1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24 NSEC = 10^-9 */
25 #define FSEC_PER_NSEC 1000000L
26
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
32
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 /*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 bool hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
47
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
55 };
56
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 return container_of(evtdev, struct hpet_dev, evt);
60 }
61
hpet_readl(unsigned int a)62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 return readl(hpet_virt_address + a);
65 }
66
hpet_writel(unsigned int d,unsigned int a)67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 writel(d, hpet_virt_address + a);
70 }
71
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75
hpet_set_mapping(void)76 static inline void hpet_set_mapping(void)
77 {
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80
hpet_clear_mapping(void)81 static inline void hpet_clear_mapping(void)
82 {
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85 }
86
87 /*
88 * HPET command line enable / disable
89 */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93
hpet_setup(char * str)94 static int __init hpet_setup(char *str)
95 {
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
101 if (!strncmp("disable", str, 7))
102 boot_hpet_disable = true;
103 if (!strncmp("force", str, 5))
104 hpet_force_user = true;
105 if (!strncmp("verbose", str, 7))
106 hpet_verbose = true;
107 str = next;
108 }
109 return 1;
110 }
111 __setup("hpet=", hpet_setup);
112
disable_hpet(char * str)113 static int __init disable_hpet(char *str)
114 {
115 boot_hpet_disable = true;
116 return 1;
117 }
118 __setup("nohpet", disable_hpet);
119
is_hpet_capable(void)120 static inline int is_hpet_capable(void)
121 {
122 return !boot_hpet_disable && hpet_address;
123 }
124
125 /*
126 * HPET timer interrupt enable / disable
127 */
128 static bool hpet_legacy_int_enabled;
129
130 /**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
is_hpet_enabled(void)133 int is_hpet_enabled(void)
134 {
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
_hpet_print_config(const char * function,int line)139 static void _hpet_print_config(const char *function, int line)
140 {
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168 }
169
170 #define hpet_print_config() \
171 do { \
172 if (hpet_verbose) \
173 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
175
176 /*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180 #ifdef CONFIG_HPET
181
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183
hpet_reserve_platform_timers(unsigned int id)184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 struct hpet __iomem *hpet = hpet_virt_address;
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
197 hpet_reserve_timer(&hd, 0);
198
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201 #endif
202
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
211 for (i = 2; i < nrtimers; timer++, i++) {
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 }
215
216 hpet_reserve_msi_timers(&hd);
217
218 hpet_alloc(&hd);
219
220 }
221 #else
hpet_reserve_platform_timers(unsigned int id)222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224
225 /*
226 * Common hpet info
227 */
228 static unsigned long hpet_freq;
229
230 static struct clock_event_device hpet_clockevent;
231
hpet_stop_counter(void)232 static void hpet_stop_counter(void)
233 {
234 u32 cfg = hpet_readl(HPET_CFG);
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
237 }
238
hpet_reset_counter(void)239 static void hpet_reset_counter(void)
240 {
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
243 }
244
hpet_start_counter(void)245 static void hpet_start_counter(void)
246 {
247 unsigned int cfg = hpet_readl(HPET_CFG);
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250 }
251
hpet_restart_counter(void)252 static void hpet_restart_counter(void)
253 {
254 hpet_stop_counter();
255 hpet_reset_counter();
256 hpet_start_counter();
257 }
258
hpet_resume_device(void)259 static void hpet_resume_device(void)
260 {
261 force_hpet_resume();
262 }
263
hpet_resume_counter(struct clocksource * cs)264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 hpet_resume_device();
267 hpet_restart_counter();
268 }
269
hpet_enable_legacy_int(void)270 static void hpet_enable_legacy_int(void)
271 {
272 unsigned int cfg = hpet_readl(HPET_CFG);
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
