• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/m68k/kernel/ptrace.c"
6  *  Copyright (C) 1994 by Hamish Macdonald
7  *  Taken from linux/kernel/ptrace.c and modified for M680x0.
8  *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9  *
10  * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11  * and Paul Mackerras (paulus@samba.org).
12  *
13  * This file is subject to the terms and conditions of the GNU General
14  * Public License.  See the file README.legal in the main directory of
15  * this archive for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36 
37 #include <asm/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46 
47 /*
48  * The parameter save area on the stack is used to store arguments being passed
49  * to callee function and is located at fixed offset from stack pointer.
50  */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
55 #endif
56 
57 struct pt_regs_offset {
58 	const char *name;
59 	int offset;
60 };
61 
62 #define STR(s)	#s			/* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num)	\
65 	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68 
69 #define TVSO(f)	(offsetof(struct thread_vr_state, f))
70 #define TFSO(f)	(offsetof(struct thread_fp_state, f))
71 #define TSO(f)	(offsetof(struct thread_struct, f))
72 
73 static const struct pt_regs_offset regoffset_table[] = {
74 	GPR_OFFSET_NAME(0),
75 	GPR_OFFSET_NAME(1),
76 	GPR_OFFSET_NAME(2),
77 	GPR_OFFSET_NAME(3),
78 	GPR_OFFSET_NAME(4),
79 	GPR_OFFSET_NAME(5),
80 	GPR_OFFSET_NAME(6),
81 	GPR_OFFSET_NAME(7),
82 	GPR_OFFSET_NAME(8),
83 	GPR_OFFSET_NAME(9),
84 	GPR_OFFSET_NAME(10),
85 	GPR_OFFSET_NAME(11),
86 	GPR_OFFSET_NAME(12),
87 	GPR_OFFSET_NAME(13),
88 	GPR_OFFSET_NAME(14),
89 	GPR_OFFSET_NAME(15),
90 	GPR_OFFSET_NAME(16),
91 	GPR_OFFSET_NAME(17),
92 	GPR_OFFSET_NAME(18),
93 	GPR_OFFSET_NAME(19),
94 	GPR_OFFSET_NAME(20),
95 	GPR_OFFSET_NAME(21),
96 	GPR_OFFSET_NAME(22),
97 	GPR_OFFSET_NAME(23),
98 	GPR_OFFSET_NAME(24),
99 	GPR_OFFSET_NAME(25),
100 	GPR_OFFSET_NAME(26),
101 	GPR_OFFSET_NAME(27),
102 	GPR_OFFSET_NAME(28),
103 	GPR_OFFSET_NAME(29),
104 	GPR_OFFSET_NAME(30),
105 	GPR_OFFSET_NAME(31),
106 	REG_OFFSET_NAME(nip),
107 	REG_OFFSET_NAME(msr),
108 	REG_OFFSET_NAME(ctr),
109 	REG_OFFSET_NAME(link),
110 	REG_OFFSET_NAME(xer),
111 	REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113 	REG_OFFSET_NAME(softe),
114 #else
115 	REG_OFFSET_NAME(mq),
116 #endif
117 	REG_OFFSET_NAME(trap),
118 	REG_OFFSET_NAME(dar),
119 	REG_OFFSET_NAME(dsisr),
120 	REG_OFFSET_END,
121 };
122 
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
flush_tmregs_to_thread(struct task_struct * tsk)124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126 	/*
127 	 * If task is not current, it will have been flushed already to
128 	 * it's thread_struct during __switch_to().
129 	 *
130 	 * A reclaim flushes ALL the state or if not in TM save TM SPRs
131 	 * in the appropriate thread structures from live.
132 	 */
133 
134 	if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
135 		return;
136 
137 	if (MSR_TM_SUSPENDED(mfmsr())) {
138 		tm_reclaim_current(TM_CAUSE_SIGNAL);
139 	} else {
140 		tm_enable();
141 		tm_save_sprs(&(tsk->thread));
142 	}
143 }
144 #else
flush_tmregs_to_thread(struct task_struct * tsk)145 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
146 #endif
147 
148 /**
149  * regs_query_register_offset() - query register offset from its name
150  * @name:	the name of a register
151  *
152  * regs_query_register_offset() returns the offset of a register in struct
153  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
154  */
regs_query_register_offset(const char * name)155 int regs_query_register_offset(const char *name)
156 {
157 	const struct pt_regs_offset *roff;
158 	for (roff = regoffset_table; roff->name != NULL; roff++)
159 		if (!strcmp(roff->name, name))
160 			return roff->offset;
161 	return -EINVAL;
162 }
163 
164 /**
165  * regs_query_register_name() - query register name from its offset
166  * @offset:	the offset of a register in struct pt_regs.
167  *
168  * regs_query_register_name() returns the name of a register from its
169  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
170  */
regs_query_register_name(unsigned int offset)171 const char *regs_query_register_name(unsigned int offset)
172 {
173 	const struct pt_regs_offset *roff;
174 	for (roff = regoffset_table; roff->name != NULL; roff++)
175 		if (roff->offset == offset)
176 			return roff->name;
177 	return NULL;
178 }
179 
180 /*
181  * does not yet catch signals sent when the child dies.
182  * in exit.c or in signal.c.
183  */
184 
185 /*
186  * Set of msr bits that gdb can change on behalf of a process.
187  */
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE	0
190 #else
191 #define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
192 #endif
193 
194 /*
195  * Max register writeable via put_reg
196  */
197 #ifdef CONFIG_PPC32
198 #define PT_MAX_PUT_REG	PT_MQ
199 #else
200 #define PT_MAX_PUT_REG	PT_CCR
201 #endif
202 
get_user_msr(struct task_struct * task)203 static unsigned long get_user_msr(struct task_struct *task)
204 {
205 	return task->thread.regs->msr | task->thread.fpexc_mode;
206 }
207 
set_user_msr(struct task_struct * task,unsigned long msr)208 static int set_user_msr(struct task_struct *task, unsigned long msr)
209 {
210 	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
211 	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
212 	return 0;
213 }
214 
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
get_user_ckpt_msr(struct task_struct * task)216 static unsigned long get_user_ckpt_msr(struct task_struct *task)
217 {
218 	return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
219 }
220 
set_user_ckpt_msr(struct task_struct * task,unsigned long msr)221 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
222 {
223 	task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
224 	task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
225 	return 0;
226 }
227 
set_user_ckpt_trap(struct task_struct * task,unsigned long trap)228 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
229 {
230 	task->thread.ckpt_regs.trap = trap & 0xfff0;
231 	return 0;
232 }
233 #endif
234 
235 #ifdef CONFIG_PPC64
get_user_dscr(struct task_struct * task,unsigned long * data)236 static int get_user_dscr(struct task_struct *task, unsigned long *data)
237 {
238 	*data = task->thread.dscr;
239 	return 0;
240 }
241 
set_user_dscr(struct task_struct * task,unsigned long dscr)242 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
243 {
244 	task->thread.dscr = dscr;
245 	task->thread.dscr_inherit = 1;
246 	return 0;
247 }
248 #else
get_user_dscr(struct task_struct * task,unsigned long * data)249 static int get_user_dscr(struct task_struct *task, unsigned long *data)
250 {
251 	return -EIO;
252 }
253 
set_user_dscr(struct task_struct * task,unsigned long dscr)254 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
255 {
256 	return -EIO;
257 }
258 #endif
259 
260 /*
261  * We prevent mucking around with the reserved area of trap
262  * which are used internally by the kernel.
263  */
set_user_trap(struct task_struct * task,unsigned long trap)264 static int set_user_trap(struct task_struct *task, unsigned long trap)
265 {
266 	task->thread.regs->trap = trap & 0xfff0;
267 	return 0;
268 }
269 
270 /*
271  * Get contents of register REGNO in task TASK.
272  */
ptrace_get_reg(struct task_struct * task,int regno,unsigned long * data)273 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
274 {
275 	if ((task->thread.regs == NULL) || !data)
276 		return -EIO;
277 
278 	if (regno == PT_MSR) {
279 		*data = get_user_msr(task);
280 		return 0;
281 	}
282 
283 	if (regno == PT_DSCR)
284 		return get_user_dscr(task, data);
285 
286 	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
287 		*data = ((unsigned long *)task->thread.regs)[regno];
288 		return 0;
289 	}
290 
291 	return -EIO;
292 }
293 
294 /*
295  * Write contents of register REGNO in task TASK.
296  */
ptrace_put_reg(struct task_struct * task,int regno,unsigned long data)297 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
298 {
299 	if (task->thread.regs == NULL)
300 		return -EIO;
301 
302 	if (regno == PT_MSR)
303 		return set_user_msr(task, data);
304 	if (regno == PT_TRAP)
305 		return set_user_trap(task, data);
306 	if (regno == PT_DSCR)
307 		return set_user_dscr(task, data);
308 
309 	if (regno <= PT_MAX_PUT_REG) {
310 		((unsigned long *)task->thread.regs)[regno] = data;
311 		return 0;
312 	}
313 	return -EIO;
314 }
315 
gpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)316 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
317 		   unsigned int pos, unsigned int count,
318 		   void *kbuf, void __user *ubuf)
319 {
320 	int i, ret;
321 
322 	if (target->thread.regs == NULL)
323 		return -EIO;
324 
325 	if (!FULL_REGS(target->thread.regs)) {
326 		/* We have a partial register set.  Fill 14-31 with bogus values */
327 		for (i = 14; i < 32; i++)
328 			target->thread.regs->gpr[i] = NV_REG_POISON;
329 	}
330 
331 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
332 				  target->thread.regs,
333 				  0, offsetof(struct pt_regs, msr));
334 	if (!ret) {
335 		unsigned long msr = get_user_msr(target);
336 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
337 					  offsetof(struct pt_regs, msr),
338 					  offsetof(struct pt_regs, msr) +
339 					  sizeof(msr));
340 	}
341 
342 	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
343 		     offsetof(struct pt_regs, msr) + sizeof(long));
344 
345 	if (!ret)
346 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
347 					  &target->thread.regs->orig_gpr3,
348 					  offsetof(struct pt_regs, orig_gpr3),
349 					  sizeof(struct pt_regs));
350 	if (!ret)
351 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
352 					       sizeof(struct pt_regs), -1);
353 
354 	return ret;
355 }
356 
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)357 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
358 		   unsigned int pos, unsigned int count,
359 		   const void *kbuf, const void __user *ubuf)
360 {
361 	unsigned long reg;
362 	int ret;
363 
364 	if (target->thread.regs == NULL)
365 		return -EIO;
366 
367 	CHECK_FULL_REGS(target->thread.regs);
368 
369 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
370 				 target->thread.regs,
371 				 0, PT_MSR * sizeof(reg));
372 
373 	if (!ret && count > 0) {
374 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
375 					 PT_MSR * sizeof(reg),
376 					 (PT_MSR + 1) * sizeof(reg));
377 		if (!ret)
378 			ret = set_user_msr(target, reg);
379 	}
380 
381 	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
382 		     offsetof(struct pt_regs, msr) + sizeof(long));
383 
384 	if (!ret)
385 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
386 					 &target->thread.regs->orig_gpr3,
387 					 PT_ORIG_R3 * sizeof(reg),
388 					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
389 
390 	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
391 		ret = user_regset_copyin_ignore(
392 			&pos, &count, &kbuf, &ubuf,
393 			(PT_MAX_PUT_REG + 1) * sizeof(reg),
394 			PT_TRAP * sizeof(reg));
395 
396 	if (!ret && count > 0) {
397 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
398 					 PT_TRAP * sizeof(reg),
399 					 (PT_TRAP + 1) * sizeof(reg));
400 		if (!ret)
401 			ret = set_user_trap(target, reg);
402 	}
403 
404 	if (!ret)
405 		ret = user_regset_copyin_ignore(
406 			&pos, &count, &kbuf, &ubuf,
407 			(PT_TRAP + 1) * sizeof(reg), -1);
408 
409 	return ret;
410 }
411 
412 /*
413  * Regardless of transactions, 'fp_state' holds the current running
414  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415  * value of all FPR registers for the current transaction.
416  *
417  * Userspace interface buffer layout:
418  *
419  * struct data {
420  *	u64	fpr[32];
421  *	u64	fpscr;
422  * };
423  */
fpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)424 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
425 		   unsigned int pos, unsigned int count,
426 		   void *kbuf, void __user *ubuf)
427 {
428 #ifdef CONFIG_VSX
429 	u64 buf[33];
430 	int i;
431 
432 	flush_fp_to_thread(target);
433 
434 	/* copy to local buffer then write that out */
435 	for (i = 0; i < 32 ; i++)
436 		buf[i] = target->thread.TS_FPR(i);
437 	buf[32] = target->thread.fp_state.fpscr;
438 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
439 #else
440 	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
441 		     offsetof(struct thread_fp_state, fpr[32]));
442 
443 	flush_fp_to_thread(target);
444 
445 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
446 				   &target->thread.fp_state, 0, -1);
447 #endif
448 }
449 
450 /*
451  * Regardless of transactions, 'fp_state' holds the current running
452  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453  * value of all FPR registers for the current transaction.
