linux/hardirq.h>
34  #include <linux/utsname.h>
35  #include <linux/ftrace.h>
36  #include <linux/kernel_stat.h>
37  #include <linux/personality.h>
38  #include <linux/random.h>
39  #include <linux/hw_breakpoint.h>
40  #include <linux/uaccess.h>
41  #include <linux/elf-randomize.h>
42  
43  #include <asm/pgtable.h>
44  #include <asm/io.h>
45  #include <asm/processor.h>
46  #include <asm/mmu.h>
47  #include <asm/prom.h>
48  #include <asm/machdep.h>
49  #include <asm/time.h>
50  #include <asm/runlatch.h>
51  #include <asm/syscalls.h>
52  #include <asm/switch_to.h>
53  #include <asm/tm.h>
54  #include <asm/debug.h>
55  #ifdef CONFIG_PPC64
56  #include <asm/firmware.h>
57  #endif
58  #include <asm/code-patching.h>
59  #include <asm/exec.h>
60  #include <asm/livepatch.h>
61  #include <asm/cpu_has_feature.h>
62  #include <asm/asm-prototypes.h>
63  
64  #include <linux/kprobes.h>
65  #include <linux/kdebug.h>
66  
67  /* Transactional Memory debug */
68  #ifdef TM_DEBUG_SW
69  #define TM_DEBUG(x...) printk(KERN_INFO x)
70  #else
71  #define TM_DEBUG(x...) do { } while(0)
72  #endif
73  
74  extern unsigned long _get_SP(void);
75  
76  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
check_if_tm_restore_required(struct task_struct * tsk)77  static void check_if_tm_restore_required(struct task_struct *tsk)
78  {
79  	/*
80  	 * If we are saving the current thread's registers, and the
81  	 * thread is in a transactional state, set the TIF_RESTORE_TM
82  	 * bit so that we know to restore the registers before
83  	 * returning to userspace.
84  	 */
85  	if (tsk == current && tsk->thread.regs &&
86  	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87  	    !test_thread_flag(TIF_RESTORE_TM)) {
88  		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89  		set_thread_flag(TIF_RESTORE_TM);
90  	}
91  }
92  
msr_tm_active(unsigned long msr)93  static inline bool msr_tm_active(unsigned long msr)
94  {
95  	return MSR_TM_ACTIVE(msr);
96  }
97  #else
msr_tm_active(unsigned long msr)98  static inline bool msr_tm_active(unsigned long msr) { return false; }
check_if_tm_restore_required(struct task_struct * tsk)99  static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100  #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101  
102  bool strict_msr_control;
103  EXPORT_SYMBOL(strict_msr_control);
104  
enable_strict_msr_control(char * str)105  static int __init enable_strict_msr_control(char *str)
106  {
107  	strict_msr_control = true;
108  	pr_info("Enabling strict facility control\n");
109  
110  	return 0;
111  }
112  early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113  
msr_check_and_set(unsigned long bits)114  unsigned long msr_check_and_set(unsigned long bits)
115  {
116  	unsigned long oldmsr = mfmsr();
117  	unsigned long newmsr;
118  
119  	newmsr = oldmsr | bits;
120  
121  #ifdef CONFIG_VSX
122  	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123  		newmsr |= MSR_VSX;
124  #endif
125  
126  	if (oldmsr != newmsr)
127  		mtmsr_isync(newmsr);
128  
129  	return newmsr;
130  }
131  
__msr_check_and_clear(unsigned long bits)132  void __msr_check_and_clear(unsigned long bits)
133  {
134  	unsigned long oldmsr = mfmsr();
135  	unsigned long newmsr;
136  
137  	newmsr = oldmsr & ~bits;
138  
139  #ifdef CONFIG_VSX
140  	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141  		newmsr &= ~MSR_VSX;
142  #endif
143  
144  	if (oldmsr != newmsr)
145  		mtmsr_isync(newmsr);
146  }
147  EXPORT_SYMBOL(__msr_check_and_clear);
148  
149  #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)150  void __giveup_fpu(struct task_struct *tsk)
151  {
152  	unsigned long msr;
153  
154  	save_fpu(tsk);
155  	msr = tsk->thread.regs->msr;
156  	msr &= ~MSR_FP;
157  #ifdef CONFIG_VSX
158  	if (cpu_has_feature(CPU_FTR_VSX))
159  		msr &= ~MSR_VSX;
160  #endif
161  	tsk->thread.regs->msr = msr;
162  }
163  
giveup_fpu(struct task_struct * tsk)164  void giveup_fpu(struct task_struct *tsk)
165  {
166  	check_if_tm_restore_required(tsk);
167  
168  	msr_check_and_set(MSR_FP);
169  	__giveup_fpu(tsk);
170  	msr_check_and_clear(MSR_FP);
171  }
172  EXPORT_SYMBOL(giveup_fpu);
173  
174  /*
175   * Make sure the floating-point register state in the
176   * the thread_struct is up to date for task tsk.
177   */
flush_fp_to_thread(struct task_struct * tsk)178  void flush_fp_to_thread(struct task_struct *tsk)
179  {
180  	if (tsk->thread.regs) {
181  		/*
182  		 * We need to disable preemption here because if we didn't,
183  		 * another process could get scheduled after the regs->msr
184  		 * test but before we have finished saving the FP registers
185  		 * to the thread_struct.  That process could take over the
186  		 * FPU, and then when we get scheduled again we would store
187  		 * bogus values for the remaining FP registers.
188  		 */
189  		preempt_disable();
190  		if (tsk->thread.regs->msr & MSR_FP) {
191  			/*
192  			 * This should only ever be called for current or
193  			 * for a stopped child process.  Since we save away
194  			 * the FP register state on context switch,
195  			 * there is something wrong if a stopped child appears
196  			 * to still have its FP state in the CPU registers.
197  			 */
198  			BUG_ON(tsk != current);
199  			giveup_fpu(tsk);
200  		}
201  		preempt_enable();
202  	}
203  }
204  EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205  
enable_kernel_fp(void)206  void enable_kernel_fp(void)
207  {
208  	unsigned long cpumsr;
209  
210  	WARN_ON(preemptible());
211  
212  	cpumsr = msr_check_and_set(MSR_FP);
213  
214  	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215  		check_if_tm_restore_required(current);
216  		/*
217  		 * If a thread has already been reclaimed then the
218  		 * checkpointed registers are on the CPU but have definitely
219  		 * been saved by the reclaim code. Don't need to and *cannot*
220  		 * giveup as this would save  to the 'live' structure not the
221  		 * checkpointed structure.
222  		 */
223  		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224  			return;
225  		__giveup_fpu(current);
226  	}
227  }
228  EXPORT_SYMBOL(enable_kernel_fp);
229  
restore_fp(struct task_struct * tsk)230  static int restore_fp(struct task_struct *tsk) {
231  	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232  		load_fp_state(&current->thread.fp_state);
233  		current->thread.load_fp++;
234  		return 1;
235  	}
236  	return 0;
237  }
238  #else
restore_fp(struct task_struct * tsk)239  static int restore_fp(struct task_struct *tsk) { return 0; }
240  #endif /* CONFIG_PPC_FPU */
241  
242  #ifdef CONFIG_ALTIVEC
243  #define loadvec(thr) ((thr).load_vec)
244  
__giveup_altivec(struct task_struct * tsk)245  static void __giveup_altivec(struct task_struct *tsk)
246  {
247  	unsigned long msr;
248  
249  	save_altivec(tsk);
250  	msr = tsk->thread.regs->msr;
251  	msr &= ~MSR_VEC;
252  #ifdef CONFIG_VSX
253  	if (cpu_has_feature(CPU_FTR_VSX))
254  		msr &= ~MSR_VSX;
255  #endif
256  	tsk->thread.regs->msr = msr;
257  }
258  
giveup_altivec(struct task_struct * tsk)259  void giveup_altivec(struct task_struct *tsk)
260  {
261  	check_if_tm_restore_required(tsk);
262  
263  	msr_check_and_set(MSR_VEC);
264  	__giveup_altivec(tsk);
265  	msr_check_and_clear(MSR_VEC);
266  }
267  EXPORT_SYMBOL(giveup_altivec);
268  
enable_kernel_altivec(void)269  void enable_kernel_altivec(void)
270  {
271  	unsigned long cpumsr;
272  
273  	WARN_ON(preemptible());
274  
275  	cpumsr = msr_check_and_set(MSR_VEC);
276  
277  	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278  		check_if_tm_restore_required(current);
279  		/*
280  		 * If a thread has already been reclaimed then the
281  		 * checkpointed registers are on the CPU but have definitely
282  		 * been saved by the reclaim code. Don't need to and *cannot*
283  		 * giveup as this would save  to the 'live' structure not the
284  		 * checkpointed structure.
