• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63 
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66 
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73 
74 extern unsigned long _get_SP(void);
75 
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
check_if_tm_restore_required(struct task_struct * tsk)77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 	/*
80 	 * If we are saving the current thread's registers, and the
81 	 * thread is in a transactional state, set the TIF_RESTORE_TM
82 	 * bit so that we know to restore the registers before
83 	 * returning to userspace.
84 	 */
85 	if (tsk == current && tsk->thread.regs &&
86 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 	    !test_thread_flag(TIF_RESTORE_TM)) {
88 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 		set_thread_flag(TIF_RESTORE_TM);
90 	}
91 }
92 
msr_tm_active(unsigned long msr)93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 	return MSR_TM_ACTIVE(msr);
96 }
97 #else
msr_tm_active(unsigned long msr)98 static inline bool msr_tm_active(unsigned long msr) { return false; }
check_if_tm_restore_required(struct task_struct * tsk)99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101 
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104 
enable_strict_msr_control(char * str)105 static int __init enable_strict_msr_control(char *str)
106 {
107 	strict_msr_control = true;
108 	pr_info("Enabling strict facility control\n");
109 
110 	return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113 
msr_check_and_set(unsigned long bits)114 unsigned long msr_check_and_set(unsigned long bits)
115 {
116 	unsigned long oldmsr = mfmsr();
117 	unsigned long newmsr;
118 
119 	newmsr = oldmsr | bits;
120 
121 #ifdef CONFIG_VSX
122 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 		newmsr |= MSR_VSX;
124 #endif
125 
126 	if (oldmsr != newmsr)
127 		mtmsr_isync(newmsr);
128 
129 	return newmsr;
130 }
131 
__msr_check_and_clear(unsigned long bits)132 void __msr_check_and_clear(unsigned long bits)
133 {
134 	unsigned long oldmsr = mfmsr();
135 	unsigned long newmsr;
136 
137 	newmsr = oldmsr & ~bits;
138 
139 #ifdef CONFIG_VSX
140 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 		newmsr &= ~MSR_VSX;
142 #endif
143 
144 	if (oldmsr != newmsr)
145 		mtmsr_isync(newmsr);
146 }
147 EXPORT_SYMBOL(__msr_check_and_clear);
148 
149 #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)150 void __giveup_fpu(struct task_struct *tsk)
151 {
152 	unsigned long msr;
153 
154 	save_fpu(tsk);
155 	msr = tsk->thread.regs->msr;
156 	msr &= ~MSR_FP;
157 #ifdef CONFIG_VSX
158 	if (cpu_has_feature(CPU_FTR_VSX))
159 		msr &= ~MSR_VSX;
160 #endif
161 	tsk->thread.regs->msr = msr;
162 }
163 
giveup_fpu(struct task_struct * tsk)164 void giveup_fpu(struct task_struct *tsk)
165 {
166 	check_if_tm_restore_required(tsk);
167 
168 	msr_check_and_set(MSR_FP);
169 	__giveup_fpu(tsk);
170 	msr_check_and_clear(MSR_FP);
171 }
172 EXPORT_SYMBOL(giveup_fpu);
173 
174 /*
175  * Make sure the floating-point register state in the
176  * the thread_struct is up to date for task tsk.
177  */
flush_fp_to_thread(struct task_struct * tsk)178 void flush_fp_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		/*
182 		 * We need to disable preemption here because if we didn't,
183 		 * another process could get scheduled after the regs->msr
184 		 * test but before we have finished saving the FP registers
185 		 * to the thread_struct.  That process could take over the
186 		 * FPU, and then when we get scheduled again we would store
187 		 * bogus values for the remaining FP registers.
188 		 */
189 		preempt_disable();
190 		if (tsk->thread.regs->msr & MSR_FP) {
191 			/*
192 			 * This should only ever be called for current or
193 			 * for a stopped child process.  Since we save away
194 			 * the FP register state on context switch,
195 			 * there is something wrong if a stopped child appears
196 			 * to still have its FP state in the CPU registers.
197 			 */
198 			BUG_ON(tsk != current);
199 			giveup_fpu(tsk);
200 		}
201 		preempt_enable();
202 	}
203 }
204 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205 
enable_kernel_fp(void)206 void enable_kernel_fp(void)
207 {
208 	unsigned long cpumsr;
209 
210 	WARN_ON(preemptible());
211 
212 	cpumsr = msr_check_and_set(MSR_FP);
213 
214 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 		check_if_tm_restore_required(current);
216 		/*
217 		 * If a thread has already been reclaimed then the
218 		 * checkpointed registers are on the CPU but have definitely
219 		 * been saved by the reclaim code. Don't need to and *cannot*
220 		 * giveup as this would save  to the 'live' structure not the
221 		 * checkpointed structure.
222 		 */
223 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 			return;
225 		__giveup_fpu(current);
226 	}
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229 
restore_fp(struct task_struct * tsk)230 static int restore_fp(struct task_struct *tsk) {
231 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 		load_fp_state(&current->thread.fp_state);
233 		current->thread.load_fp++;
234 		return 1;
235 	}
236 	return 0;
237 }
238 #else
restore_fp(struct task_struct * tsk)239 static int restore_fp(struct task_struct *tsk) { return 0; }
240 #endif /* CONFIG_PPC_FPU */
241 
242 #ifdef CONFIG_ALTIVEC
243 #define loadvec(thr) ((thr).load_vec)
244 
__giveup_altivec(struct task_struct * tsk)245 static void __giveup_altivec(struct task_struct *tsk)
246 {
247 	unsigned long msr;
248 
249 	save_altivec(tsk);
250 	msr = tsk->thread.regs->msr;
251 	msr &= ~MSR_VEC;
252 #ifdef CONFIG_VSX
253 	if (cpu_has_feature(CPU_FTR_VSX))
254 		msr &= ~MSR_VSX;
255 #endif
256 	tsk->thread.regs->msr = msr;
257 }
258 
giveup_altivec(struct task_struct * tsk)259 void giveup_altivec(struct task_struct *tsk)
260 {
261 	check_if_tm_restore_required(tsk);
262 
263 	msr_check_and_set(MSR_VEC);
264 	__giveup_altivec(tsk);
265 	msr_check_and_clear(MSR_VEC);
266 }
267 EXPORT_SYMBOL(giveup_altivec);
268 
enable_kernel_altivec(void)269 void enable_kernel_altivec(void)
270 {
271 	unsigned long cpumsr;
272 
273 	WARN_ON(preemptible());
274 
275 	cpumsr = msr_check_and_set(MSR_VEC);
276 
277 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 		check_if_tm_restore_required(current);
279 		/*
280 		 * If a thread has already been reclaimed then the
281 		 * checkpointed registers are on the CPU but have definitely
282 		 * been saved by the reclaim code. Don't need to and *cannot*
283 		 * giveup as this would save  to the 'live' structure not the
284 		 * checkpointed structure.
285 		 */
286 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 			return;
288 		__giveup_altivec(current);
289 	}
290 }
291 EXPORT_SYMBOL(enable_kernel_altivec);
292 
293 /*
294  * Make sure the VMX/Altivec register state in the
295  * the thread_struct is up to date for task tsk.