454  *
455  * Userspace interface buffer layout:
456  *
457  * struct data {
458  *	u64	fpr[32];
459  *	u64	fpscr;
460  * };
461  *
462  */
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)463 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
464 		   unsigned int pos, unsigned int count,
465 		   const void *kbuf, const void __user *ubuf)
466 {
467 #ifdef CONFIG_VSX
468 	u64 buf[33];
469 	int i;
470 
471 	flush_fp_to_thread(target);
472 
473 	for (i = 0; i < 32 ; i++)
474 		buf[i] = target->thread.TS_FPR(i);
475 	buf[32] = target->thread.fp_state.fpscr;
476 
477 	/* copy to local buffer then write that out */
478 	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
479 	if (i)
480 		return i;
481 
482 	for (i = 0; i < 32 ; i++)
483 		target->thread.TS_FPR(i) = buf[i];
484 	target->thread.fp_state.fpscr = buf[32];
485 	return 0;
486 #else
487 	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
488 		     offsetof(struct thread_fp_state, fpr[32]));
489 
490 	flush_fp_to_thread(target);
491 
492 	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
493 				  &target->thread.fp_state, 0, -1);
494 #endif
495 }
496 
497 #ifdef CONFIG_ALTIVEC
498 /*
499  * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500  * The transfer totals 34 quadword.  Quadwords 0-31 contain the
501  * corresponding vector registers.  Quadword 32 contains the vscr as the
502  * last word (offset 12) within that quadword.  Quadword 33 contains the
503  * vrsave as the first word (offset 0) within the quadword.
504  *
505  * This definition of the VMX state is compatible with the current PPC32
506  * ptrace interface.  This allows signal handling and ptrace to use the
507  * same structures.  This also simplifies the implementation of a bi-arch
508  * (combined (32- and 64-bit) gdb.
509  */
510 
vr_active(struct task_struct * target,const struct user_regset * regset)511 static int vr_active(struct task_struct *target,
512 		     const struct user_regset *regset)
513 {
514 	flush_altivec_to_thread(target);
515 	return target->thread.used_vr ? regset->n : 0;
516 }
517 
518 /*
519  * Regardless of transactions, 'vr_state' holds the current running
520  * value of all the VMX registers and 'ckvr_state' holds the last
521  * checkpointed value of all the VMX registers for the current
522  * transaction to fall back on in case it aborts.
523  *
524  * Userspace interface buffer layout:
525  *
526  * struct data {
527  *	vector128	vr[32];
528  *	vector128	vscr;
529  *	vector128	vrsave;
530  * };
531  */
vr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)532 static int vr_get(struct task_struct *target, const struct user_regset *regset,
533 		  unsigned int pos, unsigned int count,
534 		  void *kbuf, void __user *ubuf)
535 {
536 	int ret;
537 
538 	flush_altivec_to_thread(target);
539 
540 	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
541 		     offsetof(struct thread_vr_state, vr[32]));
542 
543 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
544 				  &target->thread.vr_state, 0,
545 				  33 * sizeof(vector128));
546 	if (!ret) {
547 		/*
548 		 * Copy out only the low-order word of vrsave.
549 		 */
550 		union {
551 			elf_vrreg_t reg;
552 			u32 word;
553 		} vrsave;
554 		memset(&vrsave, 0, sizeof(vrsave));
555 
556 		vrsave.word = target->thread.vrsave;
557 
558 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
559 					  33 * sizeof(vector128), -1);
560 	}
561 
562 	return ret;
563 }
564 
565 /*
566  * Regardless of transactions, 'vr_state' holds the current running
567  * value of all the VMX registers and 'ckvr_state' holds the last
568  * checkpointed value of all the VMX registers for the current
569  * transaction to fall back on in case it aborts.
570  *
571  * Userspace interface buffer layout:
572  *
573  * struct data {
574  *	vector128	vr[32];
575  *	vector128	vscr;
576  *	vector128	vrsave;
577  * };
578  */
vr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)579 static int vr_set(struct task_struct *target, const struct user_regset *regset,
580 		  unsigned int pos, unsigned int count,
581 		  const void *kbuf, const void __user *ubuf)
582 {
583 	int ret;
584 
585 	flush_altivec_to_thread(target);
586 
587 	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
588 		     offsetof(struct thread_vr_state, vr[32]));
589 
590 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591 				 &target->thread.vr_state, 0,
592 				 33 * sizeof(vector128));
593 	if (!ret && count > 0) {
594 		/*
595 		 * We use only the first word of vrsave.
596 		 */
597 		union {
598 			elf_vrreg_t reg;
599 			u32 word;
600 		} vrsave;
601 		memset(&vrsave, 0, sizeof(vrsave));
602 
603 		vrsave.word = target->thread.vrsave;
604 
605 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
606 					 33 * sizeof(vector128), -1);
607 		if (!ret)
608 			target->thread.vrsave = vrsave.word;
609 	}
610 
611 	return ret;
612 }
613 #endif /* CONFIG_ALTIVEC */
614 
615 #ifdef CONFIG_VSX
616 /*
617  * Currently to set and and get all the vsx state, you need to call
618  * the fp and VMX calls as well.  This only get/sets the lower 32
619  * 128bit VSX registers.
620  */
621 
vsr_active(struct task_struct * target,const struct user_regset * regset)622 static int vsr_active(struct task_struct *target,
623 		      const struct user_regset *regset)
624 {
625 	flush_vsx_to_thread(target);
626 	return target->thread.used_vsr ? regset->n : 0;
627 }
628 
629 /*
630  * Regardless of transactions, 'fp_state' holds the current running
631  * value of all FPR registers and 'ckfp_state' holds the last
632  * checkpointed value of all FPR registers for the current
633  * transaction.
634  *
635  * Userspace interface buffer layout:
636  *
637  * struct data {
638  *	u64	vsx[32];
639  * };
640  */
vsr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)641 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
642 		   unsigned int pos, unsigned int count,
643 		   void *kbuf, void __user *ubuf)
644 {
645 	u64 buf[32];
646 	int ret, i;
647 
648 	flush_tmregs_to_thread(target);
649 	flush_fp_to_thread(target);
650 	flush_altivec_to_thread(target);
651 	flush_vsx_to_thread(target);
652 
653 	for (i = 0; i < 32 ; i++)
654 		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
655 
656 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
657 				  buf, 0, 32 * sizeof(double));
658 
659 	return ret;
660 }
661 
662 /*
663  * Regardless of transactions, 'fp_state' holds the current running
664  * value of all FPR registers and 'ckfp_state' holds the last
665  * checkpointed value of all FPR registers for the current
666  * transaction.
667  *
668  * Userspace interface buffer layout:
669  *
670  * struct data {
671  *	u64	vsx[32];
672  * };
673  */
vsr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)674 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
675 		   unsigned int pos, unsigned int count,
676 		   const void *kbuf, const void __user *ubuf)
677 {
678 	u64 buf[32];
679 	int ret,i;
680 
681 	flush_tmregs_to_thread(target);
682 	flush_fp_to_thread(target);
683 	flush_altivec_to_thread(target);
684 	flush_vsx_to_thread(target);
685 
686 	for (i = 0; i < 32 ; i++)
687 		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
688 
689 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
690 				 buf, 0, 32 * sizeof(double));
691 	if (!ret)
692 		for (i = 0; i < 32 ; i++)
693 			target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
694 
695 	return ret;
696 }
697 #endif /* CONFIG_VSX */
698 
699 #ifdef CONFIG_SPE
700 
701 /*
702  * For get_evrregs/set_evrregs functions 'data' has the following layout:
703  *
704  * struct {
705  *   u32 evr[32];
706  *   u64 acc;
707  *   u32 spefscr;
708  * }
709  */
710 
evr_active(struct task_struct * target,const struct user_regset * regset)711 static int evr_active(struct task_struct *target,
712 		      const struct user_regset *regset)
713 {
714 	flush_spe_to_thread(target);
715 	return target->thread.used_spe ? regset->n : 0;
716 }
717 
evr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)718 static int evr_get(struct task_struct *target, const struct user_regset *regset,
719 		   unsigned int pos, unsigned int count,
720 		   void *kbuf, void __user *ubuf)
721 {
722 	int ret;
723 
724 	flush_spe_to_thread(target);
725 
726 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
727 				  &target->thread.evr,
728 				  0, sizeof(target->thread.evr));
729 
730 	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
731 		     offsetof(struct thread_struct, spefscr));
732 
733 	if (!ret)
734 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735 					  &target->thread.acc,
736 					  sizeof(target->thread.evr), -1);
737 
738 	return ret;
739 }
740 
evr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)741 static int evr_set(struct task_struct *target, const struct user_regset *regset,
742 		   unsigned int pos, unsigned int count,
743 		   const void *kbuf, const void __user *ubuf)
744 {
745 	int ret;
746 
747 	flush_spe_to_thread(target);
748 
749 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
750 				 &target->thread.evr,
751 				 0, sizeof(target->thread.evr));
752 
753 	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
754 		     offsetof(struct thread_struct, spefscr));
755 
756 	if (!ret)
757 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
758 					 &target->thread.acc,
759 					 sizeof(target->thread.evr), -1);
760 
761 	return ret;
762 }
763 #endif /* CONFIG_SPE */
764 
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
766 /**
767  * tm_cgpr_active - get active number of registers in CGPR
768  * @target:	The target task.
769  * @regset:	The user regset structure.
770  *
771  * This function checks for the active number of available
772  * regisers in transaction checkpointed GPR category.
773  */
tm_cgpr_active(struct task_struct * target,const struct user_regset * regset)774 static int tm_cgpr_active(struct task_struct *target,
775 			  const struct user_regset *regset)
776 {
777 	if (!cpu_has_feature(CPU_FTR_TM))
778 		return -ENODEV;
779 
780 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
781 		return 0;
782 
783 	return regset->n;
784 }
785 
786 /**
787  * tm_cgpr_get - get CGPR registers
788  * @target:	The target task.
789  * @regset:	The user regset structure.
790  * @pos:	The buffer position.
791  * @count:	Number of bytes to copy.
792  * @kbuf:	Kernel buffer to copy from.
793  * @ubuf:	User buffer to copy into.
794  *
795  * This function gets transaction checkpointed GPR registers.
796  *
797  * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798  * GPR register values for the current transaction to fall back on if it
799  * aborts in between. This function gets those checkpointed GPR registers.
800  * The userspace interface buffer layout is as follows.
801  *
802  * struct data {
803  *	struct pt_regs ckpt_regs;
804  * };
805  */
tm_cgpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)806 static int tm_cgpr_get(struct task_struct *target,
807 			const struct user_regset *regset,
808 			unsigned int pos, unsigned int count,
809 			void *kbuf, void __user *ubuf)
810 {
811 	int ret;
812 
813 	if (!cpu_has_feature(CPU_FTR_TM))
814 		return -ENODEV;
815 
816 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
817 		return -ENODATA;
818 
819 	flush_tmregs_to_thread(target);
820 	flush_fp_to_thread(target);
821 	flush_altivec_to_thread(target);
822 
823 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
824 				  &target->thread.ckpt_regs,
825 				  0, offsetof(struct pt_regs, msr));
826 	if (!ret) {
827 		unsigned long msr = get_user_ckpt_msr(target);
828 
829 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
830 					  offsetof(struct pt_regs, msr),
831 					  offsetof(struct pt_regs, msr) +
832 					  sizeof(msr));
833 	}
834 
835 	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
836 		     offsetof(struct pt_regs, msr) + sizeof(long));
837 
838 	if (!ret)
839 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 					  &target->thread.ckpt_regs.orig_gpr3,
841 					  offsetof(struct pt_regs, orig_gpr3),
842 					  sizeof(struct pt_regs));
843 	if (!ret)
844 		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
845 					       sizeof(struct pt_regs), -1);
846 
847 	return ret;
848 }
849 
850 /*
851  * tm_cgpr_set - set the CGPR registers
852  * @target:	The target task.
853  * @regset:	The user regset structure.
854  * @pos:	The buffer position.
855  * @count:	Number of bytes to copy.
856  * @kbuf:	Kernel buffer to copy into.
857  * @ubuf:	User buffer to copy from.
858  *
859  * This function sets in transaction checkpointed GPR registers.
860  *
861  * When the transaction is active, 'ckpt_regs' holds the checkpointed
862  * GPR register values for the current transaction to fall back on if it
863  * aborts in between. This function sets those checkpointed GPR registers.
864  * The userspace interface buffer layout is as follows.
