• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains the routines for TLB flushing.
3  * On machines where the MMU does not use a hash table to store virtual to
4  * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5  * this does -not- include 603 however which shares the implementation with
6  * hash based processors)
7  *
8  *  -- BenH
9  *
10  * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11  *                     IBM Corp.
12  *
13  *  Derived from arch/ppc/mm/init.c:
14  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15  *
16  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
18  *    Copyright (C) 1996 Paul Mackerras
19  *
20  *  Derived from "arch/i386/mm/init.c"
21  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
22  *
23  *  This program is free software; you can redistribute it and/or
24  *  modify it under the terms of the GNU General Public License
25  *  as published by the Free Software Foundation; either version
26  *  2 of the License, or (at your option) any later version.
27  *
28  */
29 
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41 
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/cputhreads.h>
46 #include <asm/hugetlb.h>
47 #include <asm/paca.h>
48 
49 #include "mmu_decl.h"
50 
51 /*
52  * This struct lists the sw-supported page sizes.  The hardawre MMU may support
53  * other sizes not listed here.   The .ind field is only used on MMUs that have
54  * indirect page table entries.
55  */
56 #ifdef CONFIG_PPC_BOOK3E_MMU
57 #ifdef CONFIG_PPC_FSL_BOOK3E
58 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
59 	[MMU_PAGE_4K] = {
60 		.shift	= 12,
61 		.enc	= BOOK3E_PAGESZ_4K,
62 	},
63 	[MMU_PAGE_2M] = {
64 		.shift	= 21,
65 		.enc	= BOOK3E_PAGESZ_2M,
66 	},
67 	[MMU_PAGE_4M] = {
68 		.shift	= 22,
69 		.enc	= BOOK3E_PAGESZ_4M,
70 	},
71 	[MMU_PAGE_16M] = {
72 		.shift	= 24,
73 		.enc	= BOOK3E_PAGESZ_16M,
74 	},
75 	[MMU_PAGE_64M] = {
76 		.shift	= 26,
77 		.enc	= BOOK3E_PAGESZ_64M,
78 	},
79 	[MMU_PAGE_256M] = {
80 		.shift	= 28,
81 		.enc	= BOOK3E_PAGESZ_256M,
82 	},
83 	[MMU_PAGE_1G] = {
84 		.shift	= 30,
85 		.enc	= BOOK3E_PAGESZ_1GB,
86 	},
87 };
88 #else
89 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
90 	[MMU_PAGE_4K] = {
91 		.shift	= 12,
92 		.ind	= 20,
93 		.enc	= BOOK3E_PAGESZ_4K,
94 	},
95 	[MMU_PAGE_16K] = {
96 		.shift	= 14,
97 		.enc	= BOOK3E_PAGESZ_16K,
98 	},
99 	[MMU_PAGE_64K] = {
100 		.shift	= 16,
101 		.ind	= 28,
102 		.enc	= BOOK3E_PAGESZ_64K,
103 	},
104 	[MMU_PAGE_1M] = {
105 		.shift	= 20,
106 		.enc	= BOOK3E_PAGESZ_1M,
107 	},
108 	[MMU_PAGE_16M] = {
109 		.shift	= 24,
110 		.ind	= 36,
111 		.enc	= BOOK3E_PAGESZ_16M,
112 	},
113 	[MMU_PAGE_256M] = {
114 		.shift	= 28,
115 		.enc	= BOOK3E_PAGESZ_256M,
116 	},
117 	[MMU_PAGE_1G] = {
118 		.shift	= 30,
119 		.enc	= BOOK3E_PAGESZ_1GB,
120 	},
121 };
122 #endif /* CONFIG_FSL_BOOKE */
123 
mmu_get_tsize(int psize)124 static inline int mmu_get_tsize(int psize)
125 {
126 	return mmu_psize_defs[psize].enc;
127 }
128 #else
mmu_get_tsize(int psize)129 static inline int mmu_get_tsize(int psize)
130 {
131 	/* This isn't used on !Book3E for now */
132 	return 0;
133 }
134 #endif /* CONFIG_PPC_BOOK3E_MMU */
135 
136 /* The variables below are currently only used on 64-bit Book3E
137  * though this will probably be made common with other nohash
138  * implementations at some point
139  */
140 #ifdef CONFIG_PPC64
141 
142 int mmu_linear_psize;		/* Page size used for the linear mapping */
143 int mmu_pte_psize;		/* Page size used for PTE pages */
144 int mmu_vmemmap_psize;		/* Page size used for the virtual mem map */
145 int book3e_htw_mode;		/* HW tablewalk?  Value is PPC_HTW_* */
146 unsigned long linear_map_top;	/* Top of linear mapping */
147 
148 
149 /*
150  * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
151  * exceptions.  This is used for bolted and e6500 TLB miss handlers which
152  * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
153  * this is set to zero.
