1 /*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
37
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
40
41 #define PPU_PROFILING 0
42 #define SPU_PROFILING_CYCLES 1
43 #define SPU_PROFILING_EVENTS 2
44
45 #define SPU_EVENT_NUM_START 4100
46 #define SPU_EVENT_NUM_STOP 4399
47 #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
50
51 #define NUM_SPUS_PER_NODE 8
52 #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
53
54 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
56 * PPU_CYCLES event
57 */
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
59
60 #define NUM_THREADS 2 /* number of physical threads in
61 * physical processor
62 */
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
65
66 #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
67
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69 * To configure counter to send value every N cycles set counter to
70 * 2^32 - 1 - N.
71 */
72 #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
73
74 /*
75 * spu_cycle_reset is the number of cycles between samples.
76 * This variable is used for SPU profiling and should ONLY be set
77 * at the beginning of cell_reg_setup; otherwise, it's read-only.
78 */
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
82
83 struct pmc_cntrl_data {
84 unsigned long vcntr;
85 unsigned long evnts;
86 unsigned long masks;
87 unsigned long enabled;
88 };
89
90 /*
91 * ibm,cbe-perftools rtas parameters
92 */
93 struct pm_signal {
94 u16 cpu; /* Processor to modify */
95 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
96 short int signal_group; /* Signal Group to Enable/Disable */
97 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
98 * Bus Word(s) (bitmask)
99 */
100 u8 bit; /* Trigger/Event bit (if applicable) */
101 };
102
103 /*
104 * rtas call arguments
105 */
106 enum {
107 SUBFUNC_RESET = 1,
108 SUBFUNC_ACTIVATE = 2,
109 SUBFUNC_DEACTIVATE = 3,
110
111 PASSTHRU_IGNORE = 0,
112 PASSTHRU_ENABLE = 1,
113 PASSTHRU_DISABLE = 2,
114 };
115
116 struct pm_cntrl {
117 u16 enable;
118 u16 stop_at_max;
119 u16 trace_mode;
120 u16 freeze;
121 u16 count_mode;
122 u16 spu_addr_trace;
123 u8 trace_buf_ovflw;
124 };
125
126 static struct {
127 u32 group_control;
128 u32 debug_bus_control;
129 struct pm_cntrl pm_cntrl;
130 u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
132
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143
144 /*
145 * The CELL profiling code makes rtas calls to setup the debug bus to
146 * route the performance signals. Additionally, SPU profiling requires
147 * a second rtas call to setup the hardware to capture the SPU PCs.
148 * The EIO error value is returned if the token lookups or the rtas
149 * call fail. The EIO error number is the best choice of the existing
150 * error numbers. The probability of rtas related error is very low. But
151 * by returning EIO and printing additional information to dmsg the user
152 * will know that OProfile did not start and dmesg will tell them why.
153 * OProfile does not support returning errors on Stop. Not a huge issue
154 * since failure to reset the debug bus or stop the SPU PC collection is
155 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
156 * either.
157 */
158
159 /*
160 * Interpetation of hdw_thread:
161 * 0 - even virtual cpus 0, 2, 4,...
162 * 1 - odd virtual cpus 1, 3, 5, ...
163 *
164 * FIXME: this is strictly wrong, we need to clean this up in a number
165 * of places. It works for now. -arnd
166 */
167 static u32 hdw_thread;
168
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
172
173 /*
174 * pm_signal needs to be global since it is initialized in
175 * cell_reg_setup at the time when the necessary information
176 * is available.
177 */
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token; /* token for debug bus setup call */
180 static int spu_rtas_token; /* token for SPU cycle profiling */
181
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
186
187 static u32 ctr_enabled;
188
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
190
191 /*
192 * Firmware interface functions
193 */
194 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196 void *address, unsigned long length)
197 {
198 u64 paddr = __pa(address);
199
200 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201 passthru, paddr >> 32, paddr & 0xffffffff, length);
202 }
203
pm_rtas_reset_signals(u32 node)204 static void pm_rtas_reset_signals(u32 node)
205 {
206 int ret;
207 struct pm_signal pm_signal_local;
208
209 /*
210 * The debug bus is being set to the passthru disable state.
211 * However, the FW still expects at least one legal signal routing
212 * entry or it will return an error on the arguments. If we don't
213 * supply a valid entry, we must ignore all return values. Ignoring
214 * all return values means we might miss an error we should be
215 * concerned about.
216 */
217
218 /* fw expects physical cpu #. */
219 pm_signal_local.cpu = node;
220 pm_signal_local.signal_group = 21;
221 pm_signal_local.bus_word = 1;
222 pm_signal_local.sub_unit = 0;
223 pm_signal_local.bit = 0;
224
225 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226 &pm_signal_local,
227 sizeof(struct pm_signal));
228
229 if (unlikely(ret))
230 /*
231 * Not a fatal error. For Oprofile stop, the oprofile
232 * functions do not support returning an error for
233 * failure to stop OProfile.
234 */
235 printk(KERN_WARNING "%s: rtas returned: %d\n",
236 __func__, ret);
237 }
238
pm_rtas_activate_signals(u32 node,u32 count)239 static int pm_rtas_activate_signals(u32 node, u32 count)
240 {
241 int ret;
242 int i, j;
243 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244
245 /*
246 * There is no debug setup required for the cycles event.
247 * Note that only events in the same group can be used.
248 * Otherwise, there will be conflicts in correctly routing
249 * the signals on the debug bus. It is the responsibility
250 * of the OProfile user tool to check the events are in
251 * the same group.
