• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kaslr.c
3  *
4  * This contains the routines needed to generate a reasonable level of
5  * entropy to choose a randomized kernel base address offset in support
6  * of Kernel Address Space Layout Randomization (KASLR). Additionally
7  * handles walking the physical memory maps (and tracking memory regions
8  * to avoid) in order to select a physical memory location that can
9  * contain the entire properly aligned running kernel image.
10  *
11  */
12 #include "misc.h"
13 #include "error.h"
14 
15 #include <generated/compile.h>
16 #include <linux/module.h>
17 #include <linux/uts.h>
18 #include <linux/utsname.h>
19 #include <generated/utsrelease.h>
20 
21 /* Simplified build-specific string for starting entropy. */
22 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
23 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
24 
rotate_xor(unsigned long hash,const void * area,size_t size)25 static unsigned long rotate_xor(unsigned long hash, const void *area,
26 				size_t size)
27 {
28 	size_t i;
29 	unsigned long *ptr = (unsigned long *)area;
30 
31 	for (i = 0; i < size / sizeof(hash); i++) {
32 		/* Rotate by odd number of bits and XOR. */
33 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
34 		hash ^= ptr[i];
35 	}
36 
37 	return hash;
38 }
39 
40 /* Attempt to create a simple but unpredictable starting entropy. */
get_boot_seed(void)41 static unsigned long get_boot_seed(void)
42 {
43 	unsigned long hash = 0;
44 
45 	hash = rotate_xor(hash, build_str, sizeof(build_str));
46 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
47 
48 	return hash;
49 }
50 
51 #define KASLR_COMPRESSED_BOOT
52 #include "../../lib/kaslr.c"
53 
54 struct mem_vector {
55 	unsigned long start;
56 	unsigned long size;
57 };
58 
59 enum mem_avoid_index {
60 	MEM_AVOID_ZO_RANGE = 0,
61 	MEM_AVOID_INITRD,
62 	MEM_AVOID_CMDLINE,
63 	MEM_AVOID_BOOTPARAMS,
64 	MEM_AVOID_MAX,
65 };
66 
67 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
68 
mem_overlaps(struct mem_vector * one,struct mem_vector * two)69 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
70 {
71 	/* Item one is entirely before item two. */
72 	if (one->start + one->size <= two->start)
73 		return false;
74 	/* Item one is entirely after item two. */
75 	if (one->start >= two->start + two->size)
76 		return false;
77 	return true;
78 }
79 
80 /*
81  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
82  * The mem_avoid array is used to store the ranges that need to be avoided
83  * when KASLR searches for an appropriate random address. We must avoid any
84  * regions that are unsafe to overlap with during decompression, and other
85  * things like the initrd, cmdline and boot_params. This comment seeks to
86  * explain mem_avoid as clearly as possible since incorrect mem_avoid
87  * memory ranges lead to really hard to debug boot failures.
88  *
89  * The initrd, cmdline, and boot_params are trivial to identify for
90  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
91  * MEM_AVOID_BOOTPARAMS respectively below.
92  *
93  * What is not obvious how to avoid is the range of memory that is used
94  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
95  * the compressed kernel (ZO) and its run space, which is used to extract
96  * the uncompressed kernel (VO) and relocs.
97  *
98  * ZO's full run size sits against the end of the decompression buffer, so
99  * we can calculate where text, data, bss, etc of ZO are positioned more
100  * easily.
101  *
102  * For additional background, the decompression calculations can be found
103  * in header.S, and the memory diagram is based on the one found in misc.c.
104  *
105  * The following conditions are already enforced by the image layouts and
106  * associated code:
107  *  - input + input_size >= output + output_size
108  *  - kernel_total_size <= init_size
109  *  - kernel_total_size <= output_size (see Note below)
110  *  - output + init_size >= output + output_size
111  *
112  * (Note that kernel_total_size and output_size have no fundamental
113  * relationship, but output_size is passed to choose_random_location
114  * as a maximum of the two. The diagram is showing a case where
115  * kernel_total_size is larger than output_size, but this case is
116  * handled by bumping output_size.)
