1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55
56 #include "cpumap.h"
57 #include "kernel.h"
58
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
67 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
68
69 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
70 EXPORT_SYMBOL(cpu_core_map);
71 EXPORT_SYMBOL(cpu_core_sib_map);
72 EXPORT_SYMBOL(cpu_core_sib_cache_map);
73
74 static cpumask_t smp_commenced_mask;
75
smp_info(struct seq_file * m)76 void smp_info(struct seq_file *m)
77 {
78 int i;
79
80 seq_printf(m, "State:\n");
81 for_each_online_cpu(i)
82 seq_printf(m, "CPU%d:\t\tonline\n", i);
83 }
84
smp_bogo(struct seq_file * m)85 void smp_bogo(struct seq_file *m)
86 {
87 int i;
88
89 for_each_online_cpu(i)
90 seq_printf(m,
91 "Cpu%dClkTck\t: %016lx\n",
92 i, cpu_data(i).clock_tick);
93 }
94
95 extern void setup_sparc64_timer(void);
96
97 static volatile unsigned long callin_flag = 0;
98
smp_callin(void)99 void smp_callin(void)
100 {
101 int cpuid = hard_smp_processor_id();
102
103 __local_per_cpu_offset = __per_cpu_offset(cpuid);
104
105 if (tlb_type == hypervisor)
106 sun4v_ktsb_register();
107
108 __flush_tlb_all();
109
110 setup_sparc64_timer();
111
112 if (cheetah_pcache_forced_on)
113 cheetah_enable_pcache();
114
115 callin_flag = 1;
116 __asm__ __volatile__("membar #Sync\n\t"
117 "flush %%g6" : : : "memory");
118
119 /* Clear this or we will die instantly when we
120 * schedule back to this idler...
121 */
122 current_thread_info()->new_child = 0;
123
124 /* Attach to the address space of init_task. */
125 atomic_inc(&init_mm.mm_count);
126 current->active_mm = &init_mm;
127
128 /* inform the notifiers about the new cpu */
129 notify_cpu_starting(cpuid);
130
131 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
132 rmb();
133
134 set_cpu_online(cpuid, true);
135
136 /* idle thread is expected to have preempt disabled */
137 preempt_disable();
138
139 local_irq_enable();
140
141 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
142 }
143
cpu_panic(void)144 void cpu_panic(void)
145 {
146 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
147 panic("SMP bolixed\n");
148 }
149
150 /* This tick register synchronization scheme is taken entirely from
151 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
152 *
153 * The only change I've made is to rework it so that the master
154 * initiates the synchonization instead of the slave. -DaveM
155 */
156
157 #define MASTER 0
158 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
159
160 #define NUM_ROUNDS 64 /* magic value */
161 #define NUM_ITERS 5 /* likewise */
162
163 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
164 static unsigned long go[SLAVE + 1];
165
166 #define DEBUG_TICK_SYNC 0
167
get_delta(long * rt,long * master)168 static inline long get_delta (long *rt, long *master)
169 {
170 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
171 unsigned long tcenter, t0, t1, tm;
172 unsigned long i;
173
174 for (i = 0; i < NUM_ITERS; i++) {
175 t0 = tick_ops->get_tick();
176 go[MASTER] = 1;
177 membar_safe("#StoreLoad");
178 while (!(tm = go[SLAVE]))
179 rmb();
180 go[SLAVE] = 0;
181 wmb();
182 t1 = tick_ops->get_tick();
183
184 if (t1 - t0 < best_t1 - best_t0)
185 best_t0 = t0, best_t1 = t1, best_tm = tm;
186 }
187
188 *rt = best_t1 - best_t0;
189 *master = best_tm - best_t0;
190
191 /* average best_t0 and best_t1 without overflow: */
192 tcenter = (best_t0/2 + best_t1/2);
193 if (best_t0 % 2 + best_t1 % 2 == 2)
194 tcenter++;
195 return tcenter - best_tm;
196 }
197
smp_synchronize_tick_client(void)198 void smp_synchronize_tick_client(void)
199 {
200 long i, delta, adj, adjust_latency = 0, done = 0;
201 unsigned long flags, rt, master_time_stamp;
202 #if DEBUG_TICK_SYNC
203 struct {
204 long rt; /* roundtrip time */
205 long master; /* master's timestamp */
206 long diff; /* difference between midpoint and master's timestamp */
207 long lat; /* estimate of itc adjustment latency */
208 } t[NUM_ROUNDS];
209 #endif
210
211 go[MASTER] = 1;
212
213 while (go[MASTER])
214 rmb();
215
216 local_irq_save(flags);
217 {
218 for (i = 0; i < NUM_ROUNDS; i++) {
219 delta = get_delta(&rt, &master_time_stamp);
220 if (delta == 0)
221 done = 1; /* let's lock on to this... */
222
223 if (!done) {
224 if (i > 0) {
225 adjust_latency += -delta;
226 adj = -delta + adjust_latency/4;
227 } else
228 adj = -delta;
229
230 tick_ops->add_tick(adj);
231 }
232 #if DEBUG_TICK_SYNC
233 t[i].rt = rt;
234 t[i].master = master_time_stamp;
235 t[i].diff = delta;
236 t[i].lat = adjust_latency/4;
237 #endif
238 }
239 }
240 local_irq_restore(flags);
241
242 #if DEBUG_TICK_SYNC
243 for (i = 0; i < NUM_ROUNDS; i++)
244 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
245 t[i].rt, t[i].master, t[i].diff, t[i].lat);
246 #endif
247
248 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
249 "(last diff %ld cycles, maxerr %lu cycles)\n",
250 smp_processor_id(), delta, rt);
251 }
252
253 static void smp_start_sync_tick_client(int cpu);
254
smp_synchronize_one_tick(int cpu)255 static void smp_synchronize_one_tick(int cpu)
256 {
257 unsigned long flags, i;
258
259 go[MASTER] = 0;
260
261 smp_start_sync_tick_client(cpu);
262
263 /* wait for client to be ready */
264 while (!go[MASTER])
265 rmb();
266
267 /* now let the client proceed into his loop */
268 go[MASTER] = 0;
269 membar_safe("#StoreLoad");
270
271 raw_spin_lock_irqsave(&itc_sync_lock, flags);
272 {
273 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
274 while (!go[MASTER])
275 rmb();
276 go[MASTER] = 0;
277 wmb();
278 go[SLAVE] = tick_ops->get_tick();
279 membar_safe("#StoreLoad");
280 }
281 }
