• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * apb_timer.c: Driver for Langwell APB timers
3  *
4  * (C) Copyright 2009 Intel Corporation
5  * Author: Jacob Pan (jacob.jun.pan@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * Note:
13  * Langwell is the south complex of Intel Moorestown MID platform. There are
14  * eight external timers in total that can be used by the operating system.
15  * The timer information, such as frequency and addresses, is provided to the
16  * OS via SFI tables.
17  * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18  * individual redirection table entries (RTE).
19  * Unlike HPET, there is no master counter, therefore one of the timers are
20  * used as clocksource. The overall allocation looks like:
21  *  - timer 0 - NR_CPUs for per cpu timer
22  *  - one timer for clocksource
23  *  - one timer for watchdog driver.
24  * It is also worth notice that APB timer does not support true one-shot mode,
25  * free-running mode will be used here to emulate one-shot mode.
26  * APB timer can also be used as broadcast timer along with per cpu local APIC
27  * timer, but by default APB timer has higher rating than local APIC timers.
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40 
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/intel-mid.h>
44 #include <asm/time.h>
45 
46 #define APBT_CLOCKEVENT_RATING		110
47 #define APBT_CLOCKSOURCE_RATING		250
48 
49 #define APBT_CLOCKEVENT0_NUM   (0)
50 #define APBT_CLOCKSOURCE_NUM   (2)
51 
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55 
56 /*
57  * Common DW APB timer info
58  */
59 static unsigned long apbt_freq;
60 
61 struct apbt_dev {
62 	struct dw_apb_clock_event_device	*timer;
63 	unsigned int				num;
64 	int					cpu;
65 	unsigned int				irq;
66 	char					name[10];
67 };
68 
69 static struct dw_apb_clocksource *clocksource_apbt;
70 
adev_virt_addr(struct apbt_dev * adev)71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73 	return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75 
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77 
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81 
apbt_set_mapping(void)82 static inline void apbt_set_mapping(void)
83 {
84 	struct sfi_timer_table_entry *mtmr;
85 	int phy_cs_timer_id = 0;
86 
87 	if (apbt_virt_address) {
88 		pr_debug("APBT base already mapped\n");
89 		return;
90 	}
91 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
92 	if (mtmr == NULL) {
93 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
94 		       APBT_CLOCKEVENT0_NUM);
95 		return;
96 	}
97 	apbt_address = (phys_addr_t)mtmr->phys_addr;
98 	if (!apbt_address) {
99 		printk(KERN_WARNING "No timer base from SFI, use default\n");
100 		apbt_address = APBT_DEFAULT_BASE;
101 	}
102 	apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103 	if (!apbt_virt_address) {
104 		pr_debug("Failed mapping APBT phy address at %lu\n",\
105 			 (unsigned long)apbt_address);
106 		goto panic_noapbt;
107 	}
108 	apbt_freq = mtmr->freq_hz;
109 	sfi_free_mtmr(mtmr);
110 
111 	/* Now figure out the physical timer id for clocksource device */
112 	mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
113 	if (mtmr == NULL)
114 		goto panic_noapbt;
115 
116 	/* Now figure out the physical timer id */
117 	pr_debug("Use timer %d for clocksource\n",
118 		 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119 	phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
120 		APBTMRS_REG_SIZE;
121 
122 	clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
123 		"apbt0", apbt_virt_address + phy_cs_timer_id *
124 		APBTMRS_REG_SIZE, apbt_freq);
125 	return;
126 
127 panic_noapbt:
128 	panic("Failed to setup APB system timer\n");
129 
130 }
131 
apbt_clear_mapping(void)132 static inline void apbt_clear_mapping(void)
133 {
134 	iounmap(apbt_virt_address);
135 	apbt_virt_address = NULL;
136 }
137 
apbt_clockevent_register(void)138 static int __init apbt_clockevent_register(void)
139 {
140 	struct sfi_timer_table_entry *mtmr;
141 	struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
142 
143 	mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
144 	if (mtmr == NULL) {
145 		printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
146 		       APBT_CLOCKEVENT0_NUM);