276 hpet_legacy_int_enabled = true;
277 }
278
hpet_legacy_clockevent_register(void)279 static void hpet_legacy_clockevent_register(void)
280 {
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294
hpet_set_periodic(struct clock_event_device * evt,int timer)295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 unsigned int cfg, cmp, now;
298 uint64_t delta;
299
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323 }
324
hpet_set_oneshot(struct clock_event_device * evt,int timer)325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335 }
336
hpet_shutdown(struct clock_event_device * evt,int timer)337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346 }
347
hpet_resume(struct clock_event_device * evt,int timer)348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357 disable_hardirq(hdev->irq);
358 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 enable_irq(hdev->irq);
360 }
361 hpet_print_config();
362
363 return 0;
364 }
365
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)366 static int hpet_next_event(unsigned long delta,
367 struct clock_event_device *evt, int timer)
368 {
369 u32 cnt;
370 s32 res;
371
372 cnt = hpet_readl(HPET_COUNTER);
373 cnt += (u32) delta;
374 hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376 /*
377 * HPETs are a complete disaster. The compare register is
378 * based on a equal comparison and neither provides a less
379 * than or equal functionality (which would require to take
380 * the wraparound into account) nor a simple count down event
381 * mode. Further the write to the comparator register is
382 * delayed internally up to two HPET clock cycles in certain
383 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 * longer delays. We worked around that by reading back the
385 * compare register, but that required another workaround for
386 * ICH9,10 chips where the first readout after write can
387 * return the old stale value. We already had a minimum
388 * programming delta of 5us enforced, but a NMI or SMI hitting
389 * between the counter readout and the comparator write can
390 * move us behind that point easily. Now instead of reading
391 * the compare register back several times, we make the ETIME
392 * decision based on the following: Return ETIME if the
393 * counter value after the write is less than HPET_MIN_CYCLES
394 * away from the event or if the counter is already ahead of
395 * the event. The minimum programming delta for the generic
396 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 */
398 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400 return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
hpet_legacy_shutdown(struct clock_event_device * evt)403 static int hpet_legacy_shutdown(struct clock_event_device *evt)
404 {
405 return hpet_shutdown(evt, 0);
406 }
407
hpet_legacy_set_oneshot(struct clock_event_device * evt)408 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409 {
410 return hpet_set_oneshot(evt, 0);
411 }
412
hpet_legacy_set_periodic(struct clock_event_device * evt)413 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414 {
415 return hpet_set_periodic(evt, 0);
416 }
417
hpet_legacy_resume(struct clock_event_device * evt)418 static int hpet_legacy_resume(struct clock_event_device *evt)
419 {
420 return hpet_resume(evt, 0);
421 }
422
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)423 static int hpet_legacy_next_event(unsigned long delta,
424 struct clock_event_device *evt)
425 {
426 return hpet_next_event(delta, evt, 0);
427 }
428
429 /*
430 * The hpet clock event device
431 */
432 static struct clock_event_device hpet_clockevent = {
433 .name = "hpet",
434 .features = CLOCK_EVT_FEAT_PERIODIC |
435 CLOCK_EVT_FEAT_ONESHOT,
436 .set_state_periodic = hpet_legacy_set_periodic,
437 .set_state_oneshot = hpet_legacy_set_oneshot,
438 .set_state_shutdown = hpet_legacy_shutdown,
439 .tick_resume = hpet_legacy_resume,
440 .set_next_event = hpet_legacy_next_event,
441 .irq = 0,
442 .rating = 50,
443 };
444
445 /*
446 * HPET MSI Support
447 */
448 #ifdef CONFIG_PCI_MSI
449
450 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451 static struct hpet_dev *hpet_devs;
452 static struct irq_domain *hpet_domain;
453
hpet_msi_unmask(struct irq_data * data)454 void hpet_msi_unmask(struct irq_data *data)
455 {
456 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 unsigned int cfg;
458
459 /* unmask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464
hpet_msi_mask(struct irq_data * data)465 void hpet_msi_mask(struct irq_data *data)