117  *
118  * The above conditions can be illustrated by a diagram:
119  *
120  * 0   output            input            input+input_size    output+init_size
121  * |     |                 |                             |             |
122  * |     |                 |                             |             |
123  * |-----|--------|--------|--------------|-----------|--|-------------|
124  *                |                       |           |
125  *                |                       |           |
126  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
127  *
128  * [output, output+init_size) is the entire memory range used for
129  * extracting the compressed image.
130  *
131  * [output, output+kernel_total_size) is the range needed for the
132  * uncompressed kernel (VO) and its run size (bss, brk, etc).
133  *
134  * [output, output+output_size) is VO plus relocs (i.e. the entire
135  * uncompressed payload contained by ZO). This is the area of the buffer
136  * written to during decompression.
137  *
138  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
139  * range of the copied ZO and decompression code. (i.e. the range
140  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
141  *
142  * [input, input+input_size) is the original copied compressed image (ZO)
143  * (i.e. it does not include its run size). This range must be avoided
144  * because it contains the data used for decompression.
145  *
146  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
147  * range includes ZO's heap and stack, and must be avoided since it
148  * performs the decompression.
149  *
150  * Since the above two ranges need to be avoided and they are adjacent,
151  * they can be merged, resulting in: [input, output+init_size) which
152  * becomes the MEM_AVOID_ZO_RANGE below.
153  */
mem_avoid_init(unsigned long input,unsigned long input_size,unsigned long output)154 static void mem_avoid_init(unsigned long input, unsigned long input_size,
155 			   unsigned long output)
156 {
157 	unsigned long init_size = boot_params->hdr.init_size;
158 	u64 initrd_start, initrd_size;
159 	u64 cmd_line, cmd_line_size;
160 	char *ptr;
161 
162 	/*
163 	 * Avoid the region that is unsafe to overlap during
164 	 * decompression.
165 	 */
166 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
167 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
168 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
169 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
170 
171 	/* Avoid initrd. */
172 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
173 	initrd_start |= boot_params->hdr.ramdisk_image;
174 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
175 	initrd_size |= boot_params->hdr.ramdisk_size;
176 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
177 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
178 	/* No need to set mapping for initrd, it will be handled in VO. */
179 
180 	/* Avoid kernel command line. */
181 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
182 	cmd_line |= boot_params->hdr.cmd_line_ptr;
183 	/* Calculate size of cmd_line. */
184 	ptr = (char *)(unsigned long)cmd_line;
185 	for (cmd_line_size = 0; ptr[cmd_line_size++]; )
186 		;
187 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
188 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
189 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
190 			 mem_avoid[MEM_AVOID_CMDLINE].size);
191 
192 	/* Avoid boot parameters. */
193 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
194 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
195 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
196 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
197 
198 	/* We don't need to set a mapping for setup_data. */
199 
200 #ifdef CONFIG_X86_VERBOSE_BOOTUP
201 	/* Make sure video RAM can be used. */
202 	add_identity_map(0, PMD_SIZE);
203 #endif
204 }
205 
206 /*
207  * Does this memory vector overlap a known avoided area? If so, record the
208  * overlap region with the lowest address.
