• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 enum slb_index {
29 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
30 	VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */
31 	KSTACK_INDEX	= 2, /* Kernel stack map */
32 };
33 
34 extern void slb_allocate_realmode(unsigned long ea);
35 
slb_allocate(unsigned long ea)36 static void slb_allocate(unsigned long ea)
37 {
38 	/* Currently, we do real mode for all SLBs including user, but
39 	 * that will change if we bring back dynamic VSIDs
40 	 */
41 	slb_allocate_realmode(ea);
42 }
43 
44 #define slb_esid_mask(ssize)	\
45 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
46 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)47 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
48 					 enum slb_index index)
49 {
50 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
51 }
52 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)53 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
54 					 unsigned long flags)
55 {
56 	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
57 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
58 }
59 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)60 static inline void slb_shadow_update(unsigned long ea, int ssize,
61 				     unsigned long flags,
62 				     enum slb_index index)
63 {
64 	struct slb_shadow *p = get_slb_shadow();
65 
66 	/*
67 	 * Clear the ESID first so the entry is not valid while we are
68 	 * updating it.  No write barriers are needed here, provided
69 	 * we only update the current CPU's SLB shadow buffer.
70 	 */
71 	p->save_area[index].esid = 0;
72 	p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
73 	p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
74 }
75 
slb_shadow_clear(enum slb_index index)76 static inline void slb_shadow_clear(enum slb_index index)
77 {
78 	get_slb_shadow()->save_area[index].esid = 0;
79 }
80 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)81 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
82 					unsigned long flags,
83 					enum slb_index index)
84 {
85 	/*
86 	 * Updating the shadow buffer before writing the SLB ensures
87 	 * we don't get a stale entry here if we get preempted by PHYP
88 	 * between these two statements.
89 	 */
90 	slb_shadow_update(ea, ssize, flags, index);
91 
92 	asm volatile("slbmte  %0,%1" :
93 		     : "r" (mk_vsid_data(ea, ssize, flags)),
94 		       "r" (mk_esid_data(ea, ssize, index))
95 		     : "memory" );
96 }
97 
__slb_flush_and_rebolt(void)98 static void __slb_flush_and_rebolt(void)
99 {
100 	/* If you change this make sure you change SLB_NUM_BOLTED
101 	 * and PR KVM appropriately too. */
102 	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
103 	unsigned long ksp_esid_data, ksp_vsid_data;
104 
105 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
106 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
107 	lflags = SLB_VSID_KERNEL | linear_llp;
108 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
109 
110 	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
111 	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
112 		ksp_esid_data &= ~SLB_ESID_V;
113 		ksp_vsid_data = 0;
114 		slb_shadow_clear(KSTACK_INDEX);
115 	} else {
116 		/* Update stack entry; others don't change */
117 		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
118 		ksp_vsid_data =
119 			be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
120 	}
121 
122 	/* We need to do this all in asm, so we're sure we don't touch
123 	 * the stack between the slbia and rebolting it. */
124 	asm volatile("isync\n"
125 		     "slbia\n"
126 		     /* Slot 1 - first VMALLOC segment */
127 		     "slbmte	%0,%1\n"
128 		     /* Slot 2 - kernel stack */
129 		     "slbmte	%2,%3\n"
130 		     "isync"
131 		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
132 		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
133 		        "r"(ksp_vsid_data),
134 		        "r"(ksp_esid_data)
135 		     : "memory");
136 }
137 
slb_flush_and_rebolt(void)138 void slb_flush_and_rebolt(void)
139 {
140 
141 	WARN_ON(!irqs_disabled());
142 
143 	/*
144 	 * We can't take a PMU exception in the following code, so hard
145 	 * disable interrupts.
146 	 */
147 	hard_irq_disable();
148 
149 	__slb_flush_and_rebolt();
150 	get_paca()->slb_cache_ptr = 0;
151 }
152 
slb_vmalloc_update(void)153 void slb_vmalloc_update(void)
154 {
155 	unsigned long vflags;
156 
157 	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
158 	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
159 	slb_flush_and_rebolt();
160 }
161 
162 /* Helper function to compare esids.  There are four cases to handle.
