1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/prctl.h> 29 #include <linux/init_task.h> 30 #include <linux/export.h> 31 #include <linux/kallsyms.h> 32 #include <linux/mqueue.h> 33 #include <linux/hardirq.h> 34 #include <linux/utsname.h> 35 #include <linux/ftrace.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/personality.h> 38 #include <linux/random.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/uaccess.h> 41 #include <linux/elf-randomize.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <asm/code-patching.h> 59 #include <asm/exec.h> 60 #include <asm/livepatch.h> 61 #include <asm/cpu_has_feature.h> 62 #include <asm/asm-prototypes.h> 63 64 #include <linux/kprobes.h> 65 #include <linux/kdebug.h> 66 67 /* Transactional Memory debug */ 68 #ifdef TM_DEBUG_SW 69 #define TM_DEBUG(x...) printk(KERN_INFO x) 70 #else 71 #define TM_DEBUG(x...) do { } while(0) 72 #endif 73 74 extern unsigned long _get_SP(void); 75 76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM check_if_tm_restore_required(struct task_struct * tsk)77 static void check_if_tm_restore_required(struct task_struct *tsk) 78 { 79 /* 80 * If we are saving the current thread's registers, and the 81 * thread is in a transactional state, set the TIF_RESTORE_TM 82 * bit so that we know to restore the registers before 83 * returning to userspace. 84 */ 85 if (tsk == current && tsk->thread.regs && 86 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 87 !test_thread_flag(TIF_RESTORE_TM)) { 88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 89 set_thread_flag(TIF_RESTORE_TM); 90 } 91 } 92 msr_tm_active(unsigned long msr)93 static inline bool msr_tm_active(unsigned long msr) 94 { 95 return MSR_TM_ACTIVE(msr); 96 } 97 #else msr_tm_active(unsigned long msr)98 static inline bool msr_tm_active(unsigned long msr) { return false; } check_if_tm_restore_required(struct task_struct * tsk)99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 101 102 bool strict_msr_control; 103 EXPORT_SYMBOL(strict_msr_control); 104 enable_strict_msr_control(char * str)105 static int __init enable_strict_msr_control(char *str) 106 { 107 strict_msr_control = true; 108 pr_info("Enabling strict facility control\n"); 109 110 return 0; 111 } 112 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 113 msr_check_and_set(unsigned long bits)114 unsigned long msr_check_and_set(unsigned long bits) 115 { 116 unsigned long oldmsr = mfmsr(); 117 unsigned long newmsr; 118 119 newmsr = oldmsr | bits; 120 121 #ifdef CONFIG_VSX 122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 123 newmsr |= MSR_VSX; 124 #endif 125 126 if (oldmsr != newmsr) 127 mtmsr_isync(newmsr); 128 129 return newmsr; 130 } 131 __msr_check_and_clear(unsigned long bits)132 void __msr_check_and_clear(unsigned long bits) 133 { 134 unsigned long oldmsr = mfmsr(); 135 unsigned long newmsr; 136 137 newmsr = oldmsr & ~bits; 138 139 #ifdef CONFIG_VSX 140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 141 newmsr &= ~MSR_VSX; 142 #endif 143 144 if (oldmsr != newmsr) 145 mtmsr_isync(newmsr); 146 } 147 EXPORT_SYMBOL(__msr_check_and_clear); 148 149 #ifdef CONFIG_PPC_FPU __giveup_fpu(struct task_struct * tsk)150 void __giveup_fpu(struct task_struct *tsk) 151 { 152 unsigned long msr; 153 154 save_fpu(tsk); 155 msr = tsk->thread.regs->msr; 156 msr &= ~MSR_FP; 157 #ifdef CONFIG_VSX 158 if (cpu_has_feature(CPU_FTR_VSX)) 159 msr &= ~MSR_VSX; 160 #endif 161 tsk->thread.regs->msr = msr; 162 } 163 giveup_fpu(struct task_struct * tsk)164 void giveup_fpu(struct task_struct *tsk) 165 { 166 check_if_tm_restore_required(tsk); 167 168 msr_check_and_set(MSR_FP); 169 __giveup_fpu(tsk); 170 msr_check_and_clear(MSR_FP); 171 } 172 EXPORT_SYMBOL(giveup_fpu); 173 174 /* 175 * Make sure the floating-point register state in the 176 * the thread_struct is up to date for task tsk. 177 */ flush_fp_to_thread(struct task_struct * tsk)178 void flush_fp_to_thread(struct task_struct *tsk) 179 { 180 if (tsk->thread.regs) { 181 /* 182 * We need to disable preemption here because if we didn't, 183 * another process could get scheduled after the regs->msr 184 * test but before we have finished saving the FP registers 185 * to the thread_struct. That process could take over the 186 * FPU, and then when we get scheduled again we would store 187 * bogus values for the remaining FP registers. 188 */ 189 preempt_disable(); 190 if (tsk->thread.regs->msr & MSR_FP) { 191 /* 192 * This should only ever be called for current or 193 * for a stopped child process. Since we save away 194 * the FP register state on context switch, 195 * there is something wrong if a stopped child appears 196 * to still have its FP state in the CPU registers. 197 */ 198 BUG_ON(tsk != current); 199 giveup_fpu(tsk); 200 } 201 preempt_enable(); 202 } 203 } 204 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 205 enable_kernel_fp(void)206 void enable_kernel_fp(void) 207 { 208 unsigned long cpumsr; 209 210 WARN_ON(preemptible()); 211 212 cpumsr = msr_check_and_set(MSR_FP); 213 214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 215 check_if_tm_restore_required(current); 216 /* 217 * If a thread has already been reclaimed then the 218 * checkpointed registers are on the CPU but have definitely 219 * been saved by the reclaim code. Don't need to and *cannot* 220 * giveup as this would save to the 'live' structure not the 221 * checkpointed structure. 222 */ 223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 224 return; 225 __giveup_fpu(current); 226 } 227 } 228 EXPORT_SYMBOL(enable_kernel_fp); 229 restore_fp(struct task_struct * tsk)230 static int restore_fp(struct task_struct *tsk) { 231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 232 load_fp_state(¤t->thread.fp_state); 233 current->thread.load_fp++; 234 return 1; 235 } 236 return 0; 237 } 238 #else restore_fp(struct task_struct * tsk)239 static int restore_fp(struct task_struct *tsk) { return 0; } 240 #endif /* CONFIG_PPC_FPU */ 241 242 #ifdef CONFIG_ALTIVEC 243 #define loadvec(thr) ((thr).load_vec) 244 __giveup_altivec(struct task_struct * tsk)245 static void __giveup_altivec(struct task_struct *tsk) 246 { 247 unsigned long msr; 248 249 save_altivec(tsk); 250 msr = tsk->thread.regs->msr; 251 msr &= ~MSR_VEC; 252 #ifdef CONFIG_VSX 253 if (cpu_has_feature(CPU_FTR_VSX)) 254 msr &= ~MSR_VSX; 255 #endif 256 tsk->thread.regs->msr = msr; 257 } 258 giveup_altivec(struct task_struct * tsk)259 void giveup_altivec(struct task_struct *tsk) 260 { 261 check_if_tm_restore_required(tsk); 262 263 msr_check_and_set(MSR_VEC); 264 __giveup_altivec(tsk); 265 msr_check_and_clear(MSR_VEC); 266 } 267 EXPORT_SYMBOL(giveup_altivec); 268 enable_kernel_altivec(void)269 void enable_kernel_altivec(void) 270 { 271 unsigned long cpumsr; 272 273 WARN_ON(preemptible()); 274 275 cpumsr = msr_check_and_set(MSR_VEC); 276 277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 278 check_if_tm_restore_required(current); 279 /* 280 * If a thread has already been reclaimed then the 281 * checkpointed registers are on the CPU but have definitely 282 * been saved by the reclaim code. Don't need to and *cannot* 283 * giveup as this would save to the 'live' structure not the 284 * checkpointed structure. 