296  */
flush_altivec_to_thread(struct task_struct * tsk)297 void flush_altivec_to_thread(struct task_struct *tsk)
298 {
299 	if (tsk->thread.regs) {
300 		preempt_disable();
301 		if (tsk->thread.regs->msr & MSR_VEC) {
302 			BUG_ON(tsk != current);
303 			giveup_altivec(tsk);
304 		}
305 		preempt_enable();
306 	}
307 }
308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309 
restore_altivec(struct task_struct * tsk)310 static int restore_altivec(struct task_struct *tsk)
311 {
312 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 		load_vr_state(&tsk->thread.vr_state);
315 		tsk->thread.used_vr = 1;
316 		tsk->thread.load_vec++;
317 
318 		return 1;
319 	}
320 	return 0;
321 }
322 #else
323 #define loadvec(thr) 0
restore_altivec(struct task_struct * tsk)324 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325 #endif /* CONFIG_ALTIVEC */
326 
327 #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)328 static void __giveup_vsx(struct task_struct *tsk)
329 {
330 	if (tsk->thread.regs->msr & MSR_FP)
331 		__giveup_fpu(tsk);
332 	if (tsk->thread.regs->msr & MSR_VEC)
333 		__giveup_altivec(tsk);
334 	tsk->thread.regs->msr &= ~MSR_VSX;
335 }
336 
giveup_vsx(struct task_struct * tsk)337 static void giveup_vsx(struct task_struct *tsk)
338 {
339 	check_if_tm_restore_required(tsk);
340 
341 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 	__giveup_vsx(tsk);
343 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344 }
345 
save_vsx(struct task_struct * tsk)346 static void save_vsx(struct task_struct *tsk)
347 {
348 	if (tsk->thread.regs->msr & MSR_FP)
349 		save_fpu(tsk);
350 	if (tsk->thread.regs->msr & MSR_VEC)
351 		save_altivec(tsk);
352 }
353 
enable_kernel_vsx(void)354 void enable_kernel_vsx(void)
355 {
356 	unsigned long cpumsr;
357 
358 	WARN_ON(preemptible());
359 
360 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361 
362 	if (current->thread.regs &&
363 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
364 		check_if_tm_restore_required(current);
365 		/*
366 		 * If a thread has already been reclaimed then the
367 		 * checkpointed registers are on the CPU but have definitely
368 		 * been saved by the reclaim code. Don't need to and *cannot*
369 		 * giveup as this would save  to the 'live' structure not the
370 		 * checkpointed structure.
371 		 */
372 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
373 			return;
374 		if (current->thread.regs->msr & MSR_FP)
375 			__giveup_fpu(current);
376 		if (current->thread.regs->msr & MSR_VEC)
377 			__giveup_altivec(current);
378 		__giveup_vsx(current);
379 	}
380 }
381 EXPORT_SYMBOL(enable_kernel_vsx);
382 
flush_vsx_to_thread(struct task_struct * tsk)383 void flush_vsx_to_thread(struct task_struct *tsk)
384 {
385 	if (tsk->thread.regs) {
386 		preempt_disable();
387 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
388 			BUG_ON(tsk != current);
389 			giveup_vsx(tsk);
390 		}
391 		preempt_enable();
392 	}
393 }
394 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395 
restore_vsx(struct task_struct * tsk)396 static int restore_vsx(struct task_struct *tsk)
397 {
398 	if (cpu_has_feature(CPU_FTR_VSX)) {
399 		tsk->thread.used_vsr = 1;
400 		return 1;
401 	}
402 
403 	return 0;
404 }
405 #else
restore_vsx(struct task_struct * tsk)406 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
save_vsx(struct task_struct * tsk)407 static inline void save_vsx(struct task_struct *tsk) { }
408 #endif /* CONFIG_VSX */
409 
410 #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)411 void giveup_spe(struct task_struct *tsk)
412 {
413 	check_if_tm_restore_required(tsk);
414 
415 	msr_check_and_set(MSR_SPE);
416 	__giveup_spe(tsk);
417 	msr_check_and_clear(MSR_SPE);
418 }
419 EXPORT_SYMBOL(giveup_spe);
420 
enable_kernel_spe(void)421 void enable_kernel_spe(void)
422 {
423 	WARN_ON(preemptible());
424 
425 	msr_check_and_set(MSR_SPE);
426 
427 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
428 		check_if_tm_restore_required(current);
429 		__giveup_spe(current);
430 	}
431 }
432 EXPORT_SYMBOL(enable_kernel_spe);
433 
flush_spe_to_thread(struct task_struct * tsk)434 void flush_spe_to_thread(struct task_struct *tsk)
435 {
436 	if (tsk->thread.regs) {
437 		preempt_disable();
438 		if (tsk->thread.regs->msr & MSR_SPE) {
439 			BUG_ON(tsk != current);
440 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
441 			giveup_spe(tsk);
442 		}
443 		preempt_enable();
444 	}
445 }
446 #endif /* CONFIG_SPE */
447 
448 static unsigned long msr_all_available;
449 
init_msr_all_available(void)450 static int __init init_msr_all_available(void)
451 {
452 #ifdef CONFIG_PPC_FPU
453 	msr_all_available |= MSR_FP;
454 #endif
455 #ifdef CONFIG_ALTIVEC
456 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
457 		msr_all_available |= MSR_VEC;
458 #endif
459 #ifdef CONFIG_VSX
460 	if (cpu_has_feature(CPU_FTR_VSX))
461 		msr_all_available |= MSR_VSX;
462 #endif
463 #ifdef CONFIG_SPE
464 	if (cpu_has_feature(CPU_FTR_SPE))
465 		msr_all_available |= MSR_SPE;
466 #endif
467 
468 	return 0;
469 }
470 early_initcall(init_msr_all_available);
471 
giveup_all(struct task_struct * tsk)472 void giveup_all(struct task_struct *tsk)
473 {
474 	unsigned long usermsr;
475 
476 	if (!tsk->thread.regs)
477 		return;
478 
479 	usermsr = tsk->thread.regs->msr;
480 
481 	if ((usermsr & msr_all_available) == 0)
482 		return;
483 
484 	msr_check_and_set(msr_all_available);
485 	check_if_tm_restore_required(tsk);
486 
487 #ifdef CONFIG_PPC_FPU
488 	if (usermsr & MSR_FP)
489 		__giveup_fpu(tsk);
490 #endif
491 #ifdef CONFIG_ALTIVEC
492 	if (usermsr & MSR_VEC)
493 		__giveup_altivec(tsk);
494 #endif
495 #ifdef CONFIG_VSX
496 	if (usermsr & MSR_VSX)
497 		__giveup_vsx(tsk);
498 #endif
499 #ifdef CONFIG_SPE
500 	if (usermsr & MSR_SPE)
501 		__giveup_spe(tsk);
502 #endif
503 
504 	msr_check_and_clear(msr_all_available);
505 }
506 EXPORT_SYMBOL(giveup_all);
507 
restore_math(struct pt_regs * regs)508 void restore_math(struct pt_regs *regs)
509 {
510 	unsigned long msr;
511 
512 	if (!msr_tm_active(regs->msr) &&
513 		!current->thread.load_fp && !loadvec(current->thread))
514 		return;
515 
516 	msr = regs->msr;
517 	msr_check_and_set(msr_all_available);
518 
519 	/*
520 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
521 	 * indicates that the registers are hot
522 	 */
523 	if ((!(msr & MSR_FP)) && restore_fp(current))
524 		msr |= MSR_FP | current->thread.fpexc_mode;
525 
526 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
527 		msr |= MSR_VEC;
528 
529 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
530 			restore_vsx(current)) {
531 		msr |= MSR_VSX;
532 	}
533 
534 	msr_check_and_clear(msr_all_available);
535 
536 	regs->msr = msr;
537 }
538 
save_all(struct task_struct * tsk)539 void save_all(struct task_struct *tsk)
540 {
541 	unsigned long usermsr;
542 
543 	if (!tsk->thread.regs)
544 		return;
545 
546 	usermsr = tsk->thread.regs->msr;
547 
548 	if ((usermsr & msr_all_available) == 0)
549 		return;
550 
551 	msr_check_and_set(msr_all_available);
552 
553 	/*
554 	 * Saving the way the register space is in hardware, save_vsx boils
555 	 * down to a save_fpu() and save_altivec()
556 	 */
557 	if (usermsr & MSR_VSX) {
558 		save_vsx(tsk);
559 	} else {
560 		if (usermsr & MSR_FP)
561 			save_fpu(tsk);
562 
563 		if (usermsr & MSR_VEC)
564 			save_altivec(tsk);
565 	}
566 
567 	if (usermsr & MSR_SPE)
568 		__giveup_spe(tsk);
569 
570 	msr_check_and_clear(msr_all_available);
571 }
572 
flush_all_to_thread(struct task_struct * tsk)573 void flush_all_to_thread(struct task_struct *tsk)
574 {
575 	if (tsk->thread.regs) {
576 		preempt_disable();
577 		BUG_ON(tsk != current);
578 		save_all(tsk);
579 
580 #ifdef CONFIG_SPE
581 		if (tsk->thread.regs->msr & MSR_SPE)
582 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
583 #endif
584 
585 		preempt_enable();
586 	}
587 }
588 EXPORT_SYMBOL(flush_all_to_thread);
589 
590 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)591 void do_send_trap(struct pt_regs *regs, unsigned long address,
592 		  unsigned long error_code, int signal_code, int breakpt)
593 {
594 	siginfo_t info;
595 
596 	current->thread.trap_nr = signal_code;
597 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
598 			11, SIGSEGV) == NOTIFY_STOP)
599 		return;
600 
601 	/* Deliver the signal to userspace */
602 	info.si_signo = SIGTRAP;
603 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
604 	info.si_code = signal_code;
605 	info.si_addr = (void __user *)address;
606 	force_sig_info(SIGTRAP, &info, current);
607 }
608 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)609 void do_break (struct pt_regs *regs, unsigned long address,
610 		    unsigned long error_code)
611 {
612 	siginfo_t info;
613 
614 	current->thread.trap_nr = TRAP_HWBKPT;
615 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
616 			11, SIGSEGV) == NOTIFY_STOP)
617 		return;
618 
619 	if (debugger_break_match(regs))
620 		return;
621 
622 	/* Clear the breakpoint */
623 	hw_breakpoint_disable();
624 
625 	/* Deliver the signal to userspace */
626 	info.si_signo = SIGTRAP;
627 	info.si_errno = 0;
628 	info.si_code = TRAP_HWBKPT;
629 	info.si_addr = (void __user *)address;
630 	force_sig_info(SIGTRAP, &info, current);
631 }
632 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
633 
634 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
635 
636 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
637 /*
638  * Set the debug registers back to their default "safe" values.