252 */
253 i = 0;
254 for (j = 0; j < count; j++) {
255 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256
257 /* fw expects physical cpu # */
258 pm_signal_local[i].cpu = node;
259 pm_signal_local[i].signal_group
260 = pm_signal[j].signal_group;
261 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263 pm_signal_local[i].bit = pm_signal[j].bit;
264 i++;
265 }
266 }
267
268 if (i != 0) {
269 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270 pm_signal_local,
271 i * sizeof(struct pm_signal));
272
273 if (unlikely(ret)) {
274 printk(KERN_WARNING "%s: rtas returned: %d\n",
275 __func__, ret);
276 return -EIO;
277 }
278 }
279
280 return 0;
281 }
282
283 /*
284 * PM Signal functions
285 */
set_pm_event(u32 ctr,int event,u32 unit_mask)286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287 {
288 struct pm_signal *p;
289 u32 signal_bit;
290 u32 bus_word, bus_type, count_cycles, polarity, input_control;
291 int j, i;
292
293 if (event == PPU_CYCLES_EVENT_NUM) {
294 /* Special Event: Count all cpu cycles */
295 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296 p = &(pm_signal[ctr]);
297 p->signal_group = PPU_CYCLES_GRP_NUM;
298 p->bus_word = 1;
299 p->sub_unit = 0;
300 p->bit = 0;
301 goto out;
302 } else {
303 pm_regs.pm07_cntrl[ctr] = 0;
304 }
305
306 bus_word = GET_BUS_WORD(unit_mask);
307 bus_type = GET_BUS_TYPE(unit_mask);
308 count_cycles = GET_COUNT_CYCLES(unit_mask);
309 polarity = GET_POLARITY(unit_mask);
310 input_control = GET_INPUT_CONTROL(unit_mask);
311 signal_bit = (event % 100);
312
313 p = &(pm_signal[ctr]);
314
315 p->signal_group = event / 100;
316 p->bus_word = bus_word;
317 p->sub_unit = GET_SUB_UNIT(unit_mask);
318
319 pm_regs.pm07_cntrl[ctr] = 0;
320 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323
324 /*
325 * Some of the islands signal selection is based on 64 bit words.
326 * The debug bus words are 32 bits, the input words to the performance
327 * counters are defined as 32 bits. Need to convert the 64 bit island
328 * specification to the appropriate 32 input bit and bus word for the
329 * performance counter event selection. See the CELL Performance
330 * monitoring signals manual and the Perf cntr hardware descriptions
331 * for the details.
332 */
333 if (input_control == 0) {
334 if (signal_bit > 31) {
335 signal_bit -= 32;
336 if (bus_word == 0x3)
337 bus_word = 0x2;
338 else if (bus_word == 0xc)
339 bus_word = 0x8;
340 }
341
342 if ((bus_type == 0) && p->signal_group >= 60)
343 bus_type = 2;
344 if ((bus_type == 1) && p->signal_group >= 50)
345 bus_type = 0;
346
347 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348 } else {
349 pm_regs.pm07_cntrl[ctr] = 0;
350 p->bit = signal_bit;
351 }
352
353 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354 if (bus_word & (1 << i)) {
355 pm_regs.debug_bus_control |=
356 (bus_type << (30 - (2 * i)));
357
358 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359 if (input_bus[j] == 0xff) {
360 input_bus[j] = i;
361 pm_regs.group_control |=
362 (i << (30 - (2 * j)));
363
364 break;
365 }
366 }
367 }
368 }
369 out:
370 ;
371 }
372
write_pm_cntrl(int cpu)373 static void write_pm_cntrl(int cpu)
374 {
375 /*
376 * Oprofile will use 32 bit counters, set bits 7:10 to 0
377 * pmregs.pm_cntrl is a global
378 */
379
380 u32 val = 0;
381 if (pm_regs.pm_cntrl.enable == 1)
382 val |= CBE_PM_ENABLE_PERF_MON;
383
384 if (pm_regs.pm_cntrl.stop_at_max == 1)
385 val |= CBE_PM_STOP_AT_MAX;
386
387 if (pm_regs.pm_cntrl.trace_mode != 0)
388 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
389
390 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392 if (pm_regs.pm_cntrl.freeze == 1)
393 val |= CBE_PM_FREEZE_ALL_CTRS;
394
395 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396
397 /*
398 * Routine set_count_mode must be called previously to set
399 * the count mode based on the user selection of user and kernel.
400 */
401 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402 cbe_write_pm(cpu, pm_control, val);
403 }
404
405 static inline void
set_count_mode(u32 kernel,u32 user)406 set_count_mode(u32 kernel, u32 user)
407 {
408 /*
409 * The user must specify user and kernel if they want them. If
410 * neither is specified, OProfile will count in hypervisor mode.
411 * pm_regs.pm_cntrl is a global
412 */
413 if (kernel) {
414 if (user)
415 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416 else
417 pm_regs.pm_cntrl.count_mode =
418 CBE_COUNT_SUPERVISOR_MODE;
419 } else {
420 if (user)
421 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422 else
423 pm_regs.pm_cntrl.count_mode =
424 CBE_COUNT_HYPERVISOR_MODE;
425 }
426 }
427
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
429 {
430
431 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433 }
434
435 /*
436 * Oprofile is expected to collect data on all CPUs simultaneously.
437 * However, there is one set of performance counters per node. There are
438 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
439 * multiplex in time the performance counter collection on the two virtual
440 * CPUs. The multiplexing of the performance counters is done by this
441 * virtual counter routine.
442 *
443 * The pmc_values used below is defined as 'per-cpu' but its use is
444 * more akin to 'per-node'. We need to store two sets of counter
445 * values per node -- one for the previous run and one for the next.
446 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
447 * pair of per-cpu arrays is used for storing the previous and next
448 * pmc values for a given node.
449 * NOTE: We use the per-cpu variable to improve cache performance.
450 *
451 * This routine will alternate loading the virtual counters for
452 * virtual CPUs
453 */
cell_virtual_cntr(unsigned long data)454 static void cell_virtual_cntr(unsigned long data)
455 {
456 int i, prev_hdw_thread, next_hdw_thread;
457 u32 cpu;
458 unsigned long flags;
459
460 /*
461 * Make sure that the interrupt_hander and the virt counter are
462 * not both playing with the counters on the same node.
463 */
464
465 spin_lock_irqsave(&cntr_lock, flags);
466
467 prev_hdw_thread = hdw_thread;
468
469 /* switch the cpu handling the interrupts */
470 hdw_thread = 1 ^ hdw_thread;
471 next_hdw_thread = hdw_thread;
472
473 pm_regs.group_control = 0;
474 pm_regs.debug_bus_control = 0;
475
476 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477 input_bus[i] = 0xff;
478
479 /*
480 * There are some per thread events. Must do the
481 * set event, for the thread that is being started
482 */
483 for (i = 0; i < num_counters; i++)
484 set_pm_event(i,
485 pmc_cntrl[next_hdw_thread][i].evnts,
486 pmc_cntrl[next_hdw_thread][i].masks);
487
488 /*
489 * The following is done only once per each node, but
490 * we need cpu #, not node #, to pass to the cbe_xxx functions.