282 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
283 }
284
285 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
ldom_startcpu_cpuid(unsigned int cpu,unsigned long thread_reg,void ** descrp)286 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
287 void **descrp)
288 {
289 extern unsigned long sparc64_ttable_tl0;
290 extern unsigned long kern_locked_tte_data;
291 struct hvtramp_descr *hdesc;
292 unsigned long trampoline_ra;
293 struct trap_per_cpu *tb;
294 u64 tte_vaddr, tte_data;
295 unsigned long hv_err;
296 int i;
297
298 hdesc = kzalloc(sizeof(*hdesc) +
299 (sizeof(struct hvtramp_mapping) *
300 num_kernel_image_mappings - 1),
301 GFP_KERNEL);
302 if (!hdesc) {
303 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304 "hvtramp_descr.\n");
305 return;
306 }
307 *descrp = hdesc;
308
309 hdesc->cpu = cpu;
310 hdesc->num_mappings = num_kernel_image_mappings;
311
312 tb = &trap_block[cpu];
313
314 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317 hdesc->thread_reg = thread_reg;
318
319 tte_vaddr = (unsigned long) KERNBASE;
320 tte_data = kern_locked_tte_data;
321
322 for (i = 0; i < hdesc->num_mappings; i++) {
323 hdesc->maps[i].vaddr = tte_vaddr;
324 hdesc->maps[i].tte = tte_data;
325 tte_vaddr += 0x400000;
326 tte_data += 0x400000;
327 }
328
329 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 __pa(hdesc));
334 if (hv_err)
335 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 "gives error %lu\n", hv_err);
337 }
338 #endif
339
340 extern unsigned long sparc64_cpu_startup;
341
342 /* The OBP cpu startup callback truncates the 3rd arg cookie to
343 * 32-bits (I think) so to be safe we have it read the pointer
344 * contained here so we work on >4GB machines. -DaveM
345 */
346 static struct thread_info *cpu_new_thread = NULL;
347
smp_boot_one_cpu(unsigned int cpu,struct task_struct * idle)348 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 {
350 unsigned long entry =
351 (unsigned long)(&sparc64_cpu_startup);
352 unsigned long cookie =
353 (unsigned long)(&cpu_new_thread);
354 void *descr = NULL;
355 int timeout, ret;
356
357 callin_flag = 0;
358 cpu_new_thread = task_thread_info(idle);
359
360 if (tlb_type == hypervisor) {
361 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread,
365 &descr);
366 else
367 #endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
369 } else {
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372 prom_startcpu(dp->phandle, entry, cookie);
373 }
374
375 for (timeout = 0; timeout < 50000; timeout++) {
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
380
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 ret = -ENODEV;
386 }
387 cpu_new_thread = NULL;
388
389 kfree(descr);
390
391 return ret;
392 }
393
spitfire_xcall_helper(u64 data0,u64 data1,u64 data2,u64 pstate,unsigned long cpu)394 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 {
396 u64 result, target;
397 int stuck, tmp;
398
399 if (this_is_starfire) {
400 /* map to real upaid */
401 cpu = (((cpu & 0x3c) << 1) |
402 ((cpu & 0x40) >> 4) |
403 (cpu & 0x3));
404 }
405
406 target = (cpu << 14) | 0x70;
407 again:
408 /* Ok, this is the real Spitfire Errata #54.
409 * One must read back from a UDB internal register
410 * after writes to the UDB interrupt dispatch, but
411 * before the membar Sync for that write.
412 * So we use the high UDB control register (ASI 0x7f,
413 * ADDR 0x20) for the dummy read. -DaveM
414 */
415 tmp = 0x40;
416 __asm__ __volatile__(
417 "wrpr %1, %2, %%pstate\n\t"
418 "stxa %4, [%0] %3\n\t"
419 "stxa %5, [%0+%8] %3\n\t"
420 "add %0, %8, %0\n\t"
421 "stxa %6, [%0+%8] %3\n\t"
422 "membar #Sync\n\t"
423 "stxa %%g0, [%7] %3\n\t"
424 "membar #Sync\n\t"
425 "mov 0x20, %%g1\n\t"
426 "ldxa [%%g1] 0x7f, %%g0\n\t"
427 "membar #Sync"
428 : "=r" (tmp)
429 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 "r" (0x10), "0" (tmp)
432 : "g1");
433
434 /* NOTE: PSTATE_IE is still clear. */
435 stuck = 100000;
436 do {
437 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438 : "=r" (result)
439 : "i" (ASI_INTR_DISPATCH_STAT));
440 if (result == 0) {
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 : : "r" (pstate));
443 return;
444 }
445 stuck -= 1;
446 if (stuck == 0)
447 break;
448 } while (result & 0x1);
449 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 : : "r" (pstate));
451 if (stuck == 0) {
452 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 smp_processor_id(), result);
454 } else {
455 udelay(2);
456 goto again;
457 }
458 }
459
spitfire_xcall_deliver(struct trap_per_cpu * tb,int cnt)460 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 {
462 u64 *mondo, data0, data1, data2;
463 u16 *cpu_list;
464 u64 pstate;
465 int i;
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 cpu_list = __va(tb->cpu_list_pa);
469 mondo = __va(tb->cpu_mondo_block_pa);
470 data0 = mondo[0];
471 data1 = mondo[1];
472 data2 = mondo[2];
473 for (i = 0; i < cnt; i++)
474 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475 }
476
477 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478 * packet, but we have no use for that. However we do take advantage of
479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480 */
cheetah_xcall_deliver(struct trap_per_cpu * tb,int cnt)481 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 {
483 int nack_busy_id, is_jbus, need_more;
484 u64 *mondo, pstate, ver, busy_mask;
485 u16 *cpu_list;
486
487 cpu_list = __va(tb->cpu_list_pa);
488 mondo = __va(tb->cpu_mondo_block_pa);
489
490 /* Unfortunately, someone at Sun had the brilliant idea to make the
491 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 * derivative processor.