639  */
set_debug_reg_defaults(struct thread_struct * thread)640 static void set_debug_reg_defaults(struct thread_struct *thread)
641 {
642 	thread->debug.iac1 = thread->debug.iac2 = 0;
643 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
644 	thread->debug.iac3 = thread->debug.iac4 = 0;
645 #endif
646 	thread->debug.dac1 = thread->debug.dac2 = 0;
647 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
648 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
649 #endif
650 	thread->debug.dbcr0 = 0;
651 #ifdef CONFIG_BOOKE
652 	/*
653 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
654 	 */
655 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
656 			DBCR1_IAC3US | DBCR1_IAC4US;
657 	/*
658 	 * Force Data Address Compare User/Supervisor bits to be User-only
659 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
660 	 */
661 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
662 #else
663 	thread->debug.dbcr1 = 0;
664 #endif
665 }
666 
prime_debug_regs(struct debug_reg * debug)667 static void prime_debug_regs(struct debug_reg *debug)
668 {
669 	/*
670 	 * We could have inherited MSR_DE from userspace, since
671 	 * it doesn't get cleared on exception entry.  Make sure
672 	 * MSR_DE is clear before we enable any debug events.
673 	 */
674 	mtmsr(mfmsr() & ~MSR_DE);
675 
676 	mtspr(SPRN_IAC1, debug->iac1);
677 	mtspr(SPRN_IAC2, debug->iac2);
678 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
679 	mtspr(SPRN_IAC3, debug->iac3);
680 	mtspr(SPRN_IAC4, debug->iac4);
681 #endif
682 	mtspr(SPRN_DAC1, debug->dac1);
683 	mtspr(SPRN_DAC2, debug->dac2);
684 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
685 	mtspr(SPRN_DVC1, debug->dvc1);
686 	mtspr(SPRN_DVC2, debug->dvc2);
687 #endif
688 	mtspr(SPRN_DBCR0, debug->dbcr0);
689 	mtspr(SPRN_DBCR1, debug->dbcr1);
690 #ifdef CONFIG_BOOKE
691 	mtspr(SPRN_DBCR2, debug->dbcr2);
692 #endif
693 }
694 /*
695  * Unless neither the old or new thread are making use of the
696  * debug registers, set the debug registers from the values
697  * stored in the new thread.
698  */
switch_booke_debug_regs(struct debug_reg * new_debug)699 void switch_booke_debug_regs(struct debug_reg *new_debug)
700 {
701 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
702 		|| (new_debug->dbcr0 & DBCR0_IDM))
703 			prime_debug_regs(new_debug);
704 }
705 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
706 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
707 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_debug_reg_defaults(struct thread_struct * thread)708 static void set_debug_reg_defaults(struct thread_struct *thread)
709 {
710 	thread->hw_brk.address = 0;
711 	thread->hw_brk.type = 0;
712 	set_breakpoint(&thread->hw_brk);
713 }
714 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
715 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
716 
717 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)718 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
719 {
720 	mtspr(SPRN_DAC1, dabr);
721 #ifdef CONFIG_PPC_47x
722 	isync();
723 #endif
724 	return 0;
725 }
726 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
728 {
729 	mtspr(SPRN_DABR, dabr);
730 	if (cpu_has_feature(CPU_FTR_DABRX))
731 		mtspr(SPRN_DABRX, dabrx);
732 	return 0;
733 }
734 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)735 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
736 {
737 	return -EINVAL;
738 }
739 #endif
740 
set_dabr(struct arch_hw_breakpoint * brk)741 static inline int set_dabr(struct arch_hw_breakpoint *brk)
742 {
743 	unsigned long dabr, dabrx;
744 
745 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
746 	dabrx = ((brk->type >> 3) & 0x7);
747 
748 	if (ppc_md.set_dabr)
749 		return ppc_md.set_dabr(dabr, dabrx);
750 
751 	return __set_dabr(dabr, dabrx);
752 }
753 
set_dawr(struct arch_hw_breakpoint * brk)754 static inline int set_dawr(struct arch_hw_breakpoint *brk)
755 {
756 	unsigned long dawr, dawrx, mrd;
757 
758 	dawr = brk->address;
759 
760 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
761 		                   << (63 - 58); //* read/write bits */
762 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
763 		                   << (63 - 59); //* translate */
764 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
765 		                   >> 3; //* PRIM bits */
766 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
767 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
768 	   0b111111=64DW.
769 	   brk->len is in bytes.
770 	   This aligns up to double word size, shifts and does the bias.
771 	*/
772 	mrd = ((brk->len + 7) >> 3) - 1;
773 	dawrx |= (mrd & 0x3f) << (63 - 53);
774 
775 	if (ppc_md.set_dawr)
776 		return ppc_md.set_dawr(dawr, dawrx);
777 	mtspr(SPRN_DAWR, dawr);
778 	mtspr(SPRN_DAWRX, dawrx);
779 	return 0;
780 }
781 
__set_breakpoint(struct arch_hw_breakpoint * brk)782 void __set_breakpoint(struct arch_hw_breakpoint *brk)
783 {
784 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
785 
786 	if (cpu_has_feature(CPU_FTR_DAWR))
787 		set_dawr(brk);
788 	else
789 		set_dabr(brk);
790 }
791 
set_breakpoint(struct arch_hw_breakpoint * brk)792 void set_breakpoint(struct arch_hw_breakpoint *brk)
793 {
794 	preempt_disable();
795 	__set_breakpoint(brk);
796 	preempt_enable();
797 }
798 
799 #ifdef CONFIG_PPC64
800 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
801 #endif
802 
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)803 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
804 			      struct arch_hw_breakpoint *b)
805 {
806 	if (a->address != b->address)
807 		return false;
808 	if (a->type != b->type)
809 		return false;
810 	if (a->len != b->len)
811 		return false;
812 	return true;
813 }
814 
815 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
816 
tm_enabled(struct task_struct * tsk)817 static inline bool tm_enabled(struct task_struct *tsk)
818 {
819 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
820 }
821 
tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)822 static void tm_reclaim_thread(struct thread_struct *thr,
823 			      struct thread_info *ti, uint8_t cause)
824 {
825 	/*
826 	 * Use the current MSR TM suspended bit to track if we have
827 	 * checkpointed state outstanding.