147 		return -ENODEV;
148 	}
149 
150 	adev->num = smp_processor_id();
151 	adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
152 		intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
153 		APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
154 		adev_virt_addr(adev), 0, apbt_freq);
155 	/* Firmware does EOI handling for us. */
156 	adev->timer->eoi = NULL;
157 
158 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
159 		global_clock_event = &adev->timer->ced;
160 		printk(KERN_DEBUG "%s clockevent registered as global\n",
161 		       global_clock_event->name);
162 	}
163 
164 	dw_apb_clockevent_register(adev->timer);
165 
166 	sfi_free_mtmr(mtmr);
167 	return 0;
168 }
169 
170 #ifdef CONFIG_SMP
171 
apbt_setup_irq(struct apbt_dev * adev)172 static void apbt_setup_irq(struct apbt_dev *adev)
173 {
174 	irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
175 	irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
176 }
177 
178 /* Should be called with per cpu */
apbt_setup_secondary_clock(void)179 void apbt_setup_secondary_clock(void)
180 {
181 	struct apbt_dev *adev;
182 	int cpu;
183 
184 	/* Don't register boot CPU clockevent */
185 	cpu = smp_processor_id();
186 	if (!cpu)
187 		return;
188 
189 	adev = this_cpu_ptr(&cpu_apbt_dev);
190 	if (!adev->timer) {
191 		adev->timer = dw_apb_clockevent_init(cpu, adev->name,
192 			APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
193 			adev->irq, apbt_freq);
194 		adev->timer->eoi = NULL;
195 	} else {
196 		dw_apb_clockevent_resume(adev->timer);
197 	}
198 
199 	printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
200 	       cpu, adev->name, adev->cpu);
201 
202 	apbt_setup_irq(adev);
203 	dw_apb_clockevent_register(adev->timer);
204 
205 	return;
206 }
207 
208 /*
209  * this notify handler process CPU hotplug events. in case of S0i3, nonboot
210  * cpus are disabled/enabled frequently, for performance reasons, we keep the
211  * per cpu timer irq registered so that we do need to do free_irq/request_irq.
212  *
213  * TODO: it might be more reliable to directly disable percpu clockevent device
214  * without the notifier chain. currently, cpu 0 may get interrupts from other
215  * cpu timers during the offline process due to the ordering of notification.
216  * the extra interrupt is harmless.
217  */
apbt_cpu_dead(unsigned int cpu)218 static int apbt_cpu_dead(unsigned int cpu)
219 {
220 	struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
221 
222 	dw_apb_clockevent_pause(adev->timer);
223 	if (system_state == SYSTEM_RUNNING) {
224 		pr_debug("skipping APBT CPU %u offline\n", cpu);
225 	} else {
226 		pr_debug("APBT clockevent for cpu %u offline\n", cpu);
227 		dw_apb_clockevent_stop(adev->timer);
228 	}
229 	return 0;
230 }
231 
apbt_late_init(void)232 static __init int apbt_late_init(void)
233 {
234 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
235 		!apb_timer_block_enabled)
236 		return 0;
237 	return cpuhp_setup_state(CPUHP_X86_APB_DEAD, "X86_APB_DEAD", NULL,
238 				 apbt_cpu_dead);
239 }
240 fs_initcall(apbt_late_init);
241 #else
242 
apbt_setup_secondary_clock(void)243 void apbt_setup_secondary_clock(void) {}
244 
245 #endif /* CONFIG_SMP */
246 
apbt_clocksource_register(void)247 static int apbt_clocksource_register(void)
248 {
249 	u64 start, now;
250 	cycle_t t1;
251 
252 	/* Start the counter, use timer 2 as source, timer 0/1 for event */
253 	dw_apb_clocksource_start(clocksource_apbt);
254 
255 	/* Verify whether apbt counter works */
256 	t1 = dw_apb_clocksource_read(clocksource_apbt);
257 	start = rdtsc();
258 
259 	/*
260 	 * We don't know the TSC frequency yet, but waiting for
261 	 * 200000 TSC cycles is safe:
262 	 * 4 GHz == 50us
263 	 * 1 GHz == 200us
264 	 */
265 	do {
266 		rep_nop();
267 		now = rdtsc();
268 	} while ((now - start) < 200000UL);
269 
270 	/* APBT is the only always on clocksource, it has to work! */
271 	if (t1 == dw_apb_clocksource_read(clocksource_apbt))
272 		panic("APBT counter not counting. APBT disabled\n");
273 
274 	dw_apb_clocksource_register(clocksource_apbt);
275 
276 	return 0;
277 }
278 
279 /*
280  * Early setup the APBT timer, only use timer 0 for booting then switch to
281  * per CPU timer if possible.
