• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/err.h>
10 #include <asm/pgtable.h>
11 #include <asm/gmap.h>
12 #include "kvm-s390.h"
13 #include "gaccess.h"
14 #include <asm/switch_to.h>
15 
16 union asce {
17 	unsigned long val;
18 	struct {
19 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
20 		unsigned long	 : 2;
21 		unsigned long g  : 1; /* Subspace Group Control */
22 		unsigned long p  : 1; /* Private Space Control */
23 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
24 		unsigned long x  : 1; /* Space-Switch-Event Control */
25 		unsigned long r  : 1; /* Real-Space Control */
26 		unsigned long	 : 1;
27 		unsigned long dt : 2; /* Designation-Type Control */
28 		unsigned long tl : 2; /* Region- or Segment-Table Length */
29 	};
30 };
31 
32 enum {
33 	ASCE_TYPE_SEGMENT = 0,
34 	ASCE_TYPE_REGION3 = 1,
35 	ASCE_TYPE_REGION2 = 2,
36 	ASCE_TYPE_REGION1 = 3
37 };
38 
39 union region1_table_entry {
40 	unsigned long val;
41 	struct {
42 		unsigned long rto: 52;/* Region-Table Origin */
43 		unsigned long	 : 2;
44 		unsigned long p  : 1; /* DAT-Protection Bit */
45 		unsigned long	 : 1;
46 		unsigned long tf : 2; /* Region-Second-Table Offset */
47 		unsigned long i  : 1; /* Region-Invalid Bit */
48 		unsigned long	 : 1;
49 		unsigned long tt : 2; /* Table-Type Bits */
50 		unsigned long tl : 2; /* Region-Second-Table Length */
51 	};
52 };
53 
54 union region2_table_entry {
55 	unsigned long val;
56 	struct {
57 		unsigned long rto: 52;/* Region-Table Origin */
58 		unsigned long	 : 2;
59 		unsigned long p  : 1; /* DAT-Protection Bit */
60 		unsigned long	 : 1;
61 		unsigned long tf : 2; /* Region-Third-Table Offset */
62 		unsigned long i  : 1; /* Region-Invalid Bit */
63 		unsigned long	 : 1;
64 		unsigned long tt : 2; /* Table-Type Bits */
65 		unsigned long tl : 2; /* Region-Third-Table Length */
66 	};
67 };
68 
69 struct region3_table_entry_fc0 {
70 	unsigned long sto: 52;/* Segment-Table Origin */
71 	unsigned long	 : 1;
72 	unsigned long fc : 1; /* Format-Control */
73 	unsigned long p  : 1; /* DAT-Protection Bit */
74 	unsigned long	 : 1;
75 	unsigned long tf : 2; /* Segment-Table Offset */
76 	unsigned long i  : 1; /* Region-Invalid Bit */
77 	unsigned long cr : 1; /* Common-Region Bit */
78 	unsigned long tt : 2; /* Table-Type Bits */
79 	unsigned long tl : 2; /* Segment-Table Length */
80 };
81 
82 struct region3_table_entry_fc1 {
83 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
84 	unsigned long	 : 14;
85 	unsigned long av : 1; /* ACCF-Validity Control */
86 	unsigned long acc: 4; /* Access-Control Bits */
87 	unsigned long f  : 1; /* Fetch-Protection Bit */
88 	unsigned long fc : 1; /* Format-Control */
89 	unsigned long p  : 1; /* DAT-Protection Bit */
90 	unsigned long co : 1; /* Change-Recording Override */
91 	unsigned long	 : 2;
92 	unsigned long i  : 1; /* Region-Invalid Bit */
93 	unsigned long cr : 1; /* Common-Region Bit */
94 	unsigned long tt : 2; /* Table-Type Bits */
95 	unsigned long	 : 2;
96 };
97 
98 union region3_table_entry {
99 	unsigned long val;
100 	struct region3_table_entry_fc0 fc0;
101 	struct region3_table_entry_fc1 fc1;
102 	struct {
103 		unsigned long	 : 53;
104 		unsigned long fc : 1; /* Format-Control */
105 		unsigned long	 : 4;
106 		unsigned long i  : 1; /* Region-Invalid Bit */
107 		unsigned long cr : 1; /* Common-Region Bit */
108 		unsigned long tt : 2; /* Table-Type Bits */
109 		unsigned long	 : 2;
110 	};
111 };
112 
113 struct segment_entry_fc0 {
114 	unsigned long pto: 53;/* Page-Table Origin */
115 	unsigned long fc : 1; /* Format-Control */
116 	unsigned long p  : 1; /* DAT-Protection Bit */
117 	unsigned long	 : 3;
118 	unsigned long i  : 1; /* Segment-Invalid Bit */
119 	unsigned long cs : 1; /* Common-Segment Bit */
120 	unsigned long tt : 2; /* Table-Type Bits */
121 	unsigned long	 : 2;
122 };
123 
124 struct segment_entry_fc1 {
125 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
126 	unsigned long	 : 3;
127 	unsigned long av : 1; /* ACCF-Validity Control */
128 	unsigned long acc: 4; /* Access-Control Bits */
129 	unsigned long f  : 1; /* Fetch-Protection Bit */
130 	unsigned long fc : 1; /* Format-Control */
131 	unsigned long p  : 1; /* DAT-Protection Bit */
132 	unsigned long co : 1; /* Change-Recording Override */
133 	unsigned long	 : 2;
134 	unsigned long i  : 1; /* Segment-Invalid Bit */
135 	unsigned long cs : 1; /* Common-Segment Bit */
136 	unsigned long tt : 2; /* Table-Type Bits */
137 	unsigned long	 : 2;
138 };