865  *
866  * struct data {
867  *	struct pt_regs ckpt_regs;
868  * };
869  */
tm_cgpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)870 static int tm_cgpr_set(struct task_struct *target,
871 			const struct user_regset *regset,
872 			unsigned int pos, unsigned int count,
873 			const void *kbuf, const void __user *ubuf)
874 {
875 	unsigned long reg;
876 	int ret;
877 
878 	if (!cpu_has_feature(CPU_FTR_TM))
879 		return -ENODEV;
880 
881 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
882 		return -ENODATA;
883 
884 	flush_tmregs_to_thread(target);
885 	flush_fp_to_thread(target);
886 	flush_altivec_to_thread(target);
887 
888 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
889 				 &target->thread.ckpt_regs,
890 				 0, PT_MSR * sizeof(reg));
891 
892 	if (!ret && count > 0) {
893 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
894 					 PT_MSR * sizeof(reg),
895 					 (PT_MSR + 1) * sizeof(reg));
896 		if (!ret)
897 			ret = set_user_ckpt_msr(target, reg);
898 	}
899 
900 	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
901 		     offsetof(struct pt_regs, msr) + sizeof(long));
902 
903 	if (!ret)
904 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
905 					 &target->thread.ckpt_regs.orig_gpr3,
906 					 PT_ORIG_R3 * sizeof(reg),
907 					 (PT_MAX_PUT_REG + 1) * sizeof(reg));
908 
909 	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
910 		ret = user_regset_copyin_ignore(
911 			&pos, &count, &kbuf, &ubuf,
912 			(PT_MAX_PUT_REG + 1) * sizeof(reg),
913 			PT_TRAP * sizeof(reg));
914 
915 	if (!ret && count > 0) {
916 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
917 					 PT_TRAP * sizeof(reg),
918 					 (PT_TRAP + 1) * sizeof(reg));
919 		if (!ret)
920 			ret = set_user_ckpt_trap(target, reg);
921 	}
922 
923 	if (!ret)
924 		ret = user_regset_copyin_ignore(
925 			&pos, &count, &kbuf, &ubuf,
926 			(PT_TRAP + 1) * sizeof(reg), -1);
927 
928 	return ret;
929 }
930 
931 /**
932  * tm_cfpr_active - get active number of registers in CFPR
933  * @target:	The target task.
934  * @regset:	The user regset structure.
935  *
936  * This function checks for the active number of available
937  * regisers in transaction checkpointed FPR category.
938  */
tm_cfpr_active(struct task_struct * target,const struct user_regset * regset)939 static int tm_cfpr_active(struct task_struct *target,
940 				const struct user_regset *regset)
941 {
942 	if (!cpu_has_feature(CPU_FTR_TM))
943 		return -ENODEV;
944 
945 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
946 		return 0;
947 
948 	return regset->n;
949 }
950 
951 /**
952  * tm_cfpr_get - get CFPR registers
953  * @target:	The target task.
954  * @regset:	The user regset structure.
955  * @pos:	The buffer position.
956  * @count:	Number of bytes to copy.
957  * @kbuf:	Kernel buffer to copy from.
958  * @ubuf:	User buffer to copy into.
959  *
960  * This function gets in transaction checkpointed FPR registers.
961  *
962  * When the transaction is active 'ckfp_state' holds the checkpointed
963  * values for the current transaction to fall back on if it aborts
964  * in between. This function gets those checkpointed FPR registers.
965  * The userspace interface buffer layout is as follows.
966  *
967  * struct data {
968  *	u64	fpr[32];
969  *	u64	fpscr;
970  *};
971  */
tm_cfpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)972 static int tm_cfpr_get(struct task_struct *target,
973 			const struct user_regset *regset,
974 			unsigned int pos, unsigned int count,
975 			void *kbuf, void __user *ubuf)
976 {
977 	u64 buf[33];
978 	int i;
979 
980 	if (!cpu_has_feature(CPU_FTR_TM))
981 		return -ENODEV;
982 
983 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
984 		return -ENODATA;
985 
986 	flush_tmregs_to_thread(target);
987 	flush_fp_to_thread(target);
988 	flush_altivec_to_thread(target);
989 
990 	/* copy to local buffer then write that out */
991 	for (i = 0; i < 32 ; i++)
992 		buf[i] = target->thread.TS_CKFPR(i);
993 	buf[32] = target->thread.ckfp_state.fpscr;
994 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
995 }
996 
997 /**
998  * tm_cfpr_set - set CFPR registers
999  * @target:	The target task.
1000  * @regset:	The user regset structure.
1001  * @pos:	The buffer position.
1002  * @count:	Number of bytes to copy.
1003  * @kbuf:	Kernel buffer to copy into.
1004  * @ubuf:	User buffer to copy from.
1005  *
1006  * This function sets in transaction checkpointed FPR registers.
1007  *
1008  * When the transaction is active 'ckfp_state' holds the checkpointed
1009  * FPR register values for the current transaction to fall back on
1010  * if it aborts in between. This function sets these checkpointed
1011  * FPR registers. The userspace interface buffer layout is as follows.
1012  *
1013  * struct data {
1014  *	u64	fpr[32];
1015  *	u64	fpscr;
1016  *};
1017  */
tm_cfpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1018 static int tm_cfpr_set(struct task_struct *target,
1019 			const struct user_regset *regset,
1020 			unsigned int pos, unsigned int count,
1021 			const void *kbuf, const void __user *ubuf)
1022 {
1023 	u64 buf[33];
1024 	int i;
1025 
1026 	if (!cpu_has_feature(CPU_FTR_TM))
1027 		return -ENODEV;
1028 
1029 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1030 		return -ENODATA;
1031 
1032 	flush_tmregs_to_thread(target);
1033 	flush_fp_to_thread(target);
1034 	flush_altivec_to_thread(target);
1035 
1036 	for (i = 0; i < 32; i++)
1037 		buf[i] = target->thread.TS_CKFPR(i);
1038 	buf[32] = target->thread.ckfp_state.fpscr;
1039 
1040 	/* copy to local buffer then write that out */
1041 	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1042 	if (i)
1043 		return i;
1044 	for (i = 0; i < 32 ; i++)
1045 		target->thread.TS_CKFPR(i) = buf[i];
1046 	target->thread.ckfp_state.fpscr = buf[32];
1047 	return 0;
1048 }
1049 
1050 /**
1051  * tm_cvmx_active - get active number of registers in CVMX
1052  * @target:	The target task.
1053  * @regset:	The user regset structure.
1054  *
1055  * This function checks for the active number of available
1056  * regisers in checkpointed VMX category.
1057  */
tm_cvmx_active(struct task_struct * target,const struct user_regset * regset)1058 static int tm_cvmx_active(struct task_struct *target,
1059 				const struct user_regset *regset)
1060 {
1061 	if (!cpu_has_feature(CPU_FTR_TM))
1062 		return -ENODEV;
1063 
1064 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1065 		return 0;
1066 
1067 	return regset->n;
1068 }
1069 
1070 /**
1071  * tm_cvmx_get - get CMVX registers
1072  * @target:	The target task.
1073  * @regset:	The user regset structure.
1074  * @pos:	The buffer position.
1075  * @count:	Number of bytes to copy.
1076  * @kbuf:	Kernel buffer to copy from.
1077  * @ubuf:	User buffer to copy into.
1078  *
1079  * This function gets in transaction checkpointed VMX registers.
1080  *
1081  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082  * the checkpointed values for the current transaction to fall
1083  * back on if it aborts in between. The userspace interface buffer
1084  * layout is as follows.
1085  *
1086  * struct data {
1087  *	vector128	vr[32];
1088  *	vector128	vscr;
1089  *	vector128	vrsave;
1090  *};
1091  */
tm_cvmx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1092 static int tm_cvmx_get(struct task_struct *target,
1093 			const struct user_regset *regset,
1094 			unsigned int pos, unsigned int count,
1095 			void *kbuf, void __user *ubuf)
1096 {
1097 	int ret;
1098 
1099 	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1100 
1101 	if (!cpu_has_feature(CPU_FTR_TM))
1102 		return -ENODEV;
1103 
1104 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1105 		return -ENODATA;
1106 
1107 	/* Flush the state */
1108 	flush_tmregs_to_thread(target);
1109 	flush_fp_to_thread(target);
1110 	flush_altivec_to_thread(target);
1111 
1112 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113 					&target->thread.ckvr_state, 0,
1114 					33 * sizeof(vector128));
1115 	if (!ret) {
1116 		/*
1117 		 * Copy out only the low-order word of vrsave.
1118 		 */
1119 		union {
1120 			elf_vrreg_t reg;
1121 			u32 word;
1122 		} vrsave;
1123 		memset(&vrsave, 0, sizeof(vrsave));
1124 		vrsave.word = target->thread.ckvrsave;
1125 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1126 						33 * sizeof(vector128), -1);
1127 	}
1128 
1129 	return ret;
1130 }
1131 
1132 /**
1133  * tm_cvmx_set - set CMVX registers
1134  * @target:	The target task.
1135  * @regset:	The user regset structure.
1136  * @pos:	The buffer position.
1137  * @count:	Number of bytes to copy.
1138  * @kbuf:	Kernel buffer to copy into.
1139  * @ubuf:	User buffer to copy from.
1140  *
1141  * This function sets in transaction checkpointed VMX registers.
1142  *
1143  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144  * the checkpointed values for the current transaction to fall
1145  * back on if it aborts in between. The userspace interface buffer
1146  * layout is as follows.
1147  *
1148  * struct data {
1149  *	vector128	vr[32];
1150  *	vector128	vscr;
1151  *	vector128	vrsave;
1152  *};
1153  */
tm_cvmx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1154 static int tm_cvmx_set(struct task_struct *target,
1155 			const struct user_regset *regset,
1156 			unsigned int pos, unsigned int count,
1157 			const void *kbuf, const void __user *ubuf)
1158 {
1159 	int ret;
1160 
1161 	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1162 
1163 	if (!cpu_has_feature(CPU_FTR_TM))
1164 		return -ENODEV;
1165 
1166 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1167 		return -ENODATA;
1168 
1169 	flush_tmregs_to_thread(target);
1170 	flush_fp_to_thread(target);
1171 	flush_altivec_to_thread(target);
1172 
1173 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1174 					&target->thread.ckvr_state, 0,
1175 					33 * sizeof(vector128));
1176 	if (!ret && count > 0) {
1177 		/*
1178 		 * We use only the low-order word of vrsave.
1179 		 */
1180 		union {
1181 			elf_vrreg_t reg;
1182 			u32 word;
1183 		} vrsave;
1184 		memset(&vrsave, 0, sizeof(vrsave));
1185 		vrsave.word = target->thread.ckvrsave;
1186 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1187 						33 * sizeof(vector128), -1);
1188 		if (!ret)
1189 			target->thread.ckvrsave = vrsave.word;
1190 	}
1191 
1192 	return ret;
1193 }
1194 
1195 /**
1196  * tm_cvsx_active - get active number of registers in CVSX
1197  * @target:	The target task.
1198  * @regset:	The user regset structure.
1199  *
1200  * This function checks for the active number of available
1201  * regisers in transaction checkpointed VSX category.
1202  */
tm_cvsx_active(struct task_struct * target,const struct user_regset * regset)1203 static int tm_cvsx_active(struct task_struct *target,
1204 				const struct user_regset *regset)
1205 {
1206 	if (!cpu_has_feature(CPU_FTR_TM))
1207 		return -ENODEV;
1208 
1209 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210 		return 0;
1211 
1212 	flush_vsx_to_thread(target);
1213 	return target->thread.used_vsr ? regset->n : 0;
1214 }
1215 
1216 /**
1217  * tm_cvsx_get - get CVSX registers
1218  * @target:	The target task.
1219  * @regset:	The user regset structure.
1220  * @pos:	The buffer position.
1221  * @count:	Number of bytes to copy.
1222  * @kbuf:	Kernel buffer to copy from.
1223  * @ubuf:	User buffer to copy into.
1224  *
1225  * This function gets in transaction checkpointed VSX registers.
1226  *
1227  * When the transaction is active 'ckfp_state' holds the checkpointed
1228  * values for the current transaction to fall back on if it aborts
1229  * in between. This function gets those checkpointed VSX registers.
1230  * The userspace interface buffer layout is as follows.
1231  *
1232  * struct data {
1233  *	u64	vsx[32];
1234  *};
1235  */
tm_cvsx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1236 static int tm_cvsx_get(struct task_struct *target,
1237 			const struct user_regset *regset,
1238 			unsigned int pos, unsigned int count,
1239 			void *kbuf, void __user *ubuf)
1240 {
1241 	u64 buf[32];
1242 	int ret, i;
1243 
1244 	if (!cpu_has_feature(CPU_FTR_TM))
1245 		return -ENODEV;
1246 
1247 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1248 		return -ENODATA;
1249 
1250 	/* Flush the state */
1251 	flush_tmregs_to_thread(target);
1252 	flush_fp_to_thread(target);
1253 	flush_altivec_to_thread(target);
1254 	flush_vsx_to_thread(target);
1255 
1256 	for (i = 0; i < 32 ; i++)
1257 		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1258 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1259 				  buf, 0, 32 * sizeof(double));
1260 
1261 	return ret;
1262 }
1263 
1264 /**
1265  * tm_cvsx_set - set CFPR registers
1266  * @target:	The target task.
1267  * @regset:	The user regset structure.
1268  * @pos:	The buffer position.
1269  * @count:	Number of bytes to copy.
1270  * @kbuf:	Kernel buffer to copy into.
1271  * @ubuf:	User buffer to copy from.
1272  *
1273  * This function sets in transaction checkpointed VSX registers.
1274  *
1275  * When the transaction is active 'ckfp_state' holds the checkpointed
1276  * VSX register values for the current transaction to fall back on
1277  * if it aborts in between. This function sets these checkpointed
1278  * FPR registers. The userspace interface buffer layout is as follows.