491 */
492 for_each_online_cpu(cpu) {
493 if (cbe_get_hw_thread_id(cpu))
494 continue;
495
496 /*
497 * stop counters, save counter values, restore counts
498 * for previous thread
499 */
500 cbe_disable_pm(cpu);
501 cbe_disable_pm_interrupts(cpu);
502 for (i = 0; i < num_counters; i++) {
503 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504 = cbe_read_ctr(cpu, i);
505
506 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507 == 0xFFFFFFFF)
508 /* If the cntr value is 0xffffffff, we must
509 * reset that to 0xfffffff0 when the current
510 * thread is restarted. This will generate a
511 * new interrupt and make sure that we never
512 * restore the counters to the max value. If
513 * the counters were restored to the max value,
514 * they do not increment and no interrupts are
515 * generated. Hence no more samples will be
516 * collected on that cpu.
517 */
518 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519 else
520 cbe_write_ctr(cpu, i,
521 per_cpu(pmc_values,
522 cpu +
523 next_hdw_thread)[i]);
524 }
525
526 /*
527 * Switch to the other thread. Change the interrupt
528 * and control regs to be scheduled on the CPU
529 * corresponding to the thread to execute.
530 */
531 for (i = 0; i < num_counters; i++) {
532 if (pmc_cntrl[next_hdw_thread][i].enabled) {
533 /*
534 * There are some per thread events.
535 * Must do the set event, enable_cntr
536 * for each cpu.
537 */
538 enable_ctr(cpu, i,
539 pm_regs.pm07_cntrl);
540 } else {
541 cbe_write_pm07_control(cpu, i, 0);
542 }
543 }
544
545 /* Enable interrupts on the CPU thread that is starting */
546 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547 virt_cntr_inter_mask);
548 cbe_enable_pm(cpu);
549 }
550
551 spin_unlock_irqrestore(&cntr_lock, flags);
552
553 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554 }
555
start_virt_cntrs(void)556 static void start_virt_cntrs(void)
557 {
558 init_timer(&timer_virt_cntr);
559 timer_virt_cntr.function = cell_virtual_cntr;
560 timer_virt_cntr.data = 0UL;
561 timer_virt_cntr.expires = jiffies + HZ / 10;
562 add_timer(&timer_virt_cntr);
563 }
564
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)565 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
566 struct op_system_config *sys, int num_ctrs)
567 {
568 spu_cycle_reset = ctr[0].count;
569
570 /*
571 * Each node will need to make the rtas call to start
572 * and stop SPU profiling. Get the token once and store it.
573 */
574 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
575
576 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
577 printk(KERN_ERR
578 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
579 __func__);
580 return -EIO;
581 }
582 return 0;
583 }
584
585 /* Unfortunately, the hardware will only support event profiling
586 * on one SPU per node at a time. Therefore, we must time slice
587 * the profiling across all SPUs in the node. Note, we do this
588 * in parallel for each node. The following routine is called
589 * periodically based on kernel timer to switch which SPU is
590 * being monitored in a round robbin fashion.
591 */
spu_evnt_swap(unsigned long data)592 static void spu_evnt_swap(unsigned long data)
593 {
594 int node;
595 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
596 unsigned long flags;
597 int cpu;
598 int ret;
599 u32 interrupt_mask;
600
601
602 /* enable interrupts on cntr 0 */
603 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
604
605 hdw_thread = 0;
606
607 /* Make sure spu event interrupt handler and spu event swap
608 * don't access the counters simultaneously.
609 */
610 spin_lock_irqsave(&cntr_lock, flags);
611
612 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
613
614 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
615 spu_evnt_phys_spu_indx = 0;
616
617 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
618 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
619 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
620
621 /* switch the SPU being profiled on each node */
622 for_each_online_cpu(cpu) {
623 if (cbe_get_hw_thread_id(cpu))
624 continue;
625
626 node = cbe_cpu_to_node(cpu);
627 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
628 + cur_spu_evnt_phys_spu_indx;
629 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
630 + spu_evnt_phys_spu_indx;
631
632 /*
633 * stop counters, save counter values, restore counts
634 * for previous physical SPU
635 */
636 cbe_disable_pm(cpu);
637 cbe_disable_pm_interrupts(cpu);
638
639 spu_pm_cnt[cur_phys_spu]
640 = cbe_read_ctr(cpu, 0);
641
642 /* restore previous count for the next spu to sample */
643 /* NOTE, hardware issue, counter will not start if the
644 * counter value is at max (0xFFFFFFFF).
645 */
646 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
647 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
648 else
649 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
650
651 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
652
653 /* setup the debug bus measure the one event and
654 * the two events to route the next SPU's PC on
655 * the debug bus
656 */
657 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
658 if (ret)
659 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
660 "SPU event swap\n", __func__);
661
662 /* clear the trace buffer, don't want to take PC for
663 * previous SPU*/
664 cbe_write_pm(cpu, trace_address, 0);
665
666 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
667
668 /* Enable interrupts on the CPU thread that is starting */
669 cbe_enable_pm_interrupts(cpu, hdw_thread,
670 interrupt_mask);
671 cbe_enable_pm(cpu);
672 }
673
674 spin_unlock_irqrestore(&cntr_lock, flags);
675
676 /* swap approximately every 0.1 seconds */
677 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
678 }
679
start_spu_event_swap(void)680 static void start_spu_event_swap(void)
681 {
682 init_timer(&timer_spu_event_swap);
683 timer_spu_event_swap.function = spu_evnt_swap;
684 timer_spu_event_swap.data = 0UL;
685 timer_spu_event_swap.expires = jiffies + HZ / 25;
686 add_timer(&timer_spu_event_swap);
687 }
688
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)689 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
690 struct op_system_config *sys, int num_ctrs)
691 {
692 int i;
693
694 /* routine is called once for all nodes */
695
696 spu_evnt_phys_spu_indx = 0;
697 /*
698 * For all events except PPU CYCLEs, each node will need to make
699 * the rtas cbe-perftools call to setup and reset the debug bus.
700 * Make the token lookup call once and store it in the global
701 * variable pm_rtas_token.