285  		 */
286  		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287  			return;
288  		__giveup_altivec(current);
289  	}
290  }
291  EXPORT_SYMBOL(enable_kernel_altivec);
292  
293  /*
294   * Make sure the VMX/Altivec register state in the
295   * the thread_struct is up to date for task tsk.
296   */
flush_altivec_to_thread(struct task_struct * tsk)297  void flush_altivec_to_thread(struct task_struct *tsk)
298  {
299  	if (tsk->thread.regs) {
300  		preempt_disable();
301  		if (tsk->thread.regs->msr & MSR_VEC) {
302  			BUG_ON(tsk != current);
303  			giveup_altivec(tsk);
304  		}
305  		preempt_enable();
306  	}
307  }
308  EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309  
restore_altivec(struct task_struct * tsk)310  static int restore_altivec(struct task_struct *tsk)
311  {
312  	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313  		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314  		load_vr_state(&tsk->thread.vr_state);
315  		tsk->thread.used_vr = 1;
316  		tsk->thread.load_vec++;
317  
318  		return 1;
319  	}
320  	return 0;
321  }
322  #else
323  #define loadvec(thr) 0
restore_altivec(struct task_struct * tsk)324  static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325  #endif /* CONFIG_ALTIVEC */
326  
327  #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)328  static void __giveup_vsx(struct task_struct *tsk)
329  {
330  	if (tsk->thread.regs->msr & MSR_FP)
331  		__giveup_fpu(tsk);
332  	if (tsk->thread.regs->msr & MSR_VEC)
333  		__giveup_altivec(tsk);
334  	tsk->thread.regs->msr &= ~MSR_VSX;
335  }
336  
giveup_vsx(struct task_struct * tsk)337  static void giveup_vsx(struct task_struct *tsk)
338  {
339  	check_if_tm_restore_required(tsk);
340  
341  	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342  	__giveup_vsx(tsk);
343  	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344  }
345  
save_vsx(struct task_struct * tsk)346  static void save_vsx(struct task_struct *tsk)
347  {
348  	if (tsk->thread.regs->msr & MSR_FP)
349  		save_fpu(tsk);
350  	if (tsk->thread.regs->msr & MSR_VEC)
351  		save_altivec(tsk);
352  }
353  
enable_kernel_vsx(void)354  void enable_kernel_vsx(void)
355  {
356  	unsigned long cpumsr;
357  
358  	WARN_ON(preemptible());
359  
360  	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361  
362  	if (current->thread.regs &&
363  	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
364  		check_if_tm_restore_required(current);
365  		/*
366  		 * If a thread has already been reclaimed then the
367  		 * checkpointed registers are on the CPU but have definitely
368  		 * been saved by the reclaim code. Don't need to and *cannot*
369  		 * giveup as this would save  to the 'live' structure not the
370  		 * checkpointed structure.
371  		 */
372  		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
373  			return;
374  		if (current->thread.regs->msr & MSR_FP)
375  			__giveup_fpu(current);
376  		if (current->thread.regs->msr & MSR_VEC)
377  			__giveup_altivec(current);
378  		__giveup_vsx(current);
379  	}
380  }
381  EXPORT_SYMBOL(enable_kernel_vsx);
382  
flush_vsx_to_thread(struct task_struct * tsk)383  void flush_vsx_to_thread(struct task_struct *tsk)
384  {
385  	if (tsk->thread.regs) {
386  		preempt_disable();
387  		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
388  			BUG_ON(tsk != current);
389  			giveup_vsx(tsk);
390  		}
391  		preempt_enable();
392  	}
393  }
394  EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395  
restore_vsx(struct task_struct * tsk)396  static int restore_vsx(struct task_struct *tsk)
397  {
398  	if (cpu_has_feature(CPU_FTR_VSX)) {
399  		tsk->thread.used_vsr = 1;
400  		return 1;
401  	}
402  
403  	return 0;
404  }
405  #else
restore_vsx(struct task_struct * tsk)406  static inline int restore_vsx(struct task_struct *tsk) { return 0; }
save_vsx(struct task_struct * tsk)407  static inline void save_vsx(struct task_struct *tsk) { }
408  #endif /* CONFIG_VSX */
409  
410  #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)411  void giveup_spe(struct task_struct *tsk)
412  {
413  	check_if_tm_restore_required(tsk);
414  
415  	msr_check_and_set(MSR_SPE);
416  	__giveup_spe(tsk);
417  	msr_check_and_clear(MSR_SPE);
418  }
419  EXPORT_SYMBOL(giveup_spe);
420  
enable_kernel_spe(void)421  void enable_kernel_spe(void)
422  {
423  	WARN_ON(preemptible());
424  
425  	msr_check_and_set(MSR_SPE);
426  
427  	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
428  		check_if_tm_restore_required(current);
429  		__giveup_spe(current);
430  	}
431  }
432  EXPORT_SYMBOL(enable_kernel_spe);
433  
flush_spe_to_thread(struct task_struct * tsk)434  void flush_spe_to_thread(struct task_struct *tsk)
435  {
436  	if (tsk->thread.regs) {
437  		preempt_disable();
438  		if (tsk->thread.regs->msr & MSR_SPE) {
439  			BUG_ON(tsk != current);
440  			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
441  			giveup_spe(tsk);
442  		}
443  		preempt_enable();
444  	}
445  }
446  #endif /* CONFIG_SPE */
447  
448  static unsigned long msr_all_available;
449  
init_msr_all_available(void)450  static int __init init_msr_all_available(void)
451  {
452  #ifdef CONFIG_PPC_FPU
453  	msr_all_available |= MSR_FP;
454  #endif
455  #ifdef CONFIG_ALTIVEC
456  	if (cpu_has_feature(CPU_FTR_ALTIVEC))
457  		msr_all_available |= MSR_VEC;
458  #endif
459  #ifdef CONFIG_VSX
460  	if (cpu_has_feature(CPU_FTR_VSX))
461  		msr_all_available |= MSR_VSX;
462  #endif
463  #ifdef CONFIG_SPE
464  	if (cpu_has_feature(CPU_FTR_SPE))
465  		msr_all_available |= MSR_SPE;
466  #endif
467  
468  	return 0;
469  }
470  early_initcall(init_msr_all_available);
471  
giveup_all(struct task_struct * tsk)472  void giveup_all(struct task_struct *tsk)
473  {
474  	unsigned long usermsr;
475  
476  	if (!tsk->thread.regs)
477  		return;
478  
479  	usermsr = tsk->thread.regs->msr;
480  
481  	if ((usermsr & msr_all_available) == 0)
482  		return;
483  
484  	msr_check_and_set(msr_all_available);
485  	check_if_tm_restore_required(tsk);
486  
487  #ifdef CONFIG_PPC_FPU
488  	if (usermsr & MSR_FP)
489  		__giveup_fpu(tsk);
490  #endif
491  #ifdef CONFIG_ALTIVEC
492  	if (usermsr & MSR_VEC)
493  		__giveup_altivec(tsk);
494  #endif
495  #ifdef CONFIG_VSX
496  	if (usermsr & MSR_VSX)
497  		__giveup_vsx(tsk);
498  #endif
499  #ifdef CONFIG_SPE
500  	if (usermsr & MSR_SPE)
501  		__giveup_spe(tsk);
502  #endif
503  
504  	msr_check_and_clear(msr_all_available);
505  }
506  EXPORT_SYMBOL(giveup_all);
507  
restore_math(struct pt_regs * regs)508  void restore_math(struct pt_regs *regs)
509  {
510  	unsigned long msr;
511  
512  	if (!msr_tm_active(regs->msr) &&
513  		!current->thread.load_fp && !loadvec(current->thread))
514  		return;
515  
516  	msr = regs->msr;
517  	msr_check_and_set(msr_all_available);
518  
519  	/*
520  	 * Only reload if the bit is not set in the user MSR, the bit BEING set
521  	 * indicates that the registers are hot
522  	 */
523  	if ((!(msr & MSR_FP)) && restore_fp(current))
524  		msr |= MSR_FP | current->thread.fpexc_mode;
525  
526  	if ((!(msr & MSR_VEC)) && restore_altivec(current))
527  		msr |= MSR_VEC;
528  
529  	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
530  			restore_vsx(current)) {
531  		msr |= MSR_VSX;
532  	}
533  
534  	msr_check_and_clear(msr_all_available);
535  
536  	regs->msr = msr;
537  }
538  
save_all(struct task_struct * tsk)539  void save_all(struct task_struct *tsk)
540  {