828 	 * On signal delivery, we'd normally reclaim the checkpointed
829 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
830 	 * This will then directly return to userspace without going
831 	 * through __switch_to(). However, if the stack frame is bad,
832 	 * we need to exit this thread which calls __switch_to() which
833 	 * will again attempt to reclaim the already saved tm state.
834 	 * Hence we need to check that we've not already reclaimed
835 	 * this state.
836 	 * We do this using the current MSR, rather tracking it in
837 	 * some specific thread_struct bit, as it has the additional
838 	 * benefit of checking for a potential TM bad thing exception.
839 	 */
840 	if (!MSR_TM_SUSPENDED(mfmsr()))
841 		return;
842 
843 	/*
844 	 * If we are in a transaction and FP is off then we can't have
845 	 * used FP inside that transaction. Hence the checkpointed
846 	 * state is the same as the live state. We need to copy the
847 	 * live state to the checkpointed state so that when the
848 	 * transaction is restored, the checkpointed state is correct
849 	 * and the aborted transaction sees the correct state. We use
850 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
851 	 * determine if it's going to write the checkpointed state or
852 	 * not. So either this will write the checkpointed registers,
853 	 * or reclaim will. Similarly for VMX.
854 	 */
855 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
856 		memcpy(&thr->ckfp_state, &thr->fp_state,
857 		       sizeof(struct thread_fp_state));
858 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
859 		memcpy(&thr->ckvr_state, &thr->vr_state,
860 		       sizeof(struct thread_vr_state));
861 
862 	giveup_all(container_of(thr, struct task_struct, thread));
863 
864 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
865 }
866 
tm_reclaim_current(uint8_t cause)867 void tm_reclaim_current(uint8_t cause)
868 {
869 	tm_enable();
870 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
871 }
872 
tm_reclaim_task(struct task_struct * tsk)873 static inline void tm_reclaim_task(struct task_struct *tsk)
874 {
875 	/* We have to work out if we're switching from/to a task that's in the
876 	 * middle of a transaction.
877 	 *
878 	 * In switching we need to maintain a 2nd register state as
879 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
880 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
881 	 * ckvr_state
882 	 *
883 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
884 	 */
885 	struct thread_struct *thr = &tsk->thread;
886 
887 	if (!thr->regs)
888 		return;
889 
890 	if (!MSR_TM_ACTIVE(thr->regs->msr))
891 		goto out_and_saveregs;
892 
893 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
894 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
895 		 tsk->pid, thr->regs->nip,
896 		 thr->regs->ccr, thr->regs->msr,
897 		 thr->regs->trap);
898 
899 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
900 
901 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
902 		 tsk->pid);
903 
904 out_and_saveregs:
905 	/* Always save the regs here, even if a transaction's not active.
906 	 * This context-switches a thread's TM info SPRs.  We do it here to
907 	 * be consistent with the restore path (in recheckpoint) which
908 	 * cannot happen later in _switch().
909 	 */
910 	tm_save_sprs(thr);
911 }
912 
913 extern void __tm_recheckpoint(struct thread_struct *thread,
914 			      unsigned long orig_msr);
915 
tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)916 void tm_recheckpoint(struct thread_struct *thread,
917 		     unsigned long orig_msr)
918 {
919 	unsigned long flags;
920 
921 	if (!(thread->regs->msr & MSR_TM))
922 		return;
923 
924 	/* We really can't be interrupted here as the TEXASR registers can't
925 	 * change and later in the trecheckpoint code, we have a userspace R1.
926 	 * So let's hard disable over this region.
927 	 */
928 	local_irq_save(flags);
929 	hard_irq_disable();
930 
931 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
932 	 * before the trecheckpoint and no explosion occurs.
933 	 */
934 	tm_restore_sprs(thread);
935 
936 	__tm_recheckpoint(thread, orig_msr);
937 
938 	local_irq_restore(flags);
939 }
940 
tm_recheckpoint_new_task(struct task_struct * new)941 static inline void tm_recheckpoint_new_task(struct task_struct *new)
942 {
943 	unsigned long msr;
944 
945 	if (!cpu_has_feature(CPU_FTR_TM))
946 		return;
947 
948 	/* Recheckpoint the registers of the thread we're about to switch to.
949 	 *
950 	 * If the task was using FP, we non-lazily reload both the original and
951 	 * the speculative FP register states.  This is because the kernel
952 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
953 	 * unavailable later, we are unable to determine which set of FP regs
954 	 * need to be restored.
955 	 */
956 	if (!tm_enabled(new))
957 		return;
958 
959 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
960 		tm_restore_sprs(&new->thread);
961 		return;
962 	}
963 	msr = new->thread.ckpt_regs.msr;
964 	/* Recheckpoint to restore original checkpointed register state. */
965 	TM_DEBUG("*** tm_recheckpoint of pid %d "
966 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
967 		 new->pid, new->thread.regs->msr, msr);
968 
969 	tm_recheckpoint(&new->thread, msr);
970 
971 	/*
972 	 * The checkpointed state has been restored but the live state has
973 	 * not, ensure all the math functionality is turned off to trigger
974 	 * restore_math() to reload.
975 	 */
976 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
977 
978 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
979 		 "(kernel msr 0x%lx)\n",
980 		 new->pid, mfmsr());
981 }
982 
__switch_to_tm(struct task_struct * prev,struct task_struct * new)983 static inline void __switch_to_tm(struct task_struct *prev,
984 		struct task_struct *new)
985 {
986 	if (cpu_has_feature(CPU_FTR_TM)) {
987 		if (tm_enabled(prev) || tm_enabled(new))
988 			tm_enable();
989 
990 		if (tm_enabled(prev)) {
991 			prev->thread.load_tm++;
992 			tm_reclaim_task(prev);
993 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
994 				prev->thread.regs->msr &= ~MSR_TM;
995 		}
996 
997 		tm_recheckpoint_new_task(new);
998 	}
999 }
1000 
1001 /*
1002  * This is called if we are on the way out to userspace and the
1003  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1004  * FP and/or vector state and does so if necessary.
1005  * If userspace is inside a transaction (whether active or
1006  * suspended) and FP/VMX/VSX instructions have ever been enabled
1007  * inside that transaction, then we have to keep them enabled
1008  * and keep the FP/VMX/VSX state loaded while ever the transaction
1009  * continues.  The reason is that if we didn't, and subsequently
1010  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1011  * we don't know whether it's the same transaction, and thus we
1012  * don't know which of the checkpointed state and the transactional
1013  * state to use.
1014  */
restore_tm_state(struct pt_regs * regs)1015 void restore_tm_state(struct pt_regs *regs)
1016 {
1017 	unsigned long msr_diff;
1018 
1019 	/*
1020 	 * This is the only moment we should clear TIF_RESTORE_TM as
1021 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1022 	 * again, anything else could lead to an incorrect ckpt_msr being
1023 	 * saved and therefore incorrect signal contexts.
1024 	 */
1025 	clear_thread_flag(TIF_RESTORE_TM);
1026 	if (!MSR_TM_ACTIVE(regs->msr))
1027 		return;
1028 
1029 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1030 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1031 
1032 	/* Ensure that restore_math() will restore */
1033 	if (msr_diff & MSR_FP)
1034 		current->thread.load_fp = 1;
1035 #ifdef CONFIG_ALTIVEC
1036 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1037 		current->thread.load_vec = 1;
1038 #endif
1039 	restore_math(regs);
1040 
1041 	regs->msr |= msr_diff;
1042 }
1043 
1044 #else
1045 #define tm_recheckpoint_new_task(new)
1046 #define __switch_to_tm(prev, new)
1047 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1048 
save_sprs(struct thread_struct * t)1049 static inline void save_sprs(struct thread_struct *t)
1050 {
1051 #ifdef CONFIG_ALTIVEC
1052 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1053 		t->vrsave = mfspr(SPRN_VRSAVE);
1054 #endif
1055 #ifdef CONFIG_PPC_BOOK3S_64
1056 	if (cpu_has_feature(CPU_FTR_DSCR))
1057 		t->dscr = mfspr(SPRN_DSCR);
1058 
1059 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1060 		t->bescr = mfspr(SPRN_BESCR);
1061 		t->ebbhr = mfspr(SPRN_EBBHR);
1062 		t->ebbrr = mfspr(SPRN_EBBRR);
1063 
1064 		t->fscr = mfspr(SPRN_FSCR);
1065 
1066 		/*
1067 		 * Note that the TAR is not available for use in the kernel.
