• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22 
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26 
27 static struct memblock_region oldmem_region;
28 
29 static struct memblock_type oldmem_type = {
30 	.cnt = 1,
31 	.max = 1,
32 	.total_size = 0,
33 	.regions = &oldmem_region,
34 };
35 
36 struct save_area {
37 	struct list_head list;
38 	u64 psw[2];
39 	u64 ctrs[16];
40 	u64 gprs[16];
41 	u32 acrs[16];
42 	u64 fprs[16];
43 	u32 fpc;
44 	u32 prefix;
45 	u64 todpreg;
46 	u64 timer;
47 	u64 todcmp;
48 	u64 vxrs_low[16];
49 	__vector128 vxrs_high[16];
50 };
51 
52 static LIST_HEAD(dump_save_areas);
53 
54 /*
55  * Allocate a save area
56  */
save_area_alloc(bool is_boot_cpu)57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59 	struct save_area *sa;
60 
61 	sa = (void *) memblock_alloc(sizeof(*sa), 8);
62 	if (is_boot_cpu)
63 		list_add(&sa->list, &dump_save_areas);
64 	else
65 		list_add_tail(&sa->list, &dump_save_areas);
66 	return sa;
67 }
68 
69 /*
70  * Return the address of the save area for the boot CPU
71  */
save_area_boot_cpu(void)72 struct save_area * __init save_area_boot_cpu(void)
73 {
74 	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
75 }
76 
77 /*
78  * Copy CPU registers into the save area
79  */
save_area_add_regs(struct save_area * sa,void * regs)80 void __init save_area_add_regs(struct save_area *sa, void *regs)
81 {
82 	struct lowcore *lc;
83 
84 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
85 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
86 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
87 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
88 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
89 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
90 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
91 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
92 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
93 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
94 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
95 }
96 
97 /*
98  * Copy vector registers into the save area
99  */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)100 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
101 {
102 	int i;
103 
104 	/* Copy lower halves of vector registers 0-15 */
105 	for (i = 0; i < 16; i++)
106 		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
107 	/* Copy vector registers 16-31 */
108 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
109 }
110 
111 /*
112  * Return physical address for virtual address
113  */
load_real_addr(void * addr)114 static inline void *load_real_addr(void *addr)
115 {
116 	unsigned long real_addr;
117 
118 	asm volatile(
119 		   "	lra     %0,0(%1)\n"
120 		   "	jz	0f\n"
121 		   "	la	%0,0\n"
122 		   "0:"
123 		   : "=a" (real_addr) : "a" (addr) : "cc");
124 	return (void *)real_addr;
125 }
126 
127 /*
128  * Copy memory of the old, dumped system to a kernel space virtual address
129  */
copy_oldmem_kernel(void * dst,void * src,size_t count)130 int copy_oldmem_kernel(void *dst, void *src, size_t count)
131 {
132 	unsigned long from, len;
133 	void *ra;
134 	int rc;
135 
136 	while (count) {
137 		from = __pa(src);
138 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
139 			/* Copy from zfcpdump HSA area */
140 			len = min(count, sclp.hsa_size - from);
141 			rc = memcpy_hsa_kernel(dst, from, len);
142 			if (rc)
143 				return rc;
144 		} else {
145 			/* Check for swapped kdump oldmem areas */
146 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
147 				from -= OLDMEM_BASE;
148 				len = min(count, OLDMEM_SIZE - from);
149 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
150 				len = min(count, OLDMEM_SIZE - from);
151 				from += OLDMEM_BASE;
152 			} else {
153 				len = count;
154 			}
155 			if (is_vmalloc_or_module_addr(dst)) {
156 				ra = load_real_addr(dst);
157 				len = min(PAGE_SIZE - offset_in_page(ra), len);
158 			} else {
159 				ra = dst;
160 			}
161 			if (memcpy_real(ra, (void *) from, len))
162 				return -EFAULT;
163 		}
164 		dst += len;
165 		src += len;
166 		count -= len;
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Copy memory of the old, dumped system to a user space virtual address
173  */
copy_oldmem_user(void __user * dst,void * src,size_t count)174 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
175 {
176 	unsigned long from, len;
177 	int rc;
178 
179 	while (count) {
180 		from = __pa(src);