541  	unsigned long usermsr;
542  
543  	if (!tsk->thread.regs)
544  		return;
545  
546  	usermsr = tsk->thread.regs->msr;
547  
548  	if ((usermsr & msr_all_available) == 0)
549  		return;
550  
551  	msr_check_and_set(msr_all_available);
552  
553  	/*
554  	 * Saving the way the register space is in hardware, save_vsx boils
555  	 * down to a save_fpu() and save_altivec()
556  	 */
557  	if (usermsr & MSR_VSX) {
558  		save_vsx(tsk);
559  	} else {
560  		if (usermsr & MSR_FP)
561  			save_fpu(tsk);
562  
563  		if (usermsr & MSR_VEC)
564  			save_altivec(tsk);
565  	}
566  
567  	if (usermsr & MSR_SPE)
568  		__giveup_spe(tsk);
569  
570  	msr_check_and_clear(msr_all_available);
571  }
572  
flush_all_to_thread(struct task_struct * tsk)573  void flush_all_to_thread(struct task_struct *tsk)
574  {
575  	if (tsk->thread.regs) {
576  		preempt_disable();
577  		BUG_ON(tsk != current);
578  		save_all(tsk);
579  
580  #ifdef CONFIG_SPE
581  		if (tsk->thread.regs->msr & MSR_SPE)
582  			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
583  #endif
584  
585  		preempt_enable();
586  	}
587  }
588  EXPORT_SYMBOL(flush_all_to_thread);
589  
590  #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)591  void do_send_trap(struct pt_regs *regs, unsigned long address,
592  		  unsigned long error_code, int signal_code, int breakpt)
593  {
594  	siginfo_t info;
595  
596  	current->thread.trap_nr = signal_code;
597  	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
598  			11, SIGSEGV) == NOTIFY_STOP)
599  		return;
600  
601  	/* Deliver the signal to userspace */
602  	info.si_signo = SIGTRAP;
603  	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
604  	info.si_code = signal_code;
605  	info.si_addr = (void __user *)address;
606  	force_sig_info(SIGTRAP, &info, current);
607  }
608  #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)609  void do_break (struct pt_regs *regs, unsigned long address,
610  		    unsigned long error_code)
611  {
612  	siginfo_t info;
613  
614  	current->thread.trap_nr = TRAP_HWBKPT;
615  	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
616  			11, SIGSEGV) == NOTIFY_STOP)
617  		return;
618  
619  	if (debugger_break_match(regs))
620  		return;
621  
622  	/* Clear the breakpoint */
623  	hw_breakpoint_disable();
624  
625  	/* Deliver the signal to userspace */
626  	info.si_signo = SIGTRAP;
627  	info.si_errno = 0;
628  	info.si_code = TRAP_HWBKPT;
629  	info.si_addr = (void __user *)address;
630  	force_sig_info(SIGTRAP, &info, current);
631  }
632  #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
633  
634  static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
635  
636  #ifdef CONFIG_PPC_ADV_DEBUG_REGS
637  /*
638   * Set the debug registers back to their default "safe" values.
639   */
set_debug_reg_defaults(struct thread_struct * thread)640  static void set_debug_reg_defaults(struct thread_struct *thread)
641  {
642  	thread->debug.iac1 = thread->debug.iac2 = 0;
643  #if CONFIG_PPC_ADV_DEBUG_IACS > 2
644  	thread->debug.iac3 = thread->debug.iac4 = 0;
645  #endif
646  	thread->debug.dac1 = thread->debug.dac2 = 0;
647  #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
648  	thread->debug.dvc1 = thread->debug.dvc2 = 0;
649  #endif
650  	thread->debug.dbcr0 = 0;
651  #ifdef CONFIG_BOOKE
652  	/*
653  	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
654  	 */
655  	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
656  			DBCR1_IAC3US | DBCR1_IAC4US;
657  	/*
658  	 * Force Data Address Compare User/Supervisor bits to be User-only
659  	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
660  	 */
661  	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
662  #else
663  	thread->debug.dbcr1 = 0;
664  #endif
665  }
666  
prime_debug_regs(struct debug_reg * debug)667  static void prime_debug_regs(struct debug_reg *debug)
668  {
669  	/*
670  	 * We could have inherited MSR_DE from userspace, since
671  	 * it doesn't get cleared on exception entry.  Make sure
672  	 * MSR_DE is clear before we enable any debug events.
673  	 */
674  	mtmsr(mfmsr() & ~MSR_DE);
675  
676  	mtspr(SPRN_IAC1, debug->iac1);
677  	mtspr(SPRN_IAC2, debug->iac2);
678  #if CONFIG_PPC_ADV_DEBUG_IACS > 2
679  	mtspr(SPRN_IAC3, debug->iac3);
680  	mtspr(SPRN_IAC4, debug->iac4);
681  #endif
682  	mtspr(SPRN_DAC1, debug->dac1);
683  	mtspr(SPRN_DAC2, debug->dac2);
684  #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
685  	mtspr(SPRN_DVC1, debug->dvc1);
686  	mtspr(SPRN_DVC2, debug->dvc2);
687  #endif
688  	mtspr(SPRN_DBCR0, debug->dbcr0);
689  	mtspr(SPRN_DBCR1, debug->dbcr1);
690  #ifdef CONFIG_BOOKE
691  	mtspr(SPRN_DBCR2, debug->dbcr2);
692  #endif
693  }
694  /*
695   * Unless neither the old or new thread are making use of the
696   * debug registers, set the debug registers from the values
697   * stored in the new thread.
698   */
switch_booke_debug_regs(struct debug_reg * new_debug)699  void switch_booke_debug_regs(struct debug_reg *new_debug)
700  {
701  	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
702  		|| (new_debug->dbcr0 & DBCR0_IDM))
703  			prime_debug_regs(new_debug);
704  }
705  EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
706  #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
707  #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_debug_reg_defaults(struct thread_struct * thread)708  static void set_debug_reg_defaults(struct thread_struct *thread)
709  {
710  	thread->hw_brk.address = 0;
711  	thread->hw_brk.type = 0;
712  	set_breakpoint(&thread->hw_brk);
713  }
714  #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
715  #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
716  
717  #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)718  static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
719  {
720  	mtspr(SPRN_DAC1, dabr);
721  #ifdef CONFIG_PPC_47x
722  	isync();
723  #endif
724  	return 0;
725  }
726  #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)727  static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
728  {
729  	mtspr(SPRN_DABR, dabr);
730  	if (cpu_has_feature(CPU_FTR_DABRX))
731  		mtspr(SPRN_DABRX, dabrx);
732  	return 0;
733  }
734  #else
__set_dabr(unsigned long dabr,unsigned long dabrx)735  static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
736  {
737  	return -EINVAL;
738  }
739  #endif
740  
set_dabr(struct arch_hw_breakpoint * brk)741  static inline int set_dabr(struct arch_hw_breakpoint *brk)
742  {
743  	unsigned long dabr, dabrx;
744  
745  	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
746  	dabrx = ((brk->type >> 3) & 0x7);
747  
748  	if (ppc_md.set_dabr)
749  		return ppc_md.set_dabr(dabr, dabrx);
750  
751  	return __set_dabr(dabr, dabrx);
752  }
753  
set_dawr(struct arch_hw_breakpoint * brk)754  static inline int set_dawr(struct arch_hw_breakpoint *brk)
755  {
756  	unsigned long dawr, dawrx, mrd;
757  
758  	dawr = brk->address;
759  
760  	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
761  		                   << (63 - 58); //* read/write bits */
762  	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
763  		                   << (63 - 59); //* translate */
764  	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
765  		                   >> 3; //* PRIM bits */
766  	/* dawr length is stored in field MDR bits 48:53.  Matches range in
767  	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
768  	   0b111111=64DW.
769  	   brk->len is in bytes.