1068 		 * (To provide this, the TAR should be backed up/restored on
1069 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1070 		 * this should be in pt_regs anyway (for debug).)
1071 		 */
1072 		t->tar = mfspr(SPRN_TAR);
1073 	}
1074 
1075 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1076 		/* Conditionally save Load Monitor registers, if enabled */
1077 		if (t->fscr & FSCR_LM) {
1078 			t->lmrr = mfspr(SPRN_LMRR);
1079 			t->lmser = mfspr(SPRN_LMSER);
1080 		}
1081 	}
1082 #endif
1083 }
1084 
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1085 static inline void restore_sprs(struct thread_struct *old_thread,
1086 				struct thread_struct *new_thread)
1087 {
1088 #ifdef CONFIG_ALTIVEC
1089 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1090 	    old_thread->vrsave != new_thread->vrsave)
1091 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1092 #endif
1093 #ifdef CONFIG_PPC_BOOK3S_64
1094 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1095 		u64 dscr = get_paca()->dscr_default;
1096 		if (new_thread->dscr_inherit)
1097 			dscr = new_thread->dscr;
1098 
1099 		if (old_thread->dscr != dscr)
1100 			mtspr(SPRN_DSCR, dscr);
1101 	}
1102 
1103 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1104 		if (old_thread->bescr != new_thread->bescr)
1105 			mtspr(SPRN_BESCR, new_thread->bescr);
1106 		if (old_thread->ebbhr != new_thread->ebbhr)
1107 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1108 		if (old_thread->ebbrr != new_thread->ebbrr)
1109 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1110 
1111 		if (old_thread->fscr != new_thread->fscr)
1112 			mtspr(SPRN_FSCR, new_thread->fscr);
1113 
1114 		if (old_thread->tar != new_thread->tar)
1115 			mtspr(SPRN_TAR, new_thread->tar);
1116 	}
1117 
1118 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1119 		/* Conditionally restore Load Monitor registers, if enabled */
1120 		if (new_thread->fscr & FSCR_LM) {
1121 			if (old_thread->lmrr != new_thread->lmrr)
1122 				mtspr(SPRN_LMRR, new_thread->lmrr);
1123 			if (old_thread->lmser != new_thread->lmser)
1124 				mtspr(SPRN_LMSER, new_thread->lmser);
1125 		}
1126 	}
1127 #endif
1128 }
1129 
__switch_to(struct task_struct * prev,struct task_struct * new)1130 struct task_struct *__switch_to(struct task_struct *prev,
1131 	struct task_struct *new)
1132 {
1133 	struct thread_struct *new_thread, *old_thread;
1134 	struct task_struct *last;
1135 #ifdef CONFIG_PPC_BOOK3S_64
1136 	struct ppc64_tlb_batch *batch;
1137 #endif
1138 
1139 	new_thread = &new->thread;
1140 	old_thread = &current->thread;
1141 
1142 	WARN_ON(!irqs_disabled());
1143 
1144 #ifdef CONFIG_PPC64
1145 	/*
1146 	 * Collect processor utilization data per process
1147 	 */
1148 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150 		long unsigned start_tb, current_tb;
1151 		start_tb = old_thread->start_tb;
1152 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1153 		old_thread->accum_tb += (current_tb - start_tb);
1154 		new_thread->start_tb = current_tb;
1155 	}
1156 #endif /* CONFIG_PPC64 */
1157 
1158 #ifdef CONFIG_PPC_STD_MMU_64
1159 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1160 	if (batch->active) {
1161 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1162 		if (batch->index)
1163 			__flush_tlb_pending(batch);
1164 		batch->active = 0;
1165 	}
1166 #endif /* CONFIG_PPC_STD_MMU_64 */
1167 
1168 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169 	switch_booke_debug_regs(&new->thread.debug);
1170 #else
1171 /*
1172  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1173  * schedule DABR
1174  */
1175 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1176 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1177 		__set_breakpoint(&new->thread.hw_brk);
1178 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1179 #endif
1180 
1181 	/*
1182 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1183 	 * change a number of them.
1184 	 */
1185 	save_sprs(&prev->thread);
1186 
1187 	/* Save FPU, Altivec, VSX and SPE state */
1188 	giveup_all(prev);
1189 
1190 	__switch_to_tm(prev, new);
1191 
1192 	/*
1193 	 * We can't take a PMU exception inside _switch() since there is a
1194 	 * window where the kernel stack SLB and the kernel stack are out
1195 	 * of sync. Hard disable here.
1196 	 */
1197 	hard_irq_disable();
1198 
1199 	/*
1200 	 * Call restore_sprs() before calling _switch(). If we move it after
1201 	 * _switch() then we miss out on calling it for new tasks. The reason
1202 	 * for this is we manually create a stack frame for new tasks that
1203 	 * directly returns through ret_from_fork() or
1204 	 * ret_from_kernel_thread(). See copy_thread() for details.
1205 	 */
1206 	restore_sprs(old_thread, new_thread);
1207 
1208 	last = _switch(old_thread, new_thread);
1209 
1210 #ifdef CONFIG_PPC_STD_MMU_64
1211 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1212 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1213 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1214 		batch->active = 1;
1215 	}
1216 
1217 	if (current_thread_info()->task->thread.regs)
1218 		restore_math(current_thread_info()->task->thread.regs);
1219 #endif /* CONFIG_PPC_STD_MMU_64 */
1220 
1221 	return last;
1222 }
1223 
1224 static int instructions_to_print = 16;
1225 
show_instructions(struct pt_regs * regs)1226 static void show_instructions(struct pt_regs *regs)
1227 {
1228 	int i;
1229 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1230 			sizeof(int));
1231 
1232 	printk("Instruction dump:");
1233 
1234 	for (i = 0; i < instructions_to_print; i++) {
1235 		int instr;
1236 
1237 		if (!(i % 8))
1238 			pr_cont("\n");
1239 
1240 #if !defined(CONFIG_BOOKE)
1241 		/* If executing with the IMMU off, adjust pc rather
1242 		 * than print XXXXXXXX.
1243 		 */
1244 		if (!(regs->msr & MSR_IR))
1245 			pc = (unsigned long)phys_to_virt(pc);
1246 #endif
1247 
1248 		if (!__kernel_text_address(pc) ||
1249 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1250 			pr_cont("XXXXXXXX ");
1251 		} else {
1252 			if (regs->nip == pc)
1253 				pr_cont("<%08x> ", instr);
1254 			else
1255 				pr_cont("%08x ", instr);
1256 		}
1257 
1258 		pc += sizeof(int);
1259 	}
1260 
1261 	pr_cont("\n");
1262 }
1263 
1264 struct regbit {
1265 	unsigned long bit;
1266 	const char *name;
1267 };
1268 
1269 static struct regbit msr_bits[] = {
1270 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1271 	{MSR_SF,	"SF"},
1272 	{MSR_HV,	"HV"},
1273 #endif
1274 	{MSR_VEC,	"VEC"},
1275 	{MSR_VSX,	"VSX"},
1276 #ifdef CONFIG_BOOKE
1277 	{MSR_CE,	"CE"},
1278 #endif
1279 	{MSR_EE,	"EE"},
1280 	{MSR_PR,	"PR"},
1281 	{MSR_FP,	"FP"},
1282 	{MSR_ME,	"ME"},
1283 #ifdef CONFIG_BOOKE
1284 	{MSR_DE,	"DE"},
1285 #else
1286 	{MSR_SE,	"SE"},
1287 	{MSR_BE,	"BE"},
1288 #endif
1289 	{MSR_IR,	"IR"},
1290 	{MSR_DR,	"DR"},
1291 	{MSR_PMM,	"PMM"},
1292 #ifndef CONFIG_BOOKE
1293 	{MSR_RI,	"RI"},
1294 	{MSR_LE,	"LE"},
1295 #endif
1296 	{0,		NULL}
1297 };
1298 
print_bits(unsigned long val,struct regbit * bits,const char * sep)1299 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1300 {
1301 	const char *s = "";
1302 
1303 	for (; bits->bit; ++bits)
1304 		if (val & bits->bit) {
1305 			pr_cont("%s%s", s, bits->name);
1306 			s = sep;
1307 		}
1308 }
1309 
1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1311 static struct regbit msr_tm_bits[] = {
1312 	{MSR_TS_T,	"T"},
1313 	{MSR_TS_S,	"S"},
1314 	{MSR_TM,	"E"},
1315 	{0,		NULL}
1316 };
1317 
print_tm_bits(unsigned long val)1318 static void print_tm_bits(unsigned long val)
1319 {
1320 /*
1321  * This only prints something if at least one of the TM bit is set.