285 */ 286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 287 return; 288 __giveup_altivec(current); 289 } 290 } 291 EXPORT_SYMBOL(enable_kernel_altivec); 292 293 /* 294 * Make sure the VMX/Altivec register state in the 295 * the thread_struct is up to date for task tsk. 296 */ flush_altivec_to_thread(struct task_struct * tsk)297 void flush_altivec_to_thread(struct task_struct *tsk) 298 { 299 if (tsk->thread.regs) { 300 preempt_disable(); 301 if (tsk->thread.regs->msr & MSR_VEC) { 302 BUG_ON(tsk != current); 303 giveup_altivec(tsk); 304 } 305 preempt_enable(); 306 } 307 } 308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 309 restore_altivec(struct task_struct * tsk)310 static int restore_altivec(struct task_struct *tsk) 311 { 312 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 314 load_vr_state(&tsk->thread.vr_state); 315 tsk->thread.used_vr = 1; 316 tsk->thread.load_vec++; 317 318 return 1; 319 } 320 return 0; 321 } 322 #else 323 #define loadvec(thr) 0 restore_altivec(struct task_struct * tsk)324 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 325 #endif /* CONFIG_ALTIVEC */ 326 327 #ifdef CONFIG_VSX __giveup_vsx(struct task_struct * tsk)328 static void __giveup_vsx(struct task_struct *tsk) 329 { 330 if (tsk->thread.regs->msr & MSR_FP) 331 __giveup_fpu(tsk); 332 if (tsk->thread.regs->msr & MSR_VEC) 333 __giveup_altivec(tsk); 334 tsk->thread.regs->msr &= ~MSR_VSX; 335 } 336 giveup_vsx(struct task_struct * tsk)337 static void giveup_vsx(struct task_struct *tsk) 338 { 339 check_if_tm_restore_required(tsk); 340 341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 342 __giveup_vsx(tsk); 343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 344 } 345 save_vsx(struct task_struct * tsk)346 static void save_vsx(struct task_struct *tsk) 347 { 348 if (tsk->thread.regs->msr & MSR_FP) 349 save_fpu(tsk); 350 if (tsk->thread.regs->msr & MSR_VEC) 351 save_altivec(tsk); 352 } 353 enable_kernel_vsx(void)354 void enable_kernel_vsx(void) 355 { 356 unsigned long cpumsr; 357 358 WARN_ON(preemptible()); 359 360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 361 362 if (current->thread.regs && 363 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 364 check_if_tm_restore_required(current); 365 /* 366 * If a thread has already been reclaimed then the 367 * checkpointed registers are on the CPU but have definitely 368 * been saved by the reclaim code. Don't need to and *cannot* 369 * giveup as this would save to the 'live' structure not the 370 * checkpointed structure. 371 */ 372 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 373 return; 374 if (current->thread.regs->msr & MSR_FP) 375 __giveup_fpu(current); 376 if (current->thread.regs->msr & MSR_VEC) 377 __giveup_altivec(current); 378 __giveup_vsx(current); 379 } 380 } 381 EXPORT_SYMBOL(enable_kernel_vsx); 382 flush_vsx_to_thread(struct task_struct * tsk)383 void flush_vsx_to_thread(struct task_struct *tsk) 384 { 385 if (tsk->thread.regs) { 386 preempt_disable(); 387 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 388 BUG_ON(tsk != current); 389 giveup_vsx(tsk); 390 } 391 preempt_enable(); 392 } 393 } 394 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 395 restore_vsx(struct task_struct * tsk)396 static int restore_vsx(struct task_struct *tsk) 397 { 398 if (cpu_has_feature(CPU_FTR_VSX)) { 399 tsk->thread.used_vsr = 1; 400 return 1; 401 } 402 403 return 0; 404 } 405 #else restore_vsx(struct task_struct * tsk)406 static inline int restore_vsx(struct task_struct *tsk) { return 0; } save_vsx(struct task_struct * tsk)407 static inline void save_vsx(struct task_struct *tsk) { } 408 #endif /* CONFIG_VSX */ 409 410 #ifdef CONFIG_SPE giveup_spe(struct task_struct * tsk)411 void giveup_spe(struct task_struct *tsk) 412 { 413 check_if_tm_restore_required(tsk); 414 415 msr_check_and_set(MSR_SPE); 416 __giveup_spe(tsk); 417 msr_check_and_clear(MSR_SPE); 418 } 419 EXPORT_SYMBOL(giveup_spe); 420 enable_kernel_spe(void)421 void enable_kernel_spe(void) 422 { 423 WARN_ON(preemptible()); 424 425 msr_check_and_set(MSR_SPE); 426 427 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 428 check_if_tm_restore_required(current); 429 __giveup_spe(current); 430 } 431 } 432 EXPORT_SYMBOL(enable_kernel_spe); 433 flush_spe_to_thread(struct task_struct * tsk)434 void flush_spe_to_thread(struct task_struct *tsk) 435 { 436 if (tsk->thread.regs) { 437 preempt_disable(); 438 if (tsk->thread.regs->msr & MSR_SPE) { 439 BUG_ON(tsk != current); 440 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 441 giveup_spe(tsk); 442 } 443 preempt_enable(); 444 } 445 } 446 #endif /* CONFIG_SPE */ 447 448 static unsigned long msr_all_available; 449 init_msr_all_available(void)450 static int __init init_msr_all_available(void) 451 { 452 #ifdef CONFIG_PPC_FPU 453 msr_all_available |= MSR_FP; 454 #endif 455 #ifdef CONFIG_ALTIVEC 456 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 457 msr_all_available |= MSR_VEC; 458 #endif 459 #ifdef CONFIG_VSX 460 if (cpu_has_feature(CPU_FTR_VSX)) 461 msr_all_available |= MSR_VSX; 462 #endif 463 #ifdef CONFIG_SPE 464 if (cpu_has_feature(CPU_FTR_SPE)) 465 msr_all_available |= MSR_SPE; 466 #endif 467 468 return 0; 469 } 470 early_initcall(init_msr_all_available); 471 giveup_all(struct task_struct * tsk)472 void giveup_all(struct task_struct *tsk) 473 { 474 unsigned long usermsr; 475 476 if (!tsk->thread.regs) 477 return; 478 479 usermsr = tsk->thread.regs->msr; 480 481 if ((usermsr & msr_all_available) == 0) 482 return; 483 484 msr_check_and_set(msr_all_available); 485 check_if_tm_restore_required(tsk); 486 487 #ifdef CONFIG_PPC_FPU 488 if (usermsr & MSR_FP) 489 __giveup_fpu(tsk); 490 #endif 491 #ifdef CONFIG_ALTIVEC 492 if (usermsr & MSR_VEC) 493 __giveup_altivec(tsk); 494 #endif 495 #ifdef CONFIG_VSX 496 if (usermsr & MSR_VSX) 497 __giveup_vsx(tsk); 498 #endif 499 #ifdef CONFIG_SPE 500 if (usermsr & MSR_SPE) 501 __giveup_spe(tsk); 502 #endif 503 504 msr_check_and_clear(msr_all_available); 505 } 506 EXPORT_SYMBOL(giveup_all); 507 restore_math(struct pt_regs * regs)508 void restore_math(struct pt_regs *regs) 509 { 510 unsigned long msr; 511 512 if (!msr_tm_active(regs->msr) && 513 !current->thread.load_fp && !loadvec(current->thread)) 514 return; 515 516 msr = regs->msr; 517 msr_check_and_set(msr_all_available); 518 519 /* 520 * Only reload if the bit is not set in the user MSR, the bit BEING set 521 * indicates that the registers are hot 522 */ 523 if ((!(msr & MSR_FP)) && restore_fp(current)) 524 msr |= MSR_FP | current->thread.fpexc_mode; 525 526 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 527 msr |= MSR_VEC; 528 529 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 530 restore_vsx(current)) { 531 msr |= MSR_VSX; 532 } 533 534 msr_check_and_clear(msr_all_available); 535 536 regs->msr = msr; 537 } 538 save_all(struct task_struct * tsk)539 void save_all(struct task_struct *tsk) 540 { 541 unsigned long usermsr; 542 543 if (!tsk->thread.regs) 544 return; 545 546 usermsr = tsk->thread.regs->msr; 547 548 if ((usermsr & msr_all_available) == 0) 549 return; 550 551 msr_check_and_set(msr_all_available); 552 553 /* 554 * Saving the way the register space is in hardware, save_vsx boils 555 * down to a save_fpu() and save_altivec() 556 */ 557 if (usermsr & MSR_VSX) { 558 save_vsx(tsk); 559 } else { 560 if (usermsr & MSR_FP) 561 save_fpu(tsk); 562 563 if (usermsr & MSR_VEC) 564 save_altivec(tsk); 565 } 566 567 if (usermsr & MSR_SPE) 568 __giveup_spe(tsk); 569 570 msr_check_and_clear(msr_all_available); 571 } 572 flush_all_to_thread(struct task_struct * tsk)573 void flush_all_to_thread(struct task_struct *tsk) 574 { 575 if (tsk->thread.regs) { 576 preempt_disable(); 577 BUG_ON(tsk != current); 578 save_all(tsk); 579 580 #ifdef CONFIG_SPE 581 if (tsk->thread.regs->msr & MSR_SPE) 582 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 583 #endif 584 585 preempt_enable(); 586 } 587 } 588 EXPORT_SYMBOL(flush_all_to_thread); 589 590 #ifdef