770  	   This aligns up to double word size, shifts and does the bias.
771  	*/
772  	mrd = ((brk->len + 7) >> 3) - 1;
773  	dawrx |= (mrd & 0x3f) << (63 - 53);
774  
775  	if (ppc_md.set_dawr)
776  		return ppc_md.set_dawr(dawr, dawrx);
777  	mtspr(SPRN_DAWR, dawr);
778  	mtspr(SPRN_DAWRX, dawrx);
779  	return 0;
780  }
781  
__set_breakpoint(struct arch_hw_breakpoint * brk)782  void __set_breakpoint(struct arch_hw_breakpoint *brk)
783  {
784  	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
785  
786  	if (cpu_has_feature(CPU_FTR_DAWR))
787  		set_dawr(brk);
788  	else
789  		set_dabr(brk);
790  }
791  
set_breakpoint(struct arch_hw_breakpoint * brk)792  void set_breakpoint(struct arch_hw_breakpoint *brk)
793  {
794  	preempt_disable();
795  	__set_breakpoint(brk);
796  	preempt_enable();
797  }
798  
799  #ifdef CONFIG_PPC64
800  DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
801  #endif
802  
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)803  static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
804  			      struct arch_hw_breakpoint *b)
805  {
806  	if (a->address != b->address)
807  		return false;
808  	if (a->type != b->type)
809  		return false;
810  	if (a->len != b->len)
811  		return false;
812  	return true;
813  }
814  
815  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
816  
tm_enabled(struct task_struct * tsk)817  static inline bool tm_enabled(struct task_struct *tsk)
818  {
819  	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
820  }
821  
tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)822  static void tm_reclaim_thread(struct thread_struct *thr,
823  			      struct thread_info *ti, uint8_t cause)
824  {
825  	/*
826  	 * Use the current MSR TM suspended bit to track if we have
827  	 * checkpointed state outstanding.
828  	 * On signal delivery, we'd normally reclaim the checkpointed
829  	 * state to obtain stack pointer (see:get_tm_stackpointer()).
830  	 * This will then directly return to userspace without going
831  	 * through __switch_to(). However, if the stack frame is bad,
832  	 * we need to exit this thread which calls __switch_to() which
833  	 * will again attempt to reclaim the already saved tm state.
834  	 * Hence we need to check that we've not already reclaimed
835  	 * this state.
836  	 * We do this using the current MSR, rather tracking it in
837  	 * some specific thread_struct bit, as it has the additional
838  	 * benefit of checking for a potential TM bad thing exception.
839  	 */
840  	if (!MSR_TM_SUSPENDED(mfmsr()))
841  		return;
842  
843  	/*
844  	 * If we are in a transaction and FP is off then we can't have
845  	 * used FP inside that transaction. Hence the checkpointed
846  	 * state is the same as the live state. We need to copy the
847  	 * live state to the checkpointed state so that when the
848  	 * transaction is restored, the checkpointed state is correct
849  	 * and the aborted transaction sees the correct state. We use
850  	 * ckpt_regs.msr here as that's what tm_reclaim will use to
851  	 * determine if it's going to write the checkpointed state or
852  	 * not. So either this will write the checkpointed registers,
853  	 * or reclaim will. Similarly for VMX.
854  	 */
855  	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
856  		memcpy(&thr->ckfp_state, &thr->fp_state,
857  		       sizeof(struct thread_fp_state));
858  	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
859  		memcpy(&thr->ckvr_state, &thr->vr_state,
860  		       sizeof(struct thread_vr_state));
861  
862  	giveup_all(container_of(thr, struct task_struct, thread));
863  
864  	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
865  }
866  
tm_reclaim_current(uint8_t cause)867  void tm_reclaim_current(uint8_t cause)
868  {
869  	tm_enable();
870  	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
871  }
872  
tm_reclaim_task(struct task_struct * tsk)873  static inline void tm_reclaim_task(struct task_struct *tsk)
874  {
875  	/* We have to work out if we're switching from/to a task that's in the
876  	 * middle of a transaction.
877  	 *
878  	 * In switching we need to maintain a 2nd register state as
879  	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
880  	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
881  	 * ckvr_state
882  	 *
883  	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
884  	 */
885  	struct thread_struct *thr = &tsk->thread;
886  
887  	if (!thr->regs)
888  		return;
889  
890  	if (!MSR_TM_ACTIVE(thr->regs->msr))
891  		goto out_and_saveregs;
892  
893  	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
894  		 "ccr=%lx, msr=%lx, trap=%lx)\n",
895  		 tsk->pid, thr->regs->nip,
896  		 thr->regs->ccr, thr->regs->msr,
897  		 thr->regs->trap);
898  
899  	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
900  
901  	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
902  		 tsk->pid);
903  
904  out_and_saveregs:
905  	/* Always save the regs here, even if a transaction's not active.
906  	 * This context-switches a thread's TM info SPRs.  We do it here to
907  	 * be consistent with the restore path (in recheckpoint) which
908  	 * cannot happen later in _switch().
909  	 */
910  	tm_save_sprs(thr);
911  }
912  
913  extern void __tm_recheckpoint(struct thread_struct *thread,
914  			      unsigned long orig_msr);
915  
tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)916  void tm_recheckpoint(struct thread_struct *thread,
917  		     unsigned long orig_msr)
918  {
919  	unsigned long flags;
920  
921  	if (!(thread->regs->msr & MSR_TM))
922  		return;
923  
924  	/* We really can't be interrupted here as the TEXASR registers can't
925  	 * change and later in the trecheckpoint code, we have a userspace R1.
926  	 * So let's hard disable over this region.
927  	 */
928  	local_irq_save(flags);
929  	hard_irq_disable();
930  
931  	/* The TM SPRs are restored here, so that TEXASR.FS can be set
932  	 * before the trecheckpoint and no explosion occurs.
933  	 */
934  	tm_restore_sprs(thread);
935  
936  	__tm_recheckpoint(thread, orig_msr);
937  
938  	local_irq_restore(flags);
939  }
940  
tm_recheckpoint_new_task(struct task_struct * new)941  static inline void tm_recheckpoint_new_task(struct task_struct *new)
942  {
943  	unsigned long msr;
944  
945  	if (!cpu_has_feature(CPU_FTR_TM))
946  		return;
947  
948  	/* Recheckpoint the registers of the thread we're about to switch to.
949  	 *
950  	 * If the task was using FP, we non-lazily reload both the original and
951  	 * the speculative FP register states.  This is because the kernel
952  	 * doesn't see if/when a TM rollback occurs, so if we take an FP
953  	 * unavailable later, we are unable to determine which set of FP regs
954  	 * need to be restored.
955  	 */
956  	if (!tm_enabled(new))
957  		return;
958  
959  	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
960  		tm_restore_sprs(&new->thread);
961  		return;
962  	}
963  	msr = new->thread.ckpt_regs.msr;
964  	/* Recheckpoint to restore original checkpointed register state. */
965  	TM_DEBUG("*** tm_recheckpoint of pid %d "
966  		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
967  		 new->pid, new->thread.regs->msr, msr);
968  
969  	tm_recheckpoint(&new->thread, msr);
970  
971  	/*
972  	 * The checkpointed state has been restored but the live state has
973  	 * not, ensure all the math functionality is turned off to trigger
974  	 * restore_math() to reload.
975  	 */
976  	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
977  
978  	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
979  		 "(kernel msr 0x%lx)\n",
980  		 new->pid, mfmsr());
981  }
982  
__switch_to_tm(struct task_struct * prev,struct task_struct * new)983  static inline void __switch_to_tm(struct task_struct *prev,
984  		struct task_struct *new)
985  {
986  	if (cpu_has_feature(CPU_FTR_TM)) {
987  		if (tm_enabled(prev) || tm_enabled(new))
988  			tm_enable();
989  
990  		if (tm_enabled(prev)) {
991  			prev->thread.load_tm++;
992  			tm_reclaim_task(prev);
993  			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
994  				prev->thread.regs->msr &= ~MSR_TM;
995  		}
996  
997  		tm_recheckpoint_new_task(new);
998  	}
999  }
1000  
1001  /*
1002   * This is called if we are on the way out to userspace and the
1003   * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1004   * FP and/or vector state and does so if necessary.
1005   * If userspace is inside a transaction (whether active or
1006   * suspended) and FP/VMX/VSX instructions have ever been enabled
1007   * inside that transaction, then we have to keep them enabled
1008   * and keep the FP/VMX/VSX state loaded while ever the transaction
1009   * continues.  The reason is that if we didn't, and subsequently
1010   * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1011   * we don't know whether it's the same transaction, and thus we
1012   * don't know which of the checkpointed state and the transactional
1013   * state to use.
1014   */
restore_tm_state(struct pt_regs * regs)1015  void restore_tm_state(struct pt_regs *regs)
1016  {
1017  	unsigned long msr_diff;
1018  
1019  	/*
1020  	 * This is the only moment we should clear TIF_RESTORE_TM as
1021  	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1022  	 * again, anything else could lead to an incorrect ckpt_msr being
1023  	 * saved and therefore incorrect signal contexts.