209  */
mem_avoid_overlap(struct mem_vector * img,struct mem_vector * overlap)210 static bool mem_avoid_overlap(struct mem_vector *img,
211 			      struct mem_vector *overlap)
212 {
213 	int i;
214 	struct setup_data *ptr;
215 	unsigned long earliest = img->start + img->size;
216 	bool is_overlapping = false;
217 
218 	for (i = 0; i < MEM_AVOID_MAX; i++) {
219 		if (mem_overlaps(img, &mem_avoid[i]) &&
220 		    mem_avoid[i].start < earliest) {
221 			*overlap = mem_avoid[i];
222 			earliest = overlap->start;
223 			is_overlapping = true;
224 		}
225 	}
226 
227 	/* Avoid all entries in the setup_data linked list. */
228 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
229 	while (ptr) {
230 		struct mem_vector avoid;
231 
232 		avoid.start = (unsigned long)ptr;
233 		avoid.size = sizeof(*ptr) + ptr->len;
234 
235 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
236 			*overlap = avoid;
237 			earliest = overlap->start;
238 			is_overlapping = true;
239 		}
240 
241 		ptr = (struct setup_data *)(unsigned long)ptr->next;
242 	}
243 
244 	return is_overlapping;
245 }
246 
247 struct slot_area {
248 	unsigned long addr;
249 	int num;
250 };
251 
252 #define MAX_SLOT_AREA 100
253 
254 static struct slot_area slot_areas[MAX_SLOT_AREA];
255 
256 static unsigned long slot_max;
257 
258 static unsigned long slot_area_index;
259 
store_slot_info(struct mem_vector * region,unsigned long image_size)260 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
261 {
262 	struct slot_area slot_area;
263 
264 	if (slot_area_index == MAX_SLOT_AREA)
265 		return;
266 
267 	slot_area.addr = region->start;
268 	slot_area.num = (region->size - image_size) /
269 			CONFIG_PHYSICAL_ALIGN + 1;
270 
271 	if (slot_area.num > 0) {
272 		slot_areas[slot_area_index++] = slot_area;
273 		slot_max += slot_area.num;
274 	}
275 }
276 
slots_fetch_random(void)277 static unsigned long slots_fetch_random(void)
278 {
279 	unsigned long slot;
280 	int i;
281 
282 	/* Handle case of no slots stored. */
283 	if (slot_max == 0)
284 		return 0;
285 
286 	slot = kaslr_get_random_long("Physical") % slot_max;
287 
288 	for (i = 0; i < slot_area_index; i++) {
289 		if (slot >= slot_areas[i].num) {
290 			slot -= slot_areas[i].num;
291 			continue;
292 		}
293 		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
294 	}
295 
296 	if (i == slot_area_index)
297 		debug_putstr("slots_fetch_random() failed!?\n");
298 	return 0;
299 }
300 
process_e820_entry(struct e820entry * entry,unsigned long minimum,unsigned long image_size)301 static void process_e820_entry(struct e820entry *entry,
302 			       unsigned long minimum,
303 			       unsigned long image_size)
304 {
305 	struct mem_vector region, overlap;
306 	struct slot_area slot_area;
307 	unsigned long start_orig;
308 
309 	/* Skip non-RAM entries. */
310 	if (entry->type != E820_RAM)
311 		return;
312 
313 	/* On 32-bit, ignore entries entirely above our maximum. */
314 	if (IS_ENABLED(CONFIG_X86_32) && entry->addr >= KERNEL_IMAGE_SIZE)
315 		return;
316 
317 	/* Ignore entries entirely below our minimum. */
318 	if (entry->addr + entry->size < minimum)
319 		return;
320 
321 	region.start = entry->addr;
322 	region.size = entry->size;
323 
324 	/* Give up if slot area array is full. */
325 	while (slot_area_index < MAX_SLOT_AREA) {
326 		start_orig = region.start;
327 
328 		/* Potentially raise address to minimum location. */
329 		if (region.start < minimum)
330 			region.start = minimum;
331 
332 		/* Potentially raise address to meet alignment needs. */
333 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
334 
335 		/* Did we raise the address above this e820 region? */
336 		if (region.start > entry->addr + entry->size)
337 			return;
338 
339 		/* Reduce size by any delta from the original address. */
340 		region.size -= region.start - start_orig;
341 
342 		/* On 32-bit, reduce region size to fit within max size. */
343 		if (IS_ENABLED(CONFIG_X86_32) &&
344 		    region.start + region.size > KERNEL_IMAGE_SIZE)
345 			region.size = KERNEL_IMAGE_SIZE - region.start;
346 
347 		/* Return if region can't contain decompressed kernel */
348 		if (region.size < image_size)
349 			return;
350 
351 		/* If nothing overlaps, store the region and return. */
352 		if (!mem_avoid_overlap(&region, &overlap)) {
