• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47 
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <asm/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
67 
68 #include "mmu_decl.h"
69 
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
74 
75 #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
76 #warning TASK_SIZE is smaller than it needs to be.
77 #endif
78 #endif /* CONFIG_PPC_STD_MMU_64 */
79 
80 phys_addr_t memstart_addr = ~0;
81 EXPORT_SYMBOL_GPL(memstart_addr);
82 phys_addr_t kernstart_addr;
83 EXPORT_SYMBOL_GPL(kernstart_addr);
84 
pgd_ctor(void * addr)85 static void pgd_ctor(void *addr)
86 {
87 	memset(addr, 0, PGD_TABLE_SIZE);
88 }
89 
pud_ctor(void * addr)90 static void pud_ctor(void *addr)
91 {
92 	memset(addr, 0, PUD_TABLE_SIZE);
93 }
94 
pmd_ctor(void * addr)95 static void pmd_ctor(void *addr)
96 {
97 	memset(addr, 0, PMD_TABLE_SIZE);
98 }
99 
100 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
101 
102 /*
103  * Create a kmem_cache() for pagetables.  This is not used for PTE
104  * pages - they're linked to struct page, come from the normal free
105  * pages pool and have a different entry size (see real_pte_t) to
106  * everything else.  Caches created by this function are used for all
107  * the higher level pagetables, and for hugepage pagetables.
108  */
pgtable_cache_add(unsigned shift,void (* ctor)(void *))109 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
110 {
111 	char *name;
112 	unsigned long table_size = sizeof(void *) << shift;
113 	unsigned long align = table_size;
114 
115 	/* When batching pgtable pointers for RCU freeing, we store
116 	 * the index size in the low bits.  Table alignment must be
117 	 * big enough to fit it.
118 	 *
119 	 * Likewise, hugeapge pagetable pointers contain a (different)
120 	 * shift value in the low bits.  All tables must be aligned so
121 	 * as to leave enough 0 bits in the address to contain it. */
122 	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
123 				     HUGEPD_SHIFT_MASK + 1);
124 	struct kmem_cache *new;
125 
126 	/* It would be nice if this was a BUILD_BUG_ON(), but at the
127 	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
128 	 * constant expression, so so much for that. */
129 	BUG_ON(!is_power_of_2(minalign));
130 	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
131 
132 	if (PGT_CACHE(shift))
133 		return; /* Already have a cache of this size */
134 
135 	align = max_t(unsigned long, align, minalign);
136 	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
137 	new = kmem_cache_create(name, table_size, align, 0, ctor);
138 	kfree(name);
139 	pgtable_cache[shift - 1] = new;
140 	pr_debug("Allocated pgtable cache for order %d\n", shift);
141 }
142 
143 
pgtable_cache_init(void)144 void pgtable_cache_init(void)
145 {
146 	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
147 	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
148 	/*
149 	 * In all current configs, when the PUD index exists it's the
150 	 * same size as either the pgd or pmd index except with THP enabled
151 	 * on book3s 64
152 	 */
153 	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
154 		pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
155 
156 	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
157 		panic("Couldn't allocate pgtable caches");
158 	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
159 		panic("Couldn't allocate pud pgtable caches");
160 }
161 
162 #ifdef CONFIG_SPARSEMEM_VMEMMAP
163 /*
164  * Given an address within the vmemmap, determine the pfn of the page that
165  * represents the start of the section it is within.  Note that we have to
166  * do this by hand as the proffered address may not be correctly aligned.
167  * Subtraction of non-aligned pointers produces undefined results.
168  */
vmemmap_section_start(unsigned long page)169 static unsigned long __meminit vmemmap_section_start(unsigned long page)
170 {
171 	unsigned long offset = page - ((unsigned long)(vmemmap));
172 
173 	/* Return the pfn of the start of the section. */
174 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
175 }
176 
177 /*
178  * Check if this vmemmap page is already initialised.  If any section
179  * which overlaps this vmemmap page is initialised then this page is
180  * initialised already.