493 */
494 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 (ver >> 32) == __SERRANO_ID);
497
498 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500 retry:
501 need_more = 0;
502 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 : : "r" (pstate), "i" (PSTATE_IE));
504
505 /* Setup the dispatch data registers. */
506 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
507 "stxa %1, [%4] %6\n\t"
508 "stxa %2, [%5] %6\n\t"
509 "membar #Sync\n\t"
510 : /* no outputs */
511 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 "r" (0x40), "r" (0x50), "r" (0x60),
513 "i" (ASI_INTR_W));
514
515 nack_busy_id = 0;
516 busy_mask = 0;
517 {
518 int i;
519
520 for (i = 0; i < cnt; i++) {
521 u64 target, nr;
522
523 nr = cpu_list[i];
524 if (nr == 0xffff)
525 continue;
526
527 target = (nr << 14) | 0x70;
528 if (is_jbus) {
529 busy_mask |= (0x1UL << (nr * 2));
530 } else {
531 target |= (nack_busy_id << 24);
532 busy_mask |= (0x1UL <<
533 (nack_busy_id * 2));
534 }
535 __asm__ __volatile__(
536 "stxa %%g0, [%0] %1\n\t"
537 "membar #Sync\n\t"
538 : /* no outputs */
539 : "r" (target), "i" (ASI_INTR_W));
540 nack_busy_id++;
541 if (nack_busy_id == 32) {
542 need_more = 1;
543 break;
544 }
545 }
546 }
547
548 /* Now, poll for completion. */
549 {
550 u64 dispatch_stat, nack_mask;
551 long stuck;
552
553 stuck = 100000 * nack_busy_id;
554 nack_mask = busy_mask << 1;
555 do {
556 __asm__ __volatile__("ldxa [%%g0] %1, %0"
557 : "=r" (dispatch_stat)
558 : "i" (ASI_INTR_DISPATCH_STAT));
559 if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 : : "r" (pstate));
562 if (unlikely(need_more)) {
563 int i, this_cnt = 0;
564 for (i = 0; i < cnt; i++) {
565 if (cpu_list[i] == 0xffff)
566 continue;
567 cpu_list[i] = 0xffff;
568 this_cnt++;
569 if (this_cnt == 32)
570 break;
571 }
572 goto retry;
573 }
574 return;
575 }
576 if (!--stuck)
577 break;
578 } while (dispatch_stat & busy_mask);
579
580 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 : : "r" (pstate));
582
583 if (dispatch_stat & busy_mask) {
584 /* Busy bits will not clear, continue instead
585 * of freezing up on this cpu.
586 */
587 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 smp_processor_id(), dispatch_stat);
589 } else {
590 int i, this_busy_nack = 0;
591
592 /* Delay some random time with interrupts enabled
593 * to prevent deadlock.
594 */
595 udelay(2 * nack_busy_id);
596
597 /* Clear out the mask bits for cpus which did not
598 * NACK us.
599 */
600 for (i = 0; i < cnt; i++) {
601 u64 check_mask, nr;
602
603 nr = cpu_list[i];
604 if (nr == 0xffff)
605 continue;
606
607 if (is_jbus)
608 check_mask = (0x2UL << (2*nr));
609 else
610 check_mask = (0x2UL <<
611 this_busy_nack);
612 if ((dispatch_stat & check_mask) == 0)
613 cpu_list[i] = 0xffff;
614 this_busy_nack += 2;
615 if (this_busy_nack == 64)
616 break;
617 }
618
619 goto retry;
620 }
621 }
622 }
623
624 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
625 #define MONDO_USEC_WAIT_MIN 2
626 #define MONDO_USEC_WAIT_MAX 100
627 #define MONDO_RETRY_LIMIT 500000
628
629 /* Multi-cpu list version.
630 *
631 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
632 * Sometimes not all cpus receive the mondo, requiring us to re-send
633 * the mondo until all cpus have received, or cpus are truly stuck
634 * unable to receive mondo, and we timeout.
635 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
636 * perform guest service, such as PCIe error handling. Consider the
637 * service time, 1 second overall wait is reasonable for 1 cpu.
638 * Here two in-between mondo check wait time are defined: 2 usec for
639 * single cpu quick turn around and up to 100usec for large cpu count.
640 * Deliver mondo to large number of cpus could take longer, we adjusts
641 * the retry count as long as target cpus are making forward progress.
642 */
hypervisor_xcall_deliver(struct trap_per_cpu * tb,int cnt)643 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
644 {
645 int this_cpu, tot_cpus, prev_sent, i, rem;
646 int usec_wait, retries, tot_retries;
647 u16 first_cpu = 0xffff;
648 unsigned long xc_rcvd = 0;
649 unsigned long status;
650 int ecpuerror_id = 0;
651 int enocpu_id = 0;
652 u16 *cpu_list;
653 u16 cpu;
654
655 this_cpu = smp_processor_id();
656 cpu_list = __va(tb->cpu_list_pa);
657 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
658 if (usec_wait > MONDO_USEC_WAIT_MAX)
659 usec_wait = MONDO_USEC_WAIT_MAX;
660 retries = tot_retries = 0;
661 tot_cpus = cnt;
662 prev_sent = 0;
663
664 do {
665 int n_sent, mondo_delivered, target_cpu_busy;
666
667 status = sun4v_cpu_mondo_send(cnt,
668 tb->cpu_list_pa,
669 tb->cpu_mondo_block_pa);
670
671 /* HV_EOK means all cpus received the xcall, we're done. */
672 if (likely(status == HV_EOK))
673 goto xcall_done;
674
675 /* If not these non-fatal errors, panic */
676 if (unlikely((status != HV_EWOULDBLOCK) &&
677 (status != HV_ECPUERROR) &&
678 (status != HV_ENOCPU)))
679 goto fatal_errors;
680
681 /* First, see if we made any forward progress.