154  */
155 int extlb_level_exc;
156 
157 #endif /* CONFIG_PPC64 */
158 
159 #ifdef CONFIG_PPC_FSL_BOOK3E
160 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
161 DEFINE_PER_CPU(int, next_tlbcam_idx);
162 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
163 #endif
164 
165 /*
166  * Base TLB flushing operations:
167  *
168  *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
169  *  - flush_tlb_page(vma, vmaddr) flushes one page
170  *  - flush_tlb_range(vma, start, end) flushes a range of pages
171  *  - flush_tlb_kernel_range(start, end) flushes kernel pages
172  *
173  *  - local_* variants of page and mm only apply to the current
174  *    processor
175  */
176 
177 /*
178  * These are the base non-SMP variants of page and mm flushing
179  */
local_flush_tlb_mm(struct mm_struct * mm)180 void local_flush_tlb_mm(struct mm_struct *mm)
181 {
182 	unsigned int pid;
183 
184 	preempt_disable();
185 	pid = mm->context.id;
186 	if (pid != MMU_NO_CONTEXT)
187 		_tlbil_pid(pid);
188 	preempt_enable();
189 }
190 EXPORT_SYMBOL(local_flush_tlb_mm);
191 
__local_flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)192 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
193 			    int tsize, int ind)
194 {
195 	unsigned int pid;
196 
197 	preempt_disable();
198 	pid = mm ? mm->context.id : 0;
199 	if (pid != MMU_NO_CONTEXT)
200 		_tlbil_va(vmaddr, pid, tsize, ind);
201 	preempt_enable();
202 }
203 
local_flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)204 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
205 {
206 	__local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
207 			       mmu_get_tsize(mmu_virtual_psize), 0);
208 }
209 EXPORT_SYMBOL(local_flush_tlb_page);
210 
211 /*
212  * And here are the SMP non-local implementations
213  */
214 #ifdef CONFIG_SMP
215 
216 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
217 
218 struct tlb_flush_param {
219 	unsigned long addr;
220 	unsigned int pid;
221 	unsigned int tsize;
222 	unsigned int ind;
223 };
224 
do_flush_tlb_mm_ipi(void * param)225 static void do_flush_tlb_mm_ipi(void *param)
226 {
227 	struct tlb_flush_param *p = param;
228 
229 	_tlbil_pid(p ? p->pid : 0);
230 }
231 
do_flush_tlb_page_ipi(void * param)232 static void do_flush_tlb_page_ipi(void *param)
233 {
234 	struct tlb_flush_param *p = param;
235 
236 	_tlbil_va(p->addr, p->pid, p->tsize, p->ind);
237 }
238 
239 
240 /* Note on invalidations and PID:
241  *
242  * We snapshot the PID with preempt disabled. At this point, it can still
243  * change either because:
244  * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
245  * - we are invaliating some target that isn't currently running here
246  *   and is concurrently acquiring a new PID on another CPU
247  * - some other CPU is re-acquiring a lost PID for this mm
248  * etc...
249  *
250  * However, this shouldn't be a problem as we only guarantee
251  * invalidation of TLB entries present prior to this call, so we
252  * don't care about the PID changing, and invalidating a stale PID
253  * is generally harmless.
254  */
255 
flush_tlb_mm(struct mm_struct * mm)256 void flush_tlb_mm(struct mm_struct *mm)
257 {
258 	unsigned int pid;
259 
260 	preempt_disable();
261 	pid = mm->context.id;
262 	if (unlikely(pid == MMU_NO_CONTEXT))
263 		goto no_context;
264 	if (!mm_is_core_local(mm)) {
265 		struct tlb_flush_param p = { .pid = pid };
266 		/* Ignores smp_processor_id() even if set. */
267 		smp_call_function_many(mm_cpumask(mm),
268 				       do_flush_tlb_mm_ipi, &p, 1);
269 	}
270 	_tlbil_pid(pid);
271  no_context:
272 	preempt_enable();
273 }
274 EXPORT_SYMBOL(flush_tlb_mm);
275 
__flush_tlb_page(struct mm_struct * mm,unsigned long vmaddr,int tsize,int ind)276 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
277 		      int tsize, int ind)
278 {
279 	struct cpumask *cpu_mask;
280 	unsigned int pid;
281 
282 	/*
283 	 * This function as well as __local_flush_tlb_page() must only be called
284 	 * for user contexts.