181  */
vmemmap_populated(unsigned long start,int page_size)182 static int __meminit vmemmap_populated(unsigned long start, int page_size)
183 {
184 	unsigned long end = start + page_size;
185 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
186 
187 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
188 		if (pfn_valid(page_to_pfn((struct page *)start)))
189 			return 1;
190 
191 	return 0;
192 }
193 
194 struct vmemmap_backing *vmemmap_list;
195 static struct vmemmap_backing *next;
196 static int num_left;
197 static int num_freed;
198 
vmemmap_list_alloc(int node)199 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
200 {
201 	struct vmemmap_backing *vmem_back;
202 	/* get from freed entries first */
203 	if (num_freed) {
204 		num_freed--;
205 		vmem_back = next;
206 		next = next->list;
207 
208 		return vmem_back;
209 	}
210 
211 	/* allocate a page when required and hand out chunks */
212 	if (!num_left) {
213 		next = vmemmap_alloc_block(PAGE_SIZE, node);
214 		if (unlikely(!next)) {
215 			WARN_ON(1);
216 			return NULL;
217 		}
218 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
219 	}
220 
221 	num_left--;
222 
223 	return next++;
224 }
225 
vmemmap_list_populate(unsigned long phys,unsigned long start,int node)226 static __meminit void vmemmap_list_populate(unsigned long phys,
227 					    unsigned long start,
228 					    int node)
229 {
230 	struct vmemmap_backing *vmem_back;
231 
232 	vmem_back = vmemmap_list_alloc(node);
233 	if (unlikely(!vmem_back)) {
234 		WARN_ON(1);
235 		return;
236 	}
237 
238 	vmem_back->phys = phys;
239 	vmem_back->virt_addr = start;
240 	vmem_back->list = vmemmap_list;
241 
242 	vmemmap_list = vmem_back;
243 }
244 
vmemmap_populate(unsigned long start,unsigned long end,int node)245 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
246 {
247 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
248 
249 	/* Align to the page size of the linear mapping. */
250 	start = _ALIGN_DOWN(start, page_size);
251 
252 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
253 
254 	for (; start < end; start += page_size) {
255 		void *p;
256 		int rc;
257 
258 		if (vmemmap_populated(start, page_size))
259 			continue;
260 
261 		p = vmemmap_alloc_block(page_size, node);
262 		if (!p)
263 			return -ENOMEM;
264 
265 		vmemmap_list_populate(__pa(p), start, node);
266 
267 		pr_debug("      * %016lx..%016lx allocated at %p\n",
268 			 start, start + page_size, p);
269 
270 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
271 		if (rc < 0) {
272 			pr_warning(
273 				"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
274 				rc);
275 			return -EFAULT;
276 		}
277 	}
278 
279 	return 0;
280 }
281 
282 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_list_free(unsigned long start)283 static unsigned long vmemmap_list_free(unsigned long start)
284 {
285 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
286 
287 	vmem_back_prev = vmem_back = vmemmap_list;
288 
289 	/* look for it with prev pointer recorded */
290 	for (; vmem_back; vmem_back = vmem_back->list) {
291 		if (vmem_back->virt_addr == start)
292 			break;
293 		vmem_back_prev = vmem_back;
294 	}
295 
296 	if (unlikely(!vmem_back)) {
297 		WARN_ON(1);
298 		return 0;
299 	}
300 
301 	/* remove it from vmemmap_list */
302 	if (vmem_back == vmemmap_list) /* remove head */
303 		vmemmap_list = vmem_back->list;
304 	else
305 		vmem_back_prev->list = vmem_back->list;
306 
307 	/* next point to this freed entry */
308 	vmem_back->list = next;
309 	next = vmem_back;
310 	num_freed++;
311 
312 	return vmem_back->phys;
313 }
314 
vmemmap_free(unsigned long start,unsigned long end)315 void __ref vmemmap_free(unsigned long start, unsigned long end)
316 {
317 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
318 
319 	start = _ALIGN_DOWN(start, page_size);
320 
321 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
322 
323 	for (; start < end; start += page_size) {
324 		unsigned long addr;
325 
326 		/*
327 		 * the section has already be marked as invalid, so
328 		 * vmemmap_populated() true means some other sections still
329 		 * in this page, so skip it.