682 *
683 * Go through the cpu_list, count the target cpus that have
684 * received our mondo (n_sent), and those that did not (rem).
685 * Re-pack cpu_list with the cpus remain to be retried in the
686 * front - this simplifies tracking the truly stalled cpus.
687 *
688 * The hypervisor indicates successful sends by setting
689 * cpu list entries to the value 0xffff.
690 *
691 * EWOULDBLOCK means some target cpus did not receive the
692 * mondo and retry usually helps.
693 *
694 * ECPUERROR means at least one target cpu is in error state,
695 * it's usually safe to skip the faulty cpu and retry.
696 *
697 * ENOCPU means one of the target cpu doesn't belong to the
698 * domain, perhaps offlined which is unexpected, but not
699 * fatal and it's okay to skip the offlined cpu.
700 */
701 rem = 0;
702 n_sent = 0;
703 for (i = 0; i < cnt; i++) {
704 cpu = cpu_list[i];
705 if (likely(cpu == 0xffff)) {
706 n_sent++;
707 } else if ((status == HV_ECPUERROR) &&
708 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
709 ecpuerror_id = cpu + 1;
710 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
711 enocpu_id = cpu + 1;
712 } else {
713 cpu_list[rem++] = cpu;
714 }
715 }
716
717 /* No cpu remained, we're done. */
718 if (rem == 0)
719 break;
720
721 /* Otherwise, update the cpu count for retry. */
722 cnt = rem;
723
724 /* Record the overall number of mondos received by the
725 * first of the remaining cpus.
726 */
727 if (first_cpu != cpu_list[0]) {
728 first_cpu = cpu_list[0];
729 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
730 }
731
732 /* Was any mondo delivered successfully? */
733 mondo_delivered = (n_sent > prev_sent);
734 prev_sent = n_sent;
735
736 /* or, was any target cpu busy processing other mondos? */
737 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
738 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
739
740 /* Retry count is for no progress. If we're making progress,
741 * reset the retry count.
742 */
743 if (likely(mondo_delivered || target_cpu_busy)) {
744 tot_retries += retries;
745 retries = 0;
746 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
747 goto fatal_mondo_timeout;
748 }
749
750 /* Delay a little bit to let other cpus catch up on
751 * their cpu mondo queue work.
752 */
753 if (!mondo_delivered)
754 udelay(usec_wait);
755
756 retries++;
757 } while (1);
758
759 xcall_done:
760 if (unlikely(ecpuerror_id > 0)) {
761 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
762 this_cpu, ecpuerror_id - 1);
763 } else if (unlikely(enocpu_id > 0)) {
764 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
765 this_cpu, enocpu_id - 1);
766 }
767 return;
768
769 fatal_errors:
770 /* fatal errors include bad alignment, etc */
771 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
772 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
773 panic("Unexpected SUN4V mondo error %lu\n", status);
774
775 fatal_mondo_timeout:
776 /* some cpus being non-responsive to the cpu mondo */
777 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
778 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
779 panic("SUN4V mondo timeout panic\n");
780 }
781
782 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
783
xcall_deliver(u64 data0,u64 data1,u64 data2,const cpumask_t * mask)784 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786 struct trap_per_cpu *tb;
787 int this_cpu, i, cnt;
788 unsigned long flags;
789 u16 *cpu_list;
790 u64 *mondo;
791
792 /* We have to do this whole thing with interrupts fully disabled.
793 * Otherwise if we send an xcall from interrupt context it will
794 * corrupt both our mondo block and cpu list state.
795 *
796 * One consequence of this is that we cannot use timeout mechanisms
797 * that depend upon interrupts being delivered locally. So, for
798 * example, we cannot sample jiffies and expect it to advance.
799 *
800 * Fortunately, udelay() uses %stick/%tick so we can use that.
801 */
802 local_irq_save(flags);
803
804 this_cpu = smp_processor_id();
805 tb = &trap_block[this_cpu];
806
807 mondo = __va(tb->cpu_mondo_block_pa);
808 mondo[0] = data0;
809 mondo[1] = data1;
810 mondo[2] = data2;
811 wmb();
812
813 cpu_list = __va(tb->cpu_list_pa);
814
815 /* Setup the initial cpu list. */
816 cnt = 0;
817 for_each_cpu(i, mask) {
818 if (i == this_cpu || !cpu_online(i))
819 continue;
820 cpu_list[cnt++] = i;
821 }
822
823 if (cnt)
824 xcall_deliver_impl(tb, cnt);
825
826 local_irq_restore(flags);
827 }
828
829 /* Send cross call to all processors mentioned in MASK_P
830 * except self. Really, there are only two cases currently,
831 * "cpu_online_mask" and "mm_cpumask(mm)".
