• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 
32 #include <trace/events/block.h>
33 
34 /*
35  * Test patch to inline a certain number of bi_io_vec's inside the bio
36  * itself, to shrink a bio data allocation from two mempool calls to one
37  */
38 #define BIO_INLINE_VECS		4
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
46 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
47 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 EXPORT_SYMBOL(fs_bio_set);
57 
58 /*
59  * Our slab pool management
60  */
61 struct bio_slab {
62 	struct kmem_cache *slab;
63 	unsigned int slab_ref;
64 	unsigned int slab_size;
65 	char name[8];
66 };
67 static DEFINE_MUTEX(bio_slab_lock);
68 static struct bio_slab *bio_slabs;
69 static unsigned int bio_slab_nr, bio_slab_max;
70 
bio_find_or_create_slab(unsigned int extra_size)71 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 {
73 	unsigned int sz = sizeof(struct bio) + extra_size;
74 	struct kmem_cache *slab = NULL;
75 	struct bio_slab *bslab, *new_bio_slabs;
76 	unsigned int new_bio_slab_max;
77 	unsigned int i, entry = -1;
78 
79 	mutex_lock(&bio_slab_lock);
80 
81 	i = 0;
82 	while (i < bio_slab_nr) {
83 		bslab = &bio_slabs[i];
84 
85 		if (!bslab->slab && entry == -1)
86 			entry = i;
87 		else if (bslab->slab_size == sz) {
88 			slab = bslab->slab;
89 			bslab->slab_ref++;
90 			break;
91 		}
92 		i++;
93 	}
94 
95 	if (slab)
96 		goto out_unlock;
97 
98 	if (bio_slab_nr == bio_slab_max && entry == -1) {
99 		new_bio_slab_max = bio_slab_max << 1;
100 		new_bio_slabs = krealloc(bio_slabs,
101 					 new_bio_slab_max * sizeof(struct bio_slab),
102 					 GFP_KERNEL);
103 		if (!new_bio_slabs)
104 			goto out_unlock;
105 		bio_slab_max = new_bio_slab_max;
106 		bio_slabs = new_bio_slabs;
107 	}
108 	if (entry == -1)
109 		entry = bio_slab_nr++;
110 
111 	bslab = &bio_slabs[entry];
112 
113 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 				 SLAB_HWCACHE_ALIGN, NULL);
116 	if (!slab)
117 		goto out_unlock;
118 
119 	bslab->slab = slab;
120 	bslab->slab_ref = 1;
121 	bslab->slab_size = sz;
122 out_unlock:
123 	mutex_unlock(&bio_slab_lock);
124 	return slab;
125 }
126 
bio_put_slab(struct bio_set * bs)127 static void bio_put_slab(struct bio_set *bs)
128 {
129 	struct bio_slab *bslab = NULL;
130 	unsigned int i;
131 
132 	mutex_lock(&bio_slab_lock);
133 
134 	for (i = 0; i < bio_slab_nr; i++) {
135 		if (bs->bio_slab == bio_slabs[i].slab) {
136 			bslab = &bio_slabs[i];
137 			break;
138 		}
139 	}
140 
141 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 		goto out;
143 
144 	WARN_ON(!bslab->slab_ref);
145 
146 	if (--bslab->slab_ref)
147 		goto out;
148 
149 	kmem_cache_destroy(bslab->slab);
150 	bslab->slab = NULL;
151 
152 out:
153 	mutex_unlock(&bio_slab_lock);
154 }
155 
bvec_nr_vecs(unsigned short idx)156 unsigned int bvec_nr_vecs(unsigned short idx)
157 {
158 	return bvec_slabs[idx].nr_vecs;
159 }
160 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 {
163 	if (!idx)
164 		return;
165 	idx--;
166 
167 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
168 
169 	if (idx == BVEC_POOL_MAX) {
170 		mempool_free(bv, pool);
171 	} else {
172 		struct biovec_slab *bvs = bvec_slabs + idx;
173 
174 		kmem_cache_free(bvs->slab, bv);
175 	}
176 }
177 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)178 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
179 			   mempool_t *pool)
180 {
181 	struct bio_vec *bvl;
182 
183 	/*
184 	 * see comment near bvec_array define!