1024  	 */
1025  	clear_thread_flag(TIF_RESTORE_TM);
1026  	if (!MSR_TM_ACTIVE(regs->msr))
1027  		return;
1028  
1029  	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1030  	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1031  
1032  	/* Ensure that restore_math() will restore */
1033  	if (msr_diff & MSR_FP)
1034  		current->thread.load_fp = 1;
1035  #ifdef CONFIG_ALTIVEC
1036  	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1037  		current->thread.load_vec = 1;
1038  #endif
1039  	restore_math(regs);
1040  
1041  	regs->msr |= msr_diff;
1042  }
1043  
1044  #else
1045  #define tm_recheckpoint_new_task(new)
1046  #define __switch_to_tm(prev, new)
1047  #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1048  
save_sprs(struct thread_struct * t)1049  static inline void save_sprs(struct thread_struct *t)
1050  {
1051  #ifdef CONFIG_ALTIVEC
1052  	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1053  		t->vrsave = mfspr(SPRN_VRSAVE);
1054  #endif
1055  #ifdef CONFIG_PPC_BOOK3S_64
1056  	if (cpu_has_feature(CPU_FTR_DSCR))
1057  		t->dscr = mfspr(SPRN_DSCR);
1058  
1059  	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1060  		t->bescr = mfspr(SPRN_BESCR);
1061  		t->ebbhr = mfspr(SPRN_EBBHR);
1062  		t->ebbrr = mfspr(SPRN_EBBRR);
1063  
1064  		t->fscr = mfspr(SPRN_FSCR);
1065  
1066  		/*
1067  		 * Note that the TAR is not available for use in the kernel.
1068  		 * (To provide this, the TAR should be backed up/restored on
1069  		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1070  		 * this should be in pt_regs anyway (for debug).)
1071  		 */
1072  		t->tar = mfspr(SPRN_TAR);
1073  	}
1074  
1075  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1076  		/* Conditionally save Load Monitor registers, if enabled */
1077  		if (t->fscr & FSCR_LM) {
1078  			t->lmrr = mfspr(SPRN_LMRR);
1079  			t->lmser = mfspr(SPRN_LMSER);
1080  		}
1081  	}
1082  #endif
1083  }
1084  
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1085  static inline void restore_sprs(struct thread_struct *old_thread,
1086  				struct thread_struct *new_thread)
1087  {
1088  #ifdef CONFIG_ALTIVEC
1089  	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1090  	    old_thread->vrsave != new_thread->vrsave)
1091  		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1092  #endif
1093  #ifdef CONFIG_PPC_BOOK3S_64
1094  	if (cpu_has_feature(CPU_FTR_DSCR)) {
1095  		u64 dscr = get_paca()->dscr_default;
1096  		if (new_thread->dscr_inherit)
1097  			dscr = new_thread->dscr;
1098  
1099  		if (old_thread->dscr != dscr)
1100  			mtspr(SPRN_DSCR, dscr);
1101  	}
1102  
1103  	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1104  		if (old_thread->bescr != new_thread->bescr)
1105  			mtspr(SPRN_BESCR, new_thread->bescr);
1106  		if (old_thread->ebbhr != new_thread->ebbhr)
1107  			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1108  		if (old_thread->ebbrr != new_thread->ebbrr)
1109  			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1110  
1111  		if (old_thread->fscr != new_thread->fscr)
1112  			mtspr(SPRN_FSCR, new_thread->fscr);
1113  
1114  		if (old_thread->tar != new_thread->tar)
1115  			mtspr(SPRN_TAR, new_thread->tar);
1116  	}
1117  
1118  	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1119  		/* Conditionally restore Load Monitor registers, if enabled */
1120  		if (new_thread->fscr & FSCR_LM) {
1121  			if (old_thread->lmrr != new_thread->lmrr)
1122  				mtspr(SPRN_LMRR, new_thread->lmrr);
1123  			if (old_thread->lmser != new_thread->lmser)
1124  				mtspr(SPRN_LMSER, new_thread->lmser);
1125  		}
1126  	}
1127  #endif
1128  }
1129  
__switch_to(struct task_struct * prev,struct task_struct * new)1130  struct task_struct *__switch_to(struct task_struct *prev,
1131  	struct task_struct *new)
1132  {
1133  	struct thread_struct *new_thread, *old_thread;
1134  	struct task_struct *last;
1135  #ifdef CONFIG_PPC_BOOK3S_64
1136  	struct ppc64_tlb_batch *batch;
1137  #endif
1138  
1139  	new_thread = &new->thread;
1140  	old_thread = &current->thread;
1141  
1142  	WARN_ON(!irqs_disabled());
1143  
1144  #ifdef CONFIG_PPC64
1145  	/*
1146  	 * Collect processor utilization data per process
1147  	 */
1148  	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149  		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150  		long unsigned start_tb, current_tb;
1151  		start_tb = old_thread->start_tb;
1152  		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1153  		old_thread->accum_tb += (current_tb - start_tb);
1154  		new_thread->start_tb = current_tb;
1155  	}
1156  #endif /* CONFIG_PPC64 */
1157  
1158  #ifdef CONFIG_PPC_STD_MMU_64
1159  	batch = this_cpu_ptr(&ppc64_tlb_batch);
1160  	if (batch->active) {
1161  		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1162  		if (batch->index)
1163  			__flush_tlb_pending(batch);
1164  		batch->active = 0;
1165  	}
1166  #endif /* CONFIG_PPC_STD_MMU_64 */
1167  
1168  #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169  	switch_booke_debug_regs(&new->thread.debug);
1170  #else
1171  /*
1172   * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1173   * schedule DABR
1174   */
1175  #ifndef CONFIG_HAVE_HW_BREAKPOINT
1176  	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1177  		__set_breakpoint(&new->thread.hw_brk);
1178  #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1179  #endif
1180  
1181  	/*
1182  	 * We need to save SPRs before treclaim/trecheckpoint as these will
1183  	 * change a number of them.
1184  	 */
1185  	save_sprs(&prev->thread);
1186  
1187  	/* Save FPU, Altivec, VSX and SPE state */
1188  	giveup_all(prev);
1189  
1190  	__switch_to_tm(prev, new);
1191  
1192  	/*
1193  	 * We can't take a PMU exception inside _switch() since there is a
1194  	 * window where the kernel stack SLB and the kernel stack are out
1195  	 * of sync. Hard disable here.
1196  	 */
1197  	hard_irq_disable();
1198  
1199  	/*
1200  	 * Call restore_sprs() before calling _switch(). If we move it after
1201  	 * _switch() then we miss out on calling it for new tasks. The reason
1202  	 * for this is we manually create a stack frame for new tasks that
1203  	 * directly returns through ret_from_fork() or
1204  	 * ret_from_kernel_thread(). See copy_thread() for details.
1205  	 */
1206  	restore_sprs(old_thread, new_thread);
1207  
1208  	last = _switch(old_thread, new_thread);
1209  
1210  #ifdef CONFIG_PPC_STD_MMU_64
1211  	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1212  		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1213  		batch = this_cpu_ptr(&ppc64_tlb_batch);
1214  		batch->active = 1;
1215  	}
1216  
1217  	if (current_thread_info()->task->thread.regs)
1218  		restore_math(current_thread_info()->task->thread.regs);
1219  #endif /* CONFIG_PPC_STD_MMU_64 */
1220  
1221  	return last;
1222  }
1223  
1224  static int instructions_to_print = 16;
1225  
show_instructions(struct pt_regs * regs)1226  static void show_instructions(struct pt_regs *regs)
1227  {
1228  	int i;
1229  	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1230  			sizeof(int));
1231  
1232  	printk("Instruction dump:");
1233  
1234  	for (i = 0; i < instructions_to_print; i++) {
1235  		int instr;
1236  
1237  		if (!(i % 8))
1238  			pr_cont("\n");
1239  
1240  #if !defined(CONFIG_BOOKE)
1241  		/* If executing with the IMMU off, adjust pc rather
1242  		 * than print XXXXXXXX.
