1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/e820.h>
6
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 #ifndef __ASSEMBLY__
19 #include <asm/x86_init.h>
20
21 #ifdef CONFIG_PAGE_TABLE_ISOLATION
22 extern int kaiser_enabled;
23 /*
24 * Instead of one PGD, we acquire two PGDs. Being order-1, it is
25 * both 8k in size and 8k-aligned. That lets us just flip bit 12
26 * in a pointer to swap between the two 4k halves.
27 */
28 #else
29 #define kaiser_enabled 0
30 #endif
31 #define PGD_ALLOCATION_ORDER kaiser_enabled
32
33 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
34 void ptdump_walk_pgd_level_checkwx(void);
35
36 #ifdef CONFIG_DEBUG_WX
37 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
38 #else
39 #define debug_checkwx() do { } while (0)
40 #endif
41
42 /*
43 * ZERO_PAGE is a global shared page that is always zero: used
44 * for zero-mapped memory areas etc..
45 */
46 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
47 __visible;
48 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
49
50 extern spinlock_t pgd_lock;
51 extern struct list_head pgd_list;
52
53 extern struct mm_struct *pgd_page_get_mm(struct page *page);
54
55 #ifdef CONFIG_PARAVIRT
56 #include <asm/paravirt.h>
57 #else /* !CONFIG_PARAVIRT */
58 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
59 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
60 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
61
62 #define set_pte_atomic(ptep, pte) \
63 native_set_pte_atomic(ptep, pte)
64
65 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
66
67 #ifndef __PAGETABLE_PUD_FOLDED
68 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
69 #define pgd_clear(pgd) native_pgd_clear(pgd)
70 #endif
71
72 #ifndef set_pud
73 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
74 #endif
75
76 #ifndef __PAGETABLE_PMD_FOLDED
77 #define pud_clear(pud) native_pud_clear(pud)
78 #endif
79
80 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
81 #define pmd_clear(pmd) native_pmd_clear(pmd)
82
83 #define pte_update(mm, addr, ptep) do { } while (0)
84
85 #define pgd_val(x) native_pgd_val(x)
86 #define __pgd(x) native_make_pgd(x)
87
88 #ifndef __PAGETABLE_PUD_FOLDED
89 #define pud_val(x) native_pud_val(x)
90 #define __pud(x) native_make_pud(x)
91 #endif
92
93 #ifndef __PAGETABLE_PMD_FOLDED
94 #define pmd_val(x) native_pmd_val(x)
95 #define __pmd(x) native_make_pmd(x)
96 #endif
97
98 #define pte_val(x) native_pte_val(x)
99 #define __pte(x) native_make_pte(x)
100
101 #define arch_end_context_switch(prev) do {} while(0)
102
103 #endif /* CONFIG_PARAVIRT */
104
105 /*
106 * The following only work if pte_present() is true.
107 * Undefined behaviour if not..
108 */
pte_dirty(pte_t pte)109 static inline int pte_dirty(pte_t pte)
110 {
111 return pte_flags(pte) & _PAGE_DIRTY;
112 }
113
114
read_pkru(void)115 static inline u32 read_pkru(void)
116 {
117 if (boot_cpu_has(X86_FEATURE_OSPKE))
118 return __read_pkru();
119 return 0;
120 }
121
write_pkru(u32 pkru)122 static inline void write_pkru(u32 pkru)
123 {
124 if (boot_cpu_has(X86_FEATURE_OSPKE))
125 __write_pkru(pkru);
126 }
127
pte_young(pte_t pte)128 static inline int pte_young(pte_t pte)
129 {
130 return pte_flags(pte) & _PAGE_ACCESSED;
131 }
132
pmd_dirty(pmd_t pmd)133 static inline int pmd_dirty(pmd_t pmd)
134 {
135 return pmd_flags(pmd) & _PAGE_DIRTY;
136 }
137