181 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
182 			/* Copy from zfcpdump HSA area */
183 			len = min(count, sclp.hsa_size - from);
184 			rc = memcpy_hsa_user(dst, from, len);
185 			if (rc)
186 				return rc;
187 		} else {
188 			/* Check for swapped kdump oldmem areas */
189 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
190 				from -= OLDMEM_BASE;
191 				len = min(count, OLDMEM_SIZE - from);
192 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
193 				len = min(count, OLDMEM_SIZE - from);
194 				from += OLDMEM_BASE;
195 			} else {
196 				len = count;
197 			}
198 			rc = copy_to_user_real(dst, (void *) from, count);
199 			if (rc)
200 				return rc;
201 		}
202 		dst += len;
203 		src += len;
204 		count -= len;
205 	}
206 	return 0;
207 }
208 
209 /*
210  * Copy one page from "oldmem"
211  */
copy_oldmem_page(unsigned long pfn,char * buf,size_t csize,unsigned long offset,int userbuf)212 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
213 			 unsigned long offset, int userbuf)
214 {
215 	void *src;
216 	int rc;
217 
218 	if (!csize)
219 		return 0;
220 	src = (void *) (pfn << PAGE_SHIFT) + offset;
221 	if (userbuf)
222 		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
223 	else
224 		rc = copy_oldmem_kernel((void *) buf, src, csize);
225 	return rc;
226 }
227 
228 /*
229  * Remap "oldmem" for kdump
230  *
231  * For the kdump reserved memory this functions performs a swap operation:
232  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
233  */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)234 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
235 					unsigned long from, unsigned long pfn,
236 					unsigned long size, pgprot_t prot)
237 {
238 	unsigned long size_old;
239 	int rc;
240 
241 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
242 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
243 		rc = remap_pfn_range(vma, from,
244 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
245 				     size_old, prot);
246 		if (rc || size == size_old)
247 			return rc;
248 		size -= size_old;
249 		from += size_old;
250 		pfn += size_old >> PAGE_SHIFT;
251 	}
252 	return remap_pfn_range(vma, from, pfn, size, prot);
253 }
254 
255 /*
256  * Remap "oldmem" for zfcpdump
257  *
258  * We only map available memory above HSA size. Memory below HSA size
259  * is read on demand using the copy_oldmem_page() function.
260  */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)261 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
262 					   unsigned long from,
263 					   unsigned long pfn,
264 					   unsigned long size, pgprot_t prot)
265 {
266 	unsigned long hsa_end = sclp.hsa_size;
267 	unsigned long size_hsa;
268 
269 	if (pfn < hsa_end >> PAGE_SHIFT) {
270 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
271 		if (size == size_hsa)
272 			return 0;
273 		size -= size_hsa;
274 		from += size_hsa;
275 		pfn += size_hsa >> PAGE_SHIFT;
276 	}
277 	return remap_pfn_range(vma, from, pfn, size, prot);
278 }
279 
280 /*
281  * Remap "oldmem" for kdump or zfcpdump
282  */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)283 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
284 			   unsigned long pfn, unsigned long size, pgprot_t prot)
285 {
286 	if (OLDMEM_BASE)
287 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
288 	else
289 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
290 						       prot);
291 }
292 
293 /*
294  * Alloc memory and panic in case of ENOMEM
295  */
kzalloc_panic(int len)296 static void *kzalloc_panic(int len)
297 {
298 	void *rc;
299 
300 	rc = kzalloc(len, GFP_KERNEL);
301 	if (!rc)
302 		panic("s390 kdump kzalloc (%d) failed", len);
303 	return rc;
304 }
305 
306 /*
307  * Initialize ELF note
308  */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)309 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
310 			  const char *name)
311 {
312 	Elf64_Nhdr *note;
313 	u64 len;
314 
315 	note = (Elf64_Nhdr *)buf;
316 	note->n_namesz = strlen(name) + 1;
317 	note->n_descsz = d_len;
318 	note->n_type = type;
319 	len = sizeof(Elf64_Nhdr);
320 
321 	memcpy(buf + len, name, note->n_namesz);
322 	len = roundup(len + note->n_namesz, 4);
323 
324 	memcpy(buf + len, desc, note->n_descsz);
325 	len = roundup(len + note->n_descsz, 4);
326 
327 	return PTR_ADD(buf, len);
328 }
329 
nt_init(void * buf,Elf64_Word type,void * desc,int d_len)330 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