1243  		 */
1244  		if (!(regs->msr & MSR_IR))
1245  			pc = (unsigned long)phys_to_virt(pc);
1246  #endif
1247  
1248  		if (!__kernel_text_address(pc) ||
1249  		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1250  			pr_cont("XXXXXXXX ");
1251  		} else {
1252  			if (regs->nip == pc)
1253  				pr_cont("<%08x> ", instr);
1254  			else
1255  				pr_cont("%08x ", instr);
1256  		}
1257  
1258  		pc += sizeof(int);
1259  	}
1260  
1261  	pr_cont("\n");
1262  }
1263  
1264  struct regbit {
1265  	unsigned long bit;
1266  	const char *name;
1267  };
1268  
1269  static struct regbit msr_bits[] = {
1270  #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1271  	{MSR_SF,	"SF"},
1272  	{MSR_HV,	"HV"},
1273  #endif
1274  	{MSR_VEC,	"VEC"},
1275  	{MSR_VSX,	"VSX"},
1276  #ifdef CONFIG_BOOKE
1277  	{MSR_CE,	"CE"},
1278  #endif
1279  	{MSR_EE,	"EE"},
1280  	{MSR_PR,	"PR"},
1281  	{MSR_FP,	"FP"},
1282  	{MSR_ME,	"ME"},
1283  #ifdef CONFIG_BOOKE
1284  	{MSR_DE,	"DE"},
1285  #else
1286  	{MSR_SE,	"SE"},
1287  	{MSR_BE,	"BE"},
1288  #endif
1289  	{MSR_IR,	"IR"},
1290  	{MSR_DR,	"DR"},
1291  	{MSR_PMM,	"PMM"},
1292  #ifndef CONFIG_BOOKE
1293  	{MSR_RI,	"RI"},
1294  	{MSR_LE,	"LE"},
1295  #endif
1296  	{0,		NULL}
1297  };
1298  
print_bits(unsigned long val,struct regbit * bits,const char * sep)1299  static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1300  {
1301  	const char *s = "";
1302  
1303  	for (; bits->bit; ++bits)
1304  		if (val & bits->bit) {
1305  			pr_cont("%s%s", s, bits->name);
1306  			s = sep;
1307  		}
1308  }
1309  
1310  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1311  static struct regbit msr_tm_bits[] = {
1312  	{MSR_TS_T,	"T"},
1313  	{MSR_TS_S,	"S"},
1314  	{MSR_TM,	"E"},
1315  	{0,		NULL}
1316  };
1317  
print_tm_bits(unsigned long val)1318  static void print_tm_bits(unsigned long val)
1319  {
1320  /*
1321   * This only prints something if at least one of the TM bit is set.
1322   * Inside the TM[], the output means:
1323   *   E: Enabled		(bit 32)
1324   *   S: Suspended	(bit 33)
1325   *   T: Transactional	(bit 34)
1326   */
1327  	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1328  		pr_cont(",TM[");
1329  		print_bits(val, msr_tm_bits, "");
1330  		pr_cont("]");
1331  	}
1332  }
1333  #else
print_tm_bits(unsigned long val)1334  static void print_tm_bits(unsigned long val) {}
1335  #endif
1336  
print_msr_bits(unsigned long val)1337  static void print_msr_bits(unsigned long val)
1338  {
1339  	pr_cont("<");
1340  	print_bits(val, msr_bits, ",");
1341  	print_tm_bits(val);
1342  	pr_cont(">");
1343  }
1344  
1345  #ifdef CONFIG_PPC64
1346  #define REG		"%016lx"
1347  #define REGS_PER_LINE	4
1348  #define LAST_VOLATILE	13
1349  #else
1350  #define REG		"%08lx"
1351  #define REGS_PER_LINE	8
1352  #define LAST_VOLATILE	12
1353  #endif
1354  
show_regs(struct pt_regs * regs)1355  void show_regs(struct pt_regs * regs)
1356  {
1357  	int i, trap;
1358  
1359  	show_regs_print_info(KERN_DEFAULT);
1360  
1361  	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1362  	       regs->nip, regs->link, regs->ctr);
1363  	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1364  	       regs, regs->trap, print_tainted(), init_utsname()->release);
1365  	printk("MSR: "REG" ", regs->msr);
1366  	print_msr_bits(regs->msr);
1367  	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1368  	trap = TRAP(regs);
1369  	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1370  		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1371  	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1372  #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1373  		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1374  #else
1375  		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1376  #endif
1377  #ifdef CONFIG_PPC64
1378  	pr_cont("SOFTE: %ld ", regs->softe);
1379  #endif
1380  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381  	if (MSR_TM_ACTIVE(regs->msr))
1382  		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1383  #endif
1384  
1385  	for (i = 0;  i < 32;  i++) {
1386  		if ((i % REGS_PER_LINE) == 0)
1387  			pr_cont("\nGPR%02d: ", i);
1388  		pr_cont(REG " ", regs->gpr[i]);
1389  		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1390  			break;
1391  	}
1392  	pr_cont("\n");
1393  #ifdef CONFIG_KALLSYMS
1394  	/*
1395  	 * Lookup NIP late so we have the best change of getting the
1396  	 * above info out without failing
1397  	 */
1398  	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1399  	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1400  #endif
1401  	show_stack(current, (unsigned long *) regs->gpr[1]);
1402  	if (!user_mode(regs))
1403  		show_instructions(regs);
1404  }
1405  
flush_thread(void)1406  void flush_thread(void)
1407  {
1408  #ifdef CONFIG_HAVE_HW_BREAKPOINT
1409  	flush_ptrace_hw_breakpoint(current);
1410  #else /* CONFIG_HAVE_HW_BREAKPOINT */
1411  	set_debug_reg_defaults(&current->thread);
1412  #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1413  }
1414  
1415  void
release_thread(struct task_struct * t)1416  release_thread(struct task_struct *t)
1417  {
1418  }
1419  
1420  /*
1421   * this gets called so that we can store coprocessor state into memory and
1422   * copy the current task into the new thread.
1423   */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1424  int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1425  {
1426  	flush_all_to_thread(src);
1427  	/*
1428  	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1429  	 * flush but it removes the checkpointed state from the current CPU and
1430  	 * transitions the CPU out of TM mode.  Hence we need to call
1431  	 * tm_recheckpoint_new_task() (on the same task) to restore the
1432  	 * checkpointed state back and the TM mode.
1433  	 *
1434  	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1435  	 * dst is only important for __switch_to()
1436  	 */
1437  	__switch_to_tm(src, src);
1438  
1439  	*dst = *src;
1440  
1441  	clear_task_ebb(dst);
1442  
1443  	return 0;
1444  }
1445  
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1446  static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1447  {
1448  #ifdef CONFIG_PPC_STD_MMU_64
1449  	unsigned long sp_vsid;
1450  	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1451  
1452  	if (radix_enabled())
1453  		return;
1454  
1455  	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1456  		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1457  			<< SLB_VSID_SHIFT_1T;
1458  	else
1459  		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1460  			<< SLB_VSID_SHIFT;
1461  	sp_vsid |= SLB_VSID_KERNEL | llp;
1462  	p->thread.ksp_vsid = sp_vsid;
1463  #endif
1464  }
1465  
1466  /*
1467   * Copy a thread..
1468   */
1469  
1470  /*
1471   * Copy architecture-specific thread state
1472   */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1473  int copy_thread(unsigned long clone_flags, unsigned long usp,
1474  		unsigned long kthread_arg, struct task_struct *p)
1475  {
1476  	struct pt_regs *childregs, *kregs;
1477  	extern void ret_from_fork(void);
1478  	extern void ret_from_kernel_thread(void);
1479  	void (*f)(void);
1480  	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1481  	struct thread_info *ti = task_thread_info(p);
1482  
1483  	klp_init_thread_info(ti);
1484  
1485  	/* Copy registers */
1486  	sp -= sizeof(struct pt_regs);
1487  	childregs = (struct pt_regs *) sp;
1488  	if (unlikely(p->flags & PF_KTHREAD)) {
1489  		/* kernel thread */
1490  		memset(childregs, 0, sizeof(struct pt_regs));
1491  		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1492  		/* function */
1493  		if (usp)
1494  			childregs->gpr[14] = ppc_function_entry((void *)usp);
1495  #ifdef CONFIG_PPC64
1496  		clear_tsk_thread_flag(p, TIF_32BIT);
1497  		childregs->softe = 1;
1498  #endif
1499  		childregs->gpr[15] = kthread_arg;
1500  		p->thread.regs = NULL;	/* no user register state */
1501  		ti->flags |= _TIF_RESTOREALL;
1502  		f = ret_from_kernel_thread;
1503  	} else {
1504  		/* user thread */
1505  		struct pt_regs *regs = current_pt_regs();
1506  		CHECK_FULL_REGS(regs);
1507  		*childregs = *regs;
1508  		if (usp)
1509  			childregs->gpr[1] = usp;
1510  		p->thread.regs = childregs;
1511  		childregs->gpr[3] = 0;  /* Result from fork() */
1512  		if (clone_flags & CLONE_SETTLS) {
1513  #ifdef CONFIG_PPC64
1514  			if (!is_32bit_task())
1515  				childregs->gpr[13] = childregs->gpr[6];
1516  			else
1517  #endif
1518  				childregs->gpr[2] = childregs->gpr[6];
1519  		}
1520  
1521  		f = ret_from_fork;
1522  	}
1523  	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1524  	sp -= STACK_FRAME_OVERHEAD;
1525  
1526  	/*
1527  	 * The way this works is that at some point in the future
1528  	 * some task will call _switch to switch to the new task.