185 	 */
186 	switch (nr) {
187 	case 1:
188 		*idx = 0;
189 		break;
190 	case 2 ... 4:
191 		*idx = 1;
192 		break;
193 	case 5 ... 16:
194 		*idx = 2;
195 		break;
196 	case 17 ... 64:
197 		*idx = 3;
198 		break;
199 	case 65 ... 128:
200 		*idx = 4;
201 		break;
202 	case 129 ... BIO_MAX_PAGES:
203 		*idx = 5;
204 		break;
205 	default:
206 		return NULL;
207 	}
208 
209 	/*
210 	 * idx now points to the pool we want to allocate from. only the
211 	 * 1-vec entry pool is mempool backed.
212 	 */
213 	if (*idx == BVEC_POOL_MAX) {
214 fallback:
215 		bvl = mempool_alloc(pool, gfp_mask);
216 	} else {
217 		struct biovec_slab *bvs = bvec_slabs + *idx;
218 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
219 
220 		/*
221 		 * Make this allocation restricted and don't dump info on
222 		 * allocation failures, since we'll fallback to the mempool
223 		 * in case of failure.
224 		 */
225 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
226 
227 		/*
228 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 		 * is set, retry with the 1-entry mempool
230 		 */
231 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
232 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
233 			*idx = BVEC_POOL_MAX;
234 			goto fallback;
235 		}
236 	}
237 
238 	(*idx)++;
239 	return bvl;
240 }
241 
__bio_free(struct bio * bio)242 static void __bio_free(struct bio *bio)
243 {
244 	bio_disassociate_task(bio);
245 
246 	if (bio_integrity(bio))
247 		bio_integrity_free(bio);
248 }
249 
bio_free(struct bio * bio)250 static void bio_free(struct bio *bio)
251 {
252 	struct bio_set *bs = bio->bi_pool;
253 	void *p;
254 
255 	__bio_free(bio);
256 
257 	if (bs) {
258 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259 
260 		/*
261 		 * If we have front padding, adjust the bio pointer before freeing
262 		 */
263 		p = bio;
264 		p -= bs->front_pad;
265 
266 		mempool_free(p, bs->bio_pool);
267 	} else {
268 		/* Bio was allocated by bio_kmalloc() */
269 		kfree(bio);
270 	}
271 }
272 
bio_init(struct bio * bio)273 void bio_init(struct bio *bio)
274 {
275 	memset(bio, 0, sizeof(*bio));
276 	atomic_set(&bio->__bi_remaining, 1);
277 	atomic_set(&bio->__bi_cnt, 1);
278 }
279 EXPORT_SYMBOL(bio_init);
280 
281 /**
282  * bio_reset - reinitialize a bio
283  * @bio:	bio to reset
284  *
285  * Description:
286  *   After calling bio_reset(), @bio will be in the same state as a freshly
287  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
288  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
289  *   comment in struct bio.
290  */
bio_reset(struct bio * bio)291 void bio_reset(struct bio *bio)
292 {
293 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
294 
295 	__bio_free(bio);
296 
297 	memset(bio, 0, BIO_RESET_BYTES);
298 	bio->bi_flags = flags;
299 	atomic_set(&bio->__bi_remaining, 1);
300 }
301 EXPORT_SYMBOL(bio_reset);
302 
__bio_chain_endio(struct bio * bio)303 static struct bio *__bio_chain_endio(struct bio *bio)
304 {
305 	struct bio *parent = bio->bi_private;
306 
307 	if (!parent->bi_error)
308 		parent->bi_error = bio->bi_error;
309 	bio_put(bio);
310 	return parent;
311 }
312 
bio_chain_endio(struct bio * bio)313 static void bio_chain_endio(struct bio *bio)
314 {
315 	bio_endio(__bio_chain_endio(bio));
316 }
317 
318 /**
319  * bio_chain - chain bio completions
320  * @bio: the target bio
321  * @parent: the @bio's parent bio
322  *
323  * The caller won't have a bi_end_io called when @bio completes - instead,
324  * @parent's bi_end_io won't be called until both @parent and @bio have
325  * completed; the chained bio will also be freed when it completes.