466 {
467 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468 unsigned int cfg;
469
470 /* mask it */
471 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474 }
475
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)476 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 {
478 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480 }
481
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)482 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 {
484 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486 msg->address_hi = 0;
487 }
488
hpet_msi_shutdown(struct clock_event_device * evt)489 static int hpet_msi_shutdown(struct clock_event_device *evt)
490 {
491 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492
493 return hpet_shutdown(evt, hdev->num);
494 }
495
hpet_msi_set_oneshot(struct clock_event_device * evt)496 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497 {
498 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499
500 return hpet_set_oneshot(evt, hdev->num);
501 }
502
hpet_msi_set_periodic(struct clock_event_device * evt)503 static int hpet_msi_set_periodic(struct clock_event_device *evt)
504 {
505 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506
507 return hpet_set_periodic(evt, hdev->num);
508 }
509
hpet_msi_resume(struct clock_event_device * evt)510 static int hpet_msi_resume(struct clock_event_device *evt)
511 {
512 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513
514 return hpet_resume(evt, hdev->num);
515 }
516
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)517 static int hpet_msi_next_event(unsigned long delta,
518 struct clock_event_device *evt)
519 {
520 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521 return hpet_next_event(delta, evt, hdev->num);
522 }
523
hpet_interrupt_handler(int irq,void * data)524 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525 {
526 struct hpet_dev *dev = (struct hpet_dev *)data;
527 struct clock_event_device *hevt = &dev->evt;
528
529 if (!hevt->event_handler) {
530 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531 dev->num);
532 return IRQ_HANDLED;
533 }
534
535 hevt->event_handler(hevt);
536 return IRQ_HANDLED;
537 }
538
hpet_setup_irq(struct hpet_dev * dev)539 static int hpet_setup_irq(struct hpet_dev *dev)
540 {
541
542 if (request_irq(dev->irq, hpet_interrupt_handler,
543 IRQF_TIMER | IRQF_NOBALANCING,
544 dev->name, dev))
545 return -1;
546
547 disable_irq(dev->irq);
548 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549 enable_irq(dev->irq);
550
551 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552 dev->name, dev->irq);
553
554 return 0;
555 }
556
557 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)558 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559 {
560 struct clock_event_device *evt = &hdev->evt;
561
562 WARN_ON(cpu != smp_processor_id());
563 if (!(hdev->flags & HPET_DEV_VALID))
564 return;
565
566 hdev->cpu = cpu;
567 per_cpu(cpu_hpet_dev, cpu) = hdev;
568 evt->name = hdev->name;
569 hpet_setup_irq(hdev);
570 evt->irq = hdev->irq;
571
572 evt->rating = 110;
573 evt->features = CLOCK_EVT_FEAT_ONESHOT;
574 if (hdev->flags & HPET_DEV_PERI_CAP) {
575 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576 evt->set_state_periodic = hpet_msi_set_periodic;
577 }
578
579 evt->set_state_shutdown = hpet_msi_shutdown;
580 evt->set_state_oneshot = hpet_msi_set_oneshot;
581 evt->tick_resume = hpet_msi_resume;
582 evt->set_next_event = hpet_msi_next_event;
583 evt->cpumask = cpumask_of(hdev->cpu);
584
585 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586 0x7FFFFFFF);
587 }
588
589 #ifdef CONFIG_HPET
590 /* Reserve at least one timer for userspace (/dev/hpet) */
591 #define RESERVE_TIMERS 1
592 #else
593 #define RESERVE_TIMERS 0
594 #endif
595
hpet_msi_capability_lookup(unsigned int start_timer)596 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 {
598 unsigned int id;
599 unsigned int num_timers;
600 unsigned int num_timers_used = 0;
601 int i, irq;
602
603 if (hpet_msi_disable)
604 return;
605
606 if (boot_cpu_has(X86_FEATURE_ARAT))
607 return;
608 id = hpet_readl(HPET_ID);
609
610 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611 num_timers++; /* Value read out starts from 0 */
612 hpet_print_config();
613
614 hpet_domain = hpet_create_irq_domain(hpet_blockid);
615 if (!hpet_domain)
616 return;
617
618 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 if (!hpet_devs)
620 return;
621
622 hpet_num_timers = num_timers;