1529  	 * That will pop off the stack frame created below and start
1530  	 * the new task running at ret_from_fork.  The new task will
1531  	 * do some house keeping and then return from the fork or clone
1532  	 * system call, using the stack frame created above.
1533  	 */
1534  	((unsigned long *)sp)[0] = 0;
1535  	sp -= sizeof(struct pt_regs);
1536  	kregs = (struct pt_regs *) sp;
1537  	sp -= STACK_FRAME_OVERHEAD;
1538  	p->thread.ksp = sp;
1539  #ifdef CONFIG_PPC32
1540  	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1541  				_ALIGN_UP(sizeof(struct thread_info), 16);
1542  #endif
1543  #ifdef CONFIG_HAVE_HW_BREAKPOINT
1544  	p->thread.ptrace_bps[0] = NULL;
1545  #endif
1546  
1547  	p->thread.fp_save_area = NULL;
1548  #ifdef CONFIG_ALTIVEC
1549  	p->thread.vr_save_area = NULL;
1550  #endif
1551  
1552  	setup_ksp_vsid(p, sp);
1553  
1554  #ifdef CONFIG_PPC64
1555  	if (cpu_has_feature(CPU_FTR_DSCR)) {
1556  		p->thread.dscr_inherit = current->thread.dscr_inherit;
1557  		p->thread.dscr = mfspr(SPRN_DSCR);
1558  	}
1559  	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1560  		p->thread.ppr = INIT_PPR;
1561  #endif
1562  	kregs->nip = ppc_function_entry(f);
1563  	return 0;
1564  }
1565  
1566  /*
1567   * Set up a thread for executing a new program
1568   */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1569  void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1570  {
1571  #ifdef CONFIG_PPC64
1572  	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1573  #endif
1574  
1575  	/*
1576  	 * If we exec out of a kernel thread then thread.regs will not be
1577  	 * set.  Do it now.
1578  	 */
1579  	if (!current->thread.regs) {
1580  		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1581  		current->thread.regs = regs - 1;
1582  	}
1583  
1584  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1585  	/*
1586  	 * Clear any transactional state, we're exec()ing. The cause is
1587  	 * not important as there will never be a recheckpoint so it's not
1588  	 * user visible.
1589  	 */
1590  	if (MSR_TM_SUSPENDED(mfmsr()))
1591  		tm_reclaim_current(0);
1592  #endif
1593  
1594  	memset(regs->gpr, 0, sizeof(regs->gpr));
1595  	regs->ctr = 0;
1596  	regs->link = 0;
1597  	regs->xer = 0;
1598  	regs->ccr = 0;
1599  	regs->gpr[1] = sp;
1600  
1601  	/*
1602  	 * We have just cleared all the nonvolatile GPRs, so make
1603  	 * FULL_REGS(regs) return true.  This is necessary to allow
1604  	 * ptrace to examine the thread immediately after exec.
1605  	 */
1606  	regs->trap &= ~1UL;
1607  
1608  #ifdef CONFIG_PPC32
1609  	regs->mq = 0;
1610  	regs->nip = start;
1611  	regs->msr = MSR_USER;
1612  #else
1613  	if (!is_32bit_task()) {
1614  		unsigned long entry;
1615  
1616  		if (is_elf2_task()) {
1617  			/* Look ma, no function descriptors! */
1618  			entry = start;
1619  
1620  			/*
1621  			 * Ulrich says:
1622  			 *   The latest iteration of the ABI requires that when
1623  			 *   calling a function (at its global entry point),
1624  			 *   the caller must ensure r12 holds the entry point
1625  			 *   address (so that the function can quickly
1626  			 *   establish addressability).
1627  			 */
1628  			regs->gpr[12] = start;
1629  			/* Make sure that's restored on entry to userspace. */
1630  			set_thread_flag(TIF_RESTOREALL);
1631  		} else {
1632  			unsigned long toc;
1633  
1634  			/* start is a relocated pointer to the function
1635  			 * descriptor for the elf _start routine.  The first
1636  			 * entry in the function descriptor is the entry
1637  			 * address of _start and the second entry is the TOC
1638  			 * value we need to use.
1639  			 */
1640  			__get_user(entry, (unsigned long __user *)start);
1641  			__get_user(toc, (unsigned long __user *)start+1);
1642  
1643  			/* Check whether the e_entry function descriptor entries
1644  			 * need to be relocated before we can use them.
1645  			 */
1646  			if (load_addr != 0) {
1647  				entry += load_addr;
1648  				toc   += load_addr;
1649  			}
1650  			regs->gpr[2] = toc;
1651  		}
1652  		regs->nip = entry;
1653  		regs->msr = MSR_USER64;
1654  	} else {
1655  		regs->nip = start;
1656  		regs->gpr[2] = 0;
1657  		regs->msr = MSR_USER32;
1658  	}
1659  #endif
1660  #ifdef CONFIG_VSX
1661  	current->thread.used_vsr = 0;
1662  #endif
1663  	current->thread.load_fp = 0;
1664  	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1665  	current->thread.fp_save_area = NULL;
1666  #ifdef CONFIG_ALTIVEC
1667  	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1668  	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1669  	current->thread.vr_save_area = NULL;
1670  	current->thread.vrsave = 0;
1671  	current->thread.used_vr = 0;
1672  	current->thread.load_vec = 0;
1673  #endif /* CONFIG_ALTIVEC */
1674  #ifdef CONFIG_SPE
1675  	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1676  	current->thread.acc = 0;
1677  	current->thread.spefscr = 0;
1678  	current->thread.used_spe = 0;
1679  #endif /* CONFIG_SPE */
1680  #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1681  	current->thread.tm_tfhar = 0;
1682  	current->thread.tm_texasr = 0;
1683  	current->thread.tm_tfiar = 0;
1684  	current->thread.load_tm = 0;
1685  #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1686  }
1687  EXPORT_SYMBOL(start_thread);
1688  
1689  #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1690  		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1691  
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1692  int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1693  {
1694  	struct pt_regs *regs = tsk->thread.regs;
1695  
1696  	/* This is a bit hairy.  If we are an SPE enabled  processor
1697  	 * (have embedded fp) we store the IEEE exception enable flags in
1698  	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1699  	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1700  	if (val & PR_FP_EXC_SW_ENABLE) {
1701  #ifdef CONFIG_SPE
1702  		if (cpu_has_feature(CPU_FTR_SPE)) {
1703  			/*
1704  			 * When the sticky exception bits are set
1705  			 * directly by userspace, it must call prctl
1706  			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1707  			 * in the existing prctl settings) or
1708  			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1709  			 * the bits being set).  <fenv.h> functions
1710  			 * saving and restoring the whole
1711  			 * floating-point environment need to do so
1712  			 * anyway to restore the prctl settings from
1713  			 * the saved environment.
1714  			 */
1715  			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1716  			tsk->thread.fpexc_mode = val &
1717  				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1718  			return 0;
1719  		} else {
1720  			return -EINVAL;
1721  		}
1722  #else
1723  		return -EINVAL;
1724  #endif
1725  	}
1726  
1727  	/* on a CONFIG_SPE this does not hurt us.  The bits that
1728  	 * __pack_fe01 use do not overlap with bits used for
1729  	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1730  	 * on CONFIG_SPE implementations are reserved so writing to
1731  	 * them does not change anything */
1732  	if (val > PR_FP_EXC_PRECISE)
1733  		return -EINVAL;
1734  	tsk->thread.fpexc_mode = __pack_fe01(val);
1735  	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1736  		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1737  			| tsk->thread.fpexc_mode;
1738  	return 0;
1739  }
1740  
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1741  int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1742  {
1743  	unsigned int val;
1744  
1745  	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1746  #ifdef CONFIG_SPE
1747  		if (cpu_has_feature(CPU_FTR_SPE)) {
1748  			/*
1749  			 * When the sticky exception bits are set
1750  			 * directly by userspace, it must call prctl
1751  			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1752  			 * in the existing prctl settings) or
1753  			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1754  			 * the bits being set).  <fenv.h> functions
1755  			 * saving and restoring the whole
1756  			 * floating-point environment need to do so
1757  			 * anyway to restore the prctl settings from
1758  			 * the saved environment.