330 		 */
331 		if (vmemmap_populated(start, page_size))
332 			continue;
333 
334 		addr = vmemmap_list_free(start);
335 		if (addr) {
336 			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
337 
338 			if (PageReserved(page)) {
339 				/* allocated from bootmem */
340 				if (page_size < PAGE_SIZE) {
341 					/*
342 					 * this shouldn't happen, but if it is
343 					 * the case, leave the memory there
344 					 */
345 					WARN_ON_ONCE(1);
346 				} else {
347 					unsigned int nr_pages =
348 						1 << get_order(page_size);
349 					while (nr_pages--)
350 						free_reserved_page(page++);
351 				}
352 			} else
353 				free_pages((unsigned long)(__va(addr)),
354 							get_order(page_size));
355 
356 			vmemmap_remove_mapping(start, page_size);
357 		}
358 	}
359 }
360 #endif
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long size)361 void register_page_bootmem_memmap(unsigned long section_nr,
362 				  struct page *start_page, unsigned long size)
363 {
364 }
365 
366 /*
367  * We do not have access to the sparsemem vmemmap, so we fallback to
368  * walking the list of sparsemem blocks which we already maintain for
369  * the sake of crashdump. In the long run, we might want to maintain
370  * a tree if performance of that linear walk becomes a problem.
371  *
372  * realmode_pfn_to_page functions can fail due to:
373  * 1) As real sparsemem blocks do not lay in RAM continously (they
374  * are in virtual address space which is not available in the real mode),
375  * the requested page struct can be split between blocks so get_page/put_page
376  * may fail.
377  * 2) When huge pages are used, the get_page/put_page API will fail
378  * in real mode as the linked addresses in the page struct are virtual
379  * too.
380  */
realmode_pfn_to_page(unsigned long pfn)381 struct page *realmode_pfn_to_page(unsigned long pfn)
382 {
383 	struct vmemmap_backing *vmem_back;
384 	struct page *page;
385 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
386 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
387 
388 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
389 		if (pg_va < vmem_back->virt_addr)
390 			continue;
391 
392 		/* After vmemmap_list entry free is possible, need check all */
393 		if ((pg_va + sizeof(struct page)) <=
394 				(vmem_back->virt_addr + page_size)) {
395 			page = (struct page *) (vmem_back->phys + pg_va -
396 				vmem_back->virt_addr);
397 			return page;
398 		}
399 	}
400 
401 	/* Probably that page struct is split between real pages */
402 	return NULL;
403 }
404 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
405 
406 #elif defined(CONFIG_FLATMEM)
407 
realmode_pfn_to_page(unsigned long pfn)408 struct page *realmode_pfn_to_page(unsigned long pfn)
409 {
410 	struct page *page = pfn_to_page(pfn);
411 	return page;
412 }
413 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
414 
415 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
416 
417 #ifdef CONFIG_PPC_STD_MMU_64
418 static bool disable_radix;
parse_disable_radix(char * p)419 static int __init parse_disable_radix(char *p)
420 {
421 	disable_radix = true;
422 	return 0;
423 }
424 early_param("disable_radix", parse_disable_radix);
425 
426 /*
427  * If we're running under a hypervisor, we currently can't do radix
428  * since we don't have the code to do the H_REGISTER_PROC_TBL hcall.
429  * We tell that we're running under a hypervisor by looking for the
430  * /chosen/ibm,architecture-vec-5 property.
431  */
early_check_vec5(void)432 static void early_check_vec5(void)
433 {
434 	unsigned long root, chosen;
435 	int size;
436 	const u8 *vec5;
437 
438 	root = of_get_flat_dt_root();
439 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
440 	if (chosen == -FDT_ERR_NOTFOUND)
441 		return;
442 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
443 	if (!vec5)
444 		return;
445 	cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
446 }
447 
mmu_early_init_devtree(void)448 void __init mmu_early_init_devtree(void)
449 {
450 	/* Disable radix mode based on kernel command line. */
451 	/* We don't yet have the machinery to do radix as a guest. */
452 	if (disable_radix || !(mfmsr() & MSR_HV))
453 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
454 
455 	/*
456 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
457 	 * When running bare-metal, we can use radix if we like
458 	 * even though the ibm,architecture-vec-5 property created by
459 	 * skiboot doesn't have the necessary bits set.
460 	 */
461 	if (early_radix_enabled() && !(mfmsr() & MSR_HV))
462 		early_check_vec5();
463 
464 	if (early_radix_enabled())
465 		radix__early_init_devtree();
466 	else
467 		hash__early_init_devtree();
468 }
469 #endif /* CONFIG_PPC_STD_MMU_64 */
470