702 */
703 pm_rtas_token = rtas_token("ibm,cbe-perftools");
704
705 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
706 printk(KERN_ERR
707 "%s: rtas token ibm,cbe-perftools unknown\n",
708 __func__);
709 return -EIO;
710 }
711
712 /* setup the pm_control register settings,
713 * settings will be written per node by the
714 * cell_cpu_setup() function.
715 */
716 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
717
718 /* Use the occurrence trace mode to have SPU PC saved
719 * to the trace buffer. Occurrence data in trace buffer
720 * is not used. Bit 2 must be set to store SPU addresses.
721 */
722 pm_regs.pm_cntrl.trace_mode = 2;
723
724 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
725 event 2 & 3 */
726
727 /* setup the debug bus event array with the SPU PC routing events.
728 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
729 */
730 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
731 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
732 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
733 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
734
735 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
736 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
737 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
738 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
739
740 /* Set the user selected spu event to profile on,
741 * note, only one SPU profiling event is supported
742 */
743 num_counters = 1; /* Only support one SPU event at a time */
744 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
745
746 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
747
748 /* global, used by cell_cpu_setup */
749 ctr_enabled |= 1;
750
751 /* Initialize the count for each SPU to the reset value */
752 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
753 spu_pm_cnt[i] = reset_value[0];
754
755 return 0;
756 }
757
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)758 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
759 struct op_system_config *sys, int num_ctrs)
760 {
761 /* routine is called once for all nodes */
762 int i, j, cpu;
763
764 num_counters = num_ctrs;
765
766 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
767 printk(KERN_ERR
768 "%s: Oprofile, number of specified events " \
769 "exceeds number of physical counters\n",
770 __func__);
771 return -EIO;
772 }
773
774 set_count_mode(sys->enable_kernel, sys->enable_user);
775
776 /* Setup the thread 0 events */
777 for (i = 0; i < num_ctrs; ++i) {
778
779 pmc_cntrl[0][i].evnts = ctr[i].event;
780 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
781 pmc_cntrl[0][i].enabled = ctr[i].enabled;
782 pmc_cntrl[0][i].vcntr = i;
783
784 for_each_possible_cpu(j)
785 per_cpu(pmc_values, j)[i] = 0;
786 }
787
788 /*
789 * Setup the thread 1 events, map the thread 0 event to the
790 * equivalent thread 1 event.
791 */
792 for (i = 0; i < num_ctrs; ++i) {
793 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
794 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
795 else if (ctr[i].event == 2203)
796 pmc_cntrl[1][i].evnts = ctr[i].event;
797 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
798 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
799 else
800 pmc_cntrl[1][i].evnts = ctr[i].event;
801
802 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
803 pmc_cntrl[1][i].enabled = ctr[i].enabled;
804 pmc_cntrl[1][i].vcntr = i;
805 }
806
807 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
808 input_bus[i] = 0xff;
809
810 /*
811 * Our counters count up, and "count" refers to
812 * how much before the next interrupt, and we interrupt
813 * on overflow. So we calculate the starting value
814 * which will give us "count" until overflow.
815 * Then we set the events on the enabled counters.
816 */
817 for (i = 0; i < num_counters; ++i) {
818 /* start with virtual counter set 0 */
819 if (pmc_cntrl[0][i].enabled) {
820 /* Using 32bit counters, reset max - count */
821 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
822 set_pm_event(i,
823 pmc_cntrl[0][i].evnts,
824 pmc_cntrl[0][i].masks);
825
826 /* global, used by cell_cpu_setup */
827 ctr_enabled |= (1 << i);
828 }
829 }
830
831 /* initialize the previous counts for the virtual cntrs */
832 for_each_online_cpu(cpu)
833 for (i = 0; i < num_counters; ++i) {
834 per_cpu(pmc_values, cpu)[i] = reset_value[i];
835 }
836
837 return 0;
838 }
839
840
841 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)842 static int cell_reg_setup(struct op_counter_config *ctr,
843 struct op_system_config *sys, int num_ctrs)
844 {
845 int ret=0;
846 spu_cycle_reset = 0;
847
848 /* initialize the spu_arr_trace value, will be reset if
849 * doing spu event profiling.
850 */
851 pm_regs.group_control = 0;
852 pm_regs.debug_bus_control = 0;
853 pm_regs.pm_cntrl.stop_at_max = 1;
854 pm_regs.pm_cntrl.trace_mode = 0;
855 pm_regs.pm_cntrl.freeze = 1;
856 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
857 pm_regs.pm_cntrl.spu_addr_trace = 0;
858
859 /*
860 * For all events except PPU CYCLEs, each node will need to make
861 * the rtas cbe-perftools call to setup and reset the debug bus.
862 * Make the token lookup call once and store it in the global
863 * variable pm_rtas_token.
864 */
865 pm_rtas_token = rtas_token("ibm,cbe-perftools");
866
867 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
868 printk(KERN_ERR
869 "%s: rtas token ibm,cbe-perftools unknown\n",
870 __func__);
871 return -EIO;
872 }
873
874 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
875 profiling_mode = SPU_PROFILING_CYCLES;
876 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
877 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
878 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
879 profiling_mode = SPU_PROFILING_EVENTS;
880 spu_cycle_reset = ctr[0].count;
881
882 /* for SPU event profiling, need to setup the
883 * pm_signal array with the events to route the
884 * SPU PC before making the FW call. Note, only
885 * one SPU event for profiling can be specified
886 * at a time.
887 */
888 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
889 } else {
890 profiling_mode = PPU_PROFILING;
891 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
892 }
893
894 return ret;
895 }
896
897
898
899 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)900 static int cell_cpu_setup(struct op_counter_config *cntr)
901 {
902 u32 cpu = smp_processor_id();
903 u32 num_enabled = 0;
904 int i;
905 int ret;
906
907 /* Cycle based SPU profiling does not use the performance
908 * counters. The trace array is configured to collect
909 * the data.
910 */
911 if (profiling_mode == SPU_PROFILING_CYCLES)
912 return 0;
913
914 /* There is one performance monitor per processor chip (i.e. node),
915 * so we only need to perform this function once per node.