pmd_young(pmd_t pmd)138 static inline int pmd_young(pmd_t pmd)
139 {
140 return pmd_flags(pmd) & _PAGE_ACCESSED;
141 }
142
pte_write(pte_t pte)143 static inline int pte_write(pte_t pte)
144 {
145 return pte_flags(pte) & _PAGE_RW;
146 }
147
pte_huge(pte_t pte)148 static inline int pte_huge(pte_t pte)
149 {
150 return pte_flags(pte) & _PAGE_PSE;
151 }
152
pte_global(pte_t pte)153 static inline int pte_global(pte_t pte)
154 {
155 return pte_flags(pte) & _PAGE_GLOBAL;
156 }
157
pte_exec(pte_t pte)158 static inline int pte_exec(pte_t pte)
159 {
160 return !(pte_flags(pte) & _PAGE_NX);
161 }
162
pte_special(pte_t pte)163 static inline int pte_special(pte_t pte)
164 {
165 return pte_flags(pte) & _PAGE_SPECIAL;
166 }
167
pte_pfn(pte_t pte)168 static inline unsigned long pte_pfn(pte_t pte)
169 {
170 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
171 }
172
pmd_pfn(pmd_t pmd)173 static inline unsigned long pmd_pfn(pmd_t pmd)
174 {
175 return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
176 }
177
pud_pfn(pud_t pud)178 static inline unsigned long pud_pfn(pud_t pud)
179 {
180 return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
181 }
182
183 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
184
pmd_large(pmd_t pte)185 static inline int pmd_large(pmd_t pte)
186 {
187 return pmd_flags(pte) & _PAGE_PSE;
188 }
189
190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)191 static inline int pmd_trans_huge(pmd_t pmd)
192 {
193 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
194 }
195
196 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)197 static inline int has_transparent_hugepage(void)
198 {
199 return boot_cpu_has(X86_FEATURE_PSE);
200 }
201
202 #ifdef __HAVE_ARCH_PTE_DEVMAP
pmd_devmap(pmd_t pmd)203 static inline int pmd_devmap(pmd_t pmd)
204 {
205 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
206 }
207 #endif
208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
209
pte_set_flags(pte_t pte,pteval_t set)210 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
211 {
212 pteval_t v = native_pte_val(pte);
213
214 return native_make_pte(v | set);
215 }
216
pte_clear_flags(pte_t pte,pteval_t clear)217 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
218 {
219 pteval_t v = native_pte_val(pte);
220
221 return native_make_pte(v & ~clear);
222 }
223
pte_mkclean(pte_t pte)224 static inline pte_t pte_mkclean(pte_t pte)
225 {
226 return pte_clear_flags(pte, _PAGE_DIRTY);
227 }
228
pte_mkold(pte_t pte)229 static inline pte_t pte_mkold(pte_t pte)
230 {
231 return pte_clear_flags(pte, _PAGE_ACCESSED);
232 }
233
pte_wrprotect(pte_t pte)234 static inline pte_t pte_wrprotect(pte_t pte)
235 {
236 return pte_clear_flags(pte, _PAGE_RW);
237 }
238
pte_mkexec(pte_t pte)239 static inline pte_t pte_mkexec(pte_t pte)
240 {
241 return pte_clear_flags(pte, _PAGE_NX);
242 }
243
pte_mkdirty(pte_t pte)244 static inline pte_t pte_mkdirty(pte_t pte)
245 {
246 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
247 }
248
pte_mkyoung(pte_t pte)249 static inline pte_t pte_mkyoung(pte_t pte)
250 {
251 return pte_set_flags(pte, _PAGE_ACCESSED);
252 }
253
pte_mkwrite(pte_t pte)254 static inline pte_t pte_mkwrite(pte_t pte)
255 {
256 return pte_set_flags(pte, _PAGE_RW);
257 }
258
pte_mkhuge(pte_t pte)259 static inline pte_t pte_mkhuge(pte_t pte)
260 {
261 return pte_set_flags(pte, _PAGE_PSE);
262 }
263
pte_clrhuge(pte_t pte)264 static inline pte_t pte_clrhuge(pte_t pte)