623
624 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627
628 /* Only consider HPET timer with MSI support */
629 if (!(cfg & HPET_TN_FSB_CAP))
630 continue;
631
632 hdev->flags = 0;
633 if (cfg & HPET_TN_PERIODIC_CAP)
634 hdev->flags |= HPET_DEV_PERI_CAP;
635 sprintf(hdev->name, "hpet%d", i);
636 hdev->num = i;
637
638 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639 if (irq <= 0)
640 continue;
641
642 hdev->irq = irq;
643 hdev->flags |= HPET_DEV_FSB_CAP;
644 hdev->flags |= HPET_DEV_VALID;
645 num_timers_used++;
646 if (num_timers_used == num_possible_cpus())
647 break;
648 }
649
650 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651 num_timers, num_timers_used);
652 }
653
654 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)655 static void hpet_reserve_msi_timers(struct hpet_data *hd)
656 {
657 int i;
658
659 if (!hpet_devs)
660 return;
661
662 for (i = 0; i < hpet_num_timers; i++) {
663 struct hpet_dev *hdev = &hpet_devs[i];
664
665 if (!(hdev->flags & HPET_DEV_VALID))
666 continue;
667
668 hd->hd_irq[hdev->num] = hdev->irq;
669 hpet_reserve_timer(hd, hdev->num);
670 }
671 }
672 #endif
673
hpet_get_unused_timer(void)674 static struct hpet_dev *hpet_get_unused_timer(void)
675 {
676 int i;
677
678 if (!hpet_devs)
679 return NULL;
680
681 for (i = 0; i < hpet_num_timers; i++) {
682 struct hpet_dev *hdev = &hpet_devs[i];
683
684 if (!(hdev->flags & HPET_DEV_VALID))
685 continue;
686 if (test_and_set_bit(HPET_DEV_USED_BIT,
687 (unsigned long *)&hdev->flags))
688 continue;
689 return hdev;
690 }
691 return NULL;
692 }
693
694 struct hpet_work_struct {
695 struct delayed_work work;
696 struct completion complete;
697 };
698
hpet_work(struct work_struct * w)699 static void hpet_work(struct work_struct *w)
700 {
701 struct hpet_dev *hdev;
702 int cpu = smp_processor_id();
703 struct hpet_work_struct *hpet_work;
704
705 hpet_work = container_of(w, struct hpet_work_struct, work.work);
706
707 hdev = hpet_get_unused_timer();
708 if (hdev)
709 init_one_hpet_msi_clockevent(hdev, cpu);
710
711 complete(&hpet_work->complete);
712 }
713
hpet_cpuhp_online(unsigned int cpu)714 static int hpet_cpuhp_online(unsigned int cpu)
715 {
716 struct hpet_work_struct work;
717
718 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
719 init_completion(&work.complete);
720 /* FIXME: add schedule_work_on() */
721 schedule_delayed_work_on(cpu, &work.work, 0);
722 wait_for_completion(&work.complete);
723 destroy_delayed_work_on_stack(&work.work);
724 return 0;
725 }
726
hpet_cpuhp_dead(unsigned int cpu)727 static int hpet_cpuhp_dead(unsigned int cpu)
728 {
729 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
730
731 if (!hdev)
732 return 0;
733 free_irq(hdev->irq, hdev);
734 hdev->flags &= ~HPET_DEV_USED;
735 per_cpu(cpu_hpet_dev, cpu) = NULL;
736 return 0;
737 }
738 #else
739
hpet_msi_capability_lookup(unsigned int start_timer)740 static void hpet_msi_capability_lookup(unsigned int start_timer)
741 {
742 return;
743 }
744
745 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)746 static void hpet_reserve_msi_timers(struct hpet_data *hd)
747 {
748 return;
749 }
750 #endif
751
752 #define hpet_cpuhp_online NULL
753 #define hpet_cpuhp_dead NULL
754
755 #endif
756
757 /*
758 * Clock source related code
759 */
760 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
761 /*
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
764 * massive delay and slow down system performance dramatically. This may
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
767 * severe that it may actually crash the system because of a NMI watchdog
768 * soft lockup, for example.
769 *
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
773 *
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
776 * with its associated locking overhead. And we also need 64-bit atomic
777 * read.
778 *
779 * The lock and the hpet value are stored together and can be read in a
780 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
781 * is 32 bits in size.
782 */
783 union hpet_lock {
784 struct {
785 arch_spinlock_t lock;
786 u32 value;
787 };
788 u64 lockval;
789 };
790
791 static union hpet_lock hpet __cacheline_aligned = {
792 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
793 };
794
read_hpet(struct clocksource * cs)795 static cycle_t read_hpet(struct clocksource *cs)
796 {
797 unsigned long flags;
798 union hpet_lock old, new;
799
800 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
801
802 /*
803 * Read HPET directly if in NMI.