326  *
327  * The caller must not set bi_private or bi_end_io in @bio.
328  */
bio_chain(struct bio * bio,struct bio * parent)329 void bio_chain(struct bio *bio, struct bio *parent)
330 {
331 	BUG_ON(bio->bi_private || bio->bi_end_io);
332 
333 	bio->bi_private = parent;
334 	bio->bi_end_io	= bio_chain_endio;
335 	bio_inc_remaining(parent);
336 }
337 EXPORT_SYMBOL(bio_chain);
338 
bio_alloc_rescue(struct work_struct * work)339 static void bio_alloc_rescue(struct work_struct *work)
340 {
341 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
342 	struct bio *bio;
343 
344 	while (1) {
345 		spin_lock(&bs->rescue_lock);
346 		bio = bio_list_pop(&bs->rescue_list);
347 		spin_unlock(&bs->rescue_lock);
348 
349 		if (!bio)
350 			break;
351 
352 		generic_make_request(bio);
353 	}
354 }
355 
punt_bios_to_rescuer(struct bio_set * bs)356 static void punt_bios_to_rescuer(struct bio_set *bs)
357 {
358 	struct bio_list punt, nopunt;
359 	struct bio *bio;
360 
361 	/*
362 	 * In order to guarantee forward progress we must punt only bios that
363 	 * were allocated from this bio_set; otherwise, if there was a bio on
364 	 * there for a stacking driver higher up in the stack, processing it
365 	 * could require allocating bios from this bio_set, and doing that from
366 	 * our own rescuer would be bad.
367 	 *
368 	 * Since bio lists are singly linked, pop them all instead of trying to
369 	 * remove from the middle of the list:
370 	 */
371 
372 	bio_list_init(&punt);
373 	bio_list_init(&nopunt);
374 
375 	while ((bio = bio_list_pop(&current->bio_list[0])))
376 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
377 	current->bio_list[0] = nopunt;
378 
379 	bio_list_init(&nopunt);
380 	while ((bio = bio_list_pop(&current->bio_list[1])))
381 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
382 	current->bio_list[1] = nopunt;
383 
384 	spin_lock(&bs->rescue_lock);
385 	bio_list_merge(&bs->rescue_list, &punt);
386 	spin_unlock(&bs->rescue_lock);
387 
388 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
389 }
390 
391 /**
392  * bio_alloc_bioset - allocate a bio for I/O
393  * @gfp_mask:   the GFP_ mask given to the slab allocator
394  * @nr_iovecs:	number of iovecs to pre-allocate
395  * @bs:		the bio_set to allocate from.
396  *
397  * Description:
398  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399  *   backed by the @bs's mempool.
400  *
401  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402  *   always be able to allocate a bio. This is due to the mempool guarantees.
403  *   To make this work, callers must never allocate more than 1 bio at a time
404  *   from this pool. Callers that need to allocate more than 1 bio must always
405  *   submit the previously allocated bio for IO before attempting to allocate
406  *   a new one. Failure to do so can cause deadlocks under memory pressure.
407  *
408  *   Note that when running under generic_make_request() (i.e. any block
409  *   driver), bios are not submitted until after you return - see the code in
410  *   generic_make_request() that converts recursion into iteration, to prevent
411  *   stack overflows.
412  *
413  *   This would normally mean allocating multiple bios under
414  *   generic_make_request() would be susceptible to deadlocks, but we have
415  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
416  *   thread.
417  *
418  *   However, we do not guarantee forward progress for allocations from other
419  *   mempools. Doing multiple allocations from the same mempool under
420  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
421  *   for per bio allocations.
422  *
423  *   RETURNS:
424  *   Pointer to new bio on success, NULL on failure.