265 {
266 return pte_clear_flags(pte, _PAGE_PSE);
267 }
268
pte_mkglobal(pte_t pte)269 static inline pte_t pte_mkglobal(pte_t pte)
270 {
271 return pte_set_flags(pte, _PAGE_GLOBAL);
272 }
273
pte_clrglobal(pte_t pte)274 static inline pte_t pte_clrglobal(pte_t pte)
275 {
276 return pte_clear_flags(pte, _PAGE_GLOBAL);
277 }
278
pte_mkspecial(pte_t pte)279 static inline pte_t pte_mkspecial(pte_t pte)
280 {
281 return pte_set_flags(pte, _PAGE_SPECIAL);
282 }
283
pte_mkdevmap(pte_t pte)284 static inline pte_t pte_mkdevmap(pte_t pte)
285 {
286 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
287 }
288
pmd_set_flags(pmd_t pmd,pmdval_t set)289 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
290 {
291 pmdval_t v = native_pmd_val(pmd);
292
293 return __pmd(v | set);
294 }
295
pmd_clear_flags(pmd_t pmd,pmdval_t clear)296 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
297 {
298 pmdval_t v = native_pmd_val(pmd);
299
300 return __pmd(v & ~clear);
301 }
302
pmd_mkold(pmd_t pmd)303 static inline pmd_t pmd_mkold(pmd_t pmd)
304 {
305 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
306 }
307
pmd_mkclean(pmd_t pmd)308 static inline pmd_t pmd_mkclean(pmd_t pmd)
309 {
310 return pmd_clear_flags(pmd, _PAGE_DIRTY);
311 }
312
pmd_wrprotect(pmd_t pmd)313 static inline pmd_t pmd_wrprotect(pmd_t pmd)
314 {
315 return pmd_clear_flags(pmd, _PAGE_RW);
316 }
317
pmd_mkdirty(pmd_t pmd)318 static inline pmd_t pmd_mkdirty(pmd_t pmd)
319 {
320 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
321 }
322
pmd_mkdevmap(pmd_t pmd)323 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
324 {
325 return pmd_set_flags(pmd, _PAGE_DEVMAP);
326 }
327
pmd_mkhuge(pmd_t pmd)328 static inline pmd_t pmd_mkhuge(pmd_t pmd)
329 {
330 return pmd_set_flags(pmd, _PAGE_PSE);
331 }
332
pmd_mkyoung(pmd_t pmd)333 static inline pmd_t pmd_mkyoung(pmd_t pmd)
334 {
335 return pmd_set_flags(pmd, _PAGE_ACCESSED);
336 }
337
pmd_mkwrite(pmd_t pmd)338 static inline pmd_t pmd_mkwrite(pmd_t pmd)
339 {
340 return pmd_set_flags(pmd, _PAGE_RW);
341 }
342
pmd_mknotpresent(pmd_t pmd)343 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
344 {
345 return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
346 }
347
348 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)349 static inline int pte_soft_dirty(pte_t pte)
350 {
351 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
352 }
353
pmd_soft_dirty(pmd_t pmd)354 static inline int pmd_soft_dirty(pmd_t pmd)
355 {
356 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
357 }
358
pte_mksoft_dirty(pte_t pte)359 static inline pte_t pte_mksoft_dirty(pte_t pte)
360 {
361 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
362 }
363
pmd_mksoft_dirty(pmd_t pmd)364 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
365 {
366 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
367 }
368
pte_clear_soft_dirty(pte_t pte)369 static inline pte_t pte_clear_soft_dirty(pte_t pte)
370 {
371 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
372 }
373
pmd_clear_soft_dirty(pmd_t pmd)374 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
375 {
376 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
377 }
378
379 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
380
381 /*
382 * Mask out unsupported bits in a present pgprot. Non-present pgprots
383 * can use those bits for other purposes, so leave them be.