1322  * Inside the TM[], the output means:
1323  *   E: Enabled		(bit 32)
1324  *   S: Suspended	(bit 33)
1325  *   T: Transactional	(bit 34)
1326  */
1327 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1328 		pr_cont(",TM[");
1329 		print_bits(val, msr_tm_bits, "");
1330 		pr_cont("]");
1331 	}
1332 }
1333 #else
print_tm_bits(unsigned long val)1334 static void print_tm_bits(unsigned long val) {}
1335 #endif
1336 
print_msr_bits(unsigned long val)1337 static void print_msr_bits(unsigned long val)
1338 {
1339 	pr_cont("<");
1340 	print_bits(val, msr_bits, ",");
1341 	print_tm_bits(val);
1342 	pr_cont(">");
1343 }
1344 
1345 #ifdef CONFIG_PPC64
1346 #define REG		"%016lx"
1347 #define REGS_PER_LINE	4
1348 #define LAST_VOLATILE	13
1349 #else
1350 #define REG		"%08lx"
1351 #define REGS_PER_LINE	8
1352 #define LAST_VOLATILE	12
1353 #endif
1354 
show_regs(struct pt_regs * regs)1355 void show_regs(struct pt_regs * regs)
1356 {
1357 	int i, trap;
1358 
1359 	show_regs_print_info(KERN_DEFAULT);
1360 
1361 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1362 	       regs->nip, regs->link, regs->ctr);
1363 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1364 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1365 	printk("MSR: "REG" ", regs->msr);
1366 	print_msr_bits(regs->msr);
1367 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1368 	trap = TRAP(regs);
1369 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1370 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1371 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1372 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1373 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1374 #else
1375 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1376 #endif
1377 #ifdef CONFIG_PPC64
1378 	pr_cont("SOFTE: %ld ", regs->softe);
1379 #endif
1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381 	if (MSR_TM_ACTIVE(regs->msr))
1382 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1383 #endif
1384 
1385 	for (i = 0;  i < 32;  i++) {
1386 		if ((i % REGS_PER_LINE) == 0)
1387 			pr_cont("\nGPR%02d: ", i);
1388 		pr_cont(REG " ", regs->gpr[i]);
1389 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1390 			break;
1391 	}
1392 	pr_cont("\n");
1393 #ifdef CONFIG_KALLSYMS
1394 	/*
1395 	 * Lookup NIP late so we have the best change of getting the
1396 	 * above info out without failing
1397 	 */
1398 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1399 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1400 #endif
1401 	show_stack(current, (unsigned long *) regs->gpr[1]);
1402 	if (!user_mode(regs))
1403 		show_instructions(regs);
1404 }
1405 
flush_thread(void)1406 void flush_thread(void)
1407 {
1408 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1409 	flush_ptrace_hw_breakpoint(current);
1410 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1411 	set_debug_reg_defaults(&current->thread);
1412 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1413 }
1414 
1415 void
release_thread(struct task_struct * t)1416 release_thread(struct task_struct *t)
1417 {
1418 }
1419 
1420 /*
1421  * this gets called so that we can store coprocessor state into memory and
1422  * copy the current task into the new thread.
1423  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1424 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1425 {
1426 	flush_all_to_thread(src);
1427 	/*
1428 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1429 	 * flush but it removes the checkpointed state from the current CPU and
1430 	 * transitions the CPU out of TM mode.  Hence we need to call
1431 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1432 	 * checkpointed state back and the TM mode.
1433 	 *
1434 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1435 	 * dst is only important for __switch_to()
1436 	 */
1437 	__switch_to_tm(src, src);
1438 
1439 	*dst = *src;
1440 
1441 	clear_task_ebb(dst);
1442 
1443 	return 0;
1444 }
1445 
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1446 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1447 {
1448 #ifdef CONFIG_PPC_STD_MMU_64
1449 	unsigned long sp_vsid;
1450 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1451 
1452 	if (radix_enabled())
1453 		return;
1454 
1455 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1456 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1457 			<< SLB_VSID_SHIFT_1T;
1458 	else
1459 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1460 			<< SLB_VSID_SHIFT;
1461 	sp_vsid |= SLB_VSID_KERNEL | llp;
1462 	p->thread.ksp_vsid = sp_vsid;
1463 #endif
1464 }
1465 
1466 /*
1467  * Copy a thread..
1468  */
1469 
1470 /*
1471  * Copy architecture-specific thread state
1472  */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1473 int copy_thread(unsigned long clone_flags, unsigned long usp,
1474 		unsigned long kthread_arg, struct task_struct *p)
1475 {
1476 	struct pt_regs *childregs, *kregs;
1477 	extern void ret_from_fork(void);
1478 	extern void ret_from_kernel_thread(void);
1479 	void (*f)(void);
1480 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1481 	struct thread_info *ti = task_thread_info(p);
1482 
1483 	klp_init_thread_info(ti);
1484 
1485 	/* Copy registers */
1486 	sp -= sizeof(struct pt_regs);
1487 	childregs = (struct pt_regs *) sp;
1488 	if (unlikely(p->flags & PF_KTHREAD)) {
1489 		/* kernel thread */
1490 		memset(childregs, 0, sizeof(struct pt_regs));
1491 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1492 		/* function */
1493 		if (usp)
1494 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1495 #ifdef CONFIG_PPC64
1496 		clear_tsk_thread_flag(p, TIF_32BIT);
1497 		childregs->softe = 1;
1498 #endif
1499 		childregs->gpr[15] = kthread_arg;
1500 		p->thread.regs = NULL;	/* no user register state */
1501 		ti->flags |= _TIF_RESTOREALL;
1502 		f = ret_from_kernel_thread;
1503 	} else {
1504 		/* user thread */
1505 		struct pt_regs *regs = current_pt_regs();
1506 		CHECK_FULL_REGS(regs);
1507 		*childregs = *regs;
1508 		if (usp)
1509 			childregs->gpr[1] = usp;
1510 		p->thread.regs = childregs;
1511 		childregs->gpr[3] = 0;  /* Result from fork() */
1512 		if (clone_flags & CLONE_SETTLS) {
1513 #ifdef CONFIG_PPC64
1514 			if (!is_32bit_task())
1515 				childregs->gpr[13] = childregs->gpr[6];
1516 			else
1517 #endif
1518 				childregs->gpr[2] = childregs->gpr[6];
1519 		}
1520 
1521 		f = ret_from_fork;
1522 	}
1523 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1524 	sp -= STACK_FRAME_OVERHEAD;
1525 
1526 	/*
1527 	 * The way this works is that at some point in the future
1528 	 * some task will call _switch to switch to the new task.
1529 	 * That will pop off the stack frame created below and start
1530 	 * the new task running at ret_from_fork.  The new task will
1531 	 * do some house keeping and then return from the fork or clone
1532 	 * system call, using the stack frame created above.
