1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/fs.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/export.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/kdebug.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/ldt.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/desc.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
46 #endif
47
48 #include <linux/err.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/cpu.h>
52 #include <asm/idle.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
56 #include <asm/vm86.h>
57
__show_regs(struct pt_regs * regs,int all)58 void __show_regs(struct pt_regs *regs, int all)
59 {
60 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
61 unsigned long d0, d1, d2, d3, d6, d7;
62 unsigned long sp;
63 unsigned short ss, gs;
64
65 if (user_mode(regs)) {
66 sp = regs->sp;
67 ss = regs->ss & 0xffff;
68 gs = get_user_gs(regs);
69 } else {
70 sp = kernel_stack_pointer(regs);
71 savesegment(ss, ss);
72 savesegment(gs, gs);
73 }
74
75 printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
76 (u16)regs->cs, regs->ip, regs->flags,
77 smp_processor_id());
78 print_symbol("EIP is at %s\n", regs->ip);
79
80 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
81 regs->ax, regs->bx, regs->cx, regs->dx);
82 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
83 regs->si, regs->di, regs->bp, sp);
84 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
85 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
86
87 if (!all)
88 return;
89
90 cr0 = read_cr0();
91 cr2 = read_cr2();
92 cr3 = read_cr3();
93 cr4 = __read_cr4();
94 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
95 cr0, cr2, cr3, cr4);
96
97 get_debugreg(d0, 0);
98 get_debugreg(d1, 1);
99 get_debugreg(d2, 2);
100 get_debugreg(d3, 3);
101 get_debugreg(d6, 6);
102 get_debugreg(d7, 7);
103
104 /* Only print out debug registers if they are in their non-default state. */
105 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
106 (d6 == DR6_RESERVED) && (d7 == 0x400))
107 return;
108
109 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
110 d0, d1, d2, d3);
111 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
112 d6, d7);
113 }
114
release_thread(struct task_struct * dead_task)115 void release_thread(struct task_struct *dead_task)
116 {
117 BUG_ON(dead_task->mm);
118 release_vm86_irqs(dead_task);
119 }
120
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)121 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
122 unsigned long arg, struct task_struct *p, unsigned long tls)
123 {
124 struct pt_regs *childregs = task_pt_regs(p);
125 struct fork_frame *fork_frame = container_of(childregs, struct fork_frame, regs);
126 struct inactive_task_frame *frame = &fork_frame->frame;
127 struct task_struct *tsk;
128 int err;
129
130 frame->bp = 0;
131 frame->ret_addr = (unsigned long) ret_from_fork;
132 p->thread.sp = (unsigned long) fork_frame;
133 p->thread.sp0 = (unsigned long) (childregs+1);
134 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
135
136 if (unlikely(p->flags & PF_KTHREAD)) {
137 /* kernel thread */
138 memset(childregs, 0, sizeof(struct pt_regs));
139 frame->bx = sp; /* function */
140 frame->di = arg;
141 p->thread.io_bitmap_ptr = NULL;
142 return 0;
143 }
144 frame->bx = 0;
145 *childregs = *current_pt_regs();
146 childregs->ax = 0;
147 if (sp)
148 childregs->sp = sp;
149
150 task_user_gs(p) = get_user_gs(current_pt_regs());
151
152 p->thread.io_bitmap_ptr = NULL;
153 tsk = current;
154 err = -ENOMEM;
155
156 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
157 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
158 IO_BITMAP_BYTES, GFP_KERNEL);
159 if (!p->thread.io_bitmap_ptr) {
160 p->thread.io_bitmap_max = 0;
161 return -ENOMEM;
162 }
163 set_tsk_thread_flag(p, TIF_IO_BITMAP);
164 }
165
166 err = 0;
167
168 /*
169 * Set a new TLS for the child thread?