384 */
massage_pgprot(pgprot_t pgprot)385 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
386 {
387 pgprotval_t protval = pgprot_val(pgprot);
388
389 if (protval & _PAGE_PRESENT)
390 protval &= __supported_pte_mask;
391
392 return protval;
393 }
394
pfn_pte(unsigned long page_nr,pgprot_t pgprot)395 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
396 {
397 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
398 massage_pgprot(pgprot));
399 }
400
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)401 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
402 {
403 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
404 massage_pgprot(pgprot));
405 }
406
pte_modify(pte_t pte,pgprot_t newprot)407 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
408 {
409 pteval_t val = pte_val(pte);
410
411 /*
412 * Chop off the NX bit (if present), and add the NX portion of
413 * the newprot (if present):
414 */
415 val &= _PAGE_CHG_MASK;
416 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
417
418 return __pte(val);
419 }
420
pmd_modify(pmd_t pmd,pgprot_t newprot)421 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
422 {
423 pmdval_t val = pmd_val(pmd);
424
425 val &= _HPAGE_CHG_MASK;
426 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
427
428 return __pmd(val);
429 }
430
431 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
432 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)433 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
434 {
435 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
436 pgprotval_t addbits = pgprot_val(newprot);
437 return __pgprot(preservebits | addbits);
438 }
439
440 #define pte_pgprot(x) __pgprot(pte_flags(x))
441 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
442 #define pud_pgprot(x) __pgprot(pud_flags(x))
443
444 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
445
is_new_memtype_allowed(u64 paddr,unsigned long size,enum page_cache_mode pcm,enum page_cache_mode new_pcm)446 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
447 enum page_cache_mode pcm,
448 enum page_cache_mode new_pcm)
449 {
450 /*
451 * PAT type is always WB for untracked ranges, so no need to check.
452 */
453 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
454 return 1;
455
456 /*
457 * Certain new memtypes are not allowed with certain
458 * requested memtype:
459 * - request is uncached, return cannot be write-back
460 * - request is write-combine, return cannot be write-back
461 * - request is write-through, return cannot be write-back
462 * - request is write-through, return cannot be write-combine
463 */
464 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
465 new_pcm == _PAGE_CACHE_MODE_WB) ||
466 (pcm == _PAGE_CACHE_MODE_WC &&
467 new_pcm == _PAGE_CACHE_MODE_WB) ||
468 (pcm == _PAGE_CACHE_MODE_WT &&
469 new_pcm == _PAGE_CACHE_MODE_WB) ||
470 (pcm == _PAGE_CACHE_MODE_WT &&
471 new_pcm == _PAGE_CACHE_MODE_WC)) {
472 return 0;
473 }
474
475 return 1;
476 }
477
478 pmd_t *populate_extra_pmd(unsigned long vaddr);
479 pte_t *populate_extra_pte(unsigned long vaddr);
480 #endif /* __ASSEMBLY__ */
481
482 #ifdef CONFIG_X86_32
483 # include <asm/pgtable_32.h>
484 #else
485 # include <asm/pgtable_64.h>
486 #endif
487
488 #ifndef __ASSEMBLY__
489 #include <linux/mm_types.h>
490 #include <linux/mmdebug.h>
491 #include <linux/log2.h>
492
pte_none(pte_t pte)493 static inline int pte_none(pte_t pte)
494 {
495 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
496 }
497
498 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)499 static inline int pte_same(pte_t a, pte_t b)
500 {
501 return a.pte == b.pte;
502 }
503
pte_present(pte_t a)504 static inline int pte_present(pte_t a)
505 {
506 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
507 }
508
509 #ifdef __HAVE_ARCH_PTE_DEVMAP
pte_devmap(pte_t a)510 static inline int pte_devmap(pte_t a)
511 {
512 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
513 }
514 #endif
515
516 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)517 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
518 {
519 if (pte_flags(a) & _PAGE_PRESENT)
520 return true;
521
522 if ((pte_flags(a) & _PAGE_PROTNONE) &&
523 mm_tlb_flush_pending(mm))
524 return true;
525
526 return false;
527 }
528
pte_hidden(pte_t pte)529 static inline int pte_hidden(pte_t pte)
530 {
531 return pte_flags(pte) & _PAGE_HIDDEN;
532 }
533
pmd_present(pmd_t pmd)534 static inline int pmd_present(pmd_t pmd)
535 {
536 /*
537 * Checking for _PAGE_PSE is needed too because
538 * split_huge_page will temporarily clear the present bit (but
539 * the _PAGE_PSE flag will remain set at all times while the
540 * _PAGE_PRESENT bit is clear).