425  */
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)426 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
427 {
428 	gfp_t saved_gfp = gfp_mask;
429 	unsigned front_pad;
430 	unsigned inline_vecs;
431 	struct bio_vec *bvl = NULL;
432 	struct bio *bio;
433 	void *p;
434 
435 	if (!bs) {
436 		if (nr_iovecs > UIO_MAXIOV)
437 			return NULL;
438 
439 		p = kmalloc(sizeof(struct bio) +
440 			    nr_iovecs * sizeof(struct bio_vec),
441 			    gfp_mask);
442 		front_pad = 0;
443 		inline_vecs = nr_iovecs;
444 	} else {
445 		/* should not use nobvec bioset for nr_iovecs > 0 */
446 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
447 			return NULL;
448 		/*
449 		 * generic_make_request() converts recursion to iteration; this
450 		 * means if we're running beneath it, any bios we allocate and
451 		 * submit will not be submitted (and thus freed) until after we
452 		 * return.
453 		 *
454 		 * This exposes us to a potential deadlock if we allocate
455 		 * multiple bios from the same bio_set() while running
456 		 * underneath generic_make_request(). If we were to allocate
457 		 * multiple bios (say a stacking block driver that was splitting
458 		 * bios), we would deadlock if we exhausted the mempool's
459 		 * reserve.
460 		 *
461 		 * We solve this, and guarantee forward progress, with a rescuer
462 		 * workqueue per bio_set. If we go to allocate and there are
463 		 * bios on current->bio_list, we first try the allocation
464 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
465 		 * bios we would be blocking to the rescuer workqueue before
466 		 * we retry with the original gfp_flags.
467 		 */
468 
469 		if (current->bio_list &&
470 		    (!bio_list_empty(&current->bio_list[0]) ||
471 		     !bio_list_empty(&current->bio_list[1])))
472 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
473 
474 		p = mempool_alloc(bs->bio_pool, gfp_mask);
475 		if (!p && gfp_mask != saved_gfp) {
476 			punt_bios_to_rescuer(bs);
477 			gfp_mask = saved_gfp;
478 			p = mempool_alloc(bs->bio_pool, gfp_mask);
479 		}
480 
481 		front_pad = bs->front_pad;
482 		inline_vecs = BIO_INLINE_VECS;
483 	}
484 
485 	if (unlikely(!p))
486 		return NULL;
487 
488 	bio = p + front_pad;
489 	bio_init(bio);
490 
491 	if (nr_iovecs > inline_vecs) {
492 		unsigned long idx = 0;
493 
494 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 		if (!bvl && gfp_mask != saved_gfp) {
496 			punt_bios_to_rescuer(bs);
497 			gfp_mask = saved_gfp;
498 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 		}
500 
501 		if (unlikely(!bvl))
502 			goto err_free;
503 
504 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
505 	} else if (nr_iovecs) {
506 		bvl = bio->bi_inline_vecs;
507 	}
508 
509 	bio->bi_pool = bs;
510 	bio->bi_max_vecs = nr_iovecs;
511 	bio->bi_io_vec = bvl;
512 	return bio;
513 
514 err_free:
515 	mempool_free(p, bs->bio_pool);
516 	return NULL;
517 }
518 EXPORT_SYMBOL(bio_alloc_bioset);
519 
zero_fill_bio(struct bio * bio)520 void zero_fill_bio(struct bio *bio)
521 {
522 	unsigned long flags;
523 	struct bio_vec bv;
524 	struct bvec_iter iter;
525 
526 	bio_for_each_segment(bv, bio, iter) {
527 		char *data = bvec_kmap_irq(&bv, &flags);
528 		memset(data, 0, bv.bv_len);
529 		flush_dcache_page(bv.bv_page);
530 		bvec_kunmap_irq(data, &flags);
531 	}
532 }
533 EXPORT_SYMBOL(zero_fill_bio);
534 
535 /**
536  * bio_put - release a reference to a bio
537  * @bio:   bio to release reference to
538  *
539  * Description:
540  *   Put a reference to a &struct bio, either one you have gotten with
541  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
542  **/
bio_put(struct bio * bio)543 void bio_put(struct bio *bio)
544 {
545 	if (!bio_flagged(bio, BIO_REFFED))
546 		bio_free(bio);
547 	else {
548 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
549 
550 		/*
551 		 * last put frees it
552 		 */
553 		if (atomic_dec_and_test(&bio->__bi_cnt))
554 			bio_free(bio);
555 	}
556 }
557 EXPORT_SYMBOL(bio_put);
558 
bio_phys_segments(struct request_queue * q,struct bio * bio)559 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
560 {
561 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
562 		blk_recount_segments(q, bio);
563 
564 	return bio->bi_phys_segments;
565 }
566 EXPORT_SYMBOL(bio_phys_segments);
567 
568 /**
569  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
570  * 	@bio: destination bio
571  * 	@bio_src: bio to clone
572  *
573  *	Clone a &bio. Caller will own the returned bio, but not
574  *	the actual data it points to. Reference count of returned
575  * 	bio will be one.