1279  *
1280  * struct data {
1281  *	u64	vsx[32];
1282  *};
1283  */
tm_cvsx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1284 static int tm_cvsx_set(struct task_struct *target,
1285 			const struct user_regset *regset,
1286 			unsigned int pos, unsigned int count,
1287 			const void *kbuf, const void __user *ubuf)
1288 {
1289 	u64 buf[32];
1290 	int ret, i;
1291 
1292 	if (!cpu_has_feature(CPU_FTR_TM))
1293 		return -ENODEV;
1294 
1295 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1296 		return -ENODATA;
1297 
1298 	/* Flush the state */
1299 	flush_tmregs_to_thread(target);
1300 	flush_fp_to_thread(target);
1301 	flush_altivec_to_thread(target);
1302 	flush_vsx_to_thread(target);
1303 
1304 	for (i = 0; i < 32 ; i++)
1305 		buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1306 
1307 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1308 				 buf, 0, 32 * sizeof(double));
1309 	if (!ret)
1310 		for (i = 0; i < 32 ; i++)
1311 			target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1312 
1313 	return ret;
1314 }
1315 
1316 /**
1317  * tm_spr_active - get active number of registers in TM SPR
1318  * @target:	The target task.
1319  * @regset:	The user regset structure.
1320  *
1321  * This function checks the active number of available
1322  * regisers in the transactional memory SPR category.
1323  */
tm_spr_active(struct task_struct * target,const struct user_regset * regset)1324 static int tm_spr_active(struct task_struct *target,
1325 			 const struct user_regset *regset)
1326 {
1327 	if (!cpu_has_feature(CPU_FTR_TM))
1328 		return -ENODEV;
1329 
1330 	return regset->n;
1331 }
1332 
1333 /**
1334  * tm_spr_get - get the TM related SPR registers
1335  * @target:	The target task.
1336  * @regset:	The user regset structure.
1337  * @pos:	The buffer position.
1338  * @count:	Number of bytes to copy.
1339  * @kbuf:	Kernel buffer to copy from.
1340  * @ubuf:	User buffer to copy into.
1341  *
1342  * This function gets transactional memory related SPR registers.
1343  * The userspace interface buffer layout is as follows.
1344  *
1345  * struct {
1346  *	u64		tm_tfhar;
1347  *	u64		tm_texasr;
1348  *	u64		tm_tfiar;
1349  * };
1350  */
tm_spr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1351 static int tm_spr_get(struct task_struct *target,
1352 		      const struct user_regset *regset,
1353 		      unsigned int pos, unsigned int count,
1354 		      void *kbuf, void __user *ubuf)
1355 {
1356 	int ret;
1357 
1358 	/* Build tests */
1359 	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1360 	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1361 	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1362 
1363 	if (!cpu_has_feature(CPU_FTR_TM))
1364 		return -ENODEV;
1365 
1366 	/* Flush the states */
1367 	flush_tmregs_to_thread(target);
1368 	flush_fp_to_thread(target);
1369 	flush_altivec_to_thread(target);
1370 
1371 	/* TFHAR register */
1372 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1373 				&target->thread.tm_tfhar, 0, sizeof(u64));
1374 
1375 	/* TEXASR register */
1376 	if (!ret)
1377 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1378 				&target->thread.tm_texasr, sizeof(u64),
1379 				2 * sizeof(u64));
1380 
1381 	/* TFIAR register */
1382 	if (!ret)
1383 		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1384 				&target->thread.tm_tfiar,
1385 				2 * sizeof(u64), 3 * sizeof(u64));
1386 	return ret;
1387 }
1388 
1389 /**
1390  * tm_spr_set - set the TM related SPR registers
1391  * @target:	The target task.
1392  * @regset:	The user regset structure.
1393  * @pos:	The buffer position.
1394  * @count:	Number of bytes to copy.
1395  * @kbuf:	Kernel buffer to copy into.
1396  * @ubuf:	User buffer to copy from.
1397  *
1398  * This function sets transactional memory related SPR registers.
1399  * The userspace interface buffer layout is as follows.
1400  *
1401  * struct {
1402  *	u64		tm_tfhar;
1403  *	u64		tm_texasr;
1404  *	u64		tm_tfiar;
1405  * };
1406  */
tm_spr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1407 static int tm_spr_set(struct task_struct *target,
1408 		      const struct user_regset *regset,
1409 		      unsigned int pos, unsigned int count,
1410 		      const void *kbuf, const void __user *ubuf)
1411 {
1412 	int ret;
1413 
1414 	/* Build tests */
1415 	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1416 	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1417 	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1418 
1419 	if (!cpu_has_feature(CPU_FTR_TM))
1420 		return -ENODEV;
1421 
1422 	/* Flush the states */
1423 	flush_tmregs_to_thread(target);
1424 	flush_fp_to_thread(target);
1425 	flush_altivec_to_thread(target);
1426 
1427 	/* TFHAR register */
1428 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429 				&target->thread.tm_tfhar, 0, sizeof(u64));
1430 
1431 	/* TEXASR register */
1432 	if (!ret)
1433 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1434 				&target->thread.tm_texasr, sizeof(u64),
1435 				2 * sizeof(u64));
1436 
1437 	/* TFIAR register */
1438 	if (!ret)
1439 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1440 				&target->thread.tm_tfiar,
1441 				 2 * sizeof(u64), 3 * sizeof(u64));
1442 	return ret;
1443 }
1444 
tm_tar_active(struct task_struct * target,const struct user_regset * regset)1445 static int tm_tar_active(struct task_struct *target,
1446 			 const struct user_regset *regset)
1447 {
1448 	if (!cpu_has_feature(CPU_FTR_TM))
1449 		return -ENODEV;
1450 
1451 	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1452 		return regset->n;
1453 
1454 	return 0;
1455 }
1456 
tm_tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1457 static int tm_tar_get(struct task_struct *target,
1458 		      const struct user_regset *regset,
1459 		      unsigned int pos, unsigned int count,
1460 		      void *kbuf, void __user *ubuf)
1461 {
1462 	int ret;
1463 
1464 	if (!cpu_has_feature(CPU_FTR_TM))
1465 		return -ENODEV;
1466 
1467 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1468 		return -ENODATA;
1469 
1470 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1471 				&target->thread.tm_tar, 0, sizeof(u64));
1472 	return ret;
1473 }
1474 
tm_tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1475 static int tm_tar_set(struct task_struct *target,
1476 		      const struct user_regset *regset,
1477 		      unsigned int pos, unsigned int count,
1478 		      const void *kbuf, const void __user *ubuf)
1479 {
1480 	int ret;
1481 
1482 	if (!cpu_has_feature(CPU_FTR_TM))
1483 		return -ENODEV;
1484 
1485 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1486 		return -ENODATA;
1487 
1488 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1489 				&target->thread.tm_tar, 0, sizeof(u64));
1490 	return ret;
1491 }
1492 
tm_ppr_active(struct task_struct * target,const struct user_regset * regset)1493 static int tm_ppr_active(struct task_struct *target,
1494 			 const struct user_regset *regset)
1495 {
1496 	if (!cpu_has_feature(CPU_FTR_TM))
1497 		return -ENODEV;
1498 
1499 	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1500 		return regset->n;
1501 
1502 	return 0;
1503 }
1504 
1505 
tm_ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1506 static int tm_ppr_get(struct task_struct *target,
1507 		      const struct user_regset *regset,
1508 		      unsigned int pos, unsigned int count,
1509 		      void *kbuf, void __user *ubuf)
1510 {
1511 	int ret;
1512 
1513 	if (!cpu_has_feature(CPU_FTR_TM))
1514 		return -ENODEV;
1515 
1516 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1517 		return -ENODATA;
1518 
1519 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1520 				&target->thread.tm_ppr, 0, sizeof(u64));
1521 	return ret;
1522 }
1523 
tm_ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1524 static int tm_ppr_set(struct task_struct *target,
1525 		      const struct user_regset *regset,
1526 		      unsigned int pos, unsigned int count,
1527 		      const void *kbuf, const void __user *ubuf)
1528 {
1529 	int ret;
1530 
1531 	if (!cpu_has_feature(CPU_FTR_TM))
1532 		return -ENODEV;
1533 
1534 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1535 		return -ENODATA;
1536 
1537 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1538 				&target->thread.tm_ppr, 0, sizeof(u64));
1539 	return ret;
1540 }
1541 
tm_dscr_active(struct task_struct * target,const struct user_regset * regset)1542 static int tm_dscr_active(struct task_struct *target,
1543 			 const struct user_regset *regset)
1544 {
1545 	if (!cpu_has_feature(CPU_FTR_TM))
1546 		return -ENODEV;
1547 
1548 	if (MSR_TM_ACTIVE(target->thread.regs->msr))
1549 		return regset->n;
1550 
1551 	return 0;
1552 }
1553 
tm_dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1554 static int tm_dscr_get(struct task_struct *target,
1555 		      const struct user_regset *regset,
1556 		      unsigned int pos, unsigned int count,
1557 		      void *kbuf, void __user *ubuf)
1558 {
1559 	int ret;
1560 
1561 	if (!cpu_has_feature(CPU_FTR_TM))
1562 		return -ENODEV;
1563 
1564 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1565 		return -ENODATA;
1566 
1567 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1568 				&target->thread.tm_dscr, 0, sizeof(u64));
1569 	return ret;
1570 }
1571 
tm_dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1572 static int tm_dscr_set(struct task_struct *target,
1573 		      const struct user_regset *regset,
1574 		      unsigned int pos, unsigned int count,
1575 		      const void *kbuf, const void __user *ubuf)
1576 {
1577 	int ret;
1578 
1579 	if (!cpu_has_feature(CPU_FTR_TM))
1580 		return -ENODEV;
1581 
1582 	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1583 		return -ENODATA;
1584 
1585 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1586 				&target->thread.tm_dscr, 0, sizeof(u64));
1587 	return ret;
1588 }
1589 #endif	/* CONFIG_PPC_TRANSACTIONAL_MEM */
1590 
1591 #ifdef CONFIG_PPC64
ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1592 static int ppr_get(struct task_struct *target,
1593 		      const struct user_regset *regset,
1594 		      unsigned int pos, unsigned int count,
1595 		      void *kbuf, void __user *ubuf)
1596 {
1597 	int ret;
1598 
1599 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1600 				&target->thread.ppr, 0, sizeof(u64));
1601 	return ret;
1602 }
1603 
ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1604 static int ppr_set(struct task_struct *target,
1605 		      const struct user_regset *regset,
1606 		      unsigned int pos, unsigned int count,
1607 		      const void *kbuf, const void __user *ubuf)
1608 {
1609 	int ret;
1610 
1611 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1612 				&target->thread.ppr, 0, sizeof(u64));
1613 	return ret;
1614 }
1615 
dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1616 static int dscr_get(struct task_struct *target,
1617 		      const struct user_regset *regset,
1618 		      unsigned int pos, unsigned int count,
1619 		      void *kbuf, void __user *ubuf)
1620 {
1621 	int ret;
1622 
1623 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1624 				&target->thread.dscr, 0, sizeof(u64));
1625 	return ret;
1626 }
dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1627 static int dscr_set(struct task_struct *target,
1628 		      const struct user_regset *regset,
1629 		      unsigned int pos, unsigned int count,
1630 		      const void *kbuf, const void __user *ubuf)
1631 {
1632 	int ret;
1633 
1634 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1635 				&target->thread.dscr, 0, sizeof(u64));
1636 	return ret;
1637 }
1638 #endif
1639 #ifdef CONFIG_PPC_BOOK3S_64
tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1640 static int tar_get(struct task_struct *target,
1641 		      const struct user_regset *regset,
1642 		      unsigned int pos, unsigned int count,
1643 		      void *kbuf, void __user *ubuf)
1644 {
1645 	int ret;
1646 
1647 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1648 				&target->thread.tar, 0, sizeof(u64));
1649 	return ret;
1650 }
tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1651 static int tar_set(struct task_struct *target,
1652 		      const struct user_regset *regset,
1653 		      unsigned int pos, unsigned int count,
1654 		      const void *kbuf, const void __user *ubuf)
1655 {
1656 	int ret;
1657 
1658 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1659 				&target->thread.tar, 0, sizeof(u64));
1660 	return ret;
1661 }
1662 
ebb_active(struct task_struct * target,const struct user_regset * regset)1663 static int ebb_active(struct task_struct *target,
1664 			 const struct user_regset *regset)
1665 {
1666 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1667 		return -ENODEV;
1668 
1669 	if (target->thread.used_ebb)
1670 		return regset->n;
1671 
1672 	return 0;
1673 }
1674 
ebb_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1675 static int ebb_get(struct task_struct *target,
1676 		      const struct user_regset *regset,
1677 		      unsigned int pos, unsigned int count,
1678 		      void *kbuf, void __user *ubuf)
1679 {
1680 	/* Build tests */
1681 	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1682 	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1683 
1684 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1685 		return -ENODEV;
1686 
1687 	if (!target->thread.used_ebb)
1688 		return -ENODATA;
1689 
1690 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1691 			&target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1692 }
1693 
ebb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1694 static int ebb_set(struct task_struct *target,
1695 		      const struct user_regset *regset,
1696 		      unsigned int pos, unsigned int count,
1697 		      const void *kbuf, const void __user *ubuf)
1698 {
1699 	int ret = 0;
1700 
1701 	/* Build tests */
1702 	BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1703 	BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1704 
1705 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1706 		return -ENODEV;
1707 
1708 	if (target->thread.used_ebb)
1709 		return -ENODATA;
1710 
1711 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1712 			&target->thread.ebbrr, 0, sizeof(unsigned long));
1713 
1714 	if (!ret)
1715 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1716 			&target->thread.ebbhr, sizeof(unsigned long),
1717 			2 * sizeof(unsigned long));
1718 
1719 	if (!ret)
1720 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1721 			&target->thread.bescr,
1722 			2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1723 
1724 	return ret;
1725 }
pmu_active(struct task_struct * target,const struct user_regset * regset)1726 static int pmu_active(struct task_struct *target,
1727 			 const struct user_regset *regset)
1728 {
1729 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1730 		return -ENODEV;
1731 
1732 	return regset->n;
1733 }
1734 
pmu_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1735 static int pmu_get(struct task_struct *target,
1736 		      const struct user_regset *regset,
1737 		      unsigned int pos, unsigned int count,
1738 		      void *kbuf, void __user *ubuf)
1739 {
1740 	/* Build tests */
1741 	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1742 	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1743 	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1744 	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1745 
1746 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1747 		return -ENODEV;
1748 
1749 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1750 			&target->thread.siar, 0,
1751 			5 * sizeof(unsigned long));
1752 }
1753 
pmu_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1754 static int pmu_set(struct task_struct *target,
1755 		      const struct user_regset *regset,
1756 		      unsigned int pos, unsigned int count,
1757 		      const void *kbuf, const void __user *ubuf)
1758 {
1759 	int ret = 0;
1760 
1761 	/* Build tests */
1762 	BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1763 	BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1764 	BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1765 	BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1766 
1767 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1768 		return -ENODEV;
1769 
1770 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1771 			&target->thread.siar, 0,
1772 			sizeof(unsigned long));
1773 
1774 	if (!ret)
1775 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1776 			&target->thread.sdar, sizeof(unsigned long),
1777 			2 * sizeof(unsigned long));
1778 
1779 	if (!ret)
1780 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1781 			&target->thread.sier, 2 * sizeof(unsigned long),
1782 			3 * sizeof(unsigned long));
1783 
1784 	if (!ret)
1785 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1786 			&target->thread.mmcr2, 3 * sizeof(unsigned long),
1787 			4 * sizeof(unsigned long));
1788 
1789 	if (!ret)
1790 		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1791 			&target->thread.mmcr0, 4 * sizeof(unsigned long),
1792 			5 * sizeof(unsigned long));
1793 	return ret;
1794 }
1795 #endif
1796 /*
1797  * These are our native regset flavors.