285 	 */
286 	if (unlikely(WARN_ON(!mm)))
287 		return;
288 
289 	preempt_disable();
290 	pid = mm->context.id;
291 	if (unlikely(pid == MMU_NO_CONTEXT))
292 		goto bail;
293 	cpu_mask = mm_cpumask(mm);
294 	if (!mm_is_core_local(mm)) {
295 		/* If broadcast tlbivax is supported, use it */
296 		if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
297 			int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
298 			if (lock)
299 				raw_spin_lock(&tlbivax_lock);
300 			_tlbivax_bcast(vmaddr, pid, tsize, ind);
301 			if (lock)
302 				raw_spin_unlock(&tlbivax_lock);
303 			goto bail;
304 		} else {
305 			struct tlb_flush_param p = {
306 				.pid = pid,
307 				.addr = vmaddr,
308 				.tsize = tsize,
309 				.ind = ind,
310 			};
311 			/* Ignores smp_processor_id() even if set in cpu_mask */
312 			smp_call_function_many(cpu_mask,
313 					       do_flush_tlb_page_ipi, &p, 1);
314 		}
315 	}
316 	_tlbil_va(vmaddr, pid, tsize, ind);
317  bail:
318 	preempt_enable();
319 }
320 
flush_tlb_page(struct vm_area_struct * vma,unsigned long vmaddr)321 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
322 {
323 #ifdef CONFIG_HUGETLB_PAGE
324 	if (vma && is_vm_hugetlb_page(vma))
325 		flush_hugetlb_page(vma, vmaddr);
326 #endif
327 
328 	__flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
329 			 mmu_get_tsize(mmu_virtual_psize), 0);
330 }
331 EXPORT_SYMBOL(flush_tlb_page);
332 
333 #endif /* CONFIG_SMP */
334 
335 #ifdef CONFIG_PPC_47x
early_init_mmu_47x(void)336 void __init early_init_mmu_47x(void)
337 {
338 #ifdef CONFIG_SMP
339 	unsigned long root = of_get_flat_dt_root();
340 	if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
341 		mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
342 #endif /* CONFIG_SMP */
343 }
344 #endif /* CONFIG_PPC_47x */
345 
346 /*
347  * Flush kernel TLB entries in the given range
348  */
flush_tlb_kernel_range(unsigned long start,unsigned long end)349 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
350 {
351 #ifdef CONFIG_SMP
352 	preempt_disable();
353 	smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
354 	_tlbil_pid(0);
355 	preempt_enable();
356 #else
357 	_tlbil_pid(0);
358 #endif
359 }
360 EXPORT_SYMBOL(flush_tlb_kernel_range);
361 
362 /*
363  * Currently, for range flushing, we just do a full mm flush. This should
364  * be optimized based on a threshold on the size of the range, since
365  * some implementation can stack multiple tlbivax before a tlbsync but
366  * for now, we keep it that way
367  */
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)368 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
369 		     unsigned long end)
370 
371 {
372 	flush_tlb_mm(vma->vm_mm);
373 }
374 EXPORT_SYMBOL(flush_tlb_range);
375 
tlb_flush(struct mmu_gather * tlb)376 void tlb_flush(struct mmu_gather *tlb)
377 {
378 	flush_tlb_mm(tlb->mm);
379 }
380 
381 /*
382  * Below are functions specific to the 64-bit variant of Book3E though that
383  * may change in the future
384  */
385 
386 #ifdef CONFIG_PPC64
387 
388 /*
389  * Handling of virtual linear page tables or indirect TLB entries
390  * flushing when PTE pages are freed
391  */
tlb_flush_pgtable(struct mmu_gather * tlb,unsigned long address)392 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
393 {
394 	int tsize = mmu_psize_defs[mmu_pte_psize].enc;
395 
396 	if (book3e_htw_mode != PPC_HTW_NONE) {
397 		unsigned long start = address & PMD_MASK;
398 		unsigned long end = address + PMD_SIZE;
399 		unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
400 