576  *
577  * 	Caller must ensure that @bio_src is not freed before @bio.
578  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)579 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
580 {
581 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
582 
583 	/*
584 	 * most users will be overriding ->bi_bdev with a new target,
585 	 * so we don't set nor calculate new physical/hw segment counts here
586 	 */
587 	bio->bi_bdev = bio_src->bi_bdev;
588 	bio_set_flag(bio, BIO_CLONED);
589 	bio->bi_opf = bio_src->bi_opf;
590 	bio->bi_iter = bio_src->bi_iter;
591 	bio->bi_io_vec = bio_src->bi_io_vec;
592 
593 	bio_clone_blkcg_association(bio, bio_src);
594 }
595 EXPORT_SYMBOL(__bio_clone_fast);
596 
597 /**
598  *	bio_clone_fast - clone a bio that shares the original bio's biovec
599  *	@bio: bio to clone
600  *	@gfp_mask: allocation priority
601  *	@bs: bio_set to allocate from
602  *
603  * 	Like __bio_clone_fast, only also allocates the returned bio
604  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)605 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
606 {
607 	struct bio *b;
608 
609 	b = bio_alloc_bioset(gfp_mask, 0, bs);
610 	if (!b)
611 		return NULL;
612 
613 	__bio_clone_fast(b, bio);
614 
615 	if (bio_integrity(bio)) {
616 		int ret;
617 
618 		ret = bio_integrity_clone(b, bio, gfp_mask);
619 
620 		if (ret < 0) {
621 			bio_put(b);
622 			return NULL;
623 		}
624 	}
625 
626 	return b;
627 }
628 EXPORT_SYMBOL(bio_clone_fast);
629 
630 /**
631  * 	bio_clone_bioset - clone a bio
632  * 	@bio_src: bio to clone
633  *	@gfp_mask: allocation priority
634  *	@bs: bio_set to allocate from
635  *
636  *	Clone bio. Caller will own the returned bio, but not the actual data it
637  *	points to. Reference count of returned bio will be one.
638  */
bio_clone_bioset(struct bio * bio_src,gfp_t gfp_mask,struct bio_set * bs)639 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
640 			     struct bio_set *bs)
641 {
642 	struct bvec_iter iter;
643 	struct bio_vec bv;
644 	struct bio *bio;
645 
646 	/*
647 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
648 	 * bio_src->bi_io_vec to bio->bi_io_vec.
649 	 *
650 	 * We can't do that anymore, because:
651 	 *
652 	 *  - The point of cloning the biovec is to produce a bio with a biovec
653 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
654 	 *
655 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
656 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
657 	 *    But the clone should succeed as long as the number of biovecs we
658 	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
659 	 *
660 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
661 	 *    that does not own the bio - reason being drivers don't use it for
662 	 *    iterating over the biovec anymore, so expecting it to be kept up
663 	 *    to date (i.e. for clones that share the parent biovec) is just
664 	 *    asking for trouble and would force extra work on
665 	 *    __bio_clone_fast() anyways.