331 {
332 	const char *note_name = "LINUX";
333 
334 	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
335 		note_name = KEXEC_CORE_NOTE_NAME;
336 	return nt_init_name(buf, type, desc, d_len, note_name);
337 }
338 
339 /*
340  * Fill ELF notes for one CPU with save area registers
341  */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)342 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
343 {
344 	struct elf_prstatus nt_prstatus;
345 	elf_fpregset_t nt_fpregset;
346 
347 	/* Prepare prstatus note */
348 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
349 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
350 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
351 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
352 	nt_prstatus.pr_pid = cpu;
353 	/* Prepare fpregset (floating point) note */
354 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
355 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
356 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
357 	/* Create ELF notes for the CPU */
358 	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
359 	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
360 	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
361 	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
362 	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
363 	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
364 	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
365 	if (MACHINE_HAS_VX) {
366 		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
367 			      &sa->vxrs_high, sizeof(sa->vxrs_high));
368 		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
369 			      &sa->vxrs_low, sizeof(sa->vxrs_low));
370 	}
371 	return ptr;
372 }
373 
374 /*
375  * Initialize prpsinfo note (new kernel)
376  */
nt_prpsinfo(void * ptr)377 static void *nt_prpsinfo(void *ptr)
378 {
379 	struct elf_prpsinfo prpsinfo;
380 
381 	memset(&prpsinfo, 0, sizeof(prpsinfo));
382 	prpsinfo.pr_sname = 'R';
383 	strcpy(prpsinfo.pr_fname, "vmlinux");
384 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
385 }
386 
387 /*
388  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
389  */
get_vmcoreinfo_old(unsigned long * size)390 static void *get_vmcoreinfo_old(unsigned long *size)
391 {
392 	char nt_name[11], *vmcoreinfo;
393 	Elf64_Nhdr note;
394 	void *addr;
395 
396 	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
397 		return NULL;
398 	memset(nt_name, 0, sizeof(nt_name));
399 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
400 		return NULL;
401 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
402 			       sizeof(nt_name) - 1))
403 		return NULL;
404 	if (strcmp(nt_name, "VMCOREINFO") != 0)
405 		return NULL;
406 	vmcoreinfo = kzalloc_panic(note.n_descsz);
407 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
408 		return NULL;
409 	*size = note.n_descsz;
410 	return vmcoreinfo;
411 }
412 
413 /*
414  * Initialize vmcoreinfo note (new kernel)
415  */
nt_vmcoreinfo(void * ptr)416 static void *nt_vmcoreinfo(void *ptr)
417 {
418 	unsigned long size;
419 	void *vmcoreinfo;
420 
421 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
422 	if (!vmcoreinfo)
423 		vmcoreinfo = get_vmcoreinfo_old(&size);
424 	if (!vmcoreinfo)
425 		return ptr;
426 	return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
427 }
428 
429 /*
430  * Initialize final note (needed for /proc/vmcore code)
431  */
nt_final(void * ptr)432 static void *nt_final(void *ptr)
433 {
434 	Elf64_Nhdr *note;
435 
436 	note = (Elf64_Nhdr *) ptr;
437 	note->n_namesz = 0;
438 	note->n_descsz = 0;
439 	note->n_type = 0;
440 	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
441 }
442 
443 /*
444  * Initialize ELF header (new kernel)
445  */
ehdr_init(Elf64_Ehdr * ehdr,int mem_chunk_cnt)446 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
447 {
448 	memset(ehdr, 0, sizeof(*ehdr));
449 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
450 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
451 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
452 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
453 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
454 	ehdr->e_type = ET_CORE;
455 	ehdr->e_machine = EM_S390;
456 	ehdr->e_version = EV_CURRENT;
457 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
458 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