916 */
917 if (cbe_get_hw_thread_id(cpu))
918 return 0;
919
920 /* Stop all counters */
921 cbe_disable_pm(cpu);
922 cbe_disable_pm_interrupts(cpu);
923
924 cbe_write_pm(cpu, pm_start_stop, 0);
925 cbe_write_pm(cpu, group_control, pm_regs.group_control);
926 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
927 write_pm_cntrl(cpu);
928
929 for (i = 0; i < num_counters; ++i) {
930 if (ctr_enabled & (1 << i)) {
931 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
932 num_enabled++;
933 }
934 }
935
936 /*
937 * The pm_rtas_activate_signals will return -EIO if the FW
938 * call failed.
939 */
940 if (profiling_mode == SPU_PROFILING_EVENTS) {
941 /* For SPU event profiling also need to setup the
942 * pm interval timer
943 */
944 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
945 num_enabled+2);
946 /* store PC from debug bus to Trace buffer as often
947 * as possible (every 10 cycles)
948 */
949 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
950 return ret;
951 } else
952 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
953 num_enabled);
954 }
955
956 #define ENTRIES 303
957 #define MAXLFSR 0xFFFFFF
958
959 /* precomputed table of 24 bit LFSR values */
960 static int initial_lfsr[] = {
961 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
962 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
963 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
964 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
965 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
966 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
967 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
968 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
969 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
970 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
971 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
972 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
973 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
974 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
975 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
976 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
977 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
978 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
979 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
980 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
981 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
982 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
983 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
984 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
985 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
986 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
987 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
988 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
989 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
990 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
991 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
992 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
993 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
994 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
995 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
996 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
997 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
998 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
999 };
1000
1001 /*
1002 * The hardware uses an LFSR counting sequence to determine when to capture
1003 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1004 * where each number occurs once in the sequence but the sequence is not in
1005 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1006 * the last value in the sequence. Hence the user specified value N
1007 * corresponds to the LFSR number that is N from the end of the sequence.
1008 *
1009 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1010 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1011 * values is adjusted in each range so the error between the user specified
1012 * number (N) of events between samples and the actual number of events based
1013 * on the precomputed value will be les then about 6.2%. Note, if the user
1014 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1015 * This is to prevent the loss of samples because the trace buffer is full.
1016 *
1017 * User specified N Step between Index in
1018 * precomputed values precomputed
1019 * table
1020 * 0 to 2^16-1 ---- 0
1021 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1022 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1023 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1024 *
1025 *
1026 * For example, the LFSR values in the second range are computed for 2^16,
1027 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1028 * 1, 2,..., 127, 128.
1029 *
1030 * The 24 bit LFSR value for the nth number in the sequence can be
1031 * calculated using the following code:
1032 *
1033 * #define size 24
1034 * int calculate_lfsr(int n)
1035 * {
1036 * int i;
1037 * unsigned int newlfsr0;
1038 * unsigned int lfsr = 0xFFFFFF;
1039 * unsigned int howmany = n;
1040 *
1041 * for (i = 2; i < howmany + 2; i++) {
1042 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1043 * ((lfsr >> (size - 1 - 1)) & 1) ^
1044 * (((lfsr >> (size - 1 - 6)) & 1) ^
1045 * ((lfsr >> (size - 1 - 23)) & 1)));
1046 *
1047 * lfsr >>= 1;
1048 * lfsr = lfsr | (newlfsr0 << (size - 1));
1049 * }
1050 * return lfsr;
1051 * }
1052 */
1053
1054 #define V2_16 (0x1 << 16)
1055 #define V2_19 (0x1 << 19)
1056 #define V2_22 (0x1 << 22)
1057
calculate_lfsr(int n)1058 static int calculate_lfsr(int n)
1059 {
1060 /*
1061 * The ranges and steps are in powers of 2 so the calculations
1062 * can be done using shifts rather then divide.
1063 */
1064 int index;
1065
1066 if ((n >> 16) == 0)
1067 index = 0;
1068 else if (((n - V2_16) >> 19) == 0)
1069 index = ((n - V2_16) >> 12) + 1;
1070 else if (((n - V2_16 - V2_19) >> 22) == 0)
1071 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1072 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1073 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1074 else
1075 index = ENTRIES-1;
1076
1077 /* make sure index is valid */
1078 if ((index >= ENTRIES) || (index < 0))
1079 index = ENTRIES-1;
1080
1081 return initial_lfsr[index];
1082 }
1083
pm_rtas_activate_spu_profiling(u32 node)1084 static int pm_rtas_activate_spu_profiling(u32 node)
1085 {
1086 int ret, i;
1087 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1088
1089 /*
1090 * Set up the rtas call to configure the debug bus to
1091 * route the SPU PCs. Setup the pm_signal for each SPU
1092 */
1093 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1094 pm_signal_local[i].cpu = node;
1095 pm_signal_local[i].signal_group = 41;
1096 /* spu i on word (i/2) */
1097 pm_signal_local[i].bus_word = 1 << i / 2;
1098 /* spu i */
1099 pm_signal_local[i].sub_unit = i;
1100 pm_signal_local[i].bit = 63;
1101 }
1102
1103 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1104 PASSTHRU_ENABLE, pm_signal_local,
1105 (ARRAY_SIZE(pm_signal_local)
1106 * sizeof(struct pm_signal)));
1107
1108 if (unlikely(ret)) {
1109 printk(KERN_WARNING "%s: rtas returned: %d\n",
1110 __func__, ret);
1111 return -EIO;
1112 }
1113
1114 return 0;
1115 }
1116
1117 #ifdef CONFIG_CPU_FREQ
1118 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1119 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1120 {
1121 int ret = 0;
1122 struct cpufreq_freqs *frq = data;
1123 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1124 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1125 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1126 return ret;
1127 }
1128
1129 static struct notifier_block cpu_freq_notifier_block = {
1130 .notifier_call = oprof_cpufreq_notify
1131 };
1132 #endif
1133
1134 /*
1135 * Note the generic OProfile stop calls do not support returning
1136 * an error on stop. Hence, will not return an error if the FW
1137 * calls fail on stop. Failure to reset the debug bus is not an issue.
1138 * Failure to disable the SPU profiling is not an issue. The FW calls
1139 * to enable the performance counters and debug bus will work even if
1140 * the hardware was not cleanly reset.