CONFIG_PPC_ADV_DEBUG_REGS do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)591 void do_send_trap(struct pt_regs *regs, unsigned long address, 592 unsigned long error_code, int signal_code, int breakpt) 593 { 594 siginfo_t info; 595 596 current->thread.trap_nr = signal_code; 597 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 598 11, SIGSEGV) == NOTIFY_STOP) 599 return; 600 601 /* Deliver the signal to userspace */ 602 info.si_signo = SIGTRAP; 603 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 604 info.si_code = signal_code; 605 info.si_addr = (void __user *)address; 606 force_sig_info(SIGTRAP, &info, current); 607 } 608 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)609 void do_break (struct pt_regs *regs, unsigned long address, 610 unsigned long error_code) 611 { 612 siginfo_t info; 613 614 current->thread.trap_nr = TRAP_HWBKPT; 615 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 616 11, SIGSEGV) == NOTIFY_STOP) 617 return; 618 619 if (debugger_break_match(regs)) 620 return; 621 622 /* Clear the breakpoint */ 623 hw_breakpoint_disable(); 624 625 /* Deliver the signal to userspace */ 626 info.si_signo = SIGTRAP; 627 info.si_errno = 0; 628 info.si_code = TRAP_HWBKPT; 629 info.si_addr = (void __user *)address; 630 force_sig_info(SIGTRAP, &info, current); 631 } 632 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 633 634 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 635 636 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 637 /* 638 * Set the debug registers back to their default "safe" values. 639 */ set_debug_reg_defaults(struct thread_struct * thread)640 static void set_debug_reg_defaults(struct thread_struct *thread) 641 { 642 thread->debug.iac1 = thread->debug.iac2 = 0; 643 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 644 thread->debug.iac3 = thread->debug.iac4 = 0; 645 #endif 646 thread->debug.dac1 = thread->debug.dac2 = 0; 647 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 648 thread->debug.dvc1 = thread->debug.dvc2 = 0; 649 #endif 650 thread->debug.dbcr0 = 0; 651 #ifdef CONFIG_BOOKE 652 /* 653 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 654 */ 655 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 656 DBCR1_IAC3US | DBCR1_IAC4US; 657 /* 658 * Force Data Address Compare User/Supervisor bits to be User-only 659 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 660 */ 661 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 662 #else 663 thread->debug.dbcr1 = 0; 664 #endif 665 } 666 prime_debug_regs(struct debug_reg * debug)667 static void prime_debug_regs(struct debug_reg *debug) 668 { 669 /* 670 * We could have inherited MSR_DE from userspace, since 671 * it doesn't get cleared on exception entry. Make sure 672 * MSR_DE is clear before we enable any debug events. 673 */ 674 mtmsr(mfmsr() & ~MSR_DE); 675 676 mtspr(SPRN_IAC1, debug->iac1); 677 mtspr(SPRN_IAC2, debug->iac2); 678 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 679 mtspr(SPRN_IAC3, debug->iac3); 680 mtspr(SPRN_IAC4, debug->iac4); 681 #endif 682 mtspr(SPRN_DAC1, debug->dac1); 683 mtspr(SPRN_DAC2, debug->dac2); 684 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 685 mtspr(SPRN_DVC1, debug->dvc1); 686 mtspr(SPRN_DVC2, debug->dvc2); 687 #endif 688 mtspr(SPRN_DBCR0, debug->dbcr0); 689 mtspr(SPRN_DBCR1, debug->dbcr1); 690 #ifdef CONFIG_BOOKE 691 mtspr(SPRN_DBCR2, debug->dbcr2); 692 #endif 693 } 694 /* 695 * Unless neither the old or new thread are making use of the 696 * debug registers, set the debug registers from the values 697 * stored in the new thread. 698 */ switch_booke_debug_regs(struct debug_reg * new_debug)699 void switch_booke_debug_regs(struct debug_reg *new_debug) 700 { 701 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 702 || (new_debug->dbcr0 & DBCR0_IDM)) 703 prime_debug_regs(new_debug); 704 } 705 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 706 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 707 #ifndef CONFIG_HAVE_HW_BREAKPOINT set_debug_reg_defaults(struct thread_struct * thread)708 static void set_debug_reg_defaults(struct thread_struct *thread) 709 { 710 thread->hw_brk.address = 0; 711 thread->hw_brk.type = 0; 712 set_breakpoint(&thread->hw_brk); 713 } 714 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 715 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 716 717 #ifdef CONFIG_PPC_ADV_DEBUG_REGS __set_dabr(unsigned long dabr,unsigned long dabrx)718 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 719 { 720 mtspr(SPRN_DAC1, dabr); 721 #ifdef CONFIG_PPC_47x 722 isync(); 723 #endif 724 return 0; 725 } 726 #elif defined(CONFIG_PPC_BOOK3S) __set_dabr(unsigned long dabr,unsigned long dabrx)727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 728 { 729 mtspr(SPRN_DABR, dabr); 730 if (cpu_has_feature(CPU_FTR_DABRX)) 731 mtspr(SPRN_DABRX, dabrx); 732 return 0; 733 } 734 #else __set_dabr(unsigned long dabr,unsigned long dabrx)735 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 736 { 737 return -EINVAL; 738 } 739 #endif 740 set_dabr(struct arch_hw_breakpoint * brk)741 static inline int set_dabr(struct arch_hw_breakpoint *brk) 742 { 743 unsigned long dabr, dabrx; 744 745 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 746 dabrx = ((brk->type >> 3) & 0x7); 747 748 if (ppc_md.set_dabr) 749 return ppc_md.set_dabr(dabr, dabrx); 750 751 return __set_dabr(dabr, dabrx); 752 } 753 set_dawr(struct arch_hw_breakpoint * brk)754 static inline int set_dawr(struct arch_hw_breakpoint *brk) 755 { 756 unsigned long dawr, dawrx, mrd; 757 758 dawr = brk->address; 759 760 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 761 << (63 - 58); //* read/write bits */ 762 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 763 << (63 - 59); //* translate */ 764 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 765 >> 3; //* PRIM bits */ 766 /* dawr length is stored in field MDR bits 48:53. Matches range in 767 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 768 0b111111=64DW. 769 brk->len is in bytes. 770 This aligns up to double word size, shifts and does the bias. 771 */ 772 mrd = ((brk->len + 7) >> 3) - 1; 773 dawrx |= (mrd & 0x3f) << (63 - 53); 774 775 if (ppc_md.set_dawr) 776 return ppc_md.set_dawr(dawr, dawrx); 777 mtspr(SPRN_DAWR, dawr); 778 mtspr(SPRN_DAWRX, dawrx); 779 return 0; 780 } 781 __set_breakpoint(struct arch_hw_breakpoint * brk)782 void __set_breakpoint(struct arch_hw_breakpoint *brk) 783 { 784 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 785 786 if (cpu_has_feature(CPU_FTR_DAWR)) 787 set_dawr(brk); 788 else 789 set_dabr(brk); 790 } 791 set_breakpoint(struct arch_hw_breakpoint * brk)792 void set_breakpoint(struct arch_hw_breakpoint *brk) 793 { 794 preempt_disable(); 795 __set_breakpoint(brk); 796 preempt_enable(); 797 } 798 799 #ifdef CONFIG_PPC64 800 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 801 #endif 802 hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)803 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 804 struct arch_hw_breakpoint *b) 805 { 806 if (a->address != b->address) 807 return false; 808 if (a->type != b->type) 809 return false; 810 if (a->len != b->len) 811 return false; 812 return true; 813 } 814 815 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 816 tm_enabled(struct task_struct * tsk)817 static inline bool tm_enabled(struct task_struct *tsk) 818 { 819 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 820 } 821 tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)822 static void tm_reclaim_thread(struct thread_struct *thr, 823 struct thread_info *ti, uint8_t cause) 824 { 825 /* 826 * Use the current MSR TM suspended bit to track if we have 827 * checkpointed state outstanding. 