139 
140 union segment_table_entry {
141 	unsigned long val;
142 	struct segment_entry_fc0 fc0;
143 	struct segment_entry_fc1 fc1;
144 	struct {
145 		unsigned long	 : 53;
146 		unsigned long fc : 1; /* Format-Control */
147 		unsigned long	 : 4;
148 		unsigned long i  : 1; /* Segment-Invalid Bit */
149 		unsigned long cs : 1; /* Common-Segment Bit */
150 		unsigned long tt : 2; /* Table-Type Bits */
151 		unsigned long	 : 2;
152 	};
153 };
154 
155 enum {
156 	TABLE_TYPE_SEGMENT = 0,
157 	TABLE_TYPE_REGION3 = 1,
158 	TABLE_TYPE_REGION2 = 2,
159 	TABLE_TYPE_REGION1 = 3
160 };
161 
162 union page_table_entry {
163 	unsigned long val;
164 	struct {
165 		unsigned long pfra : 52; /* Page-Frame Real Address */
166 		unsigned long z  : 1; /* Zero Bit */
167 		unsigned long i  : 1; /* Page-Invalid Bit */
168 		unsigned long p  : 1; /* DAT-Protection Bit */
169 		unsigned long co : 1; /* Change-Recording Override */
170 		unsigned long	 : 8;
171 	};
172 };
173 
174 /*
175  * vaddress union in order to easily decode a virtual address into its
176  * region first index, region second index etc. parts.
177  */
178 union vaddress {
179 	unsigned long addr;
180 	struct {
181 		unsigned long rfx : 11;
182 		unsigned long rsx : 11;
183 		unsigned long rtx : 11;
184 		unsigned long sx  : 11;
185 		unsigned long px  : 8;
186 		unsigned long bx  : 12;
187 	};
188 	struct {
189 		unsigned long rfx01 : 2;
190 		unsigned long	    : 9;
191 		unsigned long rsx01 : 2;
192 		unsigned long	    : 9;
193 		unsigned long rtx01 : 2;
194 		unsigned long	    : 9;
195 		unsigned long sx01  : 2;
196 		unsigned long	    : 29;
197 	};
198 };
199 
200 /*
201  * raddress union which will contain the result (real or absolute address)
202  * after a page table walk. The rfaa, sfaa and pfra members are used to
203  * simply assign them the value of a region, segment or page table entry.
204  */
205 union raddress {
206 	unsigned long addr;
207 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
208 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
209 	unsigned long pfra : 52; /* Page-Frame Real Address */
210 };
211 
212 union alet {
213 	u32 val;
214 	struct {
215 		u32 reserved : 7;
216 		u32 p        : 1;
217 		u32 alesn    : 8;
218 		u32 alen     : 16;
219 	};
220 };
221 
222 union ald {
223 	u32 val;
224 	struct {
225 		u32     : 1;
226 		u32 alo : 24;
227 		u32 all : 7;
228 	};
229 };
230 
231 struct ale {
232 	unsigned long i      : 1; /* ALEN-Invalid Bit */
233 	unsigned long        : 5;
234 	unsigned long fo     : 1; /* Fetch-Only Bit */
235 	unsigned long p      : 1; /* Private Bit */
236 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
237 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
238 	unsigned long        : 32;
239 	unsigned long        : 1;
240 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
241 	unsigned long        : 6;
242 	unsigned long astesn : 32; /* ASTE Sequence Number */
243 } __packed;
244 
245 struct aste {
246 	unsigned long i      : 1; /* ASX-Invalid Bit */
247 	unsigned long ato    : 29; /* Authority-Table Origin */
248 	unsigned long        : 1;
249 	unsigned long b      : 1; /* Base-Space Bit */
250 	unsigned long ax     : 16; /* Authorization Index */
251 	unsigned long atl    : 12; /* Authority-Table Length */
252 	unsigned long        : 2;
253 	unsigned long ca     : 1; /* Controlled-ASN Bit */
254 	unsigned long ra     : 1; /* Reusable-ASN Bit */
255 	unsigned long asce   : 64; /* Address-Space-Control Element */
256 	unsigned long ald    : 32;
257 	unsigned long astesn : 32;
258 	/* .. more fields there */
259 } __packed;
260 
ipte_lock_held(struct kvm_vcpu * vcpu)261 int ipte_lock_held(struct kvm_vcpu *vcpu)
262 {
263 	if (vcpu->arch.sie_block->eca & 1) {
264 		int rc;
265 
266 		read_lock(&vcpu->kvm->arch.sca_lock);
267 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
268 		read_unlock(&vcpu->kvm->arch.sca_lock);
269 		return rc;
270 	}
271 	return vcpu->kvm->arch.ipte_lock_count != 0;
272 }
273 
ipte_lock_simple(struct kvm_vcpu * vcpu)274 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
275 {
276 	union ipte_control old, new, *ic;
277 
278 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
279 	vcpu->kvm->arch.ipte_lock_count++;
280 	if (vcpu->kvm->arch.ipte_lock_count > 1)
281 		goto out;
282 retry:
283 	read_lock(&vcpu->kvm->arch.sca_lock);
284 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
285 	do {
286 		old = READ_ONCE(*ic);
287 		if (old.k) {
288 			read_unlock(&vcpu->kvm->arch.sca_lock);