1141 */
cell_global_stop_spu_cycles(void)1142 static void cell_global_stop_spu_cycles(void)
1143 {
1144 int subfunc, rtn_value;
1145 unsigned int lfsr_value;
1146 int cpu;
1147
1148 oprofile_running = 0;
1149 smp_wmb();
1150
1151 #ifdef CONFIG_CPU_FREQ
1152 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1153 CPUFREQ_TRANSITION_NOTIFIER);
1154 #endif
1155
1156 for_each_online_cpu(cpu) {
1157 if (cbe_get_hw_thread_id(cpu))
1158 continue;
1159
1160 subfunc = 3; /*
1161 * 2 - activate SPU tracing,
1162 * 3 - deactivate
1163 */
1164 lfsr_value = 0x8f100000;
1165
1166 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1167 subfunc, cbe_cpu_to_node(cpu),
1168 lfsr_value);
1169
1170 if (unlikely(rtn_value != 0)) {
1171 printk(KERN_ERR
1172 "%s: rtas call ibm,cbe-spu-perftools " \
1173 "failed, return = %d\n",
1174 __func__, rtn_value);
1175 }
1176
1177 /* Deactivate the signals */
1178 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1179 }
1180
1181 stop_spu_profiling_cycles();
1182 }
1183
cell_global_stop_spu_events(void)1184 static void cell_global_stop_spu_events(void)
1185 {
1186 int cpu;
1187 oprofile_running = 0;
1188
1189 stop_spu_profiling_events();
1190 smp_wmb();
1191
1192 for_each_online_cpu(cpu) {
1193 if (cbe_get_hw_thread_id(cpu))
1194 continue;
1195
1196 cbe_sync_irq(cbe_cpu_to_node(cpu));
1197 /* Stop the counters */
1198 cbe_disable_pm(cpu);
1199 cbe_write_pm07_control(cpu, 0, 0);
1200
1201 /* Deactivate the signals */
1202 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1203
1204 /* Deactivate interrupts */
1205 cbe_disable_pm_interrupts(cpu);
1206 }
1207 del_timer_sync(&timer_spu_event_swap);
1208 }
1209
cell_global_stop_ppu(void)1210 static void cell_global_stop_ppu(void)
1211 {
1212 int cpu;
1213
1214 /*
1215 * This routine will be called once for the system.
1216 * There is one performance monitor per node, so we
1217 * only need to perform this function once per node.
1218 */
1219 del_timer_sync(&timer_virt_cntr);
1220 oprofile_running = 0;
1221 smp_wmb();
1222
1223 for_each_online_cpu(cpu) {
1224 if (cbe_get_hw_thread_id(cpu))
1225 continue;
1226
1227 cbe_sync_irq(cbe_cpu_to_node(cpu));
1228 /* Stop the counters */
1229 cbe_disable_pm(cpu);
1230
1231 /* Deactivate the signals */
1232 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1233
1234 /* Deactivate interrupts */
1235 cbe_disable_pm_interrupts(cpu);
1236 }
1237 }
1238
cell_global_stop(void)1239 static void cell_global_stop(void)
1240 {
1241 if (profiling_mode == PPU_PROFILING)
1242 cell_global_stop_ppu();
1243 else if (profiling_mode == SPU_PROFILING_EVENTS)
1244 cell_global_stop_spu_events();
1245 else
1246 cell_global_stop_spu_cycles();
1247 }
1248
cell_global_start_spu_cycles(struct op_counter_config * ctr)1249 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1250 {
1251 int subfunc;
1252 unsigned int lfsr_value;
1253 int cpu;
1254 int ret;
1255 int rtas_error;
1256 unsigned int cpu_khzfreq = 0;
1257
1258 /* The SPU profiling uses time-based profiling based on
1259 * cpu frequency, so if configured with the CPU_FREQ
1260 * option, we should detect frequency changes and react
1261 * accordingly.
1262 */
1263 #ifdef CONFIG_CPU_FREQ
1264 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1265 CPUFREQ_TRANSITION_NOTIFIER);
1266 if (ret < 0)
1267 /* this is not a fatal error */
1268 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1269 ret);
1270
1271 else
1272 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1273 #endif
1274
1275 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1276
1277 for_each_online_cpu(cpu) {
1278 if (cbe_get_hw_thread_id(cpu))
1279 continue;
1280
1281 /*
1282 * Setup SPU cycle-based profiling.
1283 * Set perf_mon_control bit 0 to a zero before
1284 * enabling spu collection hardware.
1285 */
1286 cbe_write_pm(cpu, pm_control, 0);
1287
1288 if (spu_cycle_reset > MAX_SPU_COUNT)
1289 /* use largest possible value */
1290 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1291 else
1292 lfsr_value = calculate_lfsr(spu_cycle_reset);
1293
1294 /* must use a non zero value. Zero disables data collection. */
1295 if (lfsr_value == 0)
1296 lfsr_value = calculate_lfsr(1);
1297
1298 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1299 * register location
1300 */
1301
1302 /* debug bus setup */
1303 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1304
1305 if (unlikely(ret)) {
1306 rtas_error = ret;
1307 goto out;
1308 }
1309
1310
1311 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1312
1313 /* start profiling */
1314 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1315 cbe_cpu_to_node(cpu), lfsr_value);
1316
1317 if (unlikely(ret != 0)) {
1318 printk(KERN_ERR
1319 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1320 "return = %d\n", __func__, ret);
1321 rtas_error = -EIO;
1322 goto out;
1323 }
1324 }
1325
1326 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1327 if (rtas_error)
1328 goto out_stop;
1329
1330 oprofile_running = 1;
1331 return 0;
1332
1333 out_stop:
1334 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1335 out:
1336 return rtas_error;
1337 }
1338
cell_global_start_spu_events(struct op_counter_config * ctr)1339 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1340 {
1341 int cpu;
1342 u32 interrupt_mask = 0;
1343 int rtn = 0;
1344
1345 hdw_thread = 0;
1346
1347 /* spu event profiling, uses the performance counters to generate
1348 * an interrupt. The hardware is setup to store the SPU program
1349 * counter into the trace array. The occurrence mode is used to
1350 * enable storing data to the trace buffer. The bits are set
1351 * to send/store the SPU address in the trace buffer. The debug
1352 * bus must be setup to route the SPU program counter onto the
1353 * debug bus. The occurrence data in the trace buffer is not used.
1354 */
1355
1356 /* This routine gets called once for the system.
1357 * There is one performance monitor per node, so we
1358 * only need to perform this function once per node.