828 * On signal delivery, we'd normally reclaim the checkpointed 829 * state to obtain stack pointer (see:get_tm_stackpointer()). 830 * This will then directly return to userspace without going 831 * through __switch_to(). However, if the stack frame is bad, 832 * we need to exit this thread which calls __switch_to() which 833 * will again attempt to reclaim the already saved tm state. 834 * Hence we need to check that we've not already reclaimed 835 * this state. 836 * We do this using the current MSR, rather tracking it in 837 * some specific thread_struct bit, as it has the additional 838 * benefit of checking for a potential TM bad thing exception. 839 */ 840 if (!MSR_TM_SUSPENDED(mfmsr())) 841 return; 842 843 /* 844 * If we are in a transaction and FP is off then we can't have 845 * used FP inside that transaction. Hence the checkpointed 846 * state is the same as the live state. We need to copy the 847 * live state to the checkpointed state so that when the 848 * transaction is restored, the checkpointed state is correct 849 * and the aborted transaction sees the correct state. We use 850 * ckpt_regs.msr here as that's what tm_reclaim will use to 851 * determine if it's going to write the checkpointed state or 852 * not. So either this will write the checkpointed registers, 853 * or reclaim will. Similarly for VMX. 854 */ 855 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 856 memcpy(&thr->ckfp_state, &thr->fp_state, 857 sizeof(struct thread_fp_state)); 858 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 859 memcpy(&thr->ckvr_state, &thr->vr_state, 860 sizeof(struct thread_vr_state)); 861 862 giveup_all(container_of(thr, struct task_struct, thread)); 863 864 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 865 } 866 tm_reclaim_current(uint8_t cause)867 void tm_reclaim_current(uint8_t cause) 868 { 869 tm_enable(); 870 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 871 } 872 tm_reclaim_task(struct task_struct * tsk)873 static inline void tm_reclaim_task(struct task_struct *tsk) 874 { 875 /* We have to work out if we're switching from/to a task that's in the 876 * middle of a transaction. 877 * 878 * In switching we need to maintain a 2nd register state as 879 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 880 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 881 * ckvr_state 882 * 883 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 884 */ 885 struct thread_struct *thr = &tsk->thread; 886 887 if (!thr->regs) 888 return; 889 890 if (!MSR_TM_ACTIVE(thr->regs->msr)) 891 goto out_and_saveregs; 892 893 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 894 "ccr=%lx, msr=%lx, trap=%lx)\n", 895 tsk->pid, thr->regs->nip, 896 thr->regs->ccr, thr->regs->msr, 897 thr->regs->trap); 898 899 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 900 901 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 902 tsk->pid); 903 904 out_and_saveregs: 905 /* Always save the regs here, even if a transaction's not active. 906 * This context-switches a thread's TM info SPRs. We do it here to 907 * be consistent with the restore path (in recheckpoint) which 908 * cannot happen later in _switch(). 909 */ 910 tm_save_sprs(thr); 911 } 912 913 extern void __tm_recheckpoint(struct thread_struct *thread, 914 unsigned long orig_msr); 915 tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)916 void tm_recheckpoint(struct thread_struct *thread, 917 unsigned long orig_msr) 918 { 919 unsigned long flags; 920 921 if (!(thread->regs->msr & MSR_TM)) 922 return; 923 924 /* We really can't be interrupted here as the TEXASR registers can't 925 * change and later in the trecheckpoint code, we have a userspace R1. 926 * So let's hard disable over this region. 927 */ 928 local_irq_save(flags); 929 hard_irq_disable(); 930 931 /* The TM SPRs are restored here, so that TEXASR.FS can be set 932 * before the trecheckpoint and no explosion occurs. 933 */ 934 tm_restore_sprs(thread); 935 936 __tm_recheckpoint(thread, orig_msr); 937 938 local_irq_restore(flags); 939 } 940 tm_recheckpoint_new_task(struct task_struct * new)941 static inline void tm_recheckpoint_new_task(struct task_struct *new) 942 { 943 unsigned long msr; 944 945 if (!cpu_has_feature(CPU_FTR_TM)) 946 return; 947 948 /* Recheckpoint the registers of the thread we're about to switch to. 949 * 950 * If the task was using FP, we non-lazily reload both the original and 951 * the speculative FP register states. This is because the kernel 952 * doesn't see if/when a TM rollback occurs, so if we take an FP 953 * unavailable later, we are unable to determine which set of FP regs 954 * need to be restored. 955 */ 956 if (!tm_enabled(new)) 957 return; 958 959 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 960 tm_restore_sprs(&new->thread); 961 return; 962 } 963 msr = new->thread.ckpt_regs.msr; 964 /* Recheckpoint to restore original checkpointed register state. */ 965 TM_DEBUG("*** tm_recheckpoint of pid %d " 966 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 967 new->pid, new->thread.regs->msr, msr); 968 969 tm_recheckpoint(&new->thread, msr); 970 971 /* 972 * The checkpointed state has been restored but the live state has 973 * not, ensure all the math functionality is turned off to trigger 974 * restore_math() to reload. 975 */ 976 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 977 978 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 979 "(kernel msr 0x%lx)\n", 980 new->pid, mfmsr()); 981 } 982 __switch_to_tm(struct task_struct * prev,struct task_struct * new)983 static inline void __switch_to_tm(struct task_struct *prev, 984 struct task_struct *new) 985 { 986 if (cpu_has_feature(CPU_FTR_TM)) { 987 if (tm_enabled(prev) || tm_enabled(new)) 988 tm_enable(); 989 990 if (tm_enabled(prev)) { 991 prev->thread.load_tm++; 992 tm_reclaim_task(prev); 993 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 994 prev->thread.regs->msr &= ~MSR_TM; 995 } 996 997 tm_recheckpoint_new_task(new); 998 } 999 } 1000 1001 /* 1002 * This is called if we are on the way out to userspace and the 1003 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1004 * FP and/or vector state and does so if necessary. 1005 * If userspace is inside a transaction (whether active or 1006 * suspended) and FP/VMX/VSX instructions have ever been enabled 1007 * inside that transaction, then we have to keep them enabled 1008 * and keep the FP/VMX/VSX state loaded while ever the transaction 1009 * continues. The reason is that if we didn't, and subsequently 1010 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1011 * we don't know whether it's the same transaction, and thus we 1012 * don't know which of the checkpointed state and the transactional 1013 * state to use. 1014 */ restore_tm_state(struct pt_regs * regs)1015 void restore_tm_state(struct pt_regs *regs) 1016 { 1017 unsigned long msr_diff; 1018 1019 /* 1020 * This is the only moment we should clear TIF_RESTORE_TM as 1021 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1022 * again, anything else could lead to an incorrect ckpt_msr being 1023 * saved and therefore incorrect signal contexts. 