1798  */
1799 enum powerpc_regset {
1800 	REGSET_GPR,
1801 	REGSET_FPR,
1802 #ifdef CONFIG_ALTIVEC
1803 	REGSET_VMX,
1804 #endif
1805 #ifdef CONFIG_VSX
1806 	REGSET_VSX,
1807 #endif
1808 #ifdef CONFIG_SPE
1809 	REGSET_SPE,
1810 #endif
1811 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812 	REGSET_TM_CGPR,		/* TM checkpointed GPR registers */
1813 	REGSET_TM_CFPR,		/* TM checkpointed FPR registers */
1814 	REGSET_TM_CVMX,		/* TM checkpointed VMX registers */
1815 	REGSET_TM_CVSX,		/* TM checkpointed VSX registers */
1816 	REGSET_TM_SPR,		/* TM specific SPR registers */
1817 	REGSET_TM_CTAR,		/* TM checkpointed TAR register */
1818 	REGSET_TM_CPPR,		/* TM checkpointed PPR register */
1819 	REGSET_TM_CDSCR,	/* TM checkpointed DSCR register */
1820 #endif
1821 #ifdef CONFIG_PPC64
1822 	REGSET_PPR,		/* PPR register */
1823 	REGSET_DSCR,		/* DSCR register */
1824 #endif
1825 #ifdef CONFIG_PPC_BOOK3S_64
1826 	REGSET_TAR,		/* TAR register */
1827 	REGSET_EBB,		/* EBB registers */
1828 	REGSET_PMR,		/* Performance Monitor Registers */
1829 #endif
1830 };
1831 
1832 static const struct user_regset native_regsets[] = {
1833 	[REGSET_GPR] = {
1834 		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1835 		.size = sizeof(long), .align = sizeof(long),
1836 		.get = gpr_get, .set = gpr_set
1837 	},
1838 	[REGSET_FPR] = {
1839 		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1840 		.size = sizeof(double), .align = sizeof(double),
1841 		.get = fpr_get, .set = fpr_set
1842 	},
1843 #ifdef CONFIG_ALTIVEC
1844 	[REGSET_VMX] = {
1845 		.core_note_type = NT_PPC_VMX, .n = 34,
1846 		.size = sizeof(vector128), .align = sizeof(vector128),
1847 		.active = vr_active, .get = vr_get, .set = vr_set
1848 	},
1849 #endif
1850 #ifdef CONFIG_VSX
1851 	[REGSET_VSX] = {
1852 		.core_note_type = NT_PPC_VSX, .n = 32,
1853 		.size = sizeof(double), .align = sizeof(double),
1854 		.active = vsr_active, .get = vsr_get, .set = vsr_set
1855 	},
1856 #endif
1857 #ifdef CONFIG_SPE
1858 	[REGSET_SPE] = {
1859 		.core_note_type = NT_PPC_SPE, .n = 35,
1860 		.size = sizeof(u32), .align = sizeof(u32),
1861 		.active = evr_active, .get = evr_get, .set = evr_set
1862 	},
1863 #endif
1864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1865 	[REGSET_TM_CGPR] = {
1866 		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1867 		.size = sizeof(long), .align = sizeof(long),
1868 		.active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1869 	},
1870 	[REGSET_TM_CFPR] = {
1871 		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1872 		.size = sizeof(double), .align = sizeof(double),
1873 		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1874 	},
1875 	[REGSET_TM_CVMX] = {
1876 		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1877 		.size = sizeof(vector128), .align = sizeof(vector128),
1878 		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1879 	},
1880 	[REGSET_TM_CVSX] = {
1881 		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1882 		.size = sizeof(double), .align = sizeof(double),
1883 		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1884 	},
1885 	[REGSET_TM_SPR] = {
1886 		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1887 		.size = sizeof(u64), .align = sizeof(u64),
1888 		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1889 	},
1890 	[REGSET_TM_CTAR] = {
1891 		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
1892 		.size = sizeof(u64), .align = sizeof(u64),
1893 		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1894 	},
1895 	[REGSET_TM_CPPR] = {
1896 		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
1897 		.size = sizeof(u64), .align = sizeof(u64),
1898 		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1899 	},
1900 	[REGSET_TM_CDSCR] = {
1901 		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1902 		.size = sizeof(u64), .align = sizeof(u64),
1903 		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1904 	},
1905 #endif
1906 #ifdef CONFIG_PPC64
1907 	[REGSET_PPR] = {
1908 		.core_note_type = NT_PPC_PPR, .n = 1,
1909 		.size = sizeof(u64), .align = sizeof(u64),
1910 		.get = ppr_get, .set = ppr_set
1911 	},
1912 	[REGSET_DSCR] = {
1913 		.core_note_type = NT_PPC_DSCR, .n = 1,
1914 		.size = sizeof(u64), .align = sizeof(u64),
1915 		.get = dscr_get, .set = dscr_set
1916 	},
1917 #endif
1918 #ifdef CONFIG_PPC_BOOK3S_64
1919 	[REGSET_TAR] = {
1920 		.core_note_type = NT_PPC_TAR, .n = 1,
1921 		.size = sizeof(u64), .align = sizeof(u64),
1922 		.get = tar_get, .set = tar_set
1923 	},
1924 	[REGSET_EBB] = {
1925 		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1926 		.size = sizeof(u64), .align = sizeof(u64),
1927 		.active = ebb_active, .get = ebb_get, .set = ebb_set
1928 	},
1929 	[REGSET_PMR] = {
1930 		.core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1931 		.size = sizeof(u64), .align = sizeof(u64),
1932 		.active = pmu_active, .get = pmu_get, .set = pmu_set
1933 	},
1934 #endif
1935 };
1936 
1937 static const struct user_regset_view user_ppc_native_view = {
1938 	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1939 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1940 };
1941 
1942 #ifdef CONFIG_PPC64
1943 #include <linux/compat.h>
1944 
gpr32_get_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf,unsigned long * regs)1945 static int gpr32_get_common(struct task_struct *target,
1946 		     const struct user_regset *regset,
1947 		     unsigned int pos, unsigned int count,
1948 			    void *kbuf, void __user *ubuf,
1949 			    unsigned long *regs)
1950 {
1951 	compat_ulong_t *k = kbuf;
1952 	compat_ulong_t __user *u = ubuf;
1953 	compat_ulong_t reg;
1954 
1955 	pos /= sizeof(reg);
1956 	count /= sizeof(reg);
1957 
1958 	if (kbuf)
1959 		for (; count > 0 && pos < PT_MSR; --count)
1960 			*k++ = regs[pos++];
1961 	else
1962 		for (; count > 0 && pos < PT_MSR; --count)
1963 			if (__put_user((compat_ulong_t) regs[pos++], u++))
1964 				return -EFAULT;
1965 
1966 	if (count > 0 && pos == PT_MSR) {
1967 		reg = get_user_msr(target);
1968 		if (kbuf)
1969 			*k++ = reg;
1970 		else if (__put_user(reg, u++))
1971 			return -EFAULT;
1972 		++pos;
1973 		--count;
1974 	}
1975 
1976 	if (kbuf)
1977 		for (; count > 0 && pos < PT_REGS_COUNT; --count)
1978 			*k++ = regs[pos++];
1979 	else
1980 		for (; count > 0 && pos < PT_REGS_COUNT; --count)
1981 			if (__put_user((compat_ulong_t) regs[pos++], u++))
1982 				return -EFAULT;
1983 
1984 	kbuf = k;
1985 	ubuf = u;
1986 	pos *= sizeof(reg);
1987 	count *= sizeof(reg);
1988 	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1989 					PT_REGS_COUNT * sizeof(reg), -1);
1990 }
1991 
gpr32_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned long * regs)1992 static int gpr32_set_common(struct task_struct *target,
1993 		     const struct user_regset *regset,
1994 		     unsigned int pos, unsigned int count,
1995 		     const void *kbuf, const void __user *ubuf,
1996 		     unsigned long *regs)
1997 {
1998 	const compat_ulong_t *k = kbuf;
1999 	const compat_ulong_t __user *u = ubuf;
2000 	compat_ulong_t reg;
2001 
2002 	pos /= sizeof(reg);
2003 	count /= sizeof(reg);
2004 
2005 	if (kbuf)
2006 		for (; count > 0 && pos < PT_MSR; --count)
2007 			regs[pos++] = *k++;
2008 	else
2009 		for (; count > 0 && pos < PT_MSR; --count) {
2010 			if (__get_user(reg, u++))
2011 				return -EFAULT;
2012 			regs[pos++] = reg;
2013 		}
2014 
2015 
2016 	if (count > 0 && pos == PT_MSR) {
2017 		if (kbuf)
2018 			reg = *k++;
2019 		else if (__get_user(reg, u++))
2020 			return -EFAULT;
2021 		set_user_msr(target, reg);
2022 		++pos;
2023 		--count;
2024 	}
2025 
2026 	if (kbuf) {
2027 		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2028 			regs[pos++] = *k++;
2029 		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2030 			++k;
2031 	} else {
2032 		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2033 			if (__get_user(reg, u++))
2034 				return -EFAULT;
2035 			regs[pos++] = reg;
2036 		}
2037 		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2038 			if (__get_user(reg, u++))
2039 				return -EFAULT;
2040 	}
2041 
2042 	if (count > 0 && pos == PT_TRAP) {
2043 		if (kbuf)
2044 			reg = *k++;
2045 		else if (__get_user(reg, u++))
2046 			return -EFAULT;
2047 		set_user_trap(target, reg);
2048 		++pos;
2049 		--count;
2050 	}
2051 
2052 	kbuf = k;
2053 	ubuf = u;
2054 	pos *= sizeof(reg);
2055 	count *= sizeof(reg);
2056 	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2057 					 (PT_TRAP + 1) * sizeof(reg), -1);
2058 }
2059 
2060 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_cgpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2061 static int tm_cgpr32_get(struct task_struct *target,
2062 		     const struct user_regset *regset,
2063 		     unsigned int pos, unsigned int count,
2064 		     void *kbuf, void __user *ubuf)
2065 {
2066 	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2067 			&target->thread.ckpt_regs.gpr[0]);
2068 }
2069 
tm_cgpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2070 static int tm_cgpr32_set(struct task_struct *target,
2071 		     const struct user_regset *regset,
2072 		     unsigned int pos, unsigned int count,
2073 		     const void *kbuf, const void __user *ubuf)
2074 {
2075 	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2076 			&target->thread.ckpt_regs.gpr[0]);
2077 }
2078 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2079 
gpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2080 static int gpr32_get(struct task_struct *target,
2081 		     const struct user_regset *regset,
2082 		     unsigned int pos, unsigned int count,
2083 		     void *kbuf, void __user *ubuf)
2084 {
2085 	int i;
2086 
2087 	if (target->thread.regs == NULL)
2088 		return -EIO;
2089 
2090 	if (!FULL_REGS(target->thread.regs)) {
2091 		/*
2092 		 * We have a partial register set.