804 */
805 if (in_nmi())
806 return (cycle_t)hpet_readl(HPET_COUNTER);
807
808 /*
809 * Read the current state of the lock and HPET value atomically.
810 */
811 old.lockval = READ_ONCE(hpet.lockval);
812
813 if (arch_spin_is_locked(&old.lock))
814 goto contended;
815
816 local_irq_save(flags);
817 if (arch_spin_trylock(&hpet.lock)) {
818 new.value = hpet_readl(HPET_COUNTER);
819 /*
820 * Use WRITE_ONCE() to prevent store tearing.
821 */
822 WRITE_ONCE(hpet.value, new.value);
823 arch_spin_unlock(&hpet.lock);
824 local_irq_restore(flags);
825 return (cycle_t)new.value;
826 }
827 local_irq_restore(flags);
828
829 contended:
830 /*
831 * Contended case
832 * --------------
833 * Wait until the HPET value change or the lock is free to indicate
834 * its value is up-to-date.
835 *
836 * It is possible that old.value has already contained the latest
837 * HPET value while the lock holder was in the process of releasing
838 * the lock. Checking for lock state change will enable us to return
839 * the value immediately instead of waiting for the next HPET reader
840 * to come along.
841 */
842 do {
843 cpu_relax();
844 new.lockval = READ_ONCE(hpet.lockval);
845 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
846
847 return (cycle_t)new.value;
848 }
849 #else
850 /*
851 * For UP or 32-bit.
852 */
read_hpet(struct clocksource * cs)853 static cycle_t read_hpet(struct clocksource *cs)
854 {
855 return (cycle_t)hpet_readl(HPET_COUNTER);
856 }
857 #endif
858
859 static struct clocksource clocksource_hpet = {
860 .name = "hpet",
861 .rating = 250,
862 .read = read_hpet,
863 .mask = HPET_MASK,
864 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
865 .resume = hpet_resume_counter,
866 };
867
hpet_clocksource_register(void)868 static int hpet_clocksource_register(void)
869 {
870 u64 start, now;
871 cycle_t t1;
872
873 /* Start the counter */
874 hpet_restart_counter();
875
876 /* Verify whether hpet counter works */
877 t1 = hpet_readl(HPET_COUNTER);
878 start = rdtsc();
879
880 /*
881 * We don't know the TSC frequency yet, but waiting for
882 * 200000 TSC cycles is safe:
883 * 4 GHz == 50us
884 * 1 GHz == 200us
885 */
886 do {
887 rep_nop();
888 now = rdtsc();
889 } while ((now - start) < 200000UL);
890
891 if (t1 == hpet_readl(HPET_COUNTER)) {
892 printk(KERN_WARNING
893 "HPET counter not counting. HPET disabled\n");
894 return -ENODEV;
895 }
896
897 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
898 return 0;
899 }
900
901 static u32 *hpet_boot_cfg;
902
903 /**
904 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
905 */
hpet_enable(void)906 int __init hpet_enable(void)
907 {
908 u32 hpet_period, cfg, id;
909 u64 freq;
910 unsigned int i, last;
911
912 if (!is_hpet_capable())
913 return 0;
914
915 hpet_set_mapping();
916
917 /*
918 * Read the period and check for a sane value:
919 */
920 hpet_period = hpet_readl(HPET_PERIOD);
921
922 /*
923 * AMD SB700 based systems with spread spectrum enabled use a
924 * SMM based HPET emulation to provide proper frequency
925 * setting. The SMM code is initialized with the first HPET
926 * register access and takes some time to complete. During
927 * this time the config register reads 0xffffffff. We check
928 * for max. 1000 loops whether the config register reads a non
929 * 0xffffffff value to make sure that HPET is up and running
930 * before we go further. A counting loop is safe, as the HPET
931 * access takes thousands of CPU cycles. On non SB700 based
932 * machines this check is only done once and has no side
933 * effects.