1024 */ 1025 clear_thread_flag(TIF_RESTORE_TM); 1026 if (!MSR_TM_ACTIVE(regs->msr)) 1027 return; 1028 1029 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1030 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1031 1032 /* Ensure that restore_math() will restore */ 1033 if (msr_diff & MSR_FP) 1034 current->thread.load_fp = 1; 1035 #ifdef CONFIG_ALTIVEC 1036 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1037 current->thread.load_vec = 1; 1038 #endif 1039 restore_math(regs); 1040 1041 regs->msr |= msr_diff; 1042 } 1043 1044 #else 1045 #define tm_recheckpoint_new_task(new) 1046 #define __switch_to_tm(prev, new) 1047 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1048 save_sprs(struct thread_struct * t)1049 static inline void save_sprs(struct thread_struct *t) 1050 { 1051 #ifdef CONFIG_ALTIVEC 1052 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1053 t->vrsave = mfspr(SPRN_VRSAVE); 1054 #endif 1055 #ifdef CONFIG_PPC_BOOK3S_64 1056 if (cpu_has_feature(CPU_FTR_DSCR)) 1057 t->dscr = mfspr(SPRN_DSCR); 1058 1059 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1060 t->bescr = mfspr(SPRN_BESCR); 1061 t->ebbhr = mfspr(SPRN_EBBHR); 1062 t->ebbrr = mfspr(SPRN_EBBRR); 1063 1064 t->fscr = mfspr(SPRN_FSCR); 1065 1066 /* 1067 * Note that the TAR is not available for use in the kernel. 1068 * (To provide this, the TAR should be backed up/restored on 1069 * exception entry/exit instead, and be in pt_regs. FIXME, 1070 * this should be in pt_regs anyway (for debug).) 1071 */ 1072 t->tar = mfspr(SPRN_TAR); 1073 } 1074 1075 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1076 /* Conditionally save Load Monitor registers, if enabled */ 1077 if (t->fscr & FSCR_LM) { 1078 t->lmrr = mfspr(SPRN_LMRR); 1079 t->lmser = mfspr(SPRN_LMSER); 1080 } 1081 } 1082 #endif 1083 } 1084 restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1085 static inline void restore_sprs(struct thread_struct *old_thread, 1086 struct thread_struct *new_thread) 1087 { 1088 #ifdef CONFIG_ALTIVEC 1089 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1090 old_thread->vrsave != new_thread->vrsave) 1091 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1092 #endif 1093 #ifdef CONFIG_PPC_BOOK3S_64 1094 if (cpu_has_feature(CPU_FTR_DSCR)) { 1095 u64 dscr = get_paca()->dscr_default; 1096 if (new_thread->dscr_inherit) 1097 dscr = new_thread->dscr; 1098 1099 if (old_thread->dscr != dscr) 1100 mtspr(SPRN_DSCR, dscr); 1101 } 1102 1103 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1104 if (old_thread->bescr != new_thread->bescr) 1105 mtspr(SPRN_BESCR, new_thread->bescr); 1106 if (old_thread->ebbhr != new_thread->ebbhr) 1107 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1108 if (old_thread->ebbrr != new_thread->ebbrr) 1109 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1110 1111 if (old_thread->fscr != new_thread->fscr) 1112 mtspr(SPRN_FSCR, new_thread->fscr); 1113 1114 if (old_thread->tar != new_thread->tar) 1115 mtspr(SPRN_TAR, new_thread->tar); 1116 } 1117 1118 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1119 /* Conditionally restore Load Monitor registers, if enabled */ 1120 if (new_thread->fscr & FSCR_LM) { 1121 if (old_thread->lmrr != new_thread->lmrr) 1122 mtspr(SPRN_LMRR, new_thread->lmrr); 1123 if (old_thread->lmser != new_thread->lmser) 1124 mtspr(SPRN_LMSER, new_thread->lmser); 1125 } 1126 } 1127 #endif 1128 } 1129 __switch_to(struct task_struct * prev,struct task_struct * new)1130 struct task_struct *__switch_to(struct task_struct *prev, 1131 struct task_struct *new) 1132 { 1133 struct thread_struct *new_thread, *old_thread; 1134 struct task_struct *last; 1135 #ifdef CONFIG_PPC_BOOK3S_64 1136 struct ppc64_tlb_batch *batch; 1137 #endif 1138 1139 new_thread = &new->thread; 1140 old_thread = ¤t->thread; 1141 1142 WARN_ON(!irqs_disabled()); 1143 1144 #ifdef CONFIG_PPC64 1145 /* 1146 * Collect processor utilization data per process 1147 */ 1148 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1149 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1150 long unsigned start_tb, current_tb; 1151 start_tb = old_thread->start_tb; 1152 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1153 old_thread->accum_tb += (current_tb - start_tb); 1154 new_thread->start_tb = current_tb; 1155 } 1156 #endif /* CONFIG_PPC64 */ 1157 1158 #ifdef CONFIG_PPC_STD_MMU_64 1159 batch = this_cpu_ptr(&ppc64_tlb_batch); 1160 if (batch->active) { 1161 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1162 if (batch->index) 1163 __flush_tlb_pending(batch); 1164 batch->active = 0; 1165 } 1166 #endif /* CONFIG_PPC_STD_MMU_64 */ 1167 1168 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1169 switch_booke_debug_regs(&new->thread.debug); 1170 #else 1171 /* 1172 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1173 * schedule DABR 1174 */ 1175 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1176 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1177 __set_breakpoint(&new->thread.hw_brk); 1178 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1179 #endif 1180 1181 /* 1182 * We need to save SPRs before treclaim/trecheckpoint as these will 1183 * change a number of them. 1184 */ 1185 save_sprs(&prev->thread); 1186 1187 /* Save FPU, Altivec, VSX and SPE state */ 1188 giveup_all(prev); 1189 1190 __switch_to_tm(prev, new); 1191 1192 /* 1193 * We can't take a PMU exception inside _switch() since there is a 1194 * window where the kernel stack SLB and the kernel stack are out 1195 * of sync. Hard disable here. 1196 */ 1197 hard_irq_disable(); 1198 1199 /* 1200 * Call restore_sprs() before calling _switch(). If we move it after 1201 * _switch() then we miss out on calling it for new tasks. The reason 1202 * for this is we manually create a stack frame for new tasks that 1203 * directly returns through ret_from_fork() or 1204 * ret_from_kernel_thread(). See copy_thread() for details. 1205 */ 1206 restore_sprs(old_thread, new_thread); 1207 1208 last = _switch(old_thread, new_thread); 1209 1210 #ifdef CONFIG_PPC_STD_MMU_64 1211 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1212 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1213 batch = this_cpu_ptr(&ppc64_tlb_batch); 1214 batch->active = 1; 1215 } 1216 1217 if (current_thread_info()->task->thread.regs) 1218 restore_math(current_thread_info()->task->thread.regs); 1219 #endif /* CONFIG_PPC_STD_MMU_64 */ 1220 1221 return last; 1222 } 1223 1224 static int instructions_to_print = 16; 1225 show_instructions(struct pt_regs * regs)1226 static void show_instructions(struct pt_regs *regs) 1227 { 1228 int i; 1229 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1230 sizeof(int)); 1231 1232 printk("Instruction dump:"); 1233 1234 for (i = 0; i < instructions_to_print; i++) { 1235 int instr; 1236 1237 if (!(i % 8)) 1238 pr_cont("\n"); 1239 1240 #if !defined(CONFIG_BOOKE) 1241 /* If executing with the IMMU off, adjust pc rather 1242 * than print XXXXXXXX. 1243 */ 1244 if (!(regs->msr & MSR_IR)) 1245 pc = (unsigned long)phys_to_virt(pc); 1246 #endif 1247 1248 if (!