541 */
542 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
543 }
544
545 #ifdef CONFIG_NUMA_BALANCING
546 /*
547 * These work without NUMA balancing but the kernel does not care. See the
548 * comment in include/asm-generic/pgtable.h
549 */
pte_protnone(pte_t pte)550 static inline int pte_protnone(pte_t pte)
551 {
552 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
553 == _PAGE_PROTNONE;
554 }
555
pmd_protnone(pmd_t pmd)556 static inline int pmd_protnone(pmd_t pmd)
557 {
558 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
559 == _PAGE_PROTNONE;
560 }
561 #endif /* CONFIG_NUMA_BALANCING */
562
pmd_none(pmd_t pmd)563 static inline int pmd_none(pmd_t pmd)
564 {
565 /* Only check low word on 32-bit platforms, since it might be
566 out of sync with upper half. */
567 unsigned long val = native_pmd_val(pmd);
568 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
569 }
570
pmd_page_vaddr(pmd_t pmd)571 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
572 {
573 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
574 }
575
576 /*
577 * Currently stuck as a macro due to indirect forward reference to
578 * linux/mmzone.h's __section_mem_map_addr() definition:
579 */
580 #define pmd_page(pmd) \
581 pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
582
583 /*
584 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
585 *
586 * this macro returns the index of the entry in the pmd page which would
587 * control the given virtual address
588 */
pmd_index(unsigned long address)589 static inline unsigned long pmd_index(unsigned long address)
590 {
591 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
592 }
593
594 /*
595 * Conversion functions: convert a page and protection to a page entry,
596 * and a page entry and page directory to the page they refer to.
597 *
598 * (Currently stuck as a macro because of indirect forward reference
599 * to linux/mm.h:page_to_nid())
600 */
601 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
602
603 /*
604 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
605 *
606 * this function returns the index of the entry in the pte page which would
607 * control the given virtual address
608 */
pte_index(unsigned long address)609 static inline unsigned long pte_index(unsigned long address)
610 {
611 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
612 }
613
pte_offset_kernel(pmd_t * pmd,unsigned long address)614 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
615 {
616 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
617 }
618
pmd_bad(pmd_t pmd)619 static inline int pmd_bad(pmd_t pmd)
620 {
621 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
622 }
623
pages_to_mb(unsigned long npg)624 static inline unsigned long pages_to_mb(unsigned long npg)
625 {
626 return npg >> (20 - PAGE_SHIFT);
627 }
628
629 #if CONFIG_PGTABLE_LEVELS > 2
pud_none(pud_t pud)630 static inline int pud_none(pud_t pud)
631 {
632 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
633 }
634
pud_present(pud_t pud)635 static inline int pud_present(pud_t pud)
636 {
637 return pud_flags(pud) & _PAGE_PRESENT;
638 }
639
pud_page_vaddr(pud_t pud)640 static inline unsigned long pud_page_vaddr(pud_t pud)
641 {
642 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
643 }
644
645 /*
646 * Currently stuck as a macro due to indirect forward reference to
647 * linux/mmzone.h's __section_mem_map_addr() definition:
648 */
649 #define pud_page(pud) \
650 pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
651
652 /* Find an entry in the second-level page table.. */
pmd_offset(pud_t * pud,unsigned long address)653 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
654 {
655 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
656 }
657
pud_large(pud_t pud)658 static inline int pud_large(pud_t pud)
659 {
660 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
661 (_PAGE_PSE | _PAGE_PRESENT);
662 }
663
pud_bad(pud_t pud)664 static inline int pud_bad(pud_t pud)
665 {
666 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
667 }
668 #else
pud_large(pud_t pud)669 static inline int pud_large(pud_t pud)
670 {
671 return 0;
672 }
673 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
674
675 #if CONFIG_PGTABLE_LEVELS > 3
pgd_present(pgd_t pgd)676 static inline int pgd_present(pgd_t pgd)
677 {
678 return pgd_flags(pgd) & _PAGE_PRESENT;
679 }
680
pgd_page_vaddr(pgd_t pgd)681 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
682 {
683 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
684 }
685
686 /*
687 * Currently stuck as a macro due to indirect forward reference to
688 * linux/mmzone.h's __section_mem_map_addr() definition:
689 */
690 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
691
692 /* to find an entry in a page-table-directory. */
pud_index(unsigned long address)693 static inline unsigned long pud_index(unsigned long address)
694 {
695 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
696 }
697
pud_offset(pgd_t * pgd,unsigned long address)698 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
699 {
700 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
701 }
702
pgd_bad(pgd_t pgd)703 static inline int pgd_bad(pgd_t pgd)
704 {
705 pgdval_t ignore_flags = _PAGE_USER;
706 /*
707 * We set NX on KAISER pgds that map userspace memory so
708 * that userspace can not meaningfully use the kernel
709 * page table by accident; it will fault on the first
710 * instruction it tries to run. See native_set_pgd().