289 			cond_resched();
290 			goto retry;
291 		}
292 		new = old;
293 		new.k = 1;
294 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
295 	read_unlock(&vcpu->kvm->arch.sca_lock);
296 out:
297 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
298 }
299 
ipte_unlock_simple(struct kvm_vcpu * vcpu)300 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
301 {
302 	union ipte_control old, new, *ic;
303 
304 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
305 	vcpu->kvm->arch.ipte_lock_count--;
306 	if (vcpu->kvm->arch.ipte_lock_count)
307 		goto out;
308 	read_lock(&vcpu->kvm->arch.sca_lock);
309 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
310 	do {
311 		old = READ_ONCE(*ic);
312 		new = old;
313 		new.k = 0;
314 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
315 	read_unlock(&vcpu->kvm->arch.sca_lock);
316 	wake_up(&vcpu->kvm->arch.ipte_wq);
317 out:
318 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
319 }
320 
ipte_lock_siif(struct kvm_vcpu * vcpu)321 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
322 {
323 	union ipte_control old, new, *ic;
324 
325 retry:
326 	read_lock(&vcpu->kvm->arch.sca_lock);
327 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
328 	do {
329 		old = READ_ONCE(*ic);
330 		if (old.kg) {
331 			read_unlock(&vcpu->kvm->arch.sca_lock);
332 			cond_resched();
333 			goto retry;
334 		}
335 		new = old;
336 		new.k = 1;
337 		new.kh++;
338 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
339 	read_unlock(&vcpu->kvm->arch.sca_lock);
340 }
341 
ipte_unlock_siif(struct kvm_vcpu * vcpu)342 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
343 {
344 	union ipte_control old, new, *ic;
345 
346 	read_lock(&vcpu->kvm->arch.sca_lock);
347 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
348 	do {
349 		old = READ_ONCE(*ic);
350 		new = old;
351 		new.kh--;
352 		if (!new.kh)
353 			new.k = 0;
354 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
355 	read_unlock(&vcpu->kvm->arch.sca_lock);
356 	if (!new.kh)
357 		wake_up(&vcpu->kvm->arch.ipte_wq);
358 }
359 
ipte_lock(struct kvm_vcpu * vcpu)360 void ipte_lock(struct kvm_vcpu *vcpu)
361 {
362 	if (vcpu->arch.sie_block->eca & 1)
363 		ipte_lock_siif(vcpu);
364 	else
365 		ipte_lock_simple(vcpu);
366 }
367 
ipte_unlock(struct kvm_vcpu * vcpu)368 void ipte_unlock(struct kvm_vcpu *vcpu)
369 {
370 	if (vcpu->arch.sie_block->eca & 1)
371 		ipte_unlock_siif(vcpu);
372 	else
373 		ipte_unlock_simple(vcpu);
374 }
375 
ar_translation(struct kvm_vcpu * vcpu,union asce * asce,ar_t ar,enum gacc_mode mode)376 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
377 			  enum gacc_mode mode)
378 {
379 	union alet alet;
380 	struct ale ale;
381 	struct aste aste;
382 	unsigned long ald_addr, authority_table_addr;
383 	union ald ald;
384 	int eax, rc;
385 	u8 authority_table;
386 
387 	if (ar >= NUM_ACRS)
388 		return -EINVAL;
389 
390 	save_access_regs(vcpu->run->s.regs.acrs);
391 	alet.val = vcpu->run->s.regs.acrs[ar];
392 
393 	if (ar == 0 || alet.val == 0) {
394 		asce->val = vcpu->arch.sie_block->gcr[1];
395 		return 0;
396 	} else if (alet.val == 1) {
397 		asce->val = vcpu->arch.sie_block->gcr[7];
398 		return 0;
399 	}
400 
401 	if (alet.reserved)
402 		return PGM_ALET_SPECIFICATION;
403 
404 	if (alet.p)
405 		ald_addr = vcpu->arch.sie_block->gcr[5];
406 	else
407 		ald_addr = vcpu->arch.sie_block->gcr[2];
408 	ald_addr &= 0x7fffffc0;
409 
410 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
411 	if (rc)
412 		return rc;
413 
414 	if (alet.alen / 8 > ald.all)
415 		return PGM_ALEN_TRANSLATION;
416 
417 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
418 		return PGM_ADDRESSING;
419 
420 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
421 			     sizeof(struct ale));
422 	if (rc)
423 		return rc;
424 
425 	if (ale.i == 1)
426 		return PGM_ALEN_TRANSLATION;
427 	if (ale.alesn != alet.alesn)
428 		return PGM_ALE_SEQUENCE;
429 
430 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
431 	if (rc)
432 		return rc;
433 
434 	if (aste.i)
435 		return PGM_ASTE_VALIDITY;
436 	if (aste.astesn != ale.astesn)
437 		return PGM_ASTE_SEQUENCE;
438 
439 	if (ale.p == 1) {
440 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
441 		if (ale.aleax != eax) {
442 			if (eax / 16 > aste.atl)
443 				return PGM_EXTENDED_AUTHORITY;
444 
445 			authority_table_addr = aste.ato * 4 + eax / 4;
446 
447 			rc = read_guest_real(vcpu, authority_table_addr,
448 					     &authority_table,