__kernel_text_address(pc) || 1249 probe_kernel_address((unsigned int __user *)pc, instr)) { 1250 pr_cont("XXXXXXXX "); 1251 } else { 1252 if (regs->nip == pc) 1253 pr_cont("<%08x> ", instr); 1254 else 1255 pr_cont("%08x ", instr); 1256 } 1257 1258 pc += sizeof(int); 1259 } 1260 1261 pr_cont("\n"); 1262 } 1263 1264 struct regbit { 1265 unsigned long bit; 1266 const char *name; 1267 }; 1268 1269 static struct regbit msr_bits[] = { 1270 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1271 {MSR_SF, "SF"}, 1272 {MSR_HV, "HV"}, 1273 #endif 1274 {MSR_VEC, "VEC"}, 1275 {MSR_VSX, "VSX"}, 1276 #ifdef CONFIG_BOOKE 1277 {MSR_CE, "CE"}, 1278 #endif 1279 {MSR_EE, "EE"}, 1280 {MSR_PR, "PR"}, 1281 {MSR_FP, "FP"}, 1282 {MSR_ME, "ME"}, 1283 #ifdef CONFIG_BOOKE 1284 {MSR_DE, "DE"}, 1285 #else 1286 {MSR_SE, "SE"}, 1287 {MSR_BE, "BE"}, 1288 #endif 1289 {MSR_IR, "IR"}, 1290 {MSR_DR, "DR"}, 1291 {MSR_PMM, "PMM"}, 1292 #ifndef CONFIG_BOOKE 1293 {MSR_RI, "RI"}, 1294 {MSR_LE, "LE"}, 1295 #endif 1296 {0, NULL} 1297 }; 1298 print_bits(unsigned long val,struct regbit * bits,const char * sep)1299 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1300 { 1301 const char *s = ""; 1302 1303 for (; bits->bit; ++bits) 1304 if (val & bits->bit) { 1305 pr_cont("%s%s", s, bits->name); 1306 s = sep; 1307 } 1308 } 1309 1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1311 static struct regbit msr_tm_bits[] = { 1312 {MSR_TS_T, "T"}, 1313 {MSR_TS_S, "S"}, 1314 {MSR_TM, "E"}, 1315 {0, NULL} 1316 }; 1317 print_tm_bits(unsigned long val)1318 static void print_tm_bits(unsigned long val) 1319 { 1320 /* 1321 * This only prints something if at least one of the TM bit is set. 1322 * Inside the TM[], the output means: 1323 * E: Enabled (bit 32) 1324 * S: Suspended (bit 33) 1325 * T: Transactional (bit 34) 1326 */ 1327 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1328 pr_cont(",TM["); 1329 print_bits(val, msr_tm_bits, ""); 1330 pr_cont("]"); 1331 } 1332 } 1333 #else print_tm_bits(unsigned long val)1334 static void print_tm_bits(unsigned long val) {} 1335 #endif 1336 print_msr_bits(unsigned long val)1337 static void print_msr_bits(unsigned long val) 1338 { 1339 pr_cont("<"); 1340 print_bits(val, msr_bits, ","); 1341 print_tm_bits(val); 1342 pr_cont(">"); 1343 } 1344 1345 #ifdef CONFIG_PPC64 1346 #define REG "%016lx" 1347 #define REGS_PER_LINE 4 1348 #define LAST_VOLATILE 13 1349 #else 1350 #define REG "%08lx" 1351 #define REGS_PER_LINE 8 1352 #define LAST_VOLATILE 12 1353 #endif 1354 show_regs(struct pt_regs * regs)1355 void show_regs(struct pt_regs * regs) 1356 { 1357 int i, trap; 1358 1359 show_regs_print_info(KERN_DEFAULT); 1360 1361 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1362 regs->nip, regs->link, regs->ctr); 1363 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1364 regs, regs->trap, print_tainted(), init_utsname()->release); 1365 printk("MSR: "REG" ", regs->msr); 1366 print_msr_bits(regs->msr); 1367 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1368 trap = TRAP(regs); 1369 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1370 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1371 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1372 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1373 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1374 #else 1375 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1376 #endif 1377 #ifdef CONFIG_PPC64 1378 pr_cont("SOFTE: %ld ", regs->softe); 1379 #endif 1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1381 if (MSR_TM_ACTIVE(regs->msr)) 1382 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1383 #endif 1384 1385 for (i = 0; i < 32; i++) { 1386 if ((i % REGS_PER_LINE) == 0) 1387 pr_cont("\nGPR%02d: ", i); 1388 pr_cont(REG " ", regs->gpr[i]); 1389 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1390 break; 1391 } 1392 pr_cont("\n"); 1393 #ifdef CONFIG_KALLSYMS 1394 /* 1395 * Lookup NIP late so we have the best change of getting the 1396 * above info out without failing 1397 */ 1398 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1399 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1400 #endif 1401 show_stack(current, (unsigned long *) regs->gpr[1]); 1402 if (!user_mode(regs)) 1403 show_instructions(regs); 1404 } 1405 flush_thread(void)1406 void flush_thread(void) 1407 { 1408 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1409 flush_ptrace_hw_breakpoint(current); 1410 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1411 set_debug_reg_defaults(¤t->thread); 1412 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1413 } 1414 1415 void release_thread(struct task_struct * t)1416 release_thread(struct task_struct *t) 1417 { 1418 } 1419 1420 /* 1421 * this gets called so that we can store coprocessor state into memory and 1422 * copy the current task into the new thread. 1423 */ arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1424 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1425 { 1426 flush_all_to_thread(src); 1427 /* 1428 * Flush TM state out so we can copy it. __switch_to_tm() does this 1429 * flush but it removes the checkpointed state from the current CPU and 1430 * transitions the CPU out of TM mode. Hence we need to call 1431 * tm_recheckpoint_new_task() (on the same task) to restore the 1432 * checkpointed state back and the TM mode. 1433 * 1434 * Can't pass dst because it isn't ready. Doesn't matter, passing 1435 * dst is only important for __switch_to() 1436 */ 1437 __switch_to_tm(src, src); 1438 1439 *dst = *src; 1440 1441 clear_task_ebb(dst); 1442 1443 return 0; 1444 } 1445 setup_ksp_vsid(struct task_struct * p,unsigned long sp)1446 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1447 { 1448 #ifdef CONFIG_PPC_STD_MMU_64 1449 unsigned long sp_vsid; 1450 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1451 1452 if (radix_enabled()) 1453 return; 1454 1455 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1456 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1457 << SLB_VSID_SHIFT_1T; 1458 else 1459 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1460 << SLB_VSID_SHIFT; 1461 sp_vsid |= SLB_VSID_KERNEL | llp; 1462 p->thread.ksp_vsid = sp_vsid; 1463 #endif 1464 } 1465 1466 /* 1467 * Copy a thread.. 1468 */ 1469 1470 /* 1471 * Copy architecture-specific thread state 1472 */ copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1473 int copy_thread(unsigned long clone_flags, unsigned long usp, 1474 unsigned long kthread_arg, struct task_struct *p) 1475 { 1476 struct pt_regs *childregs, *kregs; 1477 extern void ret_from_fork(void); 1478 extern void ret_from_kernel_thread(void); 1479 void (*f)(void); 1480 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1481 struct thread_info *ti = task_thread_info(p); 1482 1483 klp_init_thread_info(ti); 1484 1485 /* Copy registers */ 1486 sp -= sizeof(struct pt_regs); 1487 childregs = (struct pt_regs *) sp; 1488 if (unlikely(p->flags & PF_KTHREAD)) { 1489 /* kernel thread */ 1490 memset(childregs, 0, sizeof(struct pt_regs)); 1491 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1492 /* function */ 1493 if (usp) 1494 childregs->gpr[14] = ppc_function_entry((void *)usp); 1495 #ifdef CONFIG_PPC64 1496 clear_tsk_thread_flag(p, TIF_32BIT); 1497 childregs->softe = 1; 1498 #endif 1499 childregs->gpr[15] = kthread_arg; 1500 p->thread.regs = NULL; /* no user register state */ 1501 ti->flags |= _TIF_RESTOREALL; 1502 f = ret_from_kernel_thread; 1503 } else { 1504 /* user thread */ 1505 struct pt_regs *regs = current_pt_regs(); 1506 CHECK_FULL_REGS(regs); 1507 *childregs = *regs; 1508 if (usp) 1509 childregs->gpr[1] = usp; 1510 p->thread.regs = childregs; 1511 childregs->gpr[3] = 0; /* Result from fork() */ 1512 if (clone_flags & CLONE_SETTLS) { 1513 #ifdef CONFIG_PPC64 1514 if (!is_32bit_task()) 1515 childregs->gpr[13] = childregs->gpr[6]; 1516 else 1517 #endif 1518 childregs->gpr[2] = childregs->gpr[6]; 1519 } 1520 1521 f = ret_from_fork; 1522 } 1523 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1524 sp -= STACK_FRAME_OVERHEAD; 1525 1526 /* 1527 * The way this works is that at some point in the future 1528 * some task will call _switch to switch to the new task. 1529 * That will pop off the stack frame created below and start 1530 * the new task running at ret_from_fork. The new task will 1531 * do some house keeping and then return from the fork or clone 1532 * system call, using the stack frame created above. 