832 */
smp_cross_call_masked(unsigned long * func,u32 ctx,u64 data1,u64 data2,const cpumask_t * mask)833 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
834 {
835 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
836
837 xcall_deliver(data0, data1, data2, mask);
838 }
839
840 /* Send cross call to all processors except self. */
smp_cross_call(unsigned long * func,u32 ctx,u64 data1,u64 data2)841 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
842 {
843 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
844 }
845
846 extern unsigned long xcall_sync_tick;
847
smp_start_sync_tick_client(int cpu)848 static void smp_start_sync_tick_client(int cpu)
849 {
850 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
851 cpumask_of(cpu));
852 }
853
854 extern unsigned long xcall_call_function;
855
arch_send_call_function_ipi_mask(const struct cpumask * mask)856 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
857 {
858 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
859 }
860
861 extern unsigned long xcall_call_function_single;
862
arch_send_call_function_single_ipi(int cpu)863 void arch_send_call_function_single_ipi(int cpu)
864 {
865 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
866 cpumask_of(cpu));
867 }
868
smp_call_function_client(int irq,struct pt_regs * regs)869 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
870 {
871 clear_softint(1 << irq);
872 irq_enter();
873 generic_smp_call_function_interrupt();
874 irq_exit();
875 }
876
smp_call_function_single_client(int irq,struct pt_regs * regs)877 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
878 {
879 clear_softint(1 << irq);
880 irq_enter();
881 generic_smp_call_function_single_interrupt();
882 irq_exit();
883 }
884
tsb_sync(void * info)885 static void tsb_sync(void *info)
886 {
887 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
888 struct mm_struct *mm = info;
889
890 /* It is not valid to test "current->active_mm == mm" here.
891 *
892 * The value of "current" is not changed atomically with
893 * switch_mm(). But that's OK, we just need to check the
894 * current cpu's trap block PGD physical address.
895 */
896 if (tp->pgd_paddr == __pa(mm->pgd))
897 tsb_context_switch(mm);
898 }
899
smp_tsb_sync(struct mm_struct * mm)900 void smp_tsb_sync(struct mm_struct *mm)
901 {
902 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
903 }
904
905 extern unsigned long xcall_flush_tlb_mm;
906 extern unsigned long xcall_flush_tlb_page;
907 extern unsigned long xcall_flush_tlb_kernel_range;
908 extern unsigned long xcall_fetch_glob_regs;
909 extern unsigned long xcall_fetch_glob_pmu;
910 extern unsigned long xcall_fetch_glob_pmu_n4;
911 extern unsigned long xcall_receive_signal;
912 extern unsigned long xcall_new_mmu_context_version;
913 #ifdef CONFIG_KGDB
914 extern unsigned long xcall_kgdb_capture;
915 #endif
916
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 extern unsigned long xcall_flush_dcache_page_cheetah;
919 #endif
920 extern unsigned long xcall_flush_dcache_page_spitfire;
921
__local_flush_dcache_page(struct page * page)922 static inline void __local_flush_dcache_page(struct page *page)
923 {
924 #ifdef DCACHE_ALIASING_POSSIBLE
925 __flush_dcache_page(page_address(page),
926 ((tlb_type == spitfire) &&
927 page_mapping(page) != NULL));
928 #else
929 if (page_mapping(page) != NULL &&
930 tlb_type == spitfire)
931 __flush_icache_page(__pa(page_address(page)));
932 #endif
933 }
934
smp_flush_dcache_page_impl(struct page * page,int cpu)935 void smp_flush_dcache_page_impl(struct page *page, int cpu)
936 {
937 int this_cpu;
938
939 if (tlb_type == hypervisor)
940 return;
941
942 #ifdef CONFIG_DEBUG_DCFLUSH
943 atomic_inc(&dcpage_flushes);
944 #endif
945
946 this_cpu = get_cpu();
947
948 if (cpu == this_cpu) {
949 __local_flush_dcache_page(page);
950 } else if (cpu_online(cpu)) {
951 void *pg_addr = page_address(page);
952 u64 data0 = 0;
953
954 if (tlb_type == spitfire) {
955 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
956 if (page_mapping(page) != NULL)
957 data0 |= ((u64)1 << 32);
958 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
959 #ifdef DCACHE_ALIASING_POSSIBLE
960 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
961 #endif
962 }
963 if (data0) {
964 xcall_deliver(data0, __pa(pg_addr),
965 (u64) pg_addr, cpumask_of(cpu));
966 #ifdef CONFIG_DEBUG_DCFLUSH
967 atomic_inc(&dcpage_flushes_xcall);
968 #endif
969 }
970 }
971
972 put_cpu();
973 }
974
flush_dcache_page_all(struct mm_struct * mm,struct page * page)975 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
976 {
977 void *pg_addr;
978 u64 data0;
979
980 if (tlb_type == hypervisor)
981 return;
982
983 preempt_disable();
984
985 #ifdef CONFIG_DEBUG_DCFLUSH
986 atomic_inc(&dcpage_flushes);
987 #endif
988 data0 = 0;
989 pg_addr = page_address(page);
990 if (tlb_type == spitfire) {
991 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
992 if (page_mapping(page) != NULL)
993 data0 |= ((u64)1 << 32);
994 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
995 #ifdef DCACHE_ALIASING_POSSIBLE
996 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
997 #endif
998 }
999 if (data0) {
1000 xcall_deliver(data0, __pa(pg_addr),
1001 (u64) pg_addr, cpu_online_mask);
1002 #ifdef CONFIG_DEBUG_DCFLUSH
1003 atomic_inc(&dcpage_flushes_xcall);
1004 #endif
1005 }
1006 __local_flush_dcache_page(page);
1007
1008 preempt_enable();
1009 }
1010
1011 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(unsigned long flags)1012 void kgdb_roundup_cpus(unsigned long flags)
1013 {
1014 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1015 }
1016 #endif
1017
smp_fetch_global_regs(void)1018 void smp_fetch_global_regs(void)
1019 {
1020 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1021 }
1022
smp_fetch_global_pmu(void)1023 void smp_fetch_global_pmu(void)
1024 {
1025 if (tlb_type == hypervisor &&
1026 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1027 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1028 else
1029 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1030 }
1031
1032 /* We know that the window frames of the user have been flushed
1033 * to the stack before we get here because all callers of us
1034 * are flush_tlb_*() routines, and these run after flush_cache_*()
1035 * which performs the flushw.
1036 *
1037 * The SMP TLB coherency scheme we use works as follows:
1038 *
1039 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1040 * space has (potentially) executed on, this is the heuristic
1041 * we use to avoid doing cross calls.
1042 *
1043 * Also, for flushing from kswapd and also for clones, we
1044 * use cpu_vm_mask as the list of cpus to make run the TLB.