1359 */
1360
1361 for_each_online_cpu(cpu) {
1362 if (cbe_get_hw_thread_id(cpu))
1363 continue;
1364
1365 /*
1366 * Setup SPU event-based profiling.
1367 * Set perf_mon_control bit 0 to a zero before
1368 * enabling spu collection hardware.
1369 *
1370 * Only support one SPU event on one SPU per node.
1371 */
1372 if (ctr_enabled & 1) {
1373 cbe_write_ctr(cpu, 0, reset_value[0]);
1374 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1375 interrupt_mask |=
1376 CBE_PM_CTR_OVERFLOW_INTR(0);
1377 } else {
1378 /* Disable counter */
1379 cbe_write_pm07_control(cpu, 0, 0);
1380 }
1381
1382 cbe_get_and_clear_pm_interrupts(cpu);
1383 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1384 cbe_enable_pm(cpu);
1385
1386 /* clear the trace buffer */
1387 cbe_write_pm(cpu, trace_address, 0);
1388 }
1389
1390 /* Start the timer to time slice collecting the event profile
1391 * on each of the SPUs. Note, can collect profile on one SPU
1392 * per node at a time.
1393 */
1394 start_spu_event_swap();
1395 start_spu_profiling_events();
1396 oprofile_running = 1;
1397 smp_wmb();
1398
1399 return rtn;
1400 }
1401
cell_global_start_ppu(struct op_counter_config * ctr)1402 static int cell_global_start_ppu(struct op_counter_config *ctr)
1403 {
1404 u32 cpu, i;
1405 u32 interrupt_mask = 0;
1406
1407 /* This routine gets called once for the system.
1408 * There is one performance monitor per node, so we
1409 * only need to perform this function once per node.
1410 */
1411 for_each_online_cpu(cpu) {
1412 if (cbe_get_hw_thread_id(cpu))
1413 continue;
1414
1415 interrupt_mask = 0;
1416
1417 for (i = 0; i < num_counters; ++i) {
1418 if (ctr_enabled & (1 << i)) {
1419 cbe_write_ctr(cpu, i, reset_value[i]);
1420 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1421 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1422 } else {
1423 /* Disable counter */
1424 cbe_write_pm07_control(cpu, i, 0);
1425 }
1426 }
1427
1428 cbe_get_and_clear_pm_interrupts(cpu);
1429 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1430 cbe_enable_pm(cpu);
1431 }
1432
1433 virt_cntr_inter_mask = interrupt_mask;
1434 oprofile_running = 1;
1435 smp_wmb();
1436
1437 /*
1438 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1439 * executed which manipulates the PMU. We start the "virtual counter"
1440 * here so that we do not need to synchronize access to the PMU in
1441 * the above for-loop.
1442 */
1443 start_virt_cntrs();
1444
1445 return 0;
1446 }
1447
cell_global_start(struct op_counter_config * ctr)1448 static int cell_global_start(struct op_counter_config *ctr)
1449 {
1450 if (profiling_mode == SPU_PROFILING_CYCLES)
1451 return cell_global_start_spu_cycles(ctr);
1452 else if (profiling_mode == SPU_PROFILING_EVENTS)
1453 return cell_global_start_spu_events(ctr);
1454 else
1455 return cell_global_start_ppu(ctr);
1456 }
1457
1458
1459 /* The SPU interrupt handler
1460 *
1461 * SPU event profiling works as follows:
1462 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1463 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1464 * pm_signal[2] contain the necessary events to route the SPU program
1465 * counter for the selected SPU onto the debug bus using words 2 and 3.
1466 * The pm_interval register is setup to write the SPU PC value into the
1467 * trace buffer at the maximum rate possible. The trace buffer is configured
1468 * to store the PCs, wrapping when it is full. The performance counter is
1469 * initialized to the max hardware count minus the number of events, N, between
1470 * samples. Once the N events have occurred, a HW counter overflow occurs
1471 * causing the generation of a HW counter interrupt which also stops the
1472 * writing of the SPU PC values to the trace buffer. Hence the last PC
1473 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1474 * we have to read from the beginning of the trace buffer to get to the
1475 * last value written. We just hope the PPU has nothing better to do then
1476 * service this interrupt. The PC for the specific SPU being profiled is
1477 * extracted from the trace buffer processed and stored. The trace buffer
1478 * is cleared, interrupts are cleared, the counter is reset to max - N.
1479 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1480 * to switch to the next physical SPU in the node to profile in round robbin
1481 * order. This way data is collected for all SPUs on the node. It does mean
1482 * that we need to use a relatively small value of N to ensure enough samples
1483 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1484 * It may also be necessary to use a longer sample collection period.
1485 */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1486 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1487 struct op_counter_config *ctr)
1488 {
1489 u32 cpu, cpu_tmp;
1490 u64 trace_entry;
1491 u32 interrupt_mask;
1492 u64 trace_buffer[2];
1493 u64 last_trace_buffer;
1494 u32 sample;
1495 u32 trace_addr;
1496 unsigned long sample_array_lock_flags;
1497 int spu_num;
1498 unsigned long flags;
1499
1500 /* Make sure spu event interrupt handler and spu event swap
1501 * don't access the counters simultaneously.
1502 */
1503 cpu = smp_processor_id();
1504 spin_lock_irqsave(&cntr_lock, flags);
1505
1506 cpu_tmp = cpu;
1507 cbe_disable_pm(cpu);
1508
1509 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1510
1511 sample = 0xABCDEF;
1512 trace_entry = 0xfedcba;
1513 last_trace_buffer = 0xdeadbeaf;
1514
1515 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1516 /* disable writes to trace buff */
1517 cbe_write_pm(cpu, pm_interval, 0);
1518
1519 /* only have one perf cntr being used, cntr 0 */
1520 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1521 && ctr[0].enabled)
1522 /* The SPU PC values will be read
1523 * from the trace buffer, reset counter
1524 */
1525
1526 cbe_write_ctr(cpu, 0, reset_value[0]);
1527
1528 trace_addr = cbe_read_pm(cpu, trace_address);
1529
1530 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1531 /* There is data in the trace buffer to process
1532 * Read the buffer until you get to the last
1533 * entry. This is the value we want.