401 		/* This isn't the most optimal, ideally we would factor out the
402 		 * while preempt & CPU mask mucking around, or even the IPI but
403 		 * it will do for now
404 		 */
405 		while (start < end) {
406 			__flush_tlb_page(tlb->mm, start, tsize, 1);
407 			start += size;
408 		}
409 	} else {
410 		unsigned long rmask = 0xf000000000000000ul;
411 		unsigned long rid = (address & rmask) | 0x1000000000000000ul;
412 		unsigned long vpte = address & ~rmask;
413 
414 #ifdef CONFIG_PPC_64K_PAGES
415 		vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
416 #else
417 		vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
418 #endif
419 		vpte |= rid;
420 		__flush_tlb_page(tlb->mm, vpte, tsize, 0);
421 	}
422 }
423 
setup_page_sizes(void)424 static void setup_page_sizes(void)
425 {
426 	unsigned int tlb0cfg;
427 	unsigned int tlb0ps;
428 	unsigned int eptcfg;
429 	int i, psize;
430 
431 #ifdef CONFIG_PPC_FSL_BOOK3E
432 	unsigned int mmucfg = mfspr(SPRN_MMUCFG);
433 	int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
434 
435 	if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
436 		unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
437 		unsigned int min_pg, max_pg;
438 
439 		min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
440 		max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
441 
442 		for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
443 			struct mmu_psize_def *def;
444 			unsigned int shift;
445 
446 			def = &mmu_psize_defs[psize];
447 			shift = def->shift;
448 
449 			if (shift == 0 || shift & 1)
450 				continue;
451 
452 			/* adjust to be in terms of 4^shift Kb */
453 			shift = (shift - 10) >> 1;
454 
455 			if ((shift >= min_pg) && (shift <= max_pg))
456 				def->flags |= MMU_PAGE_SIZE_DIRECT;
457 		}
458 
459 		goto out;
460 	}
461 
462 	if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
463 		u32 tlb1cfg, tlb1ps;
464 
465 		tlb0cfg = mfspr(SPRN_TLB0CFG);
466 		tlb1cfg = mfspr(SPRN_TLB1CFG);
467 		tlb1ps = mfspr(SPRN_TLB1PS);
468 		eptcfg = mfspr(SPRN_EPTCFG);
469 
470 		if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
471 			book3e_htw_mode = PPC_HTW_E6500;
472 
473 		/*
474 		 * We expect 4K subpage size and unrestricted indirect size.
475 		 * The lack of a restriction on indirect size is a Freescale
476 		 * extension, indicated by PSn = 0 but SPSn != 0.
477 		 */
478 		if (eptcfg != 2)
479 			book3e_htw_mode = PPC_HTW_NONE;
480 
481 		for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
482 			struct mmu_psize_def *def = &mmu_psize_defs[psize];
483 
484 			if (tlb1ps & (1U << (def->shift - 10))) {
485 				def->flags |= MMU_PAGE_SIZE_DIRECT;
486 
487 				if (book3e_htw_mode && psize == MMU_PAGE_2M)
488 					def->flags |= MMU_PAGE_SIZE_INDIRECT;
489 			}
490 		}
491 
492 		goto out;
493 	}
494 #endif
495 
496 	tlb0cfg = mfspr(SPRN_TLB0CFG);
497 	tlb0ps = mfspr(SPRN_TLB0PS);
498 	eptcfg = mfspr(SPRN_EPTCFG);
499 
500 	/* Look for supported direct sizes */
501 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
502 		struct mmu_psize_def *def = &mmu_psize_defs[psize];
503 
504 		if (tlb0ps & (1U << (def->shift - 10)))
505 			def->flags |= MMU_PAGE_SIZE_DIRECT;
506 	}
507 
508 	/* Indirect page sizes supported ? */
509 	if ((tlb0cfg & TLBnCFG_IND) == 0 ||
510 	    (tlb0cfg & TLBnCFG_PT) == 0)
511 		goto out;
512 
513 	book3e_htw_mode = PPC_HTW_IBM;
514 
515 	/* Now, we only deal with one IND page size for each
516 	 * direct size. Hopefully all implementations today are
517 	 * unambiguous, but we might want to be careful in the
518 	 * future.