1045 *
1046 * 2) TLB context numbers are shared globally across all processors
1047 * in the system, this allows us to play several games to avoid
1048 * cross calls.
1049 *
1050 * One invariant is that when a cpu switches to a process, and
1051 * that processes tsk->active_mm->cpu_vm_mask does not have the
1052 * current cpu's bit set, that tlb context is flushed locally.
1053 *
1054 * If the address space is non-shared (ie. mm->count == 1) we avoid
1055 * cross calls when we want to flush the currently running process's
1056 * tlb state. This is done by clearing all cpu bits except the current
1057 * processor's in current->mm->cpu_vm_mask and performing the
1058 * flush locally only. This will force any subsequent cpus which run
1059 * this task to flush the context from the local tlb if the process
1060 * migrates to another cpu (again).
1061 *
1062 * 3) For shared address spaces (threads) and swapping we bite the
1063 * bullet for most cases and perform the cross call (but only to
1064 * the cpus listed in cpu_vm_mask).
1065 *
1066 * The performance gain from "optimizing" away the cross call for threads is
1067 * questionable (in theory the big win for threads is the massive sharing of
1068 * address space state across processors).
1069 */
1070
1071 /* This currently is only used by the hugetlb arch pre-fault
1072 * hook on UltraSPARC-III+ and later when changing the pagesize
1073 * bits of the context register for an address space.
1074 */
smp_flush_tlb_mm(struct mm_struct * mm)1075 void smp_flush_tlb_mm(struct mm_struct *mm)
1076 {
1077 u32 ctx = CTX_HWBITS(mm->context);
1078 int cpu = get_cpu();
1079
1080 if (atomic_read(&mm->mm_users) == 1) {
1081 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1082 goto local_flush_and_out;
1083 }
1084
1085 smp_cross_call_masked(&xcall_flush_tlb_mm,
1086 ctx, 0, 0,
1087 mm_cpumask(mm));
1088
1089 local_flush_and_out:
1090 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1091
1092 put_cpu();
1093 }
1094
1095 struct tlb_pending_info {
1096 unsigned long ctx;
1097 unsigned long nr;
1098 unsigned long *vaddrs;
1099 };
1100
tlb_pending_func(void * info)1101 static void tlb_pending_func(void *info)
1102 {
1103 struct tlb_pending_info *t = info;
1104
1105 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1106 }
1107
smp_flush_tlb_pending(struct mm_struct * mm,unsigned long nr,unsigned long * vaddrs)1108 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1109 {
1110 u32 ctx = CTX_HWBITS(mm->context);
1111 struct tlb_pending_info info;
1112 int cpu = get_cpu();
1113
1114 info.ctx = ctx;
1115 info.nr = nr;
1116 info.vaddrs = vaddrs;
1117
1118 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1119 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1120 else
1121 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1122 &info, 1);
1123
1124 __flush_tlb_pending(ctx, nr, vaddrs);
1125
1126 put_cpu();
1127 }
1128
smp_flush_tlb_page(struct mm_struct * mm,unsigned long vaddr)1129 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1130 {
1131 unsigned long context = CTX_HWBITS(mm->context);
1132 int cpu = get_cpu();
1133
1134 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1135 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1136 else
1137 smp_cross_call_masked(&xcall_flush_tlb_page,
1138 context, vaddr, 0,
1139 mm_cpumask(mm));
1140 __flush_tlb_page(context, vaddr);
1141
1142 put_cpu();
1143 }
1144
smp_flush_tlb_kernel_range(unsigned long start,unsigned long end)1145 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1146 {
1147 start &= PAGE_MASK;
1148 end = PAGE_ALIGN(end);
1149 if (start != end) {
1150 smp_cross_call(&xcall_flush_tlb_kernel_range,
1151 0, start, end);
1152
1153 __flush_tlb_kernel_range(start, end);
1154 }
1155 }
1156
1157 /* CPU capture. */
1158 /* #define CAPTURE_DEBUG */
1159 extern unsigned long xcall_capture;
1160
1161 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1162 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1163 static unsigned long penguins_are_doing_time;
1164
smp_capture(void)1165 void smp_capture(void)
1166 {
1167 int result = atomic_add_return(1, &smp_capture_depth);
1168
1169 if (result == 1) {
1170 int ncpus = num_online_cpus();
1171
1172 #ifdef CAPTURE_DEBUG
1173 printk("CPU[%d]: Sending penguins to jail...",
1174 smp_processor_id());
1175 #endif
1176 penguins_are_doing_time = 1;
1177 atomic_inc(&smp_capture_registry);
1178 smp_cross_call(&xcall_capture, 0, 0, 0);
1179 while (atomic_read(&smp_capture_registry) != ncpus)
1180 rmb();
1181 #ifdef CAPTURE_DEBUG
1182 printk("done\n");
1183 #endif
1184 }
1185 }
1186
smp_release(void)1187 void smp_release(void)
1188 {
1189 if (atomic_dec_and_test(&smp_capture_depth)) {
1190 #ifdef CAPTURE_DEBUG
1191 printk("CPU[%d]: Giving pardon to "
1192 "imprisoned penguins\n",
1193 smp_processor_id());
1194 #endif
1195 penguins_are_doing_time = 0;
1196 membar_safe("#StoreLoad");
1197 atomic_dec(&smp_capture_registry);
1198 }
1199 }
1200
1201 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1202 * set, so they can service tlb flush xcalls...
