• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_X86_MMU_CONTEXT_H
2 #define _ASM_X86_MMU_CONTEXT_H
3 
4 #include <asm/desc.h>
5 #include <linux/atomic.h>
6 #include <linux/mm_types.h>
7 #include <linux/pkeys.h>
8 
9 #include <trace/events/tlb.h>
10 
11 #include <asm/pgalloc.h>
12 #include <asm/tlbflush.h>
13 #include <asm/paravirt.h>
14 #include <asm/mpx.h>
15 
16 extern atomic64_t last_mm_ctx_id;
17 
18 #ifndef CONFIG_PARAVIRT
paravirt_activate_mm(struct mm_struct * prev,struct mm_struct * next)19 static inline void paravirt_activate_mm(struct mm_struct *prev,
20 					struct mm_struct *next)
21 {
22 }
23 #endif	/* !CONFIG_PARAVIRT */
24 
25 #ifdef CONFIG_PERF_EVENTS
26 extern struct static_key rdpmc_always_available;
27 
load_mm_cr4(struct mm_struct * mm)28 static inline void load_mm_cr4(struct mm_struct *mm)
29 {
30 	if (static_key_false(&rdpmc_always_available) ||
31 	    atomic_read(&mm->context.perf_rdpmc_allowed))
32 		cr4_set_bits(X86_CR4_PCE);
33 	else
34 		cr4_clear_bits(X86_CR4_PCE);
35 }
36 #else
load_mm_cr4(struct mm_struct * mm)37 static inline void load_mm_cr4(struct mm_struct *mm) {}
38 #endif
39 
40 #ifdef CONFIG_MODIFY_LDT_SYSCALL
41 /*
42  * ldt_structs can be allocated, used, and freed, but they are never
43  * modified while live.
44  */
45 struct ldt_struct {
46 	/*
47 	 * Xen requires page-aligned LDTs with special permissions.  This is
48 	 * needed to prevent us from installing evil descriptors such as
49 	 * call gates.  On native, we could merge the ldt_struct and LDT
50 	 * allocations, but it's not worth trying to optimize.
51 	 */
52 	struct desc_struct *entries;
53 	int size;
54 };
55 
56 /*
57  * Used for LDT copy/destruction.
58  */
59 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
60 void destroy_context_ldt(struct mm_struct *mm);
61 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct task_struct * tsk,struct mm_struct * mm)62 static inline int init_new_context_ldt(struct task_struct *tsk,
63 				       struct mm_struct *mm)
64 {
65 	return 0;
66 }
destroy_context_ldt(struct mm_struct * mm)67 static inline void destroy_context_ldt(struct mm_struct *mm) {}
68 #endif
69 
load_mm_ldt(struct mm_struct * mm)70 static inline void load_mm_ldt(struct mm_struct *mm)
71 {
72 #ifdef CONFIG_MODIFY_LDT_SYSCALL
73 	struct ldt_struct *ldt;
74 
75 	/* lockless_dereference synchronizes with smp_store_release */
76 	ldt = lockless_dereference(mm->context.ldt);
77 
78 	/*
79 	 * Any change to mm->context.ldt is followed by an IPI to all
80 	 * CPUs with the mm active.  The LDT will not be freed until
81 	 * after the IPI is handled by all such CPUs.  This means that,
82 	 * if the ldt_struct changes before we return, the values we see
83 	 * will be safe, and the new values will be loaded before we run
84 	 * any user code.
85 	 *
86 	 * NB: don't try to convert this to use RCU without extreme care.
87 	 * We would still need IRQs off, because we don't want to change
88 	 * the local LDT after an IPI loaded a newer value than the one
89 	 * that we can see.