519 	 */
520 	for (i = 0; i < 3; i++) {
521 		unsigned int ps, sps;
522 
523 		sps = eptcfg & 0x1f;
524 		eptcfg >>= 5;
525 		ps = eptcfg & 0x1f;
526 		eptcfg >>= 5;
527 		if (!ps || !sps)
528 			continue;
529 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
530 			struct mmu_psize_def *def = &mmu_psize_defs[psize];
531 
532 			if (ps == (def->shift - 10))
533 				def->flags |= MMU_PAGE_SIZE_INDIRECT;
534 			if (sps == (def->shift - 10))
535 				def->ind = ps + 10;
536 		}
537 	}
538 
539 out:
540 	/* Cleanup array and print summary */
541 	pr_info("MMU: Supported page sizes\n");
542 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
543 		struct mmu_psize_def *def = &mmu_psize_defs[psize];
544 		const char *__page_type_names[] = {
545 			"unsupported",
546 			"direct",
547 			"indirect",
548 			"direct & indirect"
549 		};
550 		if (def->flags == 0) {
551 			def->shift = 0;
552 			continue;
553 		}
554 		pr_info("  %8ld KB as %s\n", 1ul << (def->shift - 10),
555 			__page_type_names[def->flags & 0x3]);
556 	}
557 }
558 
setup_mmu_htw(void)559 static void setup_mmu_htw(void)
560 {
561 	/*
562 	 * If we want to use HW tablewalk, enable it by patching the TLB miss
563 	 * handlers to branch to the one dedicated to it.
564 	 */
565 
566 	switch (book3e_htw_mode) {
567 	case PPC_HTW_IBM:
568 		patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
569 		patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
570 		break;
571 #ifdef CONFIG_PPC_FSL_BOOK3E
572 	case PPC_HTW_E6500:
573 		extlb_level_exc = EX_TLB_SIZE;
574 		patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
575 		patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
576 		break;
577 #endif
578 	}
579 	pr_info("MMU: Book3E HW tablewalk %s\n",
580 		book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
581 }
582 
583 /*
584  * Early initialization of the MMU TLB code
585  */
early_init_this_mmu(void)586 static void early_init_this_mmu(void)
587 {
588 	unsigned int mas4;
589 
590 	/* Set MAS4 based on page table setting */
591 
592 	mas4 = 0x4 << MAS4_WIMGED_SHIFT;
593 	switch (book3e_htw_mode) {
594 	case PPC_HTW_E6500:
595 		mas4 |= MAS4_INDD;
596 		mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
597 		mas4 |= MAS4_TLBSELD(1);
598 		mmu_pte_psize = MMU_PAGE_2M;
599 		break;
600 
601 	case PPC_HTW_IBM:
602 		mas4 |= MAS4_INDD;
603 #ifdef CONFIG_PPC_64K_PAGES
604 		mas4 |=	BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
605 		mmu_pte_psize = MMU_PAGE_256M;
606 #else
607 		mas4 |=	BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
608 		mmu_pte_psize = MMU_PAGE_1M;
609 #endif
610 		break;
611 
612 	case PPC_HTW_NONE:
613 #ifdef CONFIG_PPC_64K_PAGES
614 		mas4 |=	BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
615 #else
616 		mas4 |=	BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
617 #endif
618 		mmu_pte_psize = mmu_virtual_psize;
619 		break;
620 	}
621 	mtspr(SPRN_MAS4, mas4);
622 
623 #ifdef CONFIG_PPC_FSL_BOOK3E
624 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
625 		unsigned int num_cams;
626 		int __maybe_unused cpu = smp_processor_id();
627 		bool map = true;
628 
629 		/* use a quarter of the TLBCAM for bolted linear map */
630 		num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
631 
632 		/*
633 		 * Only do the mapping once per core, or else the
634 		 * transient mapping would cause problems.
635 		 */
636 #ifdef CONFIG_SMP
637 		if (hweight32(get_tensr()) > 1)
638 			map = false;
639 #endif
640 
641 		if (map)
642 			linear_map_top = map_mem_in_cams(linear_map_top,
643 							 num_cams, false);
644 	}
645 #endif
646 
647 	/* A sync won't hurt us after mucking around with
648 	 * the MMU configuration
649 	 */
650 	mb();
651 }
652 
early_init_mmu_global(void)653 static void __init early_init_mmu_global(void)
654 {
655 	/* XXX This will have to be decided at runtime, but right
656 	 * now our boot and TLB miss code hard wires it. Ideally
657 	 * we should find out a suitable page size and patch the
658 	 * TLB miss code (either that or use the PACA to store
659 	 * the value we want)
660 	 */
661 	mmu_linear_psize = MMU_PAGE_1G;
662 
663 	/* XXX This should be decided at runtime based on supported
664 	 * page sizes in the TLB, but for now let's assume 16M is
665 	 * always there and a good fit (which it probably is)
666 	 *
667 	 * Freescale booke only supports 4K pages in TLB0, so use that.