1203 */
1204 extern void prom_world(int);
1205
smp_penguin_jailcell(int irq,struct pt_regs * regs)1206 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1207 {
1208 clear_softint(1 << irq);
1209
1210 preempt_disable();
1211
1212 __asm__ __volatile__("flushw");
1213 prom_world(1);
1214 atomic_inc(&smp_capture_registry);
1215 membar_safe("#StoreLoad");
1216 while (penguins_are_doing_time)
1217 rmb();
1218 atomic_dec(&smp_capture_registry);
1219 prom_world(0);
1220
1221 preempt_enable();
1222 }
1223
1224 /* /proc/profile writes can call this, don't __init it please. */
setup_profiling_timer(unsigned int multiplier)1225 int setup_profiling_timer(unsigned int multiplier)
1226 {
1227 return -EINVAL;
1228 }
1229
smp_prepare_cpus(unsigned int max_cpus)1230 void __init smp_prepare_cpus(unsigned int max_cpus)
1231 {
1232 }
1233
smp_prepare_boot_cpu(void)1234 void smp_prepare_boot_cpu(void)
1235 {
1236 }
1237
smp_setup_processor_id(void)1238 void __init smp_setup_processor_id(void)
1239 {
1240 if (tlb_type == spitfire)
1241 xcall_deliver_impl = spitfire_xcall_deliver;
1242 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1243 xcall_deliver_impl = cheetah_xcall_deliver;
1244 else
1245 xcall_deliver_impl = hypervisor_xcall_deliver;
1246 }
1247
smp_fill_in_cpu_possible_map(void)1248 void __init smp_fill_in_cpu_possible_map(void)
1249 {
1250 int possible_cpus = num_possible_cpus();
1251 int i;
1252
1253 if (possible_cpus > nr_cpu_ids)
1254 possible_cpus = nr_cpu_ids;
1255
1256 for (i = 0; i < possible_cpus; i++)
1257 set_cpu_possible(i, true);
1258 for (; i < NR_CPUS; i++)
1259 set_cpu_possible(i, false);
1260 }
1261
smp_fill_in_sib_core_maps(void)1262 void smp_fill_in_sib_core_maps(void)
1263 {
1264 unsigned int i;
1265
1266 for_each_present_cpu(i) {
1267 unsigned int j;
1268
1269 cpumask_clear(&cpu_core_map[i]);
1270 if (cpu_data(i).core_id == 0) {
1271 cpumask_set_cpu(i, &cpu_core_map[i]);
1272 continue;
1273 }
1274
1275 for_each_present_cpu(j) {
1276 if (cpu_data(i).core_id ==
1277 cpu_data(j).core_id)
1278 cpumask_set_cpu(j, &cpu_core_map[i]);
1279 }
1280 }
1281
1282 for_each_present_cpu(i) {
1283 unsigned int j;
1284
1285 for_each_present_cpu(j) {
1286 if (cpu_data(i).max_cache_id ==
1287 cpu_data(j).max_cache_id)
1288 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1289
1290 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1291 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1292 }
1293 }
1294
1295 for_each_present_cpu(i) {
1296 unsigned int j;
1297
1298 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1299 if (cpu_data(i).proc_id == -1) {
1300 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1301 continue;
1302 }
1303
1304 for_each_present_cpu(j) {
1305 if (cpu_data(i).proc_id ==
1306 cpu_data(j).proc_id)
1307 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1308 }
1309 }
1310 }
1311
__cpu_up(unsigned int cpu,struct task_struct * tidle)1312 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1313 {
1314 int ret = smp_boot_one_cpu(cpu, tidle);
1315
1316 if (!ret) {
1317 cpumask_set_cpu(cpu, &smp_commenced_mask);
1318 while (!cpu_online(cpu))
1319 mb();
1320 if (!cpu_online(cpu)) {
1321 ret = -ENODEV;
1322 } else {
1323 /* On SUN4V, writes to %tick and %stick are
1324 * not allowed.
1325 */
1326 if (tlb_type != hypervisor)
1327 smp_synchronize_one_tick(cpu);
1328 }
1329 }
1330 return ret;
1331 }
1332
1333 #ifdef CONFIG_HOTPLUG_CPU
cpu_play_dead(void)1334 void cpu_play_dead(void)
1335 {
1336 int cpu = smp_processor_id();
1337 unsigned long pstate;
1338
1339 idle_task_exit();
1340
1341 if (tlb_type == hypervisor) {
1342 struct trap_per_cpu *tb = &trap_block[cpu];
1343
1344 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1345 tb->cpu_mondo_pa, 0);
1346 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1347 tb->dev_mondo_pa, 0);
1348 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1349 tb->resum_mondo_pa, 0);
1350 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1351 tb->nonresum_mondo_pa, 0);
1352 }
1353
1354 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1355 membar_safe("#Sync");
1356
1357 local_irq_disable();
1358
1359 __asm__ __volatile__(
1360 "rdpr %%pstate, %0\n\t"
1361 "wrpr %0, %1, %%pstate"
1362 : "=r" (pstate)
1363 : "i" (PSTATE_IE));
1364
1365 while (1)
1366 barrier();
1367 }
1368
__cpu_disable(void)1369 int __cpu_disable(void)
1370 {
1371 int cpu = smp_processor_id();
1372 cpuinfo_sparc *c;
1373 int i;
1374
1375 for_each_cpu(i, &cpu_core_map[cpu])
1376 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1377 cpumask_clear(&cpu_core_map[cpu]);
1378
1379 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1380 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1381 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1382
1383 c = &cpu_data(cpu);
1384
1385 c->core_id = 0;
1386 c->proc_id = -1;
1387
1388 smp_wmb();
1389
1390 /* Make sure no interrupts point to this cpu. */
1391 fixup_irqs();
1392
1393 local_irq_enable();
1394 mdelay(1);
1395 local_irq_disable();
1396
1397 set_cpu_online(cpu, false);
1398
1399 cpu_map_rebuild();
1400
1401 return 0;
1402 }
1403
__cpu_die(unsigned int cpu)1404 void __cpu_die(unsigned int cpu)
1405 {
1406 int i;
1407
1408 for (i = 0; i < 100; i++) {
1409 smp_rmb();
1410 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1411 break;
1412 msleep(100);
1413 }