90 	 */
91 
92 	if (unlikely(ldt))
93 		set_ldt(ldt->entries, ldt->size);
94 	else
95 		clear_LDT();
96 #else
97 	clear_LDT();
98 #endif
99 
100 	DEBUG_LOCKS_WARN_ON(preemptible());
101 }
102 
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)103 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
104 {
105 	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
106 		this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY);
107 }
108 
init_new_context(struct task_struct * tsk,struct mm_struct * mm)109 static inline int init_new_context(struct task_struct *tsk,
110 				   struct mm_struct *mm)
111 {
112 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
113 
114 	#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
115 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
116 		/* pkey 0 is the default and always allocated */
117 		mm->context.pkey_allocation_map = 0x1;
118 		/* -1 means unallocated or invalid */
119 		mm->context.execute_only_pkey = -1;
120 	}
121 	#endif
122 	return init_new_context_ldt(tsk, mm);
123 }
destroy_context(struct mm_struct * mm)124 static inline void destroy_context(struct mm_struct *mm)
125 {
126 	destroy_context_ldt(mm);
127 }
128 
129 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
130 		      struct task_struct *tsk);
131 
132 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
133 			       struct task_struct *tsk);
134 #define switch_mm_irqs_off switch_mm_irqs_off
135 
136 #define activate_mm(prev, next)			\
137 do {						\
138 	paravirt_activate_mm((prev), (next));	\
139 	switch_mm((prev), (next), NULL);	\
140 } while (0);
141 
142 #ifdef CONFIG_X86_32
143 #define deactivate_mm(tsk, mm)			\
144 do {						\
145 	lazy_load_gs(0);			\
146 } while (0)
147 #else
148 #define deactivate_mm(tsk, mm)			\
149 do {						\
150 	load_gs_index(0);			\
151 	loadsegment(fs, 0);			\
152 } while (0)
153 #endif
154 
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)155 static inline void arch_dup_mmap(struct mm_struct *oldmm,
156 				 struct mm_struct *mm)
157 {
158 	paravirt_arch_dup_mmap(oldmm, mm);
159 }
160 
arch_exit_mmap(struct mm_struct * mm)161 static inline void arch_exit_mmap(struct mm_struct *mm)
162 {
163 	paravirt_arch_exit_mmap(mm);
164 }
165 
166 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)167 static inline bool is_64bit_mm(struct mm_struct *mm)
168 {
169 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
170 		!(mm->context.ia32_compat == TIF_IA32);
171 }
172 #else
is_64bit_mm(struct mm_struct * mm)173 static inline bool is_64bit_mm(struct mm_struct *mm)
174 {
175 	return false;
176 }
177 #endif
178 
arch_bprm_mm_init(struct mm_struct * mm,struct vm_area_struct * vma)179 static inline void arch_bprm_mm_init(struct mm_struct *mm,
180 		struct vm_area_struct *vma)
181 {
182 	mpx_mm_init(mm);
183 }
184 
arch_unmap(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start,unsigned long end)185 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
186 			      unsigned long start, unsigned long end)
187 {
188 	/*
189 	 * mpx_notify_unmap() goes and reads a rarely-hot
190 	 * cacheline in the mm_struct.  That can be expensive
191 	 * enough to be seen in profiles.
192 	 *
193 	 * The mpx_notify_unmap() call and its contents have been
194 	 * observed to affect munmap() performance on hardware
195 	 * where MPX is not present.
196 	 *
197 	 * The unlikely() optimizes for the fast case: no MPX
198 	 * in the CPU, or no MPX use in the process.  Even if
199 	 * we get this wrong (in the unlikely event that MPX
200 	 * is widely enabled on some system) the overhead of
201 	 * MPX itself (reading bounds tables) is expected to
202 	 * overwhelm the overhead of getting this unlikely()
203 	 * consistently wrong.
204 	 */
205 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
206 		mpx_notify_unmap(mm, vma, start, end);
207 }
208 
209 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
vma_pkey(struct vm_area_struct * vma)210 static inline int vma_pkey(struct vm_area_struct *vma)
211 {
212 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
213 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
214 
215 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
216 }
217 #else
vma_pkey(struct vm_area_struct * vma)218 static inline int vma_pkey(struct vm_area_struct *vma)
219 {
220 	return 0;
221 }
222 #endif
223 
__pkru_allows_pkey(u16 pkey,bool write)224 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
225 {
226 	u32 pkru = read_pkru();
227 
228 	if (!__pkru_allows_read(pkru, pkey))
229 		return false;
230 	if (write && !__pkru_allows_write(pkru, pkey))
231 		return false;
232 
233 	return true;
234 }
235 
236 /*
237  * We only want to enforce protection keys on the current process
238  * because we effectively have no access to PKRU for other
239  * processes or any way to tell *which * PKRU in a threaded
240  * process we could use.
241  *
242  * So do not enforce things if the VMA is not from the current
243  * mm, or if we are in a kernel thread.
244  */
vma_is_foreign(struct vm_area_struct * vma)245 static inline bool vma_is_foreign(struct vm_area_struct *vma)
246 {
247 	if (!current->mm)
248 		return true;
249 	/*
250 	 * Should PKRU be enforced on the access to this VMA?  If
251 	 * the VMA is from another process, then PKRU has no
252 	 * relevance and should not be enforced.
253 	 */
254 	if (current->mm != vma->vm_mm)
255 		return true;
256 
257 	return false;
258 }
259 
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)260 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
261 		bool write, bool execute, bool foreign)
262 {
263 	/* pkeys never affect instruction fetches */
264 	if (execute)
265 		return true;
266 	/* allow access if the VMA is not one from this process */
267 	if (foreign || vma_is_foreign(vma))
268 		return true;
269 	return __pkru_allows_pkey(vma_pkey(vma), write);
270 }
271 
arch_pte_access_permitted(pte_t pte,bool write)272 static inline bool arch_pte_access_permitted(pte_t pte, bool write)
273 {
274 	return __pkru_allows_pkey(pte_flags_pkey(pte_flags(pte)), write);
275 }
276 #endif /* _ASM_X86_MMU_CONTEXT_H */
277