668 	 */
669 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
670 		mmu_vmemmap_psize = MMU_PAGE_4K;
671 	else
672 		mmu_vmemmap_psize = MMU_PAGE_16M;
673 
674 	/* XXX This code only checks for TLB 0 capabilities and doesn't
675 	 *     check what page size combos are supported by the HW. It
676 	 *     also doesn't handle the case where a separate array holds
677 	 *     the IND entries from the array loaded by the PT.
678 	 */
679 	/* Look for supported page sizes */
680 	setup_page_sizes();
681 
682 	/* Look for HW tablewalk support */
683 	setup_mmu_htw();
684 
685 #ifdef CONFIG_PPC_FSL_BOOK3E
686 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
687 		if (book3e_htw_mode == PPC_HTW_NONE) {
688 			extlb_level_exc = EX_TLB_SIZE;
689 			patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
690 			patch_exception(0x1e0,
691 				exc_instruction_tlb_miss_bolted_book3e);
692 		}
693 	}
694 #endif
695 
696 	/* Set the global containing the top of the linear mapping
697 	 * for use by the TLB miss code
698 	 */
699 	linear_map_top = memblock_end_of_DRAM();
700 }
701 
early_mmu_set_memory_limit(void)702 static void __init early_mmu_set_memory_limit(void)
703 {
704 #ifdef CONFIG_PPC_FSL_BOOK3E
705 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
706 		/*
707 		 * Limit memory so we dont have linear faults.
708 		 * Unlike memblock_set_current_limit, which limits
709 		 * memory available during early boot, this permanently
710 		 * reduces the memory available to Linux.  We need to
711 		 * do this because highmem is not supported on 64-bit.
712 		 */
713 		memblock_enforce_memory_limit(linear_map_top);
714 	}
715 #endif
716 
717 	memblock_set_current_limit(linear_map_top);
718 }
719 
720 /* boot cpu only */
early_init_mmu(void)721 void __init early_init_mmu(void)
722 {
723 	early_init_mmu_global();
724 	early_init_this_mmu();
725 	early_mmu_set_memory_limit();
726 }
727 
early_init_mmu_secondary(void)728 void early_init_mmu_secondary(void)
729 {
730 	early_init_this_mmu();
731 }
732 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)733 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
734 				phys_addr_t first_memblock_size)
735 {
736 	/* On non-FSL Embedded 64-bit, we adjust the RMA size to match
737 	 * the bolted TLB entry. We know for now that only 1G
738 	 * entries are supported though that may eventually
739 	 * change.
740 	 *
741 	 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
742 	 * unusual memory sizes it's possible for some RAM to not be mapped
743 	 * (such RAM is not used at all by Linux, since we don't support
744 	 * highmem on 64-bit).  We limit ppc64_rma_size to what would be
745 	 * mappable if this memblock is the only one.  Additional memblocks
746 	 * can only increase, not decrease, the amount that ends up getting
747 	 * mapped.  We still limit max to 1G even if we'll eventually map
748 	 * more.  This is due to what the early init code is set up to do.
749 	 *
750 	 * We crop it to the size of the first MEMBLOCK to
751 	 * avoid going over total available memory just in case...
752 	 */
753 #ifdef CONFIG_PPC_FSL_BOOK3E
754 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
755 		unsigned long linear_sz;
756 		unsigned int num_cams;
757 
758 		/* use a quarter of the TLBCAM for bolted linear map */
759 		num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
760 
761 		linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
762 					    true);
763 
764 		ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
765 	} else
766 #endif
767 		ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
768 
769 	/* Finally limit subsequent allocations */
770 	memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
771 }
772 #else /* ! CONFIG_PPC64 */
early_init_mmu(void)773 void __init early_init_mmu(void)
774 {
775 #ifdef CONFIG_PPC_47x
776 	early_init_mmu_47x();
777 #endif
778 }
779 #endif /* CONFIG_PPC64 */
780