1759  			 */
1760  			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1761  			val = tsk->thread.fpexc_mode;
1762  		} else
1763  			return -EINVAL;
1764  #else
1765  		return -EINVAL;
1766  #endif
1767  	else
1768  		val = __unpack_fe01(tsk->thread.fpexc_mode);
1769  	return put_user(val, (unsigned int __user *) adr);
1770  }
1771  
set_endian(struct task_struct * tsk,unsigned int val)1772  int set_endian(struct task_struct *tsk, unsigned int val)
1773  {
1774  	struct pt_regs *regs = tsk->thread.regs;
1775  
1776  	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1777  	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1778  		return -EINVAL;
1779  
1780  	if (regs == NULL)
1781  		return -EINVAL;
1782  
1783  	if (val == PR_ENDIAN_BIG)
1784  		regs->msr &= ~MSR_LE;
1785  	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1786  		regs->msr |= MSR_LE;
1787  	else
1788  		return -EINVAL;
1789  
1790  	return 0;
1791  }
1792  
get_endian(struct task_struct * tsk,unsigned long adr)1793  int get_endian(struct task_struct *tsk, unsigned long adr)
1794  {
1795  	struct pt_regs *regs = tsk->thread.regs;
1796  	unsigned int val;
1797  
1798  	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1799  	    !cpu_has_feature(CPU_FTR_REAL_LE))
1800  		return -EINVAL;
1801  
1802  	if (regs == NULL)
1803  		return -EINVAL;
1804  
1805  	if (regs->msr & MSR_LE) {
1806  		if (cpu_has_feature(CPU_FTR_REAL_LE))
1807  			val = PR_ENDIAN_LITTLE;
1808  		else
1809  			val = PR_ENDIAN_PPC_LITTLE;
1810  	} else
1811  		val = PR_ENDIAN_BIG;
1812  
1813  	return put_user(val, (unsigned int __user *)adr);
1814  }
1815  
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1816  int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1817  {
1818  	tsk->thread.align_ctl = val;
1819  	return 0;
1820  }
1821  
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1822  int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1823  {
1824  	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1825  }
1826  
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1827  static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1828  				  unsigned long nbytes)
1829  {
1830  	unsigned long stack_page;
1831  	unsigned long cpu = task_cpu(p);
1832  
1833  	/*
1834  	 * Avoid crashing if the stack has overflowed and corrupted
1835  	 * task_cpu(p), which is in the thread_info struct.
1836  	 */
1837  	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1838  		stack_page = (unsigned long) hardirq_ctx[cpu];
1839  		if (sp >= stack_page + sizeof(struct thread_struct)
1840  		    && sp <= stack_page + THREAD_SIZE - nbytes)
1841  			return 1;
1842  
1843  		stack_page = (unsigned long) softirq_ctx[cpu];
1844  		if (sp >= stack_page + sizeof(struct thread_struct)
1845  		    && sp <= stack_page + THREAD_SIZE - nbytes)
1846  			return 1;
1847  	}
1848  	return 0;
1849  }
1850  
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1851  int validate_sp(unsigned long sp, struct task_struct *p,
1852  		       unsigned long nbytes)
1853  {
1854  	unsigned long stack_page = (unsigned long)task_stack_page(p);
1855  
1856  	if (sp >= stack_page + sizeof(struct thread_struct)
1857  	    && sp <= stack_page + THREAD_SIZE - nbytes)
1858  		return 1;
1859  
1860  	return valid_irq_stack(sp, p, nbytes);
1861  }
1862  
1863  EXPORT_SYMBOL(validate_sp);
1864  
get_wchan(struct task_struct * p)1865  unsigned long get_wchan(struct task_struct *p)
1866  {
1867  	unsigned long ip, sp;
1868  	int count = 0;
1869  
1870  	if (!p || p == current || p->state == TASK_RUNNING)
1871  		return 0;
1872  
1873  	sp = p->thread.ksp;
1874  	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1875  		return 0;
1876  
1877  	do {
1878  		sp = *(unsigned long *)sp;
1879  		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1880  			return 0;
1881  		if (count > 0) {
1882  			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1883  			if (!in_sched_functions(ip))
1884  				return ip;
1885  		}
1886  	} while (count++ < 16);
1887  	return 0;
1888  }
1889  
1890  static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1891  
show_stack(struct task_struct * tsk,unsigned long * stack)1892  void show_stack(struct task_struct *tsk, unsigned long *stack)
1893  {
1894  	unsigned long sp, ip, lr, newsp;
1895  	int count = 0;
1896  	int firstframe = 1;
1897  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1898  	int curr_frame = current->curr_ret_stack;
1899  	extern void return_to_handler(void);
1900  	unsigned long rth = (unsigned long)return_to_handler;
1901  #endif
1902  
1903  	sp = (unsigned long) stack;
1904  	if (tsk == NULL)
1905  		tsk = current;
1906  	if (sp == 0) {
1907  		if (tsk == current)
1908  			sp = current_stack_pointer();
1909  		else
1910  			sp = tsk->thread.ksp;
1911  	}
1912  
1913  	lr = 0;
1914  	printk("Call Trace:\n");
1915  	do {
1916  		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1917  			return;
1918  
1919  		stack = (unsigned long *) sp;
1920  		newsp = stack[0];
1921  		ip = stack[STACK_FRAME_LR_SAVE];
1922  		if (!firstframe || ip != lr) {
1923  			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1924  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1925  			if ((ip == rth) && curr_frame >= 0) {
1926  				pr_cont(" (%pS)",
1927  				       (void *)current->ret_stack[curr_frame].ret);
1928  				curr_frame--;
1929  			}
1930  #endif
1931  			if (firstframe)
1932  				pr_cont(" (unreliable)");
1933  			pr_cont("\n");
1934  		}
1935  		firstframe = 0;
1936  
1937  		/*
1938  		 * See if this is an exception frame.
1939  		 * We look for the "regshere" marker in the current frame.
1940  		 */
1941  		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1942  		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1943  			struct pt_regs *regs = (struct pt_regs *)
1944  				(sp + STACK_FRAME_OVERHEAD);
1945  			lr = regs->link;
1946  			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1947  			       regs->trap, (void *)regs->nip, (void *)lr);
1948  			firstframe = 1;
1949  		}
1950  
1951  		sp = newsp;
1952  	} while (count++ < kstack_depth_to_print);
1953  }
1954  
1955  #ifdef CONFIG_PPC64
1956  /* Called with hard IRQs off */
__ppc64_runlatch_on(void)1957  void notrace __ppc64_runlatch_on(void)
1958  {
1959  	struct thread_info *ti = current_thread_info();
1960  	unsigned long ctrl;
1961  
1962  	ctrl = mfspr(SPRN_CTRLF);
1963  	ctrl |= CTRL_RUNLATCH;
1964  	mtspr(SPRN_CTRLT, ctrl);
1965  
1966  	ti->local_flags |= _TLF_RUNLATCH;
1967  }
1968  
1969  /* Called with hard IRQs off */
__ppc64_runlatch_off(void)1970  void notrace __ppc64_runlatch_off(void)
1971  {
1972  	struct thread_info *ti = current_thread_info();
1973  	unsigned long ctrl;
1974  
1975  	ti->local_flags &= ~_TLF_RUNLATCH;
1976  
1977  	ctrl = mfspr(SPRN_CTRLF);
1978  	ctrl &= ~CTRL_RUNLATCH;
1979  	mtspr(SPRN_CTRLT, ctrl);
1980  }
1981  #endif /* CONFIG_PPC64 */
1982  
arch_align_stack(unsigned long sp)1983  unsigned long arch_align_stack(unsigned long sp)
1984  {
1985  	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1986  		sp -= get_random_int() & ~PAGE_MASK;
1987  	return sp & ~0xf;
1988  }
1989  
brk_rnd(void)1990  static inline unsigned long brk_rnd(void)
1991  {
1992          unsigned long rnd = 0;
1993  
1994  	/* 8MB for 32bit, 1GB for 64bit */
1995  	if (is_32bit_task())
1996  		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1997  	else
1998  		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1999  
2000  	return rnd << PAGE_SHIFT;
2001  }
2002  
arch_randomize_brk(struct mm_struct * mm)2003  unsigned long arch_randomize_brk(struct mm_struct *mm)
2004  {
2005  	unsigned long base = mm->brk;
2006  	unsigned long ret;
2007  
2008  #ifdef CONFIG_PPC_STD_MMU_64
2009  	/*
2010  	 * If we are using 1TB segments and we are allowed to randomise
2011  	 * the heap, we can put it above 1TB so it is backed by a 1TB
2012  	 * segment. Otherwise the heap will be in the bottom 1TB
2013  	 * which always uses 256MB segments and this may result in a
2014  	 * performance penalty. We don't need to worry about radix. For
2015  	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2016  	 */
2017  	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2018  		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2019  #endif
2020  
2021  	ret = PAGE_ALIGN(base + brk_rnd());
2022  
2023  	if (ret < mm->brk)
2024  		return mm->brk;
2025  
2026  	return ret;
2027  }
2028  
2029