449 					     sizeof(u8));
450 			if (rc)
451 				return rc;
452 
453 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
454 				return PGM_EXTENDED_AUTHORITY;
455 		}
456 	}
457 
458 	if (ale.fo == 1 && mode == GACC_STORE)
459 		return PGM_PROTECTION;
460 
461 	asce->val = aste.asce;
462 	return 0;
463 }
464 
465 struct trans_exc_code_bits {
466 	unsigned long addr : 52; /* Translation-exception Address */
467 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
468 	unsigned long	   : 6;
469 	unsigned long b60  : 1;
470 	unsigned long b61  : 1;
471 	unsigned long as   : 2;  /* ASCE Identifier */
472 };
473 
474 enum {
475 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
476 	FSI_STORE   = 1, /* Exception was due to store operation */
477 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
478 };
479 
480 enum prot_type {
481 	PROT_TYPE_LA   = 0,
482 	PROT_TYPE_KEYC = 1,
483 	PROT_TYPE_ALC  = 2,
484 	PROT_TYPE_DAT  = 3,
485 };
486 
trans_exc(struct kvm_vcpu * vcpu,int code,unsigned long gva,ar_t ar,enum gacc_mode mode,enum prot_type prot)487 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
488 		     ar_t ar, enum gacc_mode mode, enum prot_type prot)
489 {
490 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
491 	struct trans_exc_code_bits *tec;
492 
493 	memset(pgm, 0, sizeof(*pgm));
494 	pgm->code = code;
495 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
496 
497 	switch (code) {
498 	case PGM_PROTECTION:
499 		switch (prot) {
500 		case PROT_TYPE_ALC:
501 			tec->b60 = 1;
502 			/* FALL THROUGH */
503 		case PROT_TYPE_DAT:
504 			tec->b61 = 1;
505 			break;
506 		default: /* LA and KEYC set b61 to 0, other params undefined */
507 			return code;
508 		}
509 		/* FALL THROUGH */
510 	case PGM_ASCE_TYPE:
511 	case PGM_PAGE_TRANSLATION:
512 	case PGM_REGION_FIRST_TRANS:
513 	case PGM_REGION_SECOND_TRANS:
514 	case PGM_REGION_THIRD_TRANS:
515 	case PGM_SEGMENT_TRANSLATION:
516 		/*
517 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
518 		 * exc_access_id has to be set to 0 for some instructions. Both
519 		 * cases have to be handled by the caller.
520 		 */
521 		tec->addr = gva >> PAGE_SHIFT;
522 		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
523 		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
524 		/* FALL THROUGH */
525 	case PGM_ALEN_TRANSLATION:
526 	case PGM_ALE_SEQUENCE:
527 	case PGM_ASTE_VALIDITY:
528 	case PGM_ASTE_SEQUENCE:
529 	case PGM_EXTENDED_AUTHORITY:
530 		/*
531 		 * We can always store exc_access_id, as it is
532 		 * undefined for non-ar cases. It is undefined for
533 		 * most DAT protection exceptions.
534 		 */
535 		pgm->exc_access_id = ar;
536 		break;
537 	}
538 	return code;
539 }
540 
get_vcpu_asce(struct kvm_vcpu * vcpu,union asce * asce,unsigned long ga,ar_t ar,enum gacc_mode mode)541 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
542 			 unsigned long ga, ar_t ar, enum gacc_mode mode)
543 {
544 	int rc;
545 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
546 
547 	if (!psw.t) {
548 		asce->val = 0;
549 		asce->r = 1;
550 		return 0;
551 	}
552 
553 	if (mode == GACC_IFETCH)
554 		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
555 
556 	switch (psw.as) {
557 	case PSW_AS_PRIMARY:
558 		asce->val = vcpu->arch.sie_block->gcr[1];
559 		return 0;
560 	case PSW_AS_SECONDARY:
561 		asce->val = vcpu->arch.sie_block->gcr[7];
562 		return 0;
563 	case PSW_AS_HOME:
564 		asce->val = vcpu->arch.sie_block->gcr[13];
565 		return 0;
566 	case PSW_AS_ACCREG:
567 		rc = ar_translation(vcpu, asce, ar, mode);
568 		if (rc > 0)
569 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
570 		return rc;
571 	}
572 	return 0;
573 }
574 
deref_table(struct kvm * kvm,unsigned long gpa,unsigned long * val)575 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
576 {
577 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
578 }
579 
580 /**
581  * guest_translate - translate a guest virtual into a guest absolute address
582  * @vcpu: virtual cpu
583  * @gva: guest virtual address
584  * @gpa: points to where guest physical (absolute) address should be stored
585  * @asce: effective asce
586  * @mode: indicates the access mode to be used
587  *
588  * Translate a guest virtual address into a guest absolute address by means
589  * of dynamic address translation as specified by the architecture.
590  * If the resulting absolute address is not available in the configuration
591  * an addressing exception is indicated and @gpa will not be changed.