711 */
712 if (kaiser_enabled)
713 ignore_flags |= _PAGE_NX;
714
715 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
716 }
717
pgd_none(pgd_t pgd)718 static inline int pgd_none(pgd_t pgd)
719 {
720 /*
721 * There is no need to do a workaround for the KNL stray
722 * A/D bit erratum here. PGDs only point to page tables
723 * except on 32-bit non-PAE which is not supported on
724 * KNL.
725 */
726 return !native_pgd_val(pgd);
727 }
728 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
729
730 #endif /* __ASSEMBLY__ */
731
732 /*
733 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
734 *
735 * this macro returns the index of the entry in the pgd page which would
736 * control the given virtual address
737 */
738 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
739
740 /*
741 * pgd_offset() returns a (pgd_t *)
742 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
743 */
744 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
745 /*
746 * a shortcut which implies the use of the kernel's pgd, instead
747 * of a process's
748 */
749 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
750
751
752 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
753 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
754
755 #ifndef __ASSEMBLY__
756
757 extern int direct_gbpages;
758 void init_mem_mapping(void);
759 void early_alloc_pgt_buf(void);
760
761 #ifdef CONFIG_X86_64
762 /* Realmode trampoline initialization. */
763 extern pgd_t trampoline_pgd_entry;
init_trampoline_default(void)764 static inline void __meminit init_trampoline_default(void)
765 {
766 /* Default trampoline pgd value */
767 trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
768 }
769 # ifdef CONFIG_RANDOMIZE_MEMORY
770 void __meminit init_trampoline(void);
771 # else
772 # define init_trampoline init_trampoline_default
773 # endif
774 #else
init_trampoline(void)775 static inline void init_trampoline(void) { }
776 #endif
777
778 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)779 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
780 {
781 pte_t res = *ptep;
782
783 /* Pure native function needs no input for mm, addr */
784 native_pte_clear(NULL, 0, ptep);
785 return res;
786 }
787
native_local_pmdp_get_and_clear(pmd_t * pmdp)788 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
789 {
790 pmd_t res = *pmdp;
791
792 native_pmd_clear(pmdp);
793 return res;
794 }
795
native_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)796 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
797 pte_t *ptep , pte_t pte)
798 {
799 native_set_pte(ptep, pte);
800 }
801
native_set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)802 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
803 pmd_t *pmdp , pmd_t pmd)
804 {
805 native_set_pmd(pmdp, pmd);
806 }
807
808 #ifndef CONFIG_PARAVIRT
809 /*
810 * Rules for using pte_update - it must be called after any PTE update which
811 * has not been done using the set_pte / clear_pte interfaces. It is used by
812 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
813 * updates should either be sets, clears, or set_pte_atomic for P->P
814 * transitions, which means this hook should only be called for user PTEs.
815 * This hook implies a P->P protection or access change has taken place, which
816 * requires a subsequent TLB flush.
817 */
818 #define pte_update(mm, addr, ptep) do { } while (0)
819 #endif
820
821 /*
822 * We only update the dirty/accessed state if we set
823 * the dirty bit by hand in the kernel, since the hardware
824 * will do the accessed bit for us, and we don't want to
825 * race with other CPU's that might be updating the dirty
826 * bit at the same time.