1414 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1415 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1416 } else {
1417 #if defined(CONFIG_SUN_LDOMS)
1418 unsigned long hv_err;
1419 int limit = 100;
1420
1421 do {
1422 hv_err = sun4v_cpu_stop(cpu);
1423 if (hv_err == HV_EOK) {
1424 set_cpu_present(cpu, false);
1425 break;
1426 }
1427 } while (--limit > 0);
1428 if (limit <= 0) {
1429 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1430 hv_err);
1431 }
1432 #endif
1433 }
1434 }
1435 #endif
1436
smp_cpus_done(unsigned int max_cpus)1437 void __init smp_cpus_done(unsigned int max_cpus)
1438 {
1439 }
1440
smp_send_reschedule(int cpu)1441 void smp_send_reschedule(int cpu)
1442 {
1443 if (cpu == smp_processor_id()) {
1444 WARN_ON_ONCE(preemptible());
1445 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1446 } else {
1447 xcall_deliver((u64) &xcall_receive_signal,
1448 0, 0, cpumask_of(cpu));
1449 }
1450 }
1451
smp_receive_signal_client(int irq,struct pt_regs * regs)1452 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1453 {
1454 clear_softint(1 << irq);
1455 scheduler_ipi();
1456 }
1457
stop_this_cpu(void * dummy)1458 static void stop_this_cpu(void *dummy)
1459 {
1460 prom_stopself();
1461 }
1462
smp_send_stop(void)1463 void smp_send_stop(void)
1464 {
1465 int cpu;
1466
1467 if (tlb_type == hypervisor) {
1468 int this_cpu = smp_processor_id();
1469 #ifdef CONFIG_SERIAL_SUNHV
1470 sunhv_migrate_hvcons_irq(this_cpu);
1471 #endif
1472 for_each_online_cpu(cpu) {
1473 if (cpu == this_cpu)
1474 continue;
1475 #ifdef CONFIG_SUN_LDOMS
1476 if (ldom_domaining_enabled) {
1477 unsigned long hv_err;
1478 hv_err = sun4v_cpu_stop(cpu);
1479 if (hv_err)
1480 printk(KERN_ERR "sun4v_cpu_stop() "
1481 "failed err=%lu\n", hv_err);
1482 } else
1483 #endif
1484 prom_stopcpu_cpuid(cpu);
1485 }
1486 } else
1487 smp_call_function(stop_this_cpu, NULL, 0);
1488 }
1489
1490 /**
1491 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1492 * @cpu: cpu to allocate for
1493 * @size: size allocation in bytes
1494 * @align: alignment
1495 *
1496 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1497 * does the right thing for NUMA regardless of the current
1498 * configuration.
1499 *
1500 * RETURNS:
1501 * Pointer to the allocated area on success, NULL on failure.
1502 */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)1503 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1504 size_t align)
1505 {
1506 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1507 #ifdef CONFIG_NEED_MULTIPLE_NODES
1508 int node = cpu_to_node(cpu);
1509 void *ptr;
1510
1511 if (!node_online(node) || !NODE_DATA(node)) {
1512 ptr = __alloc_bootmem(size, align, goal);
1513 pr_info("cpu %d has no node %d or node-local memory\n",
1514 cpu, node);
1515 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1516 cpu, size, __pa(ptr));
1517 } else {
1518 ptr = __alloc_bootmem_node(NODE_DATA(node),
1519 size, align, goal);
1520 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1521 "%016lx\n", cpu, size, node, __pa(ptr));
1522 }
1523 return ptr;
1524 #else
1525 return __alloc_bootmem(size, align, goal);
1526 #endif
1527 }
1528
pcpu_free_bootmem(void * ptr,size_t size)1529 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1530 {
1531 free_bootmem(__pa(ptr), size);
1532 }
1533
pcpu_cpu_distance(unsigned int from,unsigned int to)1534 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1535 {
1536 if (cpu_to_node(from) == cpu_to_node(to))
1537 return LOCAL_DISTANCE;
1538 else
1539 return REMOTE_DISTANCE;
1540 }
1541
pcpu_populate_pte(unsigned long addr)1542 static void __init pcpu_populate_pte(unsigned long addr)
1543 {
1544 pgd_t *pgd = pgd_offset_k(addr);
1545 pud_t *pud;
1546 pmd_t *pmd;
1547
1548 if (pgd_none(*pgd)) {
1549 pud_t *new;
1550
1551 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1552 pgd_populate(&init_mm, pgd, new);
1553 }
1554
1555 pud = pud_offset(pgd, addr);
1556 if (pud_none(*pud)) {
1557 pmd_t *new;
1558
1559 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1560 pud_populate(&init_mm, pud, new);
1561 }
1562
1563 pmd = pmd_offset(pud, addr);
1564 if (!pmd_present(*pmd)) {
1565 pte_t *new;
1566
1567 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1568 pmd_populate_kernel(&init_mm, pmd, new);
1569 }
1570 }
1571
setup_per_cpu_areas(void)1572 void __init setup_per_cpu_areas(void)
1573 {
1574 unsigned long delta;
1575 unsigned int cpu;
1576 int rc = -EINVAL;
1577
1578 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1579 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1580 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1581 pcpu_cpu_distance,
1582 pcpu_alloc_bootmem,
1583 pcpu_free_bootmem);
1584 if (rc)
1585 pr_warning("PERCPU: %s allocator failed (%d), "
1586 "falling back to page size\n",
1587 pcpu_fc_names[pcpu_chosen_fc], rc);
1588 }
1589 if (rc < 0)
1590 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1591 pcpu_alloc_bootmem,
1592 pcpu_free_bootmem,
1593 pcpu_populate_pte);
1594 if (rc < 0)
1595 panic("cannot initialize percpu area (err=%d)", rc);
1596
1597 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1598 for_each_possible_cpu(cpu)
1599 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1600
1601 /* Setup %g5 for the boot cpu. */
1602 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1603
1604 of_fill_in_cpu_data();
1605 if (tlb_type == hypervisor)
1606 mdesc_fill_in_cpu_data(cpu_all_mask);
1607 }
1608