2093 		 * Fill 14-31 with bogus values.
2094 		 */
2095 		for (i = 14; i < 32; i++)
2096 			target->thread.regs->gpr[i] = NV_REG_POISON;
2097 	}
2098 	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2099 			&target->thread.regs->gpr[0]);
2100 }
2101 
gpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2102 static int gpr32_set(struct task_struct *target,
2103 		     const struct user_regset *regset,
2104 		     unsigned int pos, unsigned int count,
2105 		     const void *kbuf, const void __user *ubuf)
2106 {
2107 	if (target->thread.regs == NULL)
2108 		return -EIO;
2109 
2110 	CHECK_FULL_REGS(target->thread.regs);
2111 	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2112 			&target->thread.regs->gpr[0]);
2113 }
2114 
2115 /*
2116  * These are the regset flavors matching the CONFIG_PPC32 native set.
2117  */
2118 static const struct user_regset compat_regsets[] = {
2119 	[REGSET_GPR] = {
2120 		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2121 		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2122 		.get = gpr32_get, .set = gpr32_set
2123 	},
2124 	[REGSET_FPR] = {
2125 		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2126 		.size = sizeof(double), .align = sizeof(double),
2127 		.get = fpr_get, .set = fpr_set
2128 	},
2129 #ifdef CONFIG_ALTIVEC
2130 	[REGSET_VMX] = {
2131 		.core_note_type = NT_PPC_VMX, .n = 34,
2132 		.size = sizeof(vector128), .align = sizeof(vector128),
2133 		.active = vr_active, .get = vr_get, .set = vr_set
2134 	},
2135 #endif
2136 #ifdef CONFIG_SPE
2137 	[REGSET_SPE] = {
2138 		.core_note_type = NT_PPC_SPE, .n = 35,
2139 		.size = sizeof(u32), .align = sizeof(u32),
2140 		.active = evr_active, .get = evr_get, .set = evr_set
2141 	},
2142 #endif
2143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2144 	[REGSET_TM_CGPR] = {
2145 		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2146 		.size = sizeof(long), .align = sizeof(long),
2147 		.active = tm_cgpr_active,
2148 		.get = tm_cgpr32_get, .set = tm_cgpr32_set
2149 	},
2150 	[REGSET_TM_CFPR] = {
2151 		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2152 		.size = sizeof(double), .align = sizeof(double),
2153 		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2154 	},
2155 	[REGSET_TM_CVMX] = {
2156 		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2157 		.size = sizeof(vector128), .align = sizeof(vector128),
2158 		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2159 	},
2160 	[REGSET_TM_CVSX] = {
2161 		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2162 		.size = sizeof(double), .align = sizeof(double),
2163 		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2164 	},
2165 	[REGSET_TM_SPR] = {
2166 		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2167 		.size = sizeof(u64), .align = sizeof(u64),
2168 		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2169 	},
2170 	[REGSET_TM_CTAR] = {
2171 		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
2172 		.size = sizeof(u64), .align = sizeof(u64),
2173 		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2174 	},
2175 	[REGSET_TM_CPPR] = {
2176 		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
2177 		.size = sizeof(u64), .align = sizeof(u64),
2178 		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2179 	},
2180 	[REGSET_TM_CDSCR] = {
2181 		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2182 		.size = sizeof(u64), .align = sizeof(u64),
2183 		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2184 	},
2185 #endif
2186 #ifdef CONFIG_PPC64
2187 	[REGSET_PPR] = {
2188 		.core_note_type = NT_PPC_PPR, .n = 1,
2189 		.size = sizeof(u64), .align = sizeof(u64),
2190 		.get = ppr_get, .set = ppr_set
2191 	},
2192 	[REGSET_DSCR] = {
2193 		.core_note_type = NT_PPC_DSCR, .n = 1,
2194 		.size = sizeof(u64), .align = sizeof(u64),
2195 		.get = dscr_get, .set = dscr_set
2196 	},
2197 #endif
2198 #ifdef CONFIG_PPC_BOOK3S_64
2199 	[REGSET_TAR] = {
2200 		.core_note_type = NT_PPC_TAR, .n = 1,
2201 		.size = sizeof(u64), .align = sizeof(u64),
2202 		.get = tar_get, .set = tar_set
2203 	},
2204 	[REGSET_EBB] = {
2205 		.core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2206 		.size = sizeof(u64), .align = sizeof(u64),
2207 		.active = ebb_active, .get = ebb_get, .set = ebb_set
2208 	},
2209 #endif
2210 };
2211 
2212 static const struct user_regset_view user_ppc_compat_view = {
2213 	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2214 	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2215 };
2216 #endif	/* CONFIG_PPC64 */
2217 
task_user_regset_view(struct task_struct * task)2218 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2219 {
2220 #ifdef CONFIG_PPC64
2221 	if (test_tsk_thread_flag(task, TIF_32BIT))
2222 		return &user_ppc_compat_view;
2223 #endif
2224 	return &user_ppc_native_view;
2225 }
2226 
2227 
user_enable_single_step(struct task_struct * task)2228 void user_enable_single_step(struct task_struct *task)
2229 {
2230 	struct pt_regs *regs = task->thread.regs;
2231 
2232 	if (regs != NULL) {
2233 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2234 		task->thread.debug.dbcr0 &= ~DBCR0_BT;
2235 		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2236 		regs->msr |= MSR_DE;
2237 #else
2238 		regs->msr &= ~MSR_BE;
2239 		regs->msr |= MSR_SE;
2240 #endif
2241 	}
2242 	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2243 }
2244 
user_enable_block_step(struct task_struct * task)2245 void user_enable_block_step(struct task_struct *task)
2246 {
2247 	struct pt_regs *regs = task->thread.regs;
2248 
2249 	if (regs != NULL) {
2250 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2251 		task->thread.debug.dbcr0 &= ~DBCR0_IC;
2252 		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2253 		regs->msr |= MSR_DE;
2254 #else
2255 		regs->msr &= ~MSR_SE;
2256 		regs->msr |= MSR_BE;
2257 #endif
2258 	}
2259 	set_tsk_thread_flag(task, TIF_SINGLESTEP);
2260 }
2261 
user_disable_single_step(struct task_struct * task)2262 void user_disable_single_step(struct task_struct *task)
2263 {
2264 	struct pt_regs *regs = task->thread.regs;
2265 
2266 	if (regs != NULL) {
2267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2268 		/*
2269 		 * The logic to disable single stepping should be as
2270 		 * simple as turning off the Instruction Complete flag.
2271 		 * And, after doing so, if all debug flags are off, turn
2272 		 * off DBCR0(IDM) and MSR(DE) .... Torez
2273 		 */
2274 		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2275 		/*
2276 		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2277 		 */
2278 		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2279 					task->thread.debug.dbcr1)) {
2280 			/*
2281 			 * All debug events were off.....
2282 			 */
2283 			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2284 			regs->msr &= ~MSR_DE;
2285 		}
2286 #else
2287 		regs->msr &= ~(MSR_SE | MSR_BE);
2288 #endif
2289 	}
2290 	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2291 }
2292 
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
ptrace_triggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)2294 void ptrace_triggered(struct perf_event *bp,
2295 		      struct perf_sample_data *data, struct pt_regs *regs)
2296 {
2297 	struct perf_event_attr attr;
2298 
2299 	/*
2300 	 * Disable the breakpoint request here since ptrace has defined a
2301 	 * one-shot behaviour for breakpoint exceptions in PPC64.
2302 	 * The SIGTRAP signal is generated automatically for us in do_dabr().
2303 	 * We don't have to do anything about that here
2304 	 */
2305 	attr = bp->attr;
2306 	attr.disabled = true;
2307 	modify_user_hw_breakpoint(bp, &attr);
2308 }
2309 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2310 
ptrace_set_debugreg(struct task_struct * task,unsigned long addr,unsigned long data)2311 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2312 			       unsigned long data)
2313 {
2314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2315 	int ret;
2316 	struct thread_struct *thread = &(task->thread);
2317 	struct perf_event *bp;
2318 	struct perf_event_attr attr;
2319 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2320 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2321 	struct arch_hw_breakpoint hw_brk;
2322 #endif
2323 
2324 	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2325 	 *  For embedded processors we support one DAC and no IAC's at the
2326 	 *  moment.
2327 	 */
2328 	if (addr > 0)
2329 		return -EINVAL;
2330 
2331 	/* The bottom 3 bits in dabr are flags */
2332 	if ((data & ~0x7UL) >= TASK_SIZE)
2333 		return -EIO;
2334 
2335 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2336 	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2337 	 *  It was assumed, on previous implementations, that 3 bits were
2338 	 *  passed together with the data address, fitting the design of the
2339 	 *  DABR register, as follows:
2340 	 *
2341 	 *  bit 0: Read flag
2342 	 *  bit 1: Write flag
2343 	 *  bit 2: Breakpoint translation
2344 	 *
2345 	 *  Thus, we use them here as so.
2346 	 */
2347 
2348 	/* Ensure breakpoint translation bit is set */
2349 	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2350 		return -EIO;
2351 	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2352 	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2353 	hw_brk.len = 8;
2354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2355 	bp = thread->ptrace_bps[0];
2356 	if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2357 		if (bp) {
2358 			unregister_hw_breakpoint(bp);
2359 			thread->ptrace_bps[0] = NULL;
2360 		}
2361 		return 0;
2362 	}
2363 	if (bp) {
2364 		attr = bp->attr;
2365 		attr.bp_addr = hw_brk.address;
2366 		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2367 
2368 		/* Enable breakpoint */
2369 		attr.disabled = false;
2370 
2371 		ret =  modify_user_hw_breakpoint(bp, &attr);
2372 		if (ret) {
2373 			return ret;
2374 		}
2375 		thread->ptrace_bps[0] = bp;
2376 		thread->hw_brk = hw_brk;
2377 		return 0;
2378 	}
2379 
2380 	/* Create a new breakpoint request if one doesn't exist already */
2381 	hw_breakpoint_init(&attr);
2382 	attr.bp_addr = hw_brk.address;
2383 	arch_bp_generic_fields(hw_brk.type,
2384 			       &attr.bp_type);
2385 
2386 	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2387 					       ptrace_triggered, NULL, task);
2388 	if (IS_ERR(bp)) {
2389 		thread->ptrace_bps[0] = NULL;
2390 		return PTR_ERR(bp);
2391 	}
2392 
2393 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2394 	task->thread.hw_brk = hw_brk;
2395 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2396 	/* As described above, it was assumed 3 bits were passed with the data
2397 	 *  address, but we will assume only the mode bits will be passed
2398 	 *  as to not cause alignment restrictions for DAC-based processors.
2399 	 */
2400 
2401 	/* DAC's hold the whole address without any mode flags */
2402 	task->thread.debug.dac1 = data & ~0x3UL;
2403 
2404 	if (task->thread.debug.dac1 == 0) {
2405 		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2406 		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2407 					task->thread.debug.dbcr1)) {
2408 			task->thread.regs->msr &= ~MSR_DE;
2409 			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2410 		}
2411 		return 0;
2412 	}
2413 
2414 	/* Read or Write bits must be set */
2415 
2416 	if (!(data & 0x3UL))
2417 		return -EINVAL;
2418 
2419 	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2420 	   register */
2421 	task->thread.debug.dbcr0 |= DBCR0_IDM;
2422 
2423 	/* Check for write and read flags and set DBCR0
2424 	   accordingly */
2425 	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2426 	if (data & 0x1UL)
2427 		dbcr_dac(task) |= DBCR_DAC1R;
2428 	if (data & 0x2UL)
2429 		dbcr_dac(task) |= DBCR_DAC1W;
2430 	task->thread.regs->msr |= MSR_DE;
2431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2432 	return 0;
2433 }
2434 
2435 /*
2436  * Called by kernel/ptrace.c when detaching..
2437  *
2438  * Make sure single step bits etc are not set.