1533 	 */
1534 	((unsigned long *)sp)[0] = 0;
1535 	sp -= sizeof(struct pt_regs);
1536 	kregs = (struct pt_regs *) sp;
1537 	sp -= STACK_FRAME_OVERHEAD;
1538 	p->thread.ksp = sp;
1539 #ifdef CONFIG_PPC32
1540 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1541 				_ALIGN_UP(sizeof(struct thread_info), 16);
1542 #endif
1543 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1544 	p->thread.ptrace_bps[0] = NULL;
1545 #endif
1546 
1547 	p->thread.fp_save_area = NULL;
1548 #ifdef CONFIG_ALTIVEC
1549 	p->thread.vr_save_area = NULL;
1550 #endif
1551 
1552 	setup_ksp_vsid(p, sp);
1553 
1554 #ifdef CONFIG_PPC64
1555 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1556 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1557 		p->thread.dscr = mfspr(SPRN_DSCR);
1558 	}
1559 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1560 		p->thread.ppr = INIT_PPR;
1561 #endif
1562 	kregs->nip = ppc_function_entry(f);
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Set up a thread for executing a new program
1568  */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1569 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1570 {
1571 #ifdef CONFIG_PPC64
1572 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1573 #endif
1574 
1575 	/*
1576 	 * If we exec out of a kernel thread then thread.regs will not be
1577 	 * set.  Do it now.
1578 	 */
1579 	if (!current->thread.regs) {
1580 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1581 		current->thread.regs = regs - 1;
1582 	}
1583 
1584 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1585 	/*
1586 	 * Clear any transactional state, we're exec()ing. The cause is
1587 	 * not important as there will never be a recheckpoint so it's not
1588 	 * user visible.
1589 	 */
1590 	if (MSR_TM_SUSPENDED(mfmsr()))
1591 		tm_reclaim_current(0);
1592 #endif
1593 
1594 	memset(regs->gpr, 0, sizeof(regs->gpr));
1595 	regs->ctr = 0;
1596 	regs->link = 0;
1597 	regs->xer = 0;
1598 	regs->ccr = 0;
1599 	regs->gpr[1] = sp;
1600 
1601 	/*
1602 	 * We have just cleared all the nonvolatile GPRs, so make
1603 	 * FULL_REGS(regs) return true.  This is necessary to allow
1604 	 * ptrace to examine the thread immediately after exec.
1605 	 */
1606 	regs->trap &= ~1UL;
1607 
1608 #ifdef CONFIG_PPC32
1609 	regs->mq = 0;
1610 	regs->nip = start;
1611 	regs->msr = MSR_USER;
1612 #else
1613 	if (!is_32bit_task()) {
1614 		unsigned long entry;
1615 
1616 		if (is_elf2_task()) {
1617 			/* Look ma, no function descriptors! */
1618 			entry = start;
1619 
1620 			/*
1621 			 * Ulrich says:
1622 			 *   The latest iteration of the ABI requires that when
1623 			 *   calling a function (at its global entry point),
1624 			 *   the caller must ensure r12 holds the entry point
1625 			 *   address (so that the function can quickly
1626 			 *   establish addressability).
1627 			 */
1628 			regs->gpr[12] = start;
1629 			/* Make sure that's restored on entry to userspace. */
1630 			set_thread_flag(TIF_RESTOREALL);
1631 		} else {
1632 			unsigned long toc;
1633 
1634 			/* start is a relocated pointer to the function
1635 			 * descriptor for the elf _start routine.  The first
1636 			 * entry in the function descriptor is the entry
1637 			 * address of _start and the second entry is the TOC
1638 			 * value we need to use.
1639 			 */
1640 			__get_user(entry, (unsigned long __user *)start);
1641 			__get_user(toc, (unsigned long __user *)start+1);
1642 
1643 			/* Check whether the e_entry function descriptor entries
1644 			 * need to be relocated before we can use them.
1645 			 */
1646 			if (load_addr != 0) {
1647 				entry += load_addr;
1648 				toc   += load_addr;
1649 			}
1650 			regs->gpr[2] = toc;
1651 		}
1652 		regs->nip = entry;
1653 		regs->msr = MSR_USER64;
1654 	} else {
1655 		regs->nip = start;
1656 		regs->gpr[2] = 0;
1657 		regs->msr = MSR_USER32;
1658 	}
1659 #endif
1660 #ifdef CONFIG_VSX
1661 	current->thread.used_vsr = 0;
1662 #endif
1663 	current->thread.load_fp = 0;
1664 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1665 	current->thread.fp_save_area = NULL;
1666 #ifdef CONFIG_ALTIVEC
1667 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1668 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1669 	current->thread.vr_save_area = NULL;
1670 	current->thread.vrsave = 0;
1671 	current->thread.used_vr = 0;
1672 	current->thread.load_vec = 0;
1673 #endif /* CONFIG_ALTIVEC */
1674 #ifdef CONFIG_SPE
1675 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1676 	current->thread.acc = 0;
1677 	current->thread.spefscr = 0;
1678 	current->thread.used_spe = 0;
1679 #endif /* CONFIG_SPE */
1680 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1681 	current->thread.tm_tfhar = 0;
1682 	current->thread.tm_texasr = 0;
1683 	current->thread.tm_tfiar = 0;
1684 	current->thread.load_tm = 0;
1685 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1686 }
1687 EXPORT_SYMBOL(start_thread);
1688 
1689 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1690 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1691 
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1692 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1693 {
1694 	struct pt_regs *regs = tsk->thread.regs;
1695 
1696 	/* This is a bit hairy.  If we are an SPE enabled  processor
1697 	 * (have embedded fp) we store the IEEE exception enable flags in
1698 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1699 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1700 	if (val & PR_FP_EXC_SW_ENABLE) {
1701 #ifdef CONFIG_SPE
1702 		if (cpu_has_feature(CPU_FTR_SPE)) {
1703 			/*
1704 			 * When the sticky exception bits are set
1705 			 * directly by userspace, it must call prctl
1706 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1707 			 * in the existing prctl settings) or
1708 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1709 			 * the bits being set).  <fenv.h> functions
1710 			 * saving and restoring the whole
1711 			 * floating-point environment need to do so
1712 			 * anyway to restore the prctl settings from
1713 			 * the saved environment.
1714 			 */
1715 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1716 			tsk->thread.fpexc_mode = val &
1717 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1718 			return 0;
1719 		} else {
1720 			return -EINVAL;
1721 		}
1722 #else
1723 		return -EINVAL;
1724 #endif
1725 	}
1726 
1727 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1728 	 * __pack_fe01 use do not overlap with bits used for
1729 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1730 	 * on CONFIG_SPE implementations are reserved so writing to
1731 	 * them does not change anything */
1732 	if (val > PR_FP_EXC_PRECISE)
1733 		return -EINVAL;
1734 	tsk->thread.fpexc_mode = __pack_fe01(val);
1735 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1736 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1737 			| tsk->thread.fpexc_mode;
1738 	return 0;
1739 }
1740 
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1741 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1742 {
1743 	unsigned int val;
1744 
1745 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1746 #ifdef CONFIG_SPE
1747 		if (cpu_has_feature(CPU_FTR_SPE)) {
1748 			/*
1749 			 * When the sticky exception bits are set
1750 			 * directly by userspace, it must call prctl
1751 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1752 			 * in the existing prctl settings) or
1753 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1754 			 * the bits being set).  <fenv.h> functions
1755 			 * saving and restoring the whole
1756 			 * floating-point environment need to do so
1757 			 * anyway to restore the prctl settings from
1758 			 * the saved environment.