163  * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
164  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
165  * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
166  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
167  */
esids_match(unsigned long addr1,unsigned long addr2)168 static inline int esids_match(unsigned long addr1, unsigned long addr2)
169 {
170 	int esid_1t_count;
171 
172 	/* System is not 1T segment size capable. */
173 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
174 		return (GET_ESID(addr1) == GET_ESID(addr2));
175 
176 	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
177 				((addr2 >> SID_SHIFT_1T) != 0));
178 
179 	/* both addresses are < 1T */
180 	if (esid_1t_count == 0)
181 		return (GET_ESID(addr1) == GET_ESID(addr2));
182 
183 	/* One address < 1T, the other > 1T.  Not a match */
184 	if (esid_1t_count == 1)
185 		return 0;
186 
187 	/* Both addresses are > 1T. */
188 	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
189 }
190 
191 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)192 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
193 {
194 	unsigned long offset;
195 	unsigned long slbie_data = 0;
196 	unsigned long pc = KSTK_EIP(tsk);
197 	unsigned long stack = KSTK_ESP(tsk);
198 	unsigned long exec_base;
199 
200 	/*
201 	 * We need interrupts hard-disabled here, not just soft-disabled,
202 	 * so that a PMU interrupt can't occur, which might try to access
203 	 * user memory (to get a stack trace) and possible cause an SLB miss
204 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
205 	 */
206 	hard_irq_disable();
207 	offset = get_paca()->slb_cache_ptr;
208 	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
209 	    offset <= SLB_CACHE_ENTRIES) {
210 		int i;
211 		asm volatile("isync" : : : "memory");
212 		for (i = 0; i < offset; i++) {
213 			slbie_data = (unsigned long)get_paca()->slb_cache[i]
214 				<< SID_SHIFT; /* EA */
215 			slbie_data |= user_segment_size(slbie_data)
216 				<< SLBIE_SSIZE_SHIFT;
217 			slbie_data |= SLBIE_C; /* C set for user addresses */
218 			asm volatile("slbie %0" : : "r" (slbie_data));
219 		}
220 		asm volatile("isync" : : : "memory");
221 	} else {
222 		__slb_flush_and_rebolt();
223 	}
224 
225 	/* Workaround POWER5 < DD2.1 issue */
226 	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
227 		asm volatile("slbie %0" : : "r" (slbie_data));
228 
229 	get_paca()->slb_cache_ptr = 0;
230 	copy_mm_to_paca(&mm->context);
231 
232 	/*
233 	 * preload some userspace segments into the SLB.
234 	 * Almost all 32 and 64bit PowerPC executables are linked at
235 	 * 0x10000000 so it makes sense to preload this segment.
236 	 */
237 	exec_base = 0x10000000;
238 
239 	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
240 	    is_kernel_addr(exec_base))
241 		return;
242 
243 	slb_allocate(pc);
244 
245 	if (!esids_match(pc, stack))
246 		slb_allocate(stack);
247 
248 	if (!esids_match(pc, exec_base) &&
249 	    !esids_match(stack, exec_base))
250 		slb_allocate(exec_base);
251 }
252 
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)253 static inline void patch_slb_encoding(unsigned int *insn_addr,
254 				      unsigned int immed)
255 {
256 
257 	/*
258 	 * This function patches either an li or a cmpldi instruction with
259 	 * a new immediate value. This relies on the fact that both li
260 	 * (which is actually addi) and cmpldi both take a 16-bit immediate
261 	 * value, and it is situated in the same location in the instruction,
262 	 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
263 	 * The signedness of the immediate operand differs between the two
264 	 * instructions however this code is only ever patching a small value,
265 	 * much less than 1 << 15, so we can get away with it.
266 	 * To patch the value we read the existing instruction, clear the
267 	 * immediate value, and or in our new value, then write the instruction
268 	 * back.
269 	 */
270 	unsigned int insn = (*insn_addr & 0xffff0000) | immed;
271 	patch_instruction(insn_addr, insn);
272 }
273 
274 extern u32 slb_miss_kernel_load_linear[];
275 extern u32 slb_miss_kernel_load_io[];
276 extern u32 slb_compare_rr_to_size[];
277 extern u32 slb_miss_kernel_load_vmemmap[];
278 
slb_set_size(u16 size)279 void slb_set_size(u16 size)
280 {
281 	if (mmu_slb_size == size)
282 		return;
283 
284 	mmu_slb_size = size;
285 	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
286 }
287 
slb_initialize(void)288 void slb_initialize(void)
289 {
290 	unsigned long linear_llp, vmalloc_llp, io_llp;
291 	unsigned long lflags, vflags;
292 	static int slb_encoding_inited;
293 #ifdef CONFIG_SPARSEMEM_VMEMMAP
294 	unsigned long vmemmap_llp;
295 #endif
296 
297 	/* Prepare our SLB miss handler based on our page size */
298 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
299 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
300 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
301 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
302 #ifdef CONFIG_SPARSEMEM_VMEMMAP
303 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
304 #endif
305 	if (!slb_encoding_inited) {
306 		slb_encoding_inited = 1;
307 		patch_slb_encoding(slb_miss_kernel_load_linear,
308 				   SLB_VSID_KERNEL | linear_llp);
309 		patch_slb_encoding(slb_miss_kernel_load_io,
310 				   SLB_VSID_KERNEL | io_llp);
311 		patch_slb_encoding(slb_compare_rr_to_size,
312 				   mmu_slb_size);
313 
314 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
315 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
316 
317 #ifdef CONFIG_SPARSEMEM_VMEMMAP
318 		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
319 				   SLB_VSID_KERNEL | vmemmap_llp);
320 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
321 #endif
322 	}
323 
324 	get_paca()->stab_rr = SLB_NUM_BOLTED;
325 
326 	lflags = SLB_VSID_KERNEL | linear_llp;
327 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
328 
329 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
330 	asm volatile("isync":::"memory");
331 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
332 	asm volatile("isync; slbia; isync":::"memory");
333 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
334 	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
335 
336 	/* For the boot cpu, we're running on the stack in init_thread_union,
337 	 * which is in the first segment of the linear mapping, and also
338 	 * get_paca()->kstack hasn't been initialized yet.
339 	 * For secondary cpus, we need to bolt the kernel stack entry now.
340 	 */
341 	slb_shadow_clear(KSTACK_INDEX);
342 	if (raw_smp_processor_id() != boot_cpuid &&
343 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
344 		create_shadowed_slbe(get_paca()->kstack,
345 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
346 
347 	asm volatile("isync":::"memory");
348 }
349