2439  */
ptrace_disable(struct task_struct * child)2440 void ptrace_disable(struct task_struct *child)
2441 {
2442 	/* make sure the single step bit is not set. */
2443 	user_disable_single_step(child);
2444 }
2445 
2446 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
set_instruction_bp(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2447 static long set_instruction_bp(struct task_struct *child,
2448 			      struct ppc_hw_breakpoint *bp_info)
2449 {
2450 	int slot;
2451 	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2452 	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2453 	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2454 	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2455 
2456 	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2457 		slot2_in_use = 1;
2458 	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2459 		slot4_in_use = 1;
2460 
2461 	if (bp_info->addr >= TASK_SIZE)
2462 		return -EIO;
2463 
2464 	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2465 
2466 		/* Make sure range is valid. */
2467 		if (bp_info->addr2 >= TASK_SIZE)
2468 			return -EIO;
2469 
2470 		/* We need a pair of IAC regsisters */
2471 		if ((!slot1_in_use) && (!slot2_in_use)) {
2472 			slot = 1;
2473 			child->thread.debug.iac1 = bp_info->addr;
2474 			child->thread.debug.iac2 = bp_info->addr2;
2475 			child->thread.debug.dbcr0 |= DBCR0_IAC1;
2476 			if (bp_info->addr_mode ==
2477 					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2478 				dbcr_iac_range(child) |= DBCR_IAC12X;
2479 			else
2480 				dbcr_iac_range(child) |= DBCR_IAC12I;
2481 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2482 		} else if ((!slot3_in_use) && (!slot4_in_use)) {
2483 			slot = 3;
2484 			child->thread.debug.iac3 = bp_info->addr;
2485 			child->thread.debug.iac4 = bp_info->addr2;
2486 			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2487 			if (bp_info->addr_mode ==
2488 					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2489 				dbcr_iac_range(child) |= DBCR_IAC34X;
2490 			else
2491 				dbcr_iac_range(child) |= DBCR_IAC34I;
2492 #endif
2493 		} else
2494 			return -ENOSPC;
2495 	} else {
2496 		/* We only need one.  If possible leave a pair free in
2497 		 * case a range is needed later
2498 		 */
2499 		if (!slot1_in_use) {
2500 			/*
2501 			 * Don't use iac1 if iac1-iac2 are free and either
2502 			 * iac3 or iac4 (but not both) are free
2503 			 */
2504 			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2505 				slot = 1;
2506 				child->thread.debug.iac1 = bp_info->addr;
2507 				child->thread.debug.dbcr0 |= DBCR0_IAC1;
2508 				goto out;
2509 			}
2510 		}
2511 		if (!slot2_in_use) {
2512 			slot = 2;
2513 			child->thread.debug.iac2 = bp_info->addr;
2514 			child->thread.debug.dbcr0 |= DBCR0_IAC2;
2515 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2516 		} else if (!slot3_in_use) {
2517 			slot = 3;
2518 			child->thread.debug.iac3 = bp_info->addr;
2519 			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2520 		} else if (!slot4_in_use) {
2521 			slot = 4;
2522 			child->thread.debug.iac4 = bp_info->addr;
2523 			child->thread.debug.dbcr0 |= DBCR0_IAC4;
2524 #endif
2525 		} else
2526 			return -ENOSPC;
2527 	}
2528 out:
2529 	child->thread.debug.dbcr0 |= DBCR0_IDM;
2530 	child->thread.regs->msr |= MSR_DE;
2531 
2532 	return slot;
2533 }
2534 
del_instruction_bp(struct task_struct * child,int slot)2535 static int del_instruction_bp(struct task_struct *child, int slot)
2536 {
2537 	switch (slot) {
2538 	case 1:
2539 		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2540 			return -ENOENT;
2541 
2542 		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2543 			/* address range - clear slots 1 & 2 */
2544 			child->thread.debug.iac2 = 0;
2545 			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2546 		}
2547 		child->thread.debug.iac1 = 0;
2548 		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2549 		break;
2550 	case 2:
2551 		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2552 			return -ENOENT;
2553 
2554 		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2555 			/* used in a range */
2556 			return -EINVAL;
2557 		child->thread.debug.iac2 = 0;
2558 		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2559 		break;
2560 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2561 	case 3:
2562 		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2563 			return -ENOENT;
2564 
2565 		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2566 			/* address range - clear slots 3 & 4 */
2567 			child->thread.debug.iac4 = 0;
2568 			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2569 		}
2570 		child->thread.debug.iac3 = 0;
2571 		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2572 		break;
2573 	case 4:
2574 		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2575 			return -ENOENT;
2576 
2577 		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2578 			/* Used in a range */
2579 			return -EINVAL;
2580 		child->thread.debug.iac4 = 0;
2581 		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2582 		break;
2583 #endif
2584 	default:
2585 		return -EINVAL;
2586 	}
2587 	return 0;
2588 }
2589 
set_dac(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2590 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2591 {
2592 	int byte_enable =
2593 		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2594 		& 0xf;
2595 	int condition_mode =
2596 		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2597 	int slot;
2598 
2599 	if (byte_enable && (condition_mode == 0))
2600 		return -EINVAL;
2601 
2602 	if (bp_info->addr >= TASK_SIZE)
2603 		return -EIO;
2604 
2605 	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2606 		slot = 1;
2607 		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2608 			dbcr_dac(child) |= DBCR_DAC1R;
2609 		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2610 			dbcr_dac(child) |= DBCR_DAC1W;
2611 		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2612 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2613 		if (byte_enable) {
2614 			child->thread.debug.dvc1 =
2615 				(unsigned long)bp_info->condition_value;
2616 			child->thread.debug.dbcr2 |=
2617 				((byte_enable << DBCR2_DVC1BE_SHIFT) |
2618 				 (condition_mode << DBCR2_DVC1M_SHIFT));
2619 		}
2620 #endif
2621 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2622 	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2623 		/* Both dac1 and dac2 are part of a range */
2624 		return -ENOSPC;
2625 #endif
2626 	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2627 		slot = 2;
2628 		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2629 			dbcr_dac(child) |= DBCR_DAC2R;
2630 		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2631 			dbcr_dac(child) |= DBCR_DAC2W;
2632 		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2633 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2634 		if (byte_enable) {
2635 			child->thread.debug.dvc2 =
2636 				(unsigned long)bp_info->condition_value;
2637 			child->thread.debug.dbcr2 |=
2638 				((byte_enable << DBCR2_DVC2BE_SHIFT) |
2639 				 (condition_mode << DBCR2_DVC2M_SHIFT));
2640 		}
2641 #endif
2642 	} else
2643 		return -ENOSPC;
2644 	child->thread.debug.dbcr0 |= DBCR0_IDM;
2645 	child->thread.regs->msr |= MSR_DE;
2646 
2647 	return slot + 4;
2648 }
2649 
del_dac(struct task_struct * child,int slot)2650 static int del_dac(struct task_struct *child, int slot)
2651 {
2652 	if (slot == 1) {
2653 		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2654 			return -ENOENT;
2655 
2656 		child->thread.debug.dac1 = 0;
2657 		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2658 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2659 		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2660 			child->thread.debug.dac2 = 0;
2661 			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2662 		}
2663 		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2664 #endif
2665 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2666 		child->thread.debug.dvc1 = 0;
2667 #endif
2668 	} else if (slot == 2) {
2669 		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2670 			return -ENOENT;
2671 
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673 		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2674 			/* Part of a range */
2675 			return -EINVAL;
2676 		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2677 #endif
2678 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2679 		child->thread.debug.dvc2 = 0;
2680 #endif
2681 		child->thread.debug.dac2 = 0;
2682 		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2683 	} else
2684 		return -EINVAL;
2685 
2686 	return 0;
2687 }
2688 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2689 
2690 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
set_dac_range(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2691 static int set_dac_range(struct task_struct *child,
2692 			 struct ppc_hw_breakpoint *bp_info)
2693 {
2694 	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2695 
2696 	/* We don't allow range watchpoints to be used with DVC */
2697 	if (bp_info->condition_mode)
2698 		return -EINVAL;
2699 
2700 	/*
2701 	 * Best effort to verify the address range.  The user/supervisor bits
2702 	 * prevent trapping in kernel space, but let's fail on an obvious bad
2703 	 * range.  The simple test on the mask is not fool-proof, and any
2704 	 * exclusive range will spill over into kernel space.
2705 	 */
2706 	if (bp_info->addr >= TASK_SIZE)
2707 		return -EIO;
2708 	if (mode == PPC_BREAKPOINT_MODE_MASK) {
2709 		/*
2710 		 * dac2 is a bitmask.  Don't allow a mask that makes a
2711 		 * kernel space address from a valid dac1 value
2712 		 */
2713 		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2714 			return -EIO;
2715 	} else {
2716 		/*
2717 		 * For range breakpoints, addr2 must also be a valid address
2718 		 */
2719 		if (bp_info->addr2 >= TASK_SIZE)
2720 			return -EIO;
2721 	}
2722 
2723 	if (child->thread.debug.dbcr0 &
2724 	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2725 		return -ENOSPC;
2726 
2727 	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2728 		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2729 	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2730 		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2731 	child->thread.debug.dac1 = bp_info->addr;
2732 	child->thread.debug.dac2 = bp_info->addr2;
2733 	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2734 		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2735 	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2736 		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2737 	else	/* PPC_BREAKPOINT_MODE_MASK */
2738 		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2739 	child->thread.regs->msr |= MSR_DE;
2740 
2741 	return 5;
2742 }
2743 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2744 
ppc_set_hwdebug(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2745 static long ppc_set_hwdebug(struct task_struct *child,
2746 		     struct ppc_hw_breakpoint *bp_info)
2747 {
2748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2749 	int len = 0;
2750 	struct thread_struct *thread = &(child->thread);
2751 	struct perf_event *bp;
2752 	struct perf_event_attr attr;
2753 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2754 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2755 	struct arch_hw_breakpoint brk;
2756 #endif
2757 
2758 	if (bp_info->version != 1)
2759 		return -ENOTSUPP;
2760 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2761 	/*
2762 	 * Check for invalid flags and combinations
2763 	 */
2764 	if ((bp_info->trigger_type == 0) ||
2765 	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2766 				       PPC_BREAKPOINT_TRIGGER_RW)) ||
2767 	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2768 	    (bp_info->condition_mode &
2769 	     ~(PPC_BREAKPOINT_CONDITION_MODE |
2770 	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
2771 		return -EINVAL;
2772 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2773 	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2774 		return -EINVAL;
2775 #endif
2776 
2777 	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2778 		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2779 		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2780 			return -EINVAL;
2781 		return set_instruction_bp(child, bp_info);
2782 	}
2783 	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2784 		return set_dac(child, bp_info);
2785 
2786 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2787 	return set_dac_range(child, bp_info);
2788 #else
2789 	return -EINVAL;
2790 #endif
2791 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2792 	/*
2793 	 * We only support one data breakpoint
2794 	 */
2795 	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2796 	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2797 	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2798 		return -EINVAL;
2799 
2800 	if ((unsigned long)bp_info->addr >= TASK_SIZE)
2801 		return -EIO;
2802 
2803 	brk.address = bp_info->addr & ~7UL;
2804 	brk.type = HW_BRK_TYPE_TRANSLATE;
2805 	brk.len = 8;
2806 	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2807 		brk.type |= HW_BRK_TYPE_READ;
2808 	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2809 		brk.type |= HW_BRK_TYPE_WRITE;
2810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2811 	/*
2812 	 * Check if the request is for 'range' breakpoints. We can
2813 	 * support it if range < 8 bytes.