459 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
460 	ehdr->e_phnum = mem_chunk_cnt + 1;
461 	return ehdr + 1;
462 }
463 
464 /*
465  * Return CPU count for ELF header (new kernel)
466  */
get_cpu_cnt(void)467 static int get_cpu_cnt(void)
468 {
469 	struct save_area *sa;
470 	int cpus = 0;
471 
472 	list_for_each_entry(sa, &dump_save_areas, list)
473 		if (sa->prefix != 0)
474 			cpus++;
475 	return cpus;
476 }
477 
478 /*
479  * Return memory chunk count for ELF header (new kernel)
480  */
get_mem_chunk_cnt(void)481 static int get_mem_chunk_cnt(void)
482 {
483 	int cnt = 0;
484 	u64 idx;
485 
486 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
487 			   MEMBLOCK_NONE, NULL, NULL, NULL)
488 		cnt++;
489 	return cnt;
490 }
491 
492 /*
493  * Initialize ELF loads (new kernel)
494  */
loads_init(Elf64_Phdr * phdr,u64 loads_offset)495 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
496 {
497 	phys_addr_t start, end;
498 	u64 idx;
499 
500 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
501 			   MEMBLOCK_NONE, &start, &end, NULL) {
502 		phdr->p_filesz = end - start;
503 		phdr->p_type = PT_LOAD;
504 		phdr->p_offset = start;
505 		phdr->p_vaddr = start;
506 		phdr->p_paddr = start;
507 		phdr->p_memsz = end - start;
508 		phdr->p_flags = PF_R | PF_W | PF_X;
509 		phdr->p_align = PAGE_SIZE;
510 		phdr++;
511 	}
512 }
513 
514 /*
515  * Initialize notes (new kernel)
516  */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)517 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
518 {
519 	struct save_area *sa;
520 	void *ptr_start = ptr;
521 	int cpu;
522 
523 	ptr = nt_prpsinfo(ptr);
524 
525 	cpu = 1;
526 	list_for_each_entry(sa, &dump_save_areas, list)
527 		if (sa->prefix != 0)
528 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
529 	ptr = nt_vmcoreinfo(ptr);
530 	ptr = nt_final(ptr);
531 	memset(phdr, 0, sizeof(*phdr));
532 	phdr->p_type = PT_NOTE;
533 	phdr->p_offset = notes_offset;
534 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
535 	phdr->p_memsz = phdr->p_filesz;
536 	return ptr;
537 }
538 
539 /*
540  * Create ELF core header (new kernel)
541  */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)542 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
543 {
544 	Elf64_Phdr *phdr_notes, *phdr_loads;
545 	int mem_chunk_cnt;
546 	void *ptr, *hdr;
547 	u32 alloc_size;
548 	u64 hdr_off;
549 
550 	/* If we are not in kdump or zfcpdump mode return */
551 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
552 		return 0;
553 	/* If we cannot get HSA size for zfcpdump return error */
554 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
555 		return -ENODEV;
556 
557 	/* For kdump, exclude previous crashkernel memory */
558 	if (OLDMEM_BASE) {
559 		oldmem_region.base = OLDMEM_BASE;
560 		oldmem_region.size = OLDMEM_SIZE;
561 		oldmem_type.total_size = OLDMEM_SIZE;
562 	}
563 
564 	mem_chunk_cnt = get_mem_chunk_cnt();
565 
566 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
567 		mem_chunk_cnt * sizeof(Elf64_Phdr);
568 	hdr = kzalloc_panic(alloc_size);
569 	/* Init elf header */
570 	ptr = ehdr_init(hdr, mem_chunk_cnt);
571 	/* Init program headers */
572 	phdr_notes = ptr;
573 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
574 	phdr_loads = ptr;
575 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
576 	/* Init notes */
577 	hdr_off = PTR_DIFF(ptr, hdr);
578 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
579 	/* Init loads */
580 	hdr_off = PTR_DIFF(ptr, hdr);
581 	loads_init(phdr_loads, hdr_off);
582 	*addr = (unsigned long long) hdr;
583 	*size = (unsigned long long) hdr_off;
584 	BUG_ON(elfcorehdr_size > alloc_size);
585 	return 0;
586 }
587 
588 /*
589  * Free ELF core header (new kernel)
590  */
elfcorehdr_free(unsigned long long addr)591 void elfcorehdr_free(unsigned long long addr)
592 {
593 	kfree((void *)(unsigned long)addr);
594 }
595 
596 /*
597  * Read from ELF header
598  */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)599 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
600 {
601 	void *src = (void *)(unsigned long)*ppos;
602 
603 	memcpy(buf, src, count);
604 	*ppos += count;
605 	return count;
606 }
607 
608 /*
609  * Read from ELF notes data
610  */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)611 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
612 {
613 	void *src = (void *)(unsigned long)*ppos;
614 
615 	memcpy(buf, src, count);
616 	*ppos += count;
617 	return count;
618 }
619