592  *
593  * Returns: - zero on success; @gpa contains the resulting absolute address
594  *	    - a negative value if guest access failed due to e.g. broken
595  *	      guest mapping
596  *	    - a positve value if an access exception happened. In this case
597  *	      the returned value is the program interruption code as defined
598  *	      by the architecture
599  */
guest_translate(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa,const union asce asce,enum gacc_mode mode)600 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
601 				     unsigned long *gpa, const union asce asce,
602 				     enum gacc_mode mode)
603 {
604 	union vaddress vaddr = {.addr = gva};
605 	union raddress raddr = {.addr = gva};
606 	union page_table_entry pte;
607 	int dat_protection = 0;
608 	union ctlreg0 ctlreg0;
609 	unsigned long ptr;
610 	int edat1, edat2;
611 
612 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
613 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
614 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
615 	if (asce.r)
616 		goto real_address;
617 	ptr = asce.origin * 4096;
618 	switch (asce.dt) {
619 	case ASCE_TYPE_REGION1:
620 		if (vaddr.rfx01 > asce.tl)
621 			return PGM_REGION_FIRST_TRANS;
622 		ptr += vaddr.rfx * 8;
623 		break;
624 	case ASCE_TYPE_REGION2:
625 		if (vaddr.rfx)
626 			return PGM_ASCE_TYPE;
627 		if (vaddr.rsx01 > asce.tl)
628 			return PGM_REGION_SECOND_TRANS;
629 		ptr += vaddr.rsx * 8;
630 		break;
631 	case ASCE_TYPE_REGION3:
632 		if (vaddr.rfx || vaddr.rsx)
633 			return PGM_ASCE_TYPE;
634 		if (vaddr.rtx01 > asce.tl)
635 			return PGM_REGION_THIRD_TRANS;
636 		ptr += vaddr.rtx * 8;
637 		break;
638 	case ASCE_TYPE_SEGMENT:
639 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
640 			return PGM_ASCE_TYPE;
641 		if (vaddr.sx01 > asce.tl)
642 			return PGM_SEGMENT_TRANSLATION;
643 		ptr += vaddr.sx * 8;
644 		break;
645 	}
646 	switch (asce.dt) {
647 	case ASCE_TYPE_REGION1:	{
648 		union region1_table_entry rfte;
649 
650 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
651 			return PGM_ADDRESSING;
652 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
653 			return -EFAULT;
654 		if (rfte.i)
655 			return PGM_REGION_FIRST_TRANS;
656 		if (rfte.tt != TABLE_TYPE_REGION1)
657 			return PGM_TRANSLATION_SPEC;
658 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
659 			return PGM_REGION_SECOND_TRANS;
660 		if (edat1)
661 			dat_protection |= rfte.p;
662 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
663 	}
664 		/* fallthrough */
665 	case ASCE_TYPE_REGION2: {
666 		union region2_table_entry rste;
667 
668 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
669 			return PGM_ADDRESSING;
670 		if (deref_table(vcpu->kvm, ptr, &rste.val))
671 			return -EFAULT;
672 		if (rste.i)
673 			return PGM_REGION_SECOND_TRANS;
674 		if (rste.tt != TABLE_TYPE_REGION2)
675 			return PGM_TRANSLATION_SPEC;
676 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
677 			return PGM_REGION_THIRD_TRANS;
678 		if (edat1)
679 			dat_protection |= rste.p;
680 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
681 	}
682 		/* fallthrough */
683 	case ASCE_TYPE_REGION3: {
684 		union region3_table_entry rtte;
685 
686 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
687 			return PGM_ADDRESSING;
688 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
689 			return -EFAULT;
690 		if (rtte.i)
691 			return PGM_REGION_THIRD_TRANS;
692 		if (rtte.tt != TABLE_TYPE_REGION3)
693 			return PGM_TRANSLATION_SPEC;
694 		if (rtte.cr && asce.p && edat2)
695 			return PGM_TRANSLATION_SPEC;
696 		if (rtte.fc && edat2) {
697 			dat_protection |= rtte.fc1.p;
698 			raddr.rfaa = rtte.fc1.rfaa;
699 			goto absolute_address;
700 		}
701 		if (vaddr.sx01 < rtte.fc0.tf)
702 			return PGM_SEGMENT_TRANSLATION;
703 		if (vaddr.sx01 > rtte.fc0.tl)
704 			return PGM_SEGMENT_TRANSLATION;
705 		if (edat1)
706 			dat_protection |= rtte.fc0.p;
707 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
708 	}
709 		/* fallthrough */
710 	case ASCE_TYPE_SEGMENT: {
711 		union segment_table_entry ste;
712 
713 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
714 			return PGM_ADDRESSING;
715 		if (deref_table(vcpu->kvm, ptr, &ste.val))
716 			return -EFAULT;
717 		if (ste.i)
718 			return PGM_SEGMENT_TRANSLATION;
719 		if (ste.tt != TABLE_TYPE_SEGMENT)
720 			return PGM_TRANSLATION_SPEC;
721 		if (ste.cs && asce.p)
722 			return PGM_TRANSLATION_SPEC;
723 		if (ste.fc && edat1) {
724 			dat_protection |= ste.fc1.p;
725 			raddr.sfaa = ste.fc1.sfaa;
726 			goto absolute_address;
727 		}
728 		dat_protection |= ste.fc0.p;
729 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
730 	}
731 	}
732 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
733 		return PGM_ADDRESSING;
734 	if (deref_table(vcpu->kvm, ptr, &pte.val))
735 		return -EFAULT;