827 */
828 struct vm_area_struct;
829
830 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
831 extern int ptep_set_access_flags(struct vm_area_struct *vma,
832 unsigned long address, pte_t *ptep,
833 pte_t entry, int dirty);
834
835 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
836 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
837 unsigned long addr, pte_t *ptep);
838
839 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
840 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
841 unsigned long address, pte_t *ptep);
842
843 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)844 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
845 pte_t *ptep)
846 {
847 pte_t pte = native_ptep_get_and_clear(ptep);
848 pte_update(mm, addr, ptep);
849 return pte;
850 }
851
852 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)853 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
854 unsigned long addr, pte_t *ptep,
855 int full)
856 {
857 pte_t pte;
858 if (full) {
859 /*
860 * Full address destruction in progress; paravirt does not
861 * care about updates and native needs no locking
862 */
863 pte = native_local_ptep_get_and_clear(ptep);
864 } else {
865 pte = ptep_get_and_clear(mm, addr, ptep);
866 }
867 return pte;
868 }
869
870 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)871 static inline void ptep_set_wrprotect(struct mm_struct *mm,
872 unsigned long addr, pte_t *ptep)
873 {
874 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
875 pte_update(mm, addr, ptep);
876 }
877
878 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
879
880 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
881
882 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
883 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
884 unsigned long address, pmd_t *pmdp,
885 pmd_t entry, int dirty);
886
887 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
888 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
889 unsigned long addr, pmd_t *pmdp);
890
891 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
892 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
893 unsigned long address, pmd_t *pmdp);
894
895
896 #define __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)897 static inline int pmd_write(pmd_t pmd)
898 {
899 return pmd_flags(pmd) & _PAGE_RW;
900 }
901
902 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)903 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
904 pmd_t *pmdp)
905 {
906 return native_pmdp_get_and_clear(pmdp);
907 }
908
909 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)910 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 unsigned long addr, pmd_t *pmdp)
912 {
913 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
914 }
915
916 /*
917 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
918 *
919 * dst - pointer to pgd range anwhere on a pgd page
920 * src - ""
921 * count - the number of pgds to copy.
922 *
923 * dst and src can be on the same page, but the range must not overlap,
924 * and must not cross a page boundary.
925 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)926 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
927 {
928 memcpy(dst, src, count * sizeof(pgd_t));
929 #ifdef CONFIG_PAGE_TABLE_ISOLATION
930 if (kaiser_enabled) {
931 /* Clone the shadow pgd part as well */
932 memcpy(native_get_shadow_pgd(dst),
933 native_get_shadow_pgd(src),
934 count * sizeof(pgd_t));
935 }
936 #endif
937 }
938
939 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)940 static inline int page_level_shift(enum pg_level level)
941 {
942 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
943 }
page_level_size(enum pg_level level)944 static inline unsigned long page_level_size(enum pg_level level)
945 {
946 return 1UL << page_level_shift(level);
947 }
page_level_mask(enum pg_level level)948 static inline unsigned long page_level_mask(enum pg_level level)
949 {
950 return ~(page_level_size(level) - 1);
951 }
952
953 /*
954 * The x86 doesn't have any external MMU info: the kernel page
955 * tables contain all the necessary information.
956 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)957 static inline void update_mmu_cache(struct vm_area_struct *vma,
958 unsigned long addr, pte_t *ptep)
959 {
960 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)961 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
962 unsigned long addr, pmd_t *pmd)
963 {
964 }
965
966 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)967 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
968 {
969 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
970 }
971
pte_swp_soft_dirty(pte_t pte)972 static inline int pte_swp_soft_dirty(pte_t pte)
973 {
974 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
975 }
976
pte_swp_clear_soft_dirty(pte_t pte)977 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
978 {
979 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
980 }
981 #endif
982
983 #define PKRU_AD_BIT 0x1
984 #define PKRU_WD_BIT 0x2
985 #define PKRU_BITS_PER_PKEY 2
986
__pkru_allows_read(u32 pkru,u16 pkey)987 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
988 {
989 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
990 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
991 }
992
__pkru_allows_write(u32 pkru,u16 pkey)993 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
994 {
995 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
996 /*
997 * Access-disable disables writes too so we need to check
998 * both bits here.
999 */
1000 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1001 }
1002
pte_flags_pkey(unsigned long pte_flags)1003 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1004 {
1005 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1006 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1007 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1008 #else
1009 return 0;
1010 #endif
1011 }
1012
1013 #include <asm-generic/pgtable.h>
1014 #endif /* __ASSEMBLY__ */
1015
1016 #endif /* _ASM_X86_PGTABLE_H */
1017