1534 */
1535
1536 cbe_read_trace_buffer(cpu, trace_buffer);
1537 trace_addr = cbe_read_pm(cpu, trace_address);
1538 }
1539
1540 /* SPU Address 16 bit count format for 128 bit
1541 * HW trace buffer is used for the SPU PC storage
1542 * HDR bits 0:15
1543 * SPU Addr 0 bits 16:31
1544 * SPU Addr 1 bits 32:47
1545 * unused bits 48:127
1546 *
1547 * HDR: bit4 = 1 SPU Address 0 valid
1548 * HDR: bit5 = 1 SPU Address 1 valid
1549 * - unfortunately, the valid bits don't seem to work
1550 *
1551 * Note trace_buffer[0] holds bits 0:63 of the HW
1552 * trace buffer, trace_buffer[1] holds bits 64:127
1553 */
1554
1555 trace_entry = trace_buffer[0]
1556 & 0x00000000FFFF0000;
1557
1558 /* only top 16 of the 18 bit SPU PC address
1559 * is stored in trace buffer, hence shift right
1560 * by 16 -2 bits */
1561 sample = trace_entry >> 14;
1562 last_trace_buffer = trace_buffer[0];
1563
1564 spu_num = spu_evnt_phys_spu_indx
1565 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1566
1567 /* make sure only one process at a time is calling
1568 * spu_sync_buffer()
1569 */
1570 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1571 sample_array_lock_flags);
1572 spu_sync_buffer(spu_num, &sample, 1);
1573 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1574 sample_array_lock_flags);
1575
1576 smp_wmb(); /* insure spu event buffer updates are written
1577 * don't want events intermingled... */
1578
1579 /* The counters were frozen by the interrupt.
1580 * Reenable the interrupt and restart the counters.
1581 */
1582 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1583 cbe_enable_pm_interrupts(cpu, hdw_thread,
1584 virt_cntr_inter_mask);
1585
1586 /* clear the trace buffer, re-enable writes to trace buff */
1587 cbe_write_pm(cpu, trace_address, 0);
1588 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1589
1590 /* The writes to the various performance counters only writes
1591 * to a latch. The new values (interrupt setting bits, reset
1592 * counter value etc.) are not copied to the actual registers
1593 * until the performance monitor is enabled. In order to get
1594 * this to work as desired, the performance monitor needs to
1595 * be disabled while writing to the latches. This is a
1596 * HW design issue.
1597 */
1598 write_pm_cntrl(cpu);
1599 cbe_enable_pm(cpu);
1600 }
1601 spin_unlock_irqrestore(&cntr_lock, flags);
1602 }
1603
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1604 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1605 struct op_counter_config *ctr)
1606 {
1607 u32 cpu;
1608 u64 pc;
1609 int is_kernel;
1610 unsigned long flags = 0;
1611 u32 interrupt_mask;
1612 int i;
1613
1614 cpu = smp_processor_id();
1615
1616 /*
1617 * Need to make sure the interrupt handler and the virt counter
1618 * routine are not running at the same time. See the
1619 * cell_virtual_cntr() routine for additional comments.
1620 */
1621 spin_lock_irqsave(&cntr_lock, flags);
1622
1623 /*
1624 * Need to disable and reenable the performance counters
1625 * to get the desired behavior from the hardware. This
1626 * is hardware specific.
1627 */
1628
1629 cbe_disable_pm(cpu);
1630
1631 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1632
1633 /*
1634 * If the interrupt mask has been cleared, then the virt cntr
1635 * has cleared the interrupt. When the thread that generated
1636 * the interrupt is restored, the data count will be restored to
1637 * 0xffffff0 to cause the interrupt to be regenerated.
1638 */
1639
1640 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1641 pc = regs->nip;
1642 is_kernel = is_kernel_addr(pc);
1643
1644 for (i = 0; i < num_counters; ++i) {
1645 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1646 && ctr[i].enabled) {
1647 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1648 cbe_write_ctr(cpu, i, reset_value[i]);
1649 }
1650 }
1651
1652 /*
1653 * The counters were frozen by the interrupt.
1654 * Reenable the interrupt and restart the counters.
1655 * If there was a race between the interrupt handler and
1656 * the virtual counter routine. The virtual counter
1657 * routine may have cleared the interrupts. Hence must
1658 * use the virt_cntr_inter_mask to re-enable the interrupts.
1659 */
1660 cbe_enable_pm_interrupts(cpu, hdw_thread,
1661 virt_cntr_inter_mask);
1662
1663 /*
1664 * The writes to the various performance counters only writes
1665 * to a latch. The new values (interrupt setting bits, reset
1666 * counter value etc.) are not copied to the actual registers
1667 * until the performance monitor is enabled. In order to get
1668 * this to work as desired, the performance monitor needs to
1669 * be disabled while writing to the latches. This is a
1670 * HW design issue.
1671 */
1672 cbe_enable_pm(cpu);
1673 }
1674 spin_unlock_irqrestore(&cntr_lock, flags);
1675 }
1676
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1677 static void cell_handle_interrupt(struct pt_regs *regs,
1678 struct op_counter_config *ctr)
1679 {
1680 if (profiling_mode == PPU_PROFILING)
1681 cell_handle_interrupt_ppu(regs, ctr);
1682 else
1683 cell_handle_interrupt_spu(regs, ctr);
1684 }
1685
1686 /*
1687 * This function is called from the generic OProfile
1688 * driver. When profiling PPUs, we need to do the
1689 * generic sync start; otherwise, do spu_sync_start.
1690 */
cell_sync_start(void)1691 static int cell_sync_start(void)
1692 {
1693 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1694 (profiling_mode == SPU_PROFILING_EVENTS))
1695 return spu_sync_start();
1696 else
1697 return DO_GENERIC_SYNC;
1698 }
1699
cell_sync_stop(void)1700 static int cell_sync_stop(void)
1701 {
1702 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1703 (profiling_mode == SPU_PROFILING_EVENTS))
1704 return spu_sync_stop();
1705 else
1706 return 1;
1707 }
1708
1709 struct op_powerpc_model op_model_cell = {
1710 .reg_setup = cell_reg_setup,
1711 .cpu_setup = cell_cpu_setup,
1712 .global_start = cell_global_start,
1713 .global_stop = cell_global_stop,
1714 .sync_start = cell_sync_start,
1715 .sync_stop = cell_sync_stop,
1716 .handle_interrupt = cell_handle_interrupt,
1717 };
1718