1759 			 */
1760 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1761 			val = tsk->thread.fpexc_mode;
1762 		} else
1763 			return -EINVAL;
1764 #else
1765 		return -EINVAL;
1766 #endif
1767 	else
1768 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1769 	return put_user(val, (unsigned int __user *) adr);
1770 }
1771 
set_endian(struct task_struct * tsk,unsigned int val)1772 int set_endian(struct task_struct *tsk, unsigned int val)
1773 {
1774 	struct pt_regs *regs = tsk->thread.regs;
1775 
1776 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1777 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1778 		return -EINVAL;
1779 
1780 	if (regs == NULL)
1781 		return -EINVAL;
1782 
1783 	if (val == PR_ENDIAN_BIG)
1784 		regs->msr &= ~MSR_LE;
1785 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1786 		regs->msr |= MSR_LE;
1787 	else
1788 		return -EINVAL;
1789 
1790 	return 0;
1791 }
1792 
get_endian(struct task_struct * tsk,unsigned long adr)1793 int get_endian(struct task_struct *tsk, unsigned long adr)
1794 {
1795 	struct pt_regs *regs = tsk->thread.regs;
1796 	unsigned int val;
1797 
1798 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1799 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1800 		return -EINVAL;
1801 
1802 	if (regs == NULL)
1803 		return -EINVAL;
1804 
1805 	if (regs->msr & MSR_LE) {
1806 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1807 			val = PR_ENDIAN_LITTLE;
1808 		else
1809 			val = PR_ENDIAN_PPC_LITTLE;
1810 	} else
1811 		val = PR_ENDIAN_BIG;
1812 
1813 	return put_user(val, (unsigned int __user *)adr);
1814 }
1815 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1816 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1817 {
1818 	tsk->thread.align_ctl = val;
1819 	return 0;
1820 }
1821 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1822 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1823 {
1824 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1825 }
1826 
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1827 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1828 				  unsigned long nbytes)
1829 {
1830 	unsigned long stack_page;
1831 	unsigned long cpu = task_cpu(p);
1832 
1833 	/*
1834 	 * Avoid crashing if the stack has overflowed and corrupted
1835 	 * task_cpu(p), which is in the thread_info struct.
1836 	 */
1837 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1838 		stack_page = (unsigned long) hardirq_ctx[cpu];
1839 		if (sp >= stack_page + sizeof(struct thread_struct)
1840 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1841 			return 1;
1842 
1843 		stack_page = (unsigned long) softirq_ctx[cpu];
1844 		if (sp >= stack_page + sizeof(struct thread_struct)
1845 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1846 			return 1;
1847 	}
1848 	return 0;
1849 }
1850 
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1851 int validate_sp(unsigned long sp, struct task_struct *p,
1852 		       unsigned long nbytes)
1853 {
1854 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1855 
1856 	if (sp >= stack_page + sizeof(struct thread_struct)
1857 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1858 		return 1;
1859 
1860 	return valid_irq_stack(sp, p, nbytes);
1861 }
1862 
1863 EXPORT_SYMBOL(validate_sp);
1864 
get_wchan(struct task_struct * p)1865 unsigned long get_wchan(struct task_struct *p)
1866 {
1867 	unsigned long ip, sp;
1868 	int count = 0;
1869 
1870 	if (!p || p == current || p->state == TASK_RUNNING)
1871 		return 0;
1872 
1873 	sp = p->thread.ksp;
1874 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1875 		return 0;
1876 
1877 	do {
1878 		sp = *(unsigned long *)sp;
1879 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1880 			return 0;
1881 		if (count > 0) {
1882 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1883 			if (!in_sched_functions(ip))
1884 				return ip;
1885 		}
1886 	} while (count++ < 16);
1887 	return 0;
1888 }
1889 
1890 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1891 
show_stack(struct task_struct * tsk,unsigned long * stack)1892 void show_stack(struct task_struct *tsk, unsigned long *stack)
1893 {
1894 	unsigned long sp, ip, lr, newsp;
1895 	int count = 0;
1896 	int firstframe = 1;
1897 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1898 	int curr_frame = current->curr_ret_stack;
1899 	extern void return_to_handler(void);
1900 	unsigned long rth = (unsigned long)return_to_handler;
1901 #endif
1902 
1903 	sp = (unsigned long) stack;
1904 	if (tsk == NULL)
1905 		tsk = current;
1906 	if (sp == 0) {
1907 		if (tsk == current)
1908 			sp = current_stack_pointer();
1909 		else
1910 			sp = tsk->thread.ksp;
1911 	}
1912 
1913 	lr = 0;
1914 	printk("Call Trace:\n");
1915 	do {
1916 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1917 			return;
1918 
1919 		stack = (unsigned long *) sp;
1920 		newsp = stack[0];
1921 		ip = stack[STACK_FRAME_LR_SAVE];
1922 		if (!firstframe || ip != lr) {
1923 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1924 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1925 			if ((ip == rth) && curr_frame >= 0) {
1926 				pr_cont(" (%pS)",
1927 				       (void *)current->ret_stack[curr_frame].ret);
1928 				curr_frame--;
1929 			}
1930 #endif
1931 			if (firstframe)
1932 				pr_cont(" (unreliable)");
1933 			pr_cont("\n");
1934 		}
1935 		firstframe = 0;
1936 
1937 		/*
1938 		 * See if this is an exception frame.
1939 		 * We look for the "regshere" marker in the current frame.
1940 		 */
1941 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1942 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1943 			struct pt_regs *regs = (struct pt_regs *)
1944 				(sp + STACK_FRAME_OVERHEAD);
1945 			lr = regs->link;
1946 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1947 			       regs->trap, (void *)regs->nip, (void *)lr);
1948 			firstframe = 1;
1949 		}
1950 
1951 		sp = newsp;
1952 	} while (count++ < kstack_depth_to_print);
1953 }
1954 
1955 #ifdef CONFIG_PPC64
1956 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)1957 void notrace __ppc64_runlatch_on(void)
1958 {
1959 	struct thread_info *ti = current_thread_info();
1960 	unsigned long ctrl;
1961 
1962 	ctrl = mfspr(SPRN_CTRLF);
1963 	ctrl |= CTRL_RUNLATCH;
1964 	mtspr(SPRN_CTRLT, ctrl);
1965 
1966 	ti->local_flags |= _TLF_RUNLATCH;
1967 }
1968 
1969 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)1970 void notrace __ppc64_runlatch_off(void)
1971 {
1972 	struct thread_info *ti = current_thread_info();
1973 	unsigned long ctrl;
1974 
1975 	ti->local_flags &= ~_TLF_RUNLATCH;
1976 
1977 	ctrl = mfspr(SPRN_CTRLF);
1978 	ctrl &= ~CTRL_RUNLATCH;
1979 	mtspr(SPRN_CTRLT, ctrl);
1980 }
1981 #endif /* CONFIG_PPC64 */
1982 
arch_align_stack(unsigned long sp)1983 unsigned long arch_align_stack(unsigned long sp)
1984 {
1985 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1986 		sp -= get_random_int() & ~PAGE_MASK;
1987 	return sp & ~0xf;
1988 }
1989 
brk_rnd(void)1990 static inline unsigned long brk_rnd(void)
1991 {
1992         unsigned long rnd = 0;
1993 
1994 	/* 8MB for 32bit, 1GB for 64bit */
1995 	if (is_32bit_task())
1996 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1997 	else
1998 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1999 
2000 	return rnd << PAGE_SHIFT;
2001 }
2002 
arch_randomize_brk(struct mm_struct * mm)2003 unsigned long arch_randomize_brk(struct mm_struct *mm)
2004 {
2005 	unsigned long base = mm->brk;
2006 	unsigned long ret;
2007 
2008 #ifdef CONFIG_PPC_STD_MMU_64
2009 	/*
2010 	 * If we are using 1TB segments and we are allowed to randomise
2011 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2012 	 * segment. Otherwise the heap will be in the bottom 1TB
2013 	 * which always uses 256MB segments and this may result in a
2014 	 * performance penalty. We don't need to worry about radix. For
2015 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2016 	 */
2017 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2018 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2019 #endif
2020 
2021 	ret = PAGE_ALIGN(base + brk_rnd());
2022 
2023 	if (ret < mm->brk)
2024 		return mm->brk;
2025 
2026 	return ret;
2027 }
2028 
2029