666 	 */
667 
668 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
669 	if (!bio)
670 		return NULL;
671 	bio->bi_bdev		= bio_src->bi_bdev;
672 	bio->bi_opf		= bio_src->bi_opf;
673 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
674 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
675 
676 	switch (bio_op(bio)) {
677 	case REQ_OP_DISCARD:
678 	case REQ_OP_SECURE_ERASE:
679 		break;
680 	case REQ_OP_WRITE_SAME:
681 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
682 		break;
683 	default:
684 		bio_for_each_segment(bv, bio_src, iter)
685 			bio->bi_io_vec[bio->bi_vcnt++] = bv;
686 		break;
687 	}
688 
689 	if (bio_integrity(bio_src)) {
690 		int ret;
691 
692 		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
693 		if (ret < 0) {
694 			bio_put(bio);
695 			return NULL;
696 		}
697 	}
698 
699 	bio_clone_blkcg_association(bio, bio_src);
700 
701 	return bio;
702 }
703 EXPORT_SYMBOL(bio_clone_bioset);
704 
705 /**
706  *	bio_add_pc_page	-	attempt to add page to bio
707  *	@q: the target queue
708  *	@bio: destination bio
709  *	@page: page to add
710  *	@len: vec entry length
711  *	@offset: vec entry offset
712  *
713  *	Attempt to add a page to the bio_vec maplist. This can fail for a
714  *	number of reasons, such as the bio being full or target block device
715  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
716  *	so it is always possible to add a single page to an empty bio.
717  *
718  *	This should only be used by REQ_PC bios.
719  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)720 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
721 		    *page, unsigned int len, unsigned int offset)
722 {
723 	int retried_segments = 0;
724 	struct bio_vec *bvec;
725 
726 	/*
727 	 * cloned bio must not modify vec list
728 	 */
729 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
730 		return 0;
731 
732 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
733 		return 0;
734 
735 	/*
736 	 * For filesystems with a blocksize smaller than the pagesize
737 	 * we will often be called with the same page as last time and
738 	 * a consecutive offset.  Optimize this special case.
739 	 */
740 	if (bio->bi_vcnt > 0) {
741 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
742 
743 		if (page == prev->bv_page &&
744 		    offset == prev->bv_offset + prev->bv_len) {
745 			prev->bv_len += len;
746 			bio->bi_iter.bi_size += len;
747 			goto done;
748 		}
749 
750 		/*
751 		 * If the queue doesn't support SG gaps and adding this
752 		 * offset would create a gap, disallow it.
753 		 */
754 		if (bvec_gap_to_prev(q, prev, offset))
755 			return 0;
756 	}
757 
758 	if (bio->bi_vcnt >= bio->bi_max_vecs)
759 		return 0;
760 
761 	/*
762 	 * setup the new entry, we might clear it again later if we
763 	 * cannot add the page
764 	 */
765 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
766 	bvec->bv_page = page;
767 	bvec->bv_len = len;
768 	bvec->bv_offset = offset;
769 	bio->bi_vcnt++;
770 	bio->bi_phys_segments++;
771 	bio->bi_iter.bi_size += len;
772 
773 	/*
774 	 * Perform a recount if the number of segments is greater
775 	 * than queue_max_segments(q).
776 	 */
777 
778 	while (bio->bi_phys_segments > queue_max_segments(q)) {
779 
780 		if (retried_segments)
781 			goto failed;
782 
783 		retried_segments = 1;
784 		blk_recount_segments(q, bio);
785 	}
786 
787 	/* If we may be able to merge these biovecs, force a recount */
788 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
789 		bio_clear_flag(bio, BIO_SEG_VALID);
790 
791  done:
792 	return len;
793 
794  failed:
795 	bvec->bv_page = NULL;
796 	bvec->bv_len = 0;
797 	bvec->bv_offset = 0;
798 	bio->bi_vcnt--;
799 	bio->bi_iter.bi_size -= len;
800 	blk_recount_segments(q, bio);
801 	return 0;
802 }
803 EXPORT_SYMBOL(bio_add_pc_page);
804 
805 /**
806  *	bio_add_page	-	attempt to add page to bio
807  *	@bio: destination bio
808  *	@page: page to add
809  *	@len: vec entry length
810  *	@offset: vec entry offset
811  *
812  *	Attempt to add a page to the bio_vec maplist. This will only fail
813  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
814  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)815 int bio_add_page(struct bio *bio, struct page *page,
816 		 unsigned int len, unsigned int offset)
817 {
818 	struct bio_vec *bv;
819 
820 	/*
821 	 * cloned bio must not modify vec list
822 	 */
823 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
824 		return 0;
825 
826 	/*
827 	 * For filesystems with a blocksize smaller than the pagesize
828 	 * we will often be called with the same page as last time and
829 	 * a consecutive offset.  Optimize this special case.