1533 */ 1534 ((unsigned long *)sp)[0] = 0; 1535 sp -= sizeof(struct pt_regs); 1536 kregs = (struct pt_regs *) sp; 1537 sp -= STACK_FRAME_OVERHEAD; 1538 p->thread.ksp = sp; 1539 #ifdef CONFIG_PPC32 1540 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1541 _ALIGN_UP(sizeof(struct thread_info), 16); 1542 #endif 1543 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1544 p->thread.ptrace_bps[0] = NULL; 1545 #endif 1546 1547 p->thread.fp_save_area = NULL; 1548 #ifdef CONFIG_ALTIVEC 1549 p->thread.vr_save_area = NULL; 1550 #endif 1551 1552 setup_ksp_vsid(p, sp); 1553 1554 #ifdef CONFIG_PPC64 1555 if (cpu_has_feature(CPU_FTR_DSCR)) { 1556 p->thread.dscr_inherit = current->thread.dscr_inherit; 1557 p->thread.dscr = mfspr(SPRN_DSCR); 1558 } 1559 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1560 p->thread.ppr = INIT_PPR; 1561 #endif 1562 kregs->nip = ppc_function_entry(f); 1563 return 0; 1564 } 1565 1566 /* 1567 * Set up a thread for executing a new program 1568 */ start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1569 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1570 { 1571 #ifdef CONFIG_PPC64 1572 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1573 #endif 1574 1575 /* 1576 * If we exec out of a kernel thread then thread.regs will not be 1577 * set. Do it now. 1578 */ 1579 if (!current->thread.regs) { 1580 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1581 current->thread.regs = regs - 1; 1582 } 1583 1584 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1585 /* 1586 * Clear any transactional state, we're exec()ing. The cause is 1587 * not important as there will never be a recheckpoint so it's not 1588 * user visible. 1589 */ 1590 if (MSR_TM_SUSPENDED(mfmsr())) 1591 tm_reclaim_current(0); 1592 #endif 1593 1594 memset(regs->gpr, 0, sizeof(regs->gpr)); 1595 regs->ctr = 0; 1596 regs->link = 0; 1597 regs->xer = 0; 1598 regs->ccr = 0; 1599 regs->gpr[1] = sp; 1600 1601 /* 1602 * We have just cleared all the nonvolatile GPRs, so make 1603 * FULL_REGS(regs) return true. This is necessary to allow 1604 * ptrace to examine the thread immediately after exec. 1605 */ 1606 regs->trap &= ~1UL; 1607 1608 #ifdef CONFIG_PPC32 1609 regs->mq = 0; 1610 regs->nip = start; 1611 regs->msr = MSR_USER; 1612 #else 1613 if (!is_32bit_task()) { 1614 unsigned long entry; 1615 1616 if (is_elf2_task()) { 1617 /* Look ma, no function descriptors! */ 1618 entry = start; 1619 1620 /* 1621 * Ulrich says: 1622 * The latest iteration of the ABI requires that when 1623 * calling a function (at its global entry point), 1624 * the caller must ensure r12 holds the entry point 1625 * address (so that the function can quickly 1626 * establish addressability). 1627 */ 1628 regs->gpr[12] = start; 1629 /* Make sure that's restored on entry to userspace. */ 1630 set_thread_flag(TIF_RESTOREALL); 1631 } else { 1632 unsigned long toc; 1633 1634 /* start is a relocated pointer to the function 1635 * descriptor for the elf _start routine. The first 1636 * entry in the function descriptor is the entry 1637 * address of _start and the second entry is the TOC 1638 * value we need to use. 1639 */ 1640 __get_user(entry, (unsigned long __user *)start); 1641 __get_user(toc, (unsigned long __user *)start+1); 1642 1643 /* Check whether the e_entry function descriptor entries 1644 * need to be relocated before we can use them. 1645 */ 1646 if (load_addr != 0) { 1647 entry += load_addr; 1648 toc += load_addr; 1649 } 1650 regs->gpr[2] = toc; 1651 } 1652 regs->nip = entry; 1653 regs->msr = MSR_USER64; 1654 } else { 1655 regs->nip = start; 1656 regs->gpr[2] = 0; 1657 regs->msr = MSR_USER32; 1658 } 1659 #endif 1660 #ifdef CONFIG_VSX 1661 current->thread.used_vsr = 0; 1662 #endif 1663 current->thread.load_fp = 0; 1664 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1665 current->thread.fp_save_area = NULL; 1666 #ifdef CONFIG_ALTIVEC 1667 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1668 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1669 current->thread.vr_save_area = NULL; 1670 current->thread.vrsave = 0; 1671 current->thread.used_vr = 0; 1672 current->thread.load_vec = 0; 1673 #endif /* CONFIG_ALTIVEC */ 1674 #ifdef CONFIG_SPE 1675 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1676 current->thread.acc = 0; 1677 current->thread.spefscr = 0; 1678 current->thread.used_spe = 0; 1679 #endif /* CONFIG_SPE */ 1680 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1681 current->thread.tm_tfhar = 0; 1682 current->thread.tm_texasr = 0; 1683 current->thread.tm_tfiar = 0; 1684 current->thread.load_tm = 0; 1685 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1686 } 1687 EXPORT_SYMBOL(start_thread); 1688 1689 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1690 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1691 set_fpexc_mode(struct task_struct * tsk,unsigned int val)1692 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1693 { 1694 struct pt_regs *regs = tsk->thread.regs; 1695 1696 /* This is a bit hairy. If we are an SPE enabled processor 1697 * (have embedded fp) we store the IEEE exception enable flags in 1698 * fpexc_mode. fpexc_mode is also used for setting FP exception 1699 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1700 if (val & PR_FP_EXC_SW_ENABLE) { 1701 #ifdef CONFIG_SPE 1702 if (cpu_has_feature(CPU_FTR_SPE)) { 1703 /* 1704 * When the sticky exception bits are set 1705 * directly by userspace, it must call prctl 1706 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1707 * in the existing prctl settings) or 1708 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1709 * the bits being set). <fenv.h> functions 1710 * saving and restoring the whole 1711 * floating-point environment need to do so 1712 * anyway to restore the prctl settings from 1713 * the saved environment. 1714 */ 1715 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1716 tsk->thread.fpexc_mode = val & 1717 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1718 return 0; 1719 } else { 1720 return -EINVAL; 1721 } 1722 #else 1723 return -EINVAL; 1724 #endif 1725 } 1726 1727 /* on a CONFIG_SPE this does not hurt us. The bits that 1728 * __pack_fe01 use do not overlap with bits used for 1729 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1730 * on CONFIG_SPE implementations are reserved so writing to 1731 * them does not change anything */ 1732 if (val > PR_FP_EXC_PRECISE) 1733 return -EINVAL; 1734 tsk->thread.fpexc_mode = __pack_fe01(val); 1735 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1736 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1737 | tsk->thread.fpexc_mode; 1738 return 0; 1739 } 1740 get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1741 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1742 { 1743 unsigned int val; 1744 1745 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1746 #ifdef CONFIG_SPE 1747 if (cpu_has_feature(CPU_FTR_SPE)) { 1748 /* 1749 * When the sticky exception bits are set 1750 * directly by userspace, it must call prctl 1751 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1752 * in the existing prctl settings) or 1753 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1754 * the bits being set). <fenv.h> functions 1755 * saving and restoring the whole 1756 * floating-point environment need to do so 1757 * anyway to restore the prctl settings from 1758 * the saved environment. 