353 			store_slot_info(&region, image_size);
354 			return;
355 		}
356 
357 		/* Store beginning of region if holds at least image_size. */
358 		if (overlap.start > region.start + image_size) {
359 			struct mem_vector beginning;
360 
361 			beginning.start = region.start;
362 			beginning.size = overlap.start - region.start;
363 			store_slot_info(&beginning, image_size);
364 		}
365 
366 		/* Return if overlap extends to or past end of region. */
367 		if (overlap.start + overlap.size >= region.start + region.size)
368 			return;
369 
370 		/* Clip off the overlapping region and start over. */
371 		region.size -= overlap.start - region.start + overlap.size;
372 		region.start = overlap.start + overlap.size;
373 	}
374 }
375 
find_random_phys_addr(unsigned long minimum,unsigned long image_size)376 static unsigned long find_random_phys_addr(unsigned long minimum,
377 					   unsigned long image_size)
378 {
379 	int i;
380 	unsigned long addr;
381 
382 	/* Make sure minimum is aligned. */
383 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
384 
385 	/* Verify potential e820 positions, appending to slots list. */
386 	for (i = 0; i < boot_params->e820_entries; i++) {
387 		process_e820_entry(&boot_params->e820_map[i], minimum,
388 				   image_size);
389 		if (slot_area_index == MAX_SLOT_AREA) {
390 			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
391 			break;
392 		}
393 	}
394 
395 	return slots_fetch_random();
396 }
397 
find_random_virt_addr(unsigned long minimum,unsigned long image_size)398 static unsigned long find_random_virt_addr(unsigned long minimum,
399 					   unsigned long image_size)
400 {
401 	unsigned long slots, random_addr;
402 
403 	/* Make sure minimum is aligned. */
404 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
405 	/* Align image_size for easy slot calculations. */
406 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
407 
408 	/*
409 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
410 	 * that can hold image_size within the range of minimum to
411 	 * KERNEL_IMAGE_SIZE?
412 	 */
413 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
414 		 CONFIG_PHYSICAL_ALIGN + 1;
415 
416 	random_addr = kaslr_get_random_long("Virtual") % slots;
417 
418 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
419 }
420 
421 /*
422  * Since this function examines addresses much more numerically,
423  * it takes the input and output pointers as 'unsigned long'.
424  */
choose_random_location(unsigned long input,unsigned long input_size,unsigned long * output,unsigned long output_size,unsigned long * virt_addr)425 void choose_random_location(unsigned long input,
426 			    unsigned long input_size,
427 			    unsigned long *output,
428 			    unsigned long output_size,
429 			    unsigned long *virt_addr)
430 {
431 	unsigned long random_addr, min_addr;
432 
433 	if (cmdline_find_option_bool("nokaslr")) {
434 		warn("KASLR disabled: 'nokaslr' on cmdline.");
435 		return;
436 	}
437 
438 	boot_params->hdr.loadflags |= KASLR_FLAG;
439 
440 	/* Prepare to add new identity pagetables on demand. */
441 	initialize_identity_maps();
442 
443 	/* Record the various known unsafe memory ranges. */
444 	mem_avoid_init(input, input_size, *output);
445 
446 	/*
447 	 * Low end of the randomization range should be the
448 	 * smaller of 512M or the initial kernel image
449 	 * location:
450 	 */
451 	min_addr = min(*output, 512UL << 20);
452 
453 	/* Walk e820 and find a random address. */
454 	random_addr = find_random_phys_addr(min_addr, output_size);
455 	if (!random_addr) {
456 		warn("KASLR disabled: could not find suitable E820 region!");
457 	} else {
458 		/* Update the new physical address location. */
459 		if (*output != random_addr) {
460 			add_identity_map(random_addr, output_size);
461 			*output = random_addr;
462 		}
463 
464 		/*
465 		 * This loads the identity mapping page table.
466 		 * This should only be done if a new physical address
467 		 * is found for the kernel, otherwise we should keep
468 		 * the old page table to make it be like the "nokaslr"
469 		 * case.
470 		 */
471 		finalize_identity_maps();
472 	}
473 
474 
475 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
476 	if (IS_ENABLED(CONFIG_X86_64))
477 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
478 	*virt_addr = random_addr;
479 }
480