830 	 */
831 	if (bio->bi_vcnt > 0) {
832 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
833 
834 		if (page == bv->bv_page &&
835 		    offset == bv->bv_offset + bv->bv_len) {
836 			bv->bv_len += len;
837 			goto done;
838 		}
839 	}
840 
841 	if (bio->bi_vcnt >= bio->bi_max_vecs)
842 		return 0;
843 
844 	bv		= &bio->bi_io_vec[bio->bi_vcnt];
845 	bv->bv_page	= page;
846 	bv->bv_len	= len;
847 	bv->bv_offset	= offset;
848 
849 	bio->bi_vcnt++;
850 done:
851 	bio->bi_iter.bi_size += len;
852 	return len;
853 }
854 EXPORT_SYMBOL(bio_add_page);
855 
856 struct submit_bio_ret {
857 	struct completion event;
858 	int error;
859 };
860 
submit_bio_wait_endio(struct bio * bio)861 static void submit_bio_wait_endio(struct bio *bio)
862 {
863 	struct submit_bio_ret *ret = bio->bi_private;
864 
865 	ret->error = bio->bi_error;
866 	complete(&ret->event);
867 }
868 
869 /**
870  * submit_bio_wait - submit a bio, and wait until it completes
871  * @bio: The &struct bio which describes the I/O
872  *
873  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
874  * bio_endio() on failure.
875  */
submit_bio_wait(struct bio * bio)876 int submit_bio_wait(struct bio *bio)
877 {
878 	struct submit_bio_ret ret;
879 
880 	init_completion(&ret.event);
881 	bio->bi_private = &ret;
882 	bio->bi_end_io = submit_bio_wait_endio;
883 	bio->bi_opf |= REQ_SYNC;
884 	submit_bio(bio);
885 	wait_for_completion_io(&ret.event);
886 
887 	return ret.error;
888 }
889 EXPORT_SYMBOL(submit_bio_wait);
890 
891 /**
892  * bio_advance - increment/complete a bio by some number of bytes
893  * @bio:	bio to advance
894  * @bytes:	number of bytes to complete
895  *
896  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
897  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
898  * be updated on the last bvec as well.
899  *
900  * @bio will then represent the remaining, uncompleted portion of the io.
901  */
bio_advance(struct bio * bio,unsigned bytes)902 void bio_advance(struct bio *bio, unsigned bytes)
903 {
904 	if (bio_integrity(bio))
905 		bio_integrity_advance(bio, bytes);
906 
907 	bio_advance_iter(bio, &bio->bi_iter, bytes);
908 }
909 EXPORT_SYMBOL(bio_advance);
910 
911 /**
912  * bio_alloc_pages - allocates a single page for each bvec in a bio
913  * @bio: bio to allocate pages for
914  * @gfp_mask: flags for allocation
915  *
916  * Allocates pages up to @bio->bi_vcnt.
917  *
918  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
919  * freed.
920  */
bio_alloc_pages(struct bio * bio,gfp_t gfp_mask)921 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
922 {
923 	int i;
924 	struct bio_vec *bv;
925 
926 	bio_for_each_segment_all(bv, bio, i) {
927 		bv->bv_page = alloc_page(gfp_mask);
928 		if (!bv->bv_page) {
929 			while (--bv >= bio->bi_io_vec)
930 				__free_page(bv->bv_page);
931 			return -ENOMEM;
932 		}
933 	}
934 
935 	return 0;
936 }
937 EXPORT_SYMBOL(bio_alloc_pages);
938 
939 /**
940  * bio_copy_data - copy contents of data buffers from one chain of bios to
941  * another
942  * @src: source bio list
943  * @dst: destination bio list
944  *
945  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
946  * @src and @dst as linked lists of bios.