1759 */ 1760 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1761 val = tsk->thread.fpexc_mode; 1762 } else 1763 return -EINVAL; 1764 #else 1765 return -EINVAL; 1766 #endif 1767 else 1768 val = __unpack_fe01(tsk->thread.fpexc_mode); 1769 return put_user(val, (unsigned int __user *) adr); 1770 } 1771 set_endian(struct task_struct * tsk,unsigned int val)1772 int set_endian(struct task_struct *tsk, unsigned int val) 1773 { 1774 struct pt_regs *regs = tsk->thread.regs; 1775 1776 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1777 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1778 return -EINVAL; 1779 1780 if (regs == NULL) 1781 return -EINVAL; 1782 1783 if (val == PR_ENDIAN_BIG) 1784 regs->msr &= ~MSR_LE; 1785 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1786 regs->msr |= MSR_LE; 1787 else 1788 return -EINVAL; 1789 1790 return 0; 1791 } 1792 get_endian(struct task_struct * tsk,unsigned long adr)1793 int get_endian(struct task_struct *tsk, unsigned long adr) 1794 { 1795 struct pt_regs *regs = tsk->thread.regs; 1796 unsigned int val; 1797 1798 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1799 !cpu_has_feature(CPU_FTR_REAL_LE)) 1800 return -EINVAL; 1801 1802 if (regs == NULL) 1803 return -EINVAL; 1804 1805 if (regs->msr & MSR_LE) { 1806 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1807 val = PR_ENDIAN_LITTLE; 1808 else 1809 val = PR_ENDIAN_PPC_LITTLE; 1810 } else 1811 val = PR_ENDIAN_BIG; 1812 1813 return put_user(val, (unsigned int __user *)adr); 1814 } 1815 set_unalign_ctl(struct task_struct * tsk,unsigned int val)1816 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1817 { 1818 tsk->thread.align_ctl = val; 1819 return 0; 1820 } 1821 get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1822 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1823 { 1824 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1825 } 1826 valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1827 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1828 unsigned long nbytes) 1829 { 1830 unsigned long stack_page; 1831 unsigned long cpu = task_cpu(p); 1832 1833 /* 1834 * Avoid crashing if the stack has overflowed and corrupted 1835 * task_cpu(p), which is in the thread_info struct. 1836 */ 1837 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1838 stack_page = (unsigned long) hardirq_ctx[cpu]; 1839 if (sp >= stack_page + sizeof(struct thread_struct) 1840 && sp <= stack_page + THREAD_SIZE - nbytes) 1841 return 1; 1842 1843 stack_page = (unsigned long) softirq_ctx[cpu]; 1844 if (sp >= stack_page + sizeof(struct thread_struct) 1845 && sp <= stack_page + THREAD_SIZE - nbytes) 1846 return 1; 1847 } 1848 return 0; 1849 } 1850 validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1851 int validate_sp(unsigned long sp, struct task_struct *p, 1852 unsigned long nbytes) 1853 { 1854 unsigned long stack_page = (unsigned long)task_stack_page(p); 1855 1856 if (sp >= stack_page + sizeof(struct thread_struct) 1857 && sp <= stack_page + THREAD_SIZE - nbytes) 1858 return 1; 1859 1860 return valid_irq_stack(sp, p, nbytes); 1861 } 1862 1863 EXPORT_SYMBOL(validate_sp); 1864 get_wchan(struct task_struct * p)1865 unsigned long get_wchan(struct task_struct *p) 1866 { 1867 unsigned long ip, sp; 1868 int count = 0; 1869 1870 if (!p || p == current || p->state == TASK_RUNNING) 1871 return 0; 1872 1873 sp = p->thread.ksp; 1874 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1875 return 0; 1876 1877 do { 1878 sp = *(unsigned long *)sp; 1879 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1880 return 0; 1881 if (count > 0) { 1882 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1883 if (!in_sched_functions(ip)) 1884 return ip; 1885 } 1886 } while (count++ < 16); 1887 return 0; 1888 } 1889 1890 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1891 show_stack(struct task_struct * tsk,unsigned long * stack)1892 void show_stack(struct task_struct *tsk, unsigned long *stack) 1893 { 1894 unsigned long sp, ip, lr, newsp; 1895 int count = 0; 1896 int firstframe = 1; 1897 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1898 int curr_frame = current->curr_ret_stack; 1899 extern void return_to_handler(void); 1900 unsigned long rth = (unsigned long)return_to_handler; 1901 #endif 1902 1903 sp = (unsigned long) stack; 1904 if (tsk == NULL) 1905 tsk = current; 1906 if (sp == 0) { 1907 if (tsk == current) 1908 sp = current_stack_pointer(); 1909 else 1910 sp = tsk->thread.ksp; 1911 } 1912 1913 lr = 0; 1914 printk("Call Trace:\n"); 1915 do { 1916 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1917 return; 1918 1919 stack = (unsigned long *) sp; 1920 newsp = stack[0]; 1921 ip = stack[STACK_FRAME_LR_SAVE]; 1922 if (!firstframe || ip != lr) { 1923 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1924 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1925 if ((ip == rth) && curr_frame >= 0) { 1926 pr_cont(" (%pS)", 1927 (void *)current->ret_stack[curr_frame].ret); 1928 curr_frame--; 1929 } 1930 #endif 1931 if (firstframe) 1932 pr_cont(" (unreliable)"); 1933 pr_cont("\n"); 1934 } 1935 firstframe = 0; 1936 1937 /* 1938 * See if this is an exception frame. 1939 * We look for the "regshere" marker in the current frame. 1940 */ 1941 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1942 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1943 struct pt_regs *regs = (struct pt_regs *) 1944 (sp + STACK_FRAME_OVERHEAD); 1945 lr = regs->link; 1946 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1947 regs->trap, (void *)regs->nip, (void *)lr); 1948 firstframe = 1; 1949 } 1950 1951 sp = newsp; 1952 } while (count++ < kstack_depth_to_print); 1953 } 1954 1955 #ifdef CONFIG_PPC64 1956 /* Called with hard IRQs off */ __ppc64_runlatch_on(void)1957 void notrace __ppc64_runlatch_on(void) 1958 { 1959 struct thread_info *ti = current_thread_info(); 1960 unsigned long ctrl; 1961 1962 ctrl = mfspr(SPRN_CTRLF); 1963 ctrl |= CTRL_RUNLATCH; 1964 mtspr(SPRN_CTRLT, ctrl); 1965 1966 ti->local_flags |= _TLF_RUNLATCH; 1967 } 1968 1969 /* Called with hard IRQs off */ __ppc64_runlatch_off(void)1970 void notrace __ppc64_runlatch_off(void) 1971 { 1972 struct thread_info *ti = current_thread_info(); 1973 unsigned long ctrl; 1974 1975 ti->local_flags &= ~_TLF_RUNLATCH; 1976 1977 ctrl = mfspr(SPRN_CTRLF); 1978 ctrl &= ~CTRL_RUNLATCH; 1979 mtspr(SPRN_CTRLT, ctrl); 1980 } 1981 #endif /* CONFIG_PPC64 */ 1982 arch_align_stack(unsigned long sp)1983 unsigned long arch_align_stack(unsigned long sp) 1984 { 1985 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1986 sp -= get_random_int() & ~PAGE_MASK; 1987 return sp & ~0xf; 1988 } 1989 brk_rnd(void)1990 static inline unsigned long brk_rnd(void) 1991 { 1992 unsigned long rnd = 0; 1993 1994 /* 8MB for 32bit, 1GB for 64bit */ 1995 if (is_32bit_task()) 1996 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 1997 else 1998 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 1999 2000 return rnd << PAGE_SHIFT; 2001 } 2002 arch_randomize_brk(struct mm_struct * mm)2003 unsigned long arch_randomize_brk(struct mm_struct *mm) 2004 { 2005 unsigned long base = mm->brk; 2006 unsigned long ret; 2007 2008 #ifdef CONFIG_PPC_STD_MMU_64 2009 /* 2010 * If we are using 1TB segments and we are allowed to randomise 2011 * the heap, we can put it above 1TB so it is backed by a 1TB 2012 * segment. Otherwise the heap will be in the bottom 1TB 2013 * which always uses 256MB segments and this may result in a 2014 * performance penalty. We don't need to worry about radix. For 2015 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2016 */ 2017 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2018 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2019 #endif 2020 2021 ret = PAGE_ALIGN(base + brk_rnd()); 2022 2023 if (ret < mm->brk) 2024 return mm->brk; 2025 2026 return ret; 2027 } 2028 2029