282  * returns 1 if per cpu apbt is setup
283  * returns 0 if no per cpu apbt is chosen
284  * panic if set up failed, this is the only platform timer on Moorestown.
285  */
apbt_time_init(void)286 void __init apbt_time_init(void)
287 {
288 #ifdef CONFIG_SMP
289 	int i;
290 	struct sfi_timer_table_entry *p_mtmr;
291 	struct apbt_dev *adev;
292 #endif
293 
294 	if (apb_timer_block_enabled)
295 		return;
296 	apbt_set_mapping();
297 	if (!apbt_virt_address)
298 		goto out_noapbt;
299 	/*
300 	 * Read the frequency and check for a sane value, for ESL model
301 	 * we extend the possible clock range to allow time scaling.
302 	 */
303 
304 	if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
305 		pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
306 		goto out_noapbt;
307 	}
308 	if (apbt_clocksource_register()) {
309 		pr_debug("APBT has failed to register clocksource\n");
310 		goto out_noapbt;
311 	}
312 	if (!apbt_clockevent_register())
313 		apb_timer_block_enabled = 1;
314 	else {
315 		pr_debug("APBT has failed to register clockevent\n");
316 		goto out_noapbt;
317 	}
318 #ifdef CONFIG_SMP
319 	/* kernel cmdline disable apb timer, so we will use lapic timers */
320 	if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
321 		printk(KERN_INFO "apbt: disabled per cpu timer\n");
322 		return;
323 	}
324 	pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
325 	if (num_possible_cpus() <= sfi_mtimer_num)
326 		apbt_num_timers_used = num_possible_cpus();
327 	else
328 		apbt_num_timers_used = 1;
329 	pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
330 
331 	/* here we set up per CPU timer data structure */
332 	for (i = 0; i < apbt_num_timers_used; i++) {
333 		adev = &per_cpu(cpu_apbt_dev, i);
334 		adev->num = i;
335 		adev->cpu = i;
336 		p_mtmr = sfi_get_mtmr(i);
337 		if (p_mtmr)
338 			adev->irq = p_mtmr->irq;
339 		else
340 			printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
341 		snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
342 	}
343 #endif
344 
345 	return;
346 
347 out_noapbt:
348 	apbt_clear_mapping();
349 	apb_timer_block_enabled = 0;
350 	panic("failed to enable APB timer\n");
351 }
352 
353 /* called before apb_timer_enable, use early map */
apbt_quick_calibrate(void)354 unsigned long apbt_quick_calibrate(void)
355 {
356 	int i, scale;
357 	u64 old, new;
358 	cycle_t t1, t2;
359 	unsigned long khz = 0;
360 	u32 loop, shift;
361 
362 	apbt_set_mapping();
363 	dw_apb_clocksource_start(clocksource_apbt);
364 
365 	/* check if the timer can count down, otherwise return */
366 	old = dw_apb_clocksource_read(clocksource_apbt);
367 	i = 10000;
368 	while (--i) {
369 		if (old != dw_apb_clocksource_read(clocksource_apbt))
370 			break;
371 	}
372 	if (!i)
373 		goto failed;
374 
375 	/* count 16 ms */
376 	loop = (apbt_freq / 1000) << 4;
377 
378 	/* restart the timer to ensure it won't get to 0 in the calibration */
379 	dw_apb_clocksource_start(clocksource_apbt);
380 
381 	old = dw_apb_clocksource_read(clocksource_apbt);
382 	old += loop;
383 
384 	t1 = rdtsc();
385 
386 	do {
387 		new = dw_apb_clocksource_read(clocksource_apbt);
388 	} while (new < old);
389 
390 	t2 = rdtsc();
391 
392 	shift = 5;
393 	if (unlikely(loop >> shift == 0)) {
394 		printk(KERN_INFO
395 		       "APBT TSC calibration failed, not enough resolution\n");
396 		return 0;
397 	}
398 	scale = (int)div_u64((t2 - t1), loop >> shift);
399 	khz = (scale * (apbt_freq / 1000)) >> shift;
400 	printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
401 	return khz;
402 failed:
403 	return 0;
404 }
405