736 	if (pte.i)
737 		return PGM_PAGE_TRANSLATION;
738 	if (pte.z)
739 		return PGM_TRANSLATION_SPEC;
740 	if (pte.co && !edat1)
741 		return PGM_TRANSLATION_SPEC;
742 	dat_protection |= pte.p;
743 	raddr.pfra = pte.pfra;
744 real_address:
745 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
746 absolute_address:
747 	if (mode == GACC_STORE && dat_protection)
748 		return PGM_PROTECTION;
749 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
750 		return PGM_ADDRESSING;
751 	*gpa = raddr.addr;
752 	return 0;
753 }
754 
is_low_address(unsigned long ga)755 static inline int is_low_address(unsigned long ga)
756 {
757 	/* Check for address ranges 0..511 and 4096..4607 */
758 	return (ga & ~0x11fful) == 0;
759 }
760 
low_address_protection_enabled(struct kvm_vcpu * vcpu,const union asce asce)761 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
762 					  const union asce asce)
763 {
764 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
765 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
766 
767 	if (!ctlreg0.lap)
768 		return 0;
769 	if (psw_bits(*psw).t && asce.p)
770 		return 0;
771 	return 1;
772 }
773 
guest_page_range(struct kvm_vcpu * vcpu,unsigned long ga,ar_t ar,unsigned long * pages,unsigned long nr_pages,const union asce asce,enum gacc_mode mode)774 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar,
775 			    unsigned long *pages, unsigned long nr_pages,
776 			    const union asce asce, enum gacc_mode mode)
777 {
778 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
779 	int lap_enabled, rc = 0;
780 
781 	lap_enabled = low_address_protection_enabled(vcpu, asce);
782 	while (nr_pages) {
783 		ga = kvm_s390_logical_to_effective(vcpu, ga);
784 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
785 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
786 					 PROT_TYPE_LA);
787 		ga &= PAGE_MASK;
788 		if (psw_bits(*psw).t) {
789 			rc = guest_translate(vcpu, ga, pages, asce, mode);
790 			if (rc < 0)
791 				return rc;
792 		} else {
793 			*pages = kvm_s390_real_to_abs(vcpu, ga);
794 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
795 				rc = PGM_ADDRESSING;
796 		}
797 		if (rc)
798 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
799 		ga += PAGE_SIZE;
800 		pages++;
801 		nr_pages--;
802 	}
803 	return 0;
804 }
805 
access_guest(struct kvm_vcpu * vcpu,unsigned long ga,ar_t ar,void * data,unsigned long len,enum gacc_mode mode)806 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
807 		 unsigned long len, enum gacc_mode mode)
808 {
809 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
810 	unsigned long _len, nr_pages, gpa, idx;
811 	unsigned long pages_array[2];
812 	unsigned long *pages;
813 	int need_ipte_lock;
814 	union asce asce;
815 	int rc;
816 
817 	if (!len)
818 		return 0;
819 	ga = kvm_s390_logical_to_effective(vcpu, ga);
820 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
821 	if (rc)
822 		return rc;
823 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
824 	pages = pages_array;
825 	if (nr_pages > ARRAY_SIZE(pages_array))
826 		pages = vmalloc(nr_pages * sizeof(unsigned long));
827 	if (!pages)
828 		return -ENOMEM;
829 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
830 	if (need_ipte_lock)
831 		ipte_lock(vcpu);
832 	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
833 	for (idx = 0; idx < nr_pages && !rc; idx++) {
834 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
835 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
836 		if (mode == GACC_STORE)
837 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
838 		else
839 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
840 		len -= _len;
841 		ga += _len;
842 		data += _len;
843 	}
844 	if (need_ipte_lock)
845 		ipte_unlock(vcpu);
846 	if (nr_pages > ARRAY_SIZE(pages_array))
847 		vfree(pages);
848 	return rc;
849 }
850 
access_guest_real(struct kvm_vcpu * vcpu,unsigned long gra,void * data,unsigned long len,enum gacc_mode mode)851 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
852 		      void *data, unsigned long len, enum gacc_mode mode)
853 {
854 	unsigned long _len, gpa;
855 	int rc = 0;
856 
857 	while (len && !rc) {
858 		gpa = kvm_s390_real_to_abs(vcpu, gra);
859 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
860 		if (mode)
861 			rc = write_guest_abs(vcpu, gpa, data, _len);
862 		else
863 			rc = read_guest_abs(vcpu, gpa, data, _len);
864 		len -= _len;
865 		gra += _len;
866 		data += _len;
867 	}
868 	return rc;
869 }
870 
871 /**
872  * guest_translate_address - translate guest logical into guest absolute address
873  *
874  * Parameter semantics are the same as the ones from guest_translate.
875  * The memory contents at the guest address are not changed.
876  *
877  * Note: The IPTE lock is not taken during this function, so the caller
878  * has to take care of this.