170 */
171 if (clone_flags & CLONE_SETTLS)
172 err = do_set_thread_area(p, -1,
173 (struct user_desc __user *)tls, 0);
174
175 if (err && p->thread.io_bitmap_ptr) {
176 kfree(p->thread.io_bitmap_ptr);
177 p->thread.io_bitmap_max = 0;
178 }
179 return err;
180 }
181
182 void
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)183 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
184 {
185 set_user_gs(regs, 0);
186 regs->fs = 0;
187 regs->ds = __USER_DS;
188 regs->es = __USER_DS;
189 regs->ss = __USER_DS;
190 regs->cs = __USER_CS;
191 regs->ip = new_ip;
192 regs->sp = new_sp;
193 regs->flags = X86_EFLAGS_IF;
194 force_iret();
195 }
196 EXPORT_SYMBOL_GPL(start_thread);
197
198
199 /*
200 * switch_to(x,y) should switch tasks from x to y.
201 *
202 * We fsave/fwait so that an exception goes off at the right time
203 * (as a call from the fsave or fwait in effect) rather than to
204 * the wrong process. Lazy FP saving no longer makes any sense
205 * with modern CPU's, and this simplifies a lot of things (SMP
206 * and UP become the same).
207 *
208 * NOTE! We used to use the x86 hardware context switching. The
209 * reason for not using it any more becomes apparent when you
210 * try to recover gracefully from saved state that is no longer
211 * valid (stale segment register values in particular). With the
212 * hardware task-switch, there is no way to fix up bad state in
213 * a reasonable manner.
214 *
215 * The fact that Intel documents the hardware task-switching to
216 * be slow is a fairly red herring - this code is not noticeably
217 * faster. However, there _is_ some room for improvement here,
218 * so the performance issues may eventually be a valid point.
219 * More important, however, is the fact that this allows us much
220 * more flexibility.
221 *
222 * The return value (in %ax) will be the "prev" task after
223 * the task-switch, and shows up in ret_from_fork in entry.S,
224 * for example.
225 */
226 __visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct * prev_p,struct task_struct * next_p)227 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
228 {
229 struct thread_struct *prev = &prev_p->thread,
230 *next = &next_p->thread;
231 struct fpu *prev_fpu = &prev->fpu;
232 struct fpu *next_fpu = &next->fpu;
233 int cpu = smp_processor_id();
234 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
235 fpu_switch_t fpu_switch;
236
237 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
238
239 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
240
241 /*
242 * Save away %gs. No need to save %fs, as it was saved on the
243 * stack on entry. No need to save %es and %ds, as those are
244 * always kernel segments while inside the kernel. Doing this
245 * before setting the new TLS descriptors avoids the situation
246 * where we temporarily have non-reloadable segments in %fs
247 * and %gs. This could be an issue if the NMI handler ever
248 * used %fs or %gs (it does not today), or if the kernel is
249 * running inside of a hypervisor layer.
250 */
251 lazy_save_gs(prev->gs);
252
253 /*
254 * Load the per-thread Thread-Local Storage descriptor.
255 */
256 load_TLS(next, cpu);
257
258 /*
259 * Restore IOPL if needed. In normal use, the flags restore
260 * in the switch assembly will handle this. But if the kernel
261 * is running virtualized at a non-zero CPL, the popf will
262 * not restore flags, so it must be done in a separate step.
263 */
264 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
265 set_iopl_mask(next->iopl);
266
267 /*
268 * Now maybe handle debug registers and/or IO bitmaps
269 */
270 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
271 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
272 __switch_to_xtra(prev_p, next_p, tss);
273
274 /*
275 * Leave lazy mode, flushing any hypercalls made here.
276 * This must be done before restoring TLS segments so
277 * the GDT and LDT are properly updated, and must be
278 * done before fpu__restore(), so the TS bit is up
279 * to date.
280 */
281 arch_end_context_switch(next_p);
282
283 /*
284 * Reload esp0 and cpu_current_top_of_stack. This changes
285 * current_thread_info().
286 */
287 load_sp0(tss, next);
288 this_cpu_write(cpu_current_top_of_stack,
289 (unsigned long)task_stack_page(next_p) +
290 THREAD_SIZE);
291
292 /*
293 * Restore %gs if needed (which is common)
294 */
295 if (prev->gs | next->gs)
296 lazy_load_gs(next->gs);
297
298 switch_fpu_finish(next_fpu, fpu_switch);
299
300 this_cpu_write(current_task, next_p);
301
302 return prev_p;
303 }
304