2814 	 */
2815 	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2816 		len = bp_info->addr2 - bp_info->addr;
2817 	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2818 		len = 1;
2819 	else
2820 		return -EINVAL;
2821 	bp = thread->ptrace_bps[0];
2822 	if (bp)
2823 		return -ENOSPC;
2824 
2825 	/* Create a new breakpoint request if one doesn't exist already */
2826 	hw_breakpoint_init(&attr);
2827 	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2828 	attr.bp_len = len;
2829 	arch_bp_generic_fields(brk.type, &attr.bp_type);
2830 
2831 	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2832 					       ptrace_triggered, NULL, child);
2833 	if (IS_ERR(bp)) {
2834 		thread->ptrace_bps[0] = NULL;
2835 		return PTR_ERR(bp);
2836 	}
2837 
2838 	return 1;
2839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2840 
2841 	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2842 		return -EINVAL;
2843 
2844 	if (child->thread.hw_brk.address)
2845 		return -ENOSPC;
2846 
2847 	child->thread.hw_brk = brk;
2848 
2849 	return 1;
2850 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2851 }
2852 
ppc_del_hwdebug(struct task_struct * child,long data)2853 static long ppc_del_hwdebug(struct task_struct *child, long data)
2854 {
2855 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2856 	int ret = 0;
2857 	struct thread_struct *thread = &(child->thread);
2858 	struct perf_event *bp;
2859 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2861 	int rc;
2862 
2863 	if (data <= 4)
2864 		rc = del_instruction_bp(child, (int)data);
2865 	else
2866 		rc = del_dac(child, (int)data - 4);
2867 
2868 	if (!rc) {
2869 		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2870 					child->thread.debug.dbcr1)) {
2871 			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2872 			child->thread.regs->msr &= ~MSR_DE;
2873 		}
2874 	}
2875 	return rc;
2876 #else
2877 	if (data != 1)
2878 		return -EINVAL;
2879 
2880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2881 	bp = thread->ptrace_bps[0];
2882 	if (bp) {
2883 		unregister_hw_breakpoint(bp);
2884 		thread->ptrace_bps[0] = NULL;
2885 	} else
2886 		ret = -ENOENT;
2887 	return ret;
2888 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2889 	if (child->thread.hw_brk.address == 0)
2890 		return -ENOENT;
2891 
2892 	child->thread.hw_brk.address = 0;
2893 	child->thread.hw_brk.type = 0;
2894 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2895 
2896 	return 0;
2897 #endif
2898 }
2899 
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2900 long arch_ptrace(struct task_struct *child, long request,
2901 		 unsigned long addr, unsigned long data)
2902 {
2903 	int ret = -EPERM;
2904 	void __user *datavp = (void __user *) data;
2905 	unsigned long __user *datalp = datavp;
2906 
2907 	switch (request) {
2908 	/* read the word at location addr in the USER area. */
2909 	case PTRACE_PEEKUSR: {
2910 		unsigned long index, tmp;
2911 
2912 		ret = -EIO;
2913 		/* convert to index and check */
2914 #ifdef CONFIG_PPC32
2915 		index = addr >> 2;
2916 		if ((addr & 3) || (index > PT_FPSCR)
2917 		    || (child->thread.regs == NULL))
2918 #else
2919 		index = addr >> 3;
2920 		if ((addr & 7) || (index > PT_FPSCR))
2921 #endif
2922 			break;
2923 
2924 		CHECK_FULL_REGS(child->thread.regs);
2925 		if (index < PT_FPR0) {
2926 			ret = ptrace_get_reg(child, (int) index, &tmp);
2927 			if (ret)
2928 				break;
2929 		} else {
2930 			unsigned int fpidx = index - PT_FPR0;
2931 
2932 			flush_fp_to_thread(child);
2933 			if (fpidx < (PT_FPSCR - PT_FPR0))
2934 				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2935 				       sizeof(long));
2936 			else
2937 				tmp = child->thread.fp_state.fpscr;
2938 		}
2939 		ret = put_user(tmp, datalp);
2940 		break;
2941 	}
2942 
2943 	/* write the word at location addr in the USER area */
2944 	case PTRACE_POKEUSR: {
2945 		unsigned long index;
2946 
2947 		ret = -EIO;
2948 		/* convert to index and check */
2949 #ifdef CONFIG_PPC32
2950 		index = addr >> 2;
2951 		if ((addr & 3) || (index > PT_FPSCR)
2952 		    || (child->thread.regs == NULL))
2953 #else
2954 		index = addr >> 3;
2955 		if ((addr & 7) || (index > PT_FPSCR))
2956 #endif
2957 			break;
2958 
2959 		CHECK_FULL_REGS(child->thread.regs);
2960 		if (index < PT_FPR0) {
2961 			ret = ptrace_put_reg(child, index, data);
2962 		} else {
2963 			unsigned int fpidx = index - PT_FPR0;
2964 
2965 			flush_fp_to_thread(child);
2966 			if (fpidx < (PT_FPSCR - PT_FPR0))
2967 				memcpy(&child->thread.TS_FPR(fpidx), &data,
2968 				       sizeof(long));
2969 			else
2970 				child->thread.fp_state.fpscr = data;
2971 			ret = 0;
2972 		}
2973 		break;
2974 	}
2975 
2976 	case PPC_PTRACE_GETHWDBGINFO: {
2977 		struct ppc_debug_info dbginfo;
2978 
2979 		dbginfo.version = 1;
2980 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2981 		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2982 		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2983 		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2984 		dbginfo.data_bp_alignment = 4;
2985 		dbginfo.sizeof_condition = 4;
2986 		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2987 				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
2988 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2989 		dbginfo.features |=
2990 				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2991 				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
2992 #endif
2993 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2994 		dbginfo.num_instruction_bps = 0;
2995 		dbginfo.num_data_bps = 1;
2996 		dbginfo.num_condition_regs = 0;
2997 #ifdef CONFIG_PPC64
2998 		dbginfo.data_bp_alignment = 8;
2999 #else
3000 		dbginfo.data_bp_alignment = 4;
3001 #endif
3002 		dbginfo.sizeof_condition = 0;
3003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3004 		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3005 		if (cpu_has_feature(CPU_FTR_DAWR))
3006 			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3007 #else
3008 		dbginfo.features = 0;
3009 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3010 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3011 
3012 		if (!access_ok(VERIFY_WRITE, datavp,
3013 			       sizeof(struct ppc_debug_info)))
3014 			return -EFAULT;
3015 		ret = __copy_to_user(datavp, &dbginfo,
3016 				     sizeof(struct ppc_debug_info)) ?
3017 		      -EFAULT : 0;
3018 		break;
3019 	}
3020 
3021 	case PPC_PTRACE_SETHWDEBUG: {
3022 		struct ppc_hw_breakpoint bp_info;
3023 
3024 		if (!access_ok(VERIFY_READ, datavp,
3025 			       sizeof(struct ppc_hw_breakpoint)))
3026 			return -EFAULT;
3027 		ret = __copy_from_user(&bp_info, datavp,
3028 				       sizeof(struct ppc_hw_breakpoint)) ?
3029 		      -EFAULT : 0;
3030 		if (!ret)
3031 			ret = ppc_set_hwdebug(child, &bp_info);
3032 		break;
3033 	}
3034 
3035 	case PPC_PTRACE_DELHWDEBUG: {
3036 		ret = ppc_del_hwdebug(child, data);
3037 		break;
3038 	}
3039 
3040 	case PTRACE_GET_DEBUGREG: {
3041 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3042 		unsigned long dabr_fake;
3043 #endif
3044 		ret = -EINVAL;
3045 		/* We only support one DABR and no IABRS at the moment */
3046 		if (addr > 0)
3047 			break;
3048 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3049 		ret = put_user(child->thread.debug.dac1, datalp);
3050 #else
3051 		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3052 			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3053 		ret = put_user(dabr_fake, datalp);
3054 #endif
3055 		break;
3056 	}
3057 
3058 	case PTRACE_SET_DEBUGREG:
3059 		ret = ptrace_set_debugreg(child, addr, data);
3060 		break;
3061 
3062 #ifdef CONFIG_PPC64
3063 	case PTRACE_GETREGS64:
3064 #endif
3065 	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
3066 		return copy_regset_to_user(child, &user_ppc_native_view,
3067 					   REGSET_GPR,
3068 					   0, sizeof(struct pt_regs),
3069 					   datavp);
3070 
3071 #ifdef CONFIG_PPC64
3072 	case PTRACE_SETREGS64:
3073 #endif
3074 	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
3075 		return copy_regset_from_user(child, &user_ppc_native_view,
3076 					     REGSET_GPR,
3077 					     0, sizeof(struct pt_regs),
3078 					     datavp);
3079 
3080 	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3081 		return copy_regset_to_user(child, &user_ppc_native_view,
3082 					   REGSET_FPR,
3083 					   0, sizeof(elf_fpregset_t),
3084 					   datavp);
3085 
3086 	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3087 		return copy_regset_from_user(child, &user_ppc_native_view,
3088 					     REGSET_FPR,
3089 					     0, sizeof(elf_fpregset_t),
3090 					     datavp);
3091 
3092 #ifdef CONFIG_ALTIVEC
3093 	case PTRACE_GETVRREGS:
3094 		return copy_regset_to_user(child, &user_ppc_native_view,
3095 					   REGSET_VMX,
3096 					   0, (33 * sizeof(vector128) +
3097 					       sizeof(u32)),
3098 					   datavp);
3099 
3100 	case PTRACE_SETVRREGS:
3101 		return copy_regset_from_user(child, &user_ppc_native_view,
3102 					     REGSET_VMX,
3103 					     0, (33 * sizeof(vector128) +
3104 						 sizeof(u32)),
3105 					     datavp);
3106 #endif
3107 #ifdef CONFIG_VSX
3108 	case PTRACE_GETVSRREGS:
3109 		return copy_regset_to_user(child, &user_ppc_native_view,
3110 					   REGSET_VSX,
3111 					   0, 32 * sizeof(double),
3112 					   datavp);
3113 
3114 	case PTRACE_SETVSRREGS:
3115 		return copy_regset_from_user(child, &user_ppc_native_view,
3116 					     REGSET_VSX,
3117 					     0, 32 * sizeof(double),
3118 					     datavp);
3119 #endif
3120 #ifdef CONFIG_SPE
3121 	case PTRACE_GETEVRREGS:
3122 		/* Get the child spe register state. */
3123 		return copy_regset_to_user(child, &user_ppc_native_view,
3124 					   REGSET_SPE, 0, 35 * sizeof(u32),
3125 					   datavp);
3126 
3127 	case PTRACE_SETEVRREGS:
3128 		/* Set the child spe register state. */
3129 		return copy_regset_from_user(child, &user_ppc_native_view,
3130 					     REGSET_SPE, 0, 35 * sizeof(u32),
3131 					     datavp);
3132 #endif
3133 
3134 	default:
3135 		ret = ptrace_request(child, request, addr, data);
3136 		break;
3137 	}
3138 	return ret;
3139 }
3140 
3141 #ifdef CONFIG_SECCOMP
do_seccomp(struct pt_regs * regs)3142 static int do_seccomp(struct pt_regs *regs)
3143 {
3144 	if (!test_thread_flag(TIF_SECCOMP))
3145 		return 0;
3146 
3147 	/*
3148 	 * The ABI we present to seccomp tracers is that r3 contains
3149 	 * the syscall return value and orig_gpr3 contains the first
3150 	 * syscall parameter. This is different to the ptrace ABI where
3151 	 * both r3 and orig_gpr3 contain the first syscall parameter.
3152 	 */
3153 	regs->gpr[3] = -ENOSYS;
3154 
3155 	/*
3156 	 * We use the __ version here because we have already checked
3157 	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3158 	 * have already loaded -ENOSYS into r3, or seccomp has put
3159 	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3160 	 */
3161 	if (__secure_computing(NULL))
3162 		return -1;
3163 
3164 	/*
3165 	 * The syscall was allowed by seccomp, restore the register
3166 	 * state to what audit expects.
3167 	 * Note that we use orig_gpr3, which means a seccomp tracer can
3168 	 * modify the first syscall parameter (in orig_gpr3) and also
3169 	 * allow the syscall to proceed.
3170 	 */
3171 	regs->gpr[3] = regs->orig_gpr3;
3172 
3173 	return 0;
3174 }
3175 #else
do_seccomp(struct pt_regs * regs)3176 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3177 #endif /* CONFIG_SECCOMP */
3178 
3179 /**
3180  * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3181  * @regs: the pt_regs of the task to trace (current)
3182  *
3183  * Performs various types of tracing on syscall entry. This includes seccomp,
3184  * ptrace, syscall tracepoints and audit.
3185  *
3186  * The pt_regs are potentially visible to userspace via ptrace, so their
3187  * contents is ABI.
3188  *
3189  * One or more of the tracers may modify the contents of pt_regs, in particular
3190  * to modify arguments or even the syscall number itself.
3191  *
3192  * It's also possible that a tracer can choose to reject the system call. In
3193  * that case this function will return an illegal syscall number, and will put
3194  * an appropriate return value in regs->r3.
3195  *
3196  * Return: the (possibly changed) syscall number.
3197  */
do_syscall_trace_enter(struct pt_regs * regs)3198 long do_syscall_trace_enter(struct pt_regs *regs)
3199 {
3200 	user_exit();
3201 
3202 	/*
3203 	 * The tracer may decide to abort the syscall, if so tracehook
3204 	 * will return !0. Note that the tracer may also just change
3205 	 * regs->gpr[0] to an invalid syscall number, that is handled
3206 	 * below on the exit path.
3207 	 */
3208 	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3209 	    tracehook_report_syscall_entry(regs))
3210 		goto skip;
3211 
3212 	/* Run seccomp after ptrace; allow it to set gpr[3]. */
3213 	if (do_seccomp(regs))
3214 		return -1;
3215 
3216 	/* Avoid trace and audit when syscall is invalid. */
3217 	if (regs->gpr[0] >= NR_syscalls)
3218 		goto skip;
3219 
3220 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3221 		trace_sys_enter(regs, regs->gpr[0]);
3222 
3223 #ifdef CONFIG_PPC64
3224 	if (!is_32bit_task())
3225 		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3226 				    regs->gpr[5], regs->gpr[6]);
3227 	else
3228 #endif
3229 		audit_syscall_entry(regs->gpr[0],
3230 				    regs->gpr[3] & 0xffffffff,
3231 				    regs->gpr[4] & 0xffffffff,
3232 				    regs->gpr[5] & 0xffffffff,
3233 				    regs->gpr[6] & 0xffffffff);
3234 
3235 	/* Return the possibly modified but valid syscall number */
3236 	return regs->gpr[0];
3237 
3238 skip:
3239 	/*
3240 	 * If we are aborting explicitly, or if the syscall number is
3241 	 * now invalid, set the return value to -ENOSYS.
3242 	 */
3243 	regs->gpr[3] = -ENOSYS;
3244 	return -1;
3245 }
3246 
do_syscall_trace_leave(struct pt_regs * regs)3247 void do_syscall_trace_leave(struct pt_regs *regs)
3248 {
3249 	int step;
3250 
3251 	audit_syscall_exit(regs);
3252 
3253 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3254 		trace_sys_exit(regs, regs->result);
3255 
3256 	step = test_thread_flag(TIF_SINGLESTEP);
3257 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3258 		tracehook_report_syscall_exit(regs, step);
3259 
3260 	user_enter();
3261 }
3262