934 */
935 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
936 if (i == 1000) {
937 printk(KERN_WARNING
938 "HPET config register value = 0xFFFFFFFF. "
939 "Disabling HPET\n");
940 goto out_nohpet;
941 }
942 }
943
944 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
945 goto out_nohpet;
946
947 /*
948 * The period is a femto seconds value. Convert it to a
949 * frequency.
950 */
951 freq = FSEC_PER_SEC;
952 do_div(freq, hpet_period);
953 hpet_freq = freq;
954
955 /*
956 * Read the HPET ID register to retrieve the IRQ routing
957 * information and the number of channels
958 */
959 id = hpet_readl(HPET_ID);
960 hpet_print_config();
961
962 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
963
964 #ifdef CONFIG_HPET_EMULATE_RTC
965 /*
966 * The legacy routing mode needs at least two channels, tick timer
967 * and the rtc emulation channel.
968 */
969 if (!last)
970 goto out_nohpet;
971 #endif
972
973 cfg = hpet_readl(HPET_CFG);
974 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
975 GFP_KERNEL);
976 if (hpet_boot_cfg)
977 *hpet_boot_cfg = cfg;
978 else
979 pr_warn("HPET initial state will not be saved\n");
980 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
981 hpet_writel(cfg, HPET_CFG);
982 if (cfg)
983 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
984 cfg);
985
986 for (i = 0; i <= last; ++i) {
987 cfg = hpet_readl(HPET_Tn_CFG(i));
988 if (hpet_boot_cfg)
989 hpet_boot_cfg[i + 1] = cfg;
990 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
991 hpet_writel(cfg, HPET_Tn_CFG(i));
992 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
993 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
994 | HPET_TN_FSB | HPET_TN_FSB_CAP);
995 if (cfg)
996 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
997 cfg, i);
998 }
999 hpet_print_config();
1000
1001 if (hpet_clocksource_register())
1002 goto out_nohpet;
1003
1004 if (id & HPET_ID_LEGSUP) {
1005 hpet_legacy_clockevent_register();
1006 return 1;
1007 }
1008 return 0;
1009
1010 out_nohpet:
1011 hpet_clear_mapping();
1012 hpet_address = 0;
1013 return 0;
1014 }
1015
1016 /*
1017 * Needs to be late, as the reserve_timer code calls kalloc !
1018 *
1019 * Not a problem on i386 as hpet_enable is called from late_time_init,
1020 * but on x86_64 it is necessary !
1021 */
hpet_late_init(void)1022 static __init int hpet_late_init(void)
1023 {
1024 int ret;
1025
1026 if (boot_hpet_disable)
1027 return -ENODEV;
1028
1029 if (!hpet_address) {
1030 if (!force_hpet_address)
1031 return -ENODEV;
1032
1033 hpet_address = force_hpet_address;
1034 hpet_enable();
1035 }
1036
1037 if (!hpet_virt_address)
1038 return -ENODEV;
1039
1040 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1041 hpet_msi_capability_lookup(2);
1042 else
1043 hpet_msi_capability_lookup(0);
1044
1045 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1046 hpet_print_config();
1047
1048 if (hpet_msi_disable)
1049 return 0;
1050
1051 if (boot_cpu_has(X86_FEATURE_ARAT))
1052 return 0;
1053
1054 /* This notifier should be called after workqueue is ready */
1055 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "AP_X86_HPET_ONLINE",
1056 hpet_cpuhp_online, NULL);
1057 if (ret)
1058 return ret;
1059 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "X86_HPET_DEAD", NULL,
1060 hpet_cpuhp_dead);
1061 if (ret)
1062 goto err_cpuhp;
1063 return 0;
1064
1065 err_cpuhp:
1066 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1067 return ret;
1068 }
1069 fs_initcall(hpet_late_init);
1070
hpet_disable(void)1071 void hpet_disable(void)
1072 {
1073 if (is_hpet_capable() && hpet_virt_address) {
1074 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1075
1076 if (hpet_boot_cfg)
1077 cfg = *hpet_boot_cfg;
1078 else if (hpet_legacy_int_enabled) {
1079 cfg &= ~HPET_CFG_LEGACY;
1080 hpet_legacy_int_enabled = false;
1081 }
1082 cfg &= ~HPET_CFG_ENABLE;
1083 hpet_writel(cfg, HPET_CFG);
1084
1085 if (!hpet_boot_cfg)
1086 return;
1087
1088 id = hpet_readl(HPET_ID);
1089 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1090
1091 for (id = 0; id <= last; ++id)
1092 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1093
1094 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1095 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1096 }
1097 }
1098
1099 #ifdef CONFIG_HPET_EMULATE_RTC
1100
1101 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1102 * is enabled, we support RTC interrupt functionality in software.