879  */
guest_translate_address(struct kvm_vcpu * vcpu,unsigned long gva,ar_t ar,unsigned long * gpa,enum gacc_mode mode)880 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
881 			    unsigned long *gpa, enum gacc_mode mode)
882 {
883 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
884 	union asce asce;
885 	int rc;
886 
887 	gva = kvm_s390_logical_to_effective(vcpu, gva);
888 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
889 	if (rc)
890 		return rc;
891 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
892 		if (mode == GACC_STORE)
893 			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
894 					 mode, PROT_TYPE_LA);
895 	}
896 
897 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
898 		rc = guest_translate(vcpu, gva, gpa, asce, mode);
899 		if (rc > 0)
900 			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
901 	} else {
902 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
903 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
904 			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
905 	}
906 
907 	return rc;
908 }
909 
910 /**
911  * check_gva_range - test a range of guest virtual addresses for accessibility
912  */
check_gva_range(struct kvm_vcpu * vcpu,unsigned long gva,ar_t ar,unsigned long length,enum gacc_mode mode)913 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
914 		    unsigned long length, enum gacc_mode mode)
915 {
916 	unsigned long gpa;
917 	unsigned long currlen;
918 	int rc = 0;
919 
920 	ipte_lock(vcpu);
921 	while (length > 0 && !rc) {
922 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
923 		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
924 		gva += currlen;
925 		length -= currlen;
926 	}
927 	ipte_unlock(vcpu);
928 
929 	return rc;
930 }
931 
932 /**
933  * kvm_s390_check_low_addr_prot_real - check for low-address protection
934  * @gra: Guest real address
935  *
936  * Checks whether an address is subject to low-address protection and set
937  * up vcpu->arch.pgm accordingly if necessary.
938  *
939  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
940  */
kvm_s390_check_low_addr_prot_real(struct kvm_vcpu * vcpu,unsigned long gra)941 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
942 {
943 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
944 
945 	if (!ctlreg0.lap || !is_low_address(gra))
946 		return 0;
947 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
948 }
949 
950 /**
951  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
952  * @sg: pointer to the shadow guest address space structure
953  * @saddr: faulting address in the shadow gmap
954  * @pgt: pointer to the page table address result
955  * @fake: pgt references contiguous guest memory block, not a pgtable
956  */
kvm_s390_shadow_tables(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)957 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
958 				  unsigned long *pgt, int *dat_protection,
959 				  int *fake)
960 {
961 	struct gmap *parent;
962 	union asce asce;
963 	union vaddress vaddr;
964 	unsigned long ptr;
965 	int rc;
966 
967 	*fake = 0;
968 	*dat_protection = 0;
969 	parent = sg->parent;
970 	vaddr.addr = saddr;
971 	asce.val = sg->orig_asce;
972 	ptr = asce.origin * 4096;
973 	if (asce.r) {
974 		*fake = 1;
975 		ptr = 0;
976 		asce.dt = ASCE_TYPE_REGION1;
977 	}
978 	switch (asce.dt) {
979 	case ASCE_TYPE_REGION1:
980 		if (vaddr.rfx01 > asce.tl && !*fake)
981 			return PGM_REGION_FIRST_TRANS;
982 		break;
983 	case ASCE_TYPE_REGION2:
984 		if (vaddr.rfx)
985 			return PGM_ASCE_TYPE;
986 		if (vaddr.rsx01 > asce.tl)
987 			return PGM_REGION_SECOND_TRANS;
988 		break;
989 	case ASCE_TYPE_REGION3:
990 		if (vaddr.rfx || vaddr.rsx)
991 			return PGM_ASCE_TYPE;
992 		if (vaddr.rtx01 > asce.tl)
993 			return PGM_REGION_THIRD_TRANS;
994 		break;
995 	case ASCE_TYPE_SEGMENT:
996 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
997 			return PGM_ASCE_TYPE;
998 		if (vaddr.sx01 > asce.tl)
999 			return PGM_SEGMENT_TRANSLATION;
1000 		break;
1001 	}
1002 
1003 	switch (asce.dt) {
1004 	case ASCE_TYPE_REGION1: {
1005 		union region1_table_entry rfte;
1006 
1007 		if (*fake) {
1008 			ptr += (unsigned long) vaddr.rfx << 53;
1009 			rfte.val = ptr;
1010 			goto shadow_r2t;
1011 		}
1012 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1013 		if (rc)
1014 			return rc;
1015 		if (rfte.i)
1016 			return PGM_REGION_FIRST_TRANS;
1017 		if (rfte.tt != TABLE_TYPE_REGION1)
1018 			return PGM_TRANSLATION_SPEC;
1019 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1020 			return PGM_REGION_SECOND_TRANS;
1021 		if (sg->edat_level >= 1)
1022 			*dat_protection |= rfte.p;
1023 		ptr = rfte.rto << 12UL;
1024 shadow_r2t:
1025 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1026 		if (rc)
1027 			return rc;
1028 		/* fallthrough */
1029 	}
1030 	case ASCE_TYPE_REGION2: {
1031 		union region2_table_entry rste;
1032 
1033 		if (*fake) {
1034 			ptr += (unsigned long) vaddr.rsx << 42;
1035 			rste.val = ptr;
1036 			goto shadow_r3t;
1037 		}
1038 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1039 		if (rc)
1040 			return rc;
1041 		if (rste.i)
1042 			return PGM_REGION_SECOND_TRANS;
1043 		if (rste.tt != TABLE_TYPE_REGION2)
1044 			return PGM_TRANSLATION_SPEC;
1045 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1046 			return PGM_REGION_THIRD_TRANS;
1047 		if (sg->edat_level >= 1)
1048 			*dat_protection |= rste.p;
1049 		ptr = rste.rto << 12UL;
1050 shadow_r3t:
1051 		rste.p |= *dat_protection;
1052 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1053 		if (rc)
1054 			return rc;
1055 		/* fallthrough */
1056 	}
1057 	case ASCE_TYPE_REGION3: {
1058 		union region3_table_entry rtte;
1059 
1060 		if (*fake) {
1061 			ptr += (unsigned long) vaddr.rtx << 31;
1062 			rtte.val = ptr;
1063 			goto shadow_sgt;
1064 		}
1065 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1066 		if (rc)
1067 			return rc;
1068 		if (rtte.i)
1069 			return PGM_REGION_THIRD_TRANS;
1070 		if (rtte.tt != TABLE_TYPE_REGION3)
1071 			return PGM_TRANSLATION_SPEC;
1072 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1073 			return PGM_TRANSLATION_SPEC;
1074 		if (rtte.fc && sg->edat_level >= 2) {
1075 			*dat_protection |= rtte.fc0.p;
1076 			*fake = 1;
1077 			ptr = rtte.fc1.rfaa << 31UL;
1078 			rtte.val = ptr;
1079 			goto shadow_sgt;
1080 		}
1081 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1082 			return PGM_SEGMENT_TRANSLATION;
1083 		if (sg->edat_level >= 1)
1084 			*dat_protection |= rtte.fc0.p;
1085 		ptr = rtte.fc0.sto << 12UL;
1086 shadow_sgt:
1087 		rtte.fc0.p |= *dat_protection;
1088 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1089 		if (rc)
1090 			return rc;
1091 		/* fallthrough */
1092 	}
1093 	case ASCE_TYPE_SEGMENT: {
1094 		union segment_table_entry ste;
1095 
1096 		if (*fake) {
1097 			ptr += (unsigned long) vaddr.sx << 20;
1098 			ste.val = ptr;
1099 			goto shadow_pgt;
1100 		}
1101 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1102 		if (rc)
1103 			return rc;
1104 		if (ste.i)
1105 			return PGM_SEGMENT_TRANSLATION;
1106 		if (ste.tt != TABLE_TYPE_SEGMENT)
1107 			return PGM_TRANSLATION_SPEC;
1108 		if (ste.cs && asce.p)
1109 			return PGM_TRANSLATION_SPEC;
1110 		*dat_protection |= ste.fc0.p;
1111 		if (ste.fc && sg->edat_level >= 1) {
1112 			*fake = 1;
1113 			ptr = ste.fc1.sfaa << 20UL;
1114 			ste.val = ptr;
1115 			goto shadow_pgt;
1116 		}
1117 		ptr = ste.fc0.pto << 11UL;
1118 shadow_pgt:
1119 		ste.fc0.p |= *dat_protection;
1120 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1121 		if (rc)
1122 			return rc;
1123 	}
1124 	}
1125 	/* Return the parent address of the page table */
1126 	*pgt = ptr;
1127 	return 0;
1128 }
1129 
1130 /**
1131  * kvm_s390_shadow_fault - handle fault on a shadow page table
1132  * @vcpu: virtual cpu
1133  * @sg: pointer to the shadow guest address space structure
1134  * @saddr: faulting address in the shadow gmap
1135  *
1136  * Returns: - 0 if the shadow fault was successfully resolved
1137  *	    - > 0 (pgm exception code) on exceptions while faulting
1138  *	    - -EAGAIN if the caller can retry immediately
1139  *	    - -EFAULT when accessing invalid guest addresses
1140  *	    - -ENOMEM if out of memory
1141  */
kvm_s390_shadow_fault(struct kvm_vcpu * vcpu,struct gmap * sg,unsigned long saddr)1142 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1143 			  unsigned long saddr)
1144 {
1145 	union vaddress vaddr;
1146 	union page_table_entry pte;
1147 	unsigned long pgt;
1148 	int dat_protection, fake;
1149 	int rc;
1150 
1151 	down_read(&sg->mm->mmap_sem);
1152 	/*
1153 	 * We don't want any guest-2 tables to change - so the parent
1154 	 * tables/pointers we read stay valid - unshadowing is however
1155 	 * always possible - only guest_table_lock protects us.
1156 	 */
1157 	ipte_lock(vcpu);
1158 
1159 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1160 	if (rc)
1161 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1162 					    &fake);
1163 
1164 	vaddr.addr = saddr;
1165 	if (fake) {
1166 		/* offset in 1MB guest memory block */
1167 		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1168 		goto shadow_page;
1169 	}
1170 	if (!rc)
1171 		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1172 	if (!rc && pte.i)
1173 		rc = PGM_PAGE_TRANSLATION;
1174 	if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
1175 		rc = PGM_TRANSLATION_SPEC;
1176 shadow_page:
1177 	pte.p |= dat_protection;
1178 	if (!rc)
1179 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1180 	ipte_unlock(vcpu);
1181 	up_read(&sg->mm->mmap_sem);
1182 	return rc;
1183 }
1184