1103 * RTC has 3 kinds of interrupts:
1104 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1105 * is updated
1106 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1107 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1108 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1109 * (1) and (2) above are implemented using polling at a frequency of
1110 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1111 * overhead. (DEFAULT_RTC_INT_FREQ)
1112 * For (3), we use interrupts at 64Hz or user specified periodic
1113 * frequency, whichever is higher.
1114 */
1115 #include <linux/mc146818rtc.h>
1116 #include <linux/rtc.h>
1117
1118 #define DEFAULT_RTC_INT_FREQ 64
1119 #define DEFAULT_RTC_SHIFT 6
1120 #define RTC_NUM_INTS 1
1121
1122 static unsigned long hpet_rtc_flags;
1123 static int hpet_prev_update_sec;
1124 static struct rtc_time hpet_alarm_time;
1125 static unsigned long hpet_pie_count;
1126 static u32 hpet_t1_cmp;
1127 static u32 hpet_default_delta;
1128 static u32 hpet_pie_delta;
1129 static unsigned long hpet_pie_limit;
1130
1131 static rtc_irq_handler irq_handler;
1132
1133 /*
1134 * Check that the hpet counter c1 is ahead of the c2
1135 */
hpet_cnt_ahead(u32 c1,u32 c2)1136 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1137 {
1138 return (s32)(c2 - c1) < 0;
1139 }
1140
1141 /*
1142 * Registers a IRQ handler.
1143 */
hpet_register_irq_handler(rtc_irq_handler handler)1144 int hpet_register_irq_handler(rtc_irq_handler handler)
1145 {
1146 if (!is_hpet_enabled())
1147 return -ENODEV;
1148 if (irq_handler)
1149 return -EBUSY;
1150
1151 irq_handler = handler;
1152
1153 return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1156
1157 /*
1158 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1159 * and does cleanup.
1160 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1161 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1162 {
1163 if (!is_hpet_enabled())
1164 return;
1165
1166 irq_handler = NULL;
1167 hpet_rtc_flags = 0;
1168 }
1169 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1170
1171 /*
1172 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1173 * is not supported by all HPET implementations for timer 1.
1174 *
1175 * hpet_rtc_timer_init() is called when the rtc is initialized.
1176 */
hpet_rtc_timer_init(void)1177 int hpet_rtc_timer_init(void)
1178 {
1179 unsigned int cfg, cnt, delta;
1180 unsigned long flags;
1181
1182 if (!is_hpet_enabled())
1183 return 0;
1184
1185 if (!hpet_default_delta) {
1186 uint64_t clc;
1187
1188 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1189 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1190 hpet_default_delta = clc;
1191 }
1192
1193 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1194 delta = hpet_default_delta;
1195 else
1196 delta = hpet_pie_delta;
1197
1198 local_irq_save(flags);
1199
1200 cnt = delta + hpet_readl(HPET_COUNTER);
1201 hpet_writel(cnt, HPET_T1_CMP);
1202 hpet_t1_cmp = cnt;
1203
1204 cfg = hpet_readl(HPET_T1_CFG);
1205 cfg &= ~HPET_TN_PERIODIC;
1206 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1207 hpet_writel(cfg, HPET_T1_CFG);
1208
1209 local_irq_restore(flags);
1210
1211 return 1;
1212 }
1213 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1214
hpet_disable_rtc_channel(void)1215 static void hpet_disable_rtc_channel(void)
1216 {
1217 u32 cfg = hpet_readl(HPET_T1_CFG);
1218 cfg &= ~HPET_TN_ENABLE;
1219 hpet_writel(cfg, HPET_T1_CFG);
1220 }
1221
1222 /*
1223 * The functions below are called from rtc driver.
1224 * Return 0 if HPET is not being used.
1225 * Otherwise do the necessary changes and return 1.
1226 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1227 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1228 {
1229 if (!is_hpet_enabled())
1230 return 0;
1231
1232 hpet_rtc_flags &= ~bit_mask;
1233 if (unlikely(!hpet_rtc_flags))
1234 hpet_disable_rtc_channel();
1235
1236 return 1;
1237 }
1238 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1239
hpet_set_rtc_irq_bit(unsigned long bit_mask)1240 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1241 {
1242 unsigned long oldbits = hpet_rtc_flags;
1243
1244 if (!is_hpet_enabled())
1245 return 0;
1246
1247 hpet_rtc_flags |= bit_mask;
1248
1249 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1250 hpet_prev_update_sec = -1;
1251
1252 if (!oldbits)
1253 hpet_rtc_timer_init();
1254
1255 return 1;
1256 }
1257 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1258
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1259 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1260 unsigned char sec)
1261 {
1262 if (!is_hpet_enabled())
1263 return 0;
1264
1265 hpet_alarm_time.tm_hour = hrs;
1266 hpet_alarm_time.tm_min = min;
1267 hpet_alarm_time.tm_sec = sec;
1268
1269 return 1;
1270 }
1271 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1272
hpet_set_periodic_freq(unsigned long freq)1273 int hpet_set_periodic_freq(unsigned long freq)
1274 {
1275 uint64_t clc;
1276
1277 if (!is_hpet_enabled())
1278 return 0;
1279
1280 if (freq <= DEFAULT_RTC_INT_FREQ)
1281 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1282 else {
1283 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1284 do_div(clc, freq);
1285 clc >>= hpet_clockevent.shift;
1286 hpet_pie_delta = clc;
1287 hpet_pie_limit = 0;
1288 }
1289 return 1;
1290 }
1291 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1292
hpet_rtc_dropped_irq(void)1293 int hpet_rtc_dropped_irq(void)
1294 {
1295 return is_hpet_enabled();
1296 }
1297 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1298
hpet_rtc_timer_reinit(void)1299 static void hpet_rtc_timer_reinit(void)
1300 {
1301 unsigned int delta;
1302 int lost_ints = -1;
1303
1304 if (unlikely(!hpet_rtc_flags))
1305 hpet_disable_rtc_channel();
1306
1307 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1308 delta = hpet_default_delta;
1309 else
1310 delta = hpet_pie_delta;
1311
1312 /*
1313 * Increment the comparator value until we are ahead of the
1314 * current count.
1315 */
1316 do {
1317 hpet_t1_cmp += delta;
1318 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1319 lost_ints++;
1320 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1321
1322 if (lost_ints) {
1323 if (hpet_rtc_flags & RTC_PIE)
1324 hpet_pie_count += lost_ints;
1325 if (printk_ratelimit())
1326 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1327 lost_ints);
1328 }
1329 }
1330
hpet_rtc_interrupt(int irq,void * dev_id)1331 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1332 {
1333 struct rtc_time curr_time;
1334 unsigned long rtc_int_flag = 0;
1335
1336 hpet_rtc_timer_reinit();
1337 memset(&curr_time, 0, sizeof(struct rtc_time));
1338
1339 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1340 mc146818_get_time(&curr_time);
1341
1342 if (hpet_rtc_flags & RTC_UIE &&
1343 curr_time.tm_sec != hpet_prev_update_sec) {
1344 if (hpet_prev_update_sec >= 0)
1345 rtc_int_flag = RTC_UF;
1346 hpet_prev_update_sec = curr_time.tm_sec;
1347 }
1348
1349 if (hpet_rtc_flags & RTC_PIE &&
1350 ++hpet_pie_count >= hpet_pie_limit) {
1351 rtc_int_flag |= RTC_PF;
1352 hpet_pie_count = 0;
1353 }
1354
1355 if (hpet_rtc_flags & RTC_AIE &&
1356 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1357 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1358 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1359 rtc_int_flag |= RTC_AF;
1360
1361 if (rtc_int_flag) {
1362 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1363 if (irq_handler)
1364 irq_handler(rtc_int_flag, dev_id);
1365 }
1366 return IRQ_HANDLED;
1367 }
1368 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1369 #endif
1370