947  *
948  * Stops when it reaches the end of either @src or @dst - that is, copies
949  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
950  */
bio_copy_data(struct bio * dst,struct bio * src)951 void bio_copy_data(struct bio *dst, struct bio *src)
952 {
953 	struct bvec_iter src_iter, dst_iter;
954 	struct bio_vec src_bv, dst_bv;
955 	void *src_p, *dst_p;
956 	unsigned bytes;
957 
958 	src_iter = src->bi_iter;
959 	dst_iter = dst->bi_iter;
960 
961 	while (1) {
962 		if (!src_iter.bi_size) {
963 			src = src->bi_next;
964 			if (!src)
965 				break;
966 
967 			src_iter = src->bi_iter;
968 		}
969 
970 		if (!dst_iter.bi_size) {
971 			dst = dst->bi_next;
972 			if (!dst)
973 				break;
974 
975 			dst_iter = dst->bi_iter;
976 		}
977 
978 		src_bv = bio_iter_iovec(src, src_iter);
979 		dst_bv = bio_iter_iovec(dst, dst_iter);
980 
981 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
982 
983 		src_p = kmap_atomic(src_bv.bv_page);
984 		dst_p = kmap_atomic(dst_bv.bv_page);
985 
986 		memcpy(dst_p + dst_bv.bv_offset,
987 		       src_p + src_bv.bv_offset,
988 		       bytes);
989 
990 		kunmap_atomic(dst_p);
991 		kunmap_atomic(src_p);
992 
993 		bio_advance_iter(src, &src_iter, bytes);
994 		bio_advance_iter(dst, &dst_iter, bytes);
995 	}
996 }
997 EXPORT_SYMBOL(bio_copy_data);
998 
999 struct bio_map_data {
1000 	int is_our_pages;
1001 	struct iov_iter iter;
1002 	struct iovec iov[];
1003 };
1004 
bio_alloc_map_data(unsigned int iov_count,gfp_t gfp_mask)1005 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1006 					       gfp_t gfp_mask)
1007 {
1008 	if (iov_count > UIO_MAXIOV)
1009 		return NULL;
1010 
1011 	return kmalloc(sizeof(struct bio_map_data) +
1012 		       sizeof(struct iovec) * iov_count, gfp_mask);
1013 }
1014 
1015 /**
1016  * bio_copy_from_iter - copy all pages from iov_iter to bio
1017  * @bio: The &struct bio which describes the I/O as destination
1018  * @iter: iov_iter as source
1019  *
1020  * Copy all pages from iov_iter to bio.
1021  * Returns 0 on success, or error on failure.
1022  */
bio_copy_from_iter(struct bio * bio,struct iov_iter iter)1023 static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1024 {
1025 	int i;
1026 	struct bio_vec *bvec;
1027 
1028 	bio_for_each_segment_all(bvec, bio, i) {
1029 		ssize_t ret;
1030 
1031 		ret = copy_page_from_iter(bvec->bv_page,
1032 					  bvec->bv_offset,
1033 					  bvec->bv_len,
1034 					  &iter);
1035 
1036 		if (!iov_iter_count(&iter))
1037 			break;
1038 
1039 		if (ret < bvec->bv_len)
1040 			return -EFAULT;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 /**
1047  * bio_copy_to_iter - copy all pages from bio to iov_iter
1048  * @bio: The &struct bio which describes the I/O as source
1049  * @iter: iov_iter as destination
1050  *
1051  * Copy all pages from bio to iov_iter.
1052  * Returns 0 on success, or error on failure.
1053  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1054 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1055 {
1056 	int i;
1057 	struct bio_vec *bvec;
1058 
1059 	bio_for_each_segment_all(bvec, bio, i) {
1060 		ssize_t ret;
1061 
1062 		ret = copy_page_to_iter(bvec->bv_page,
1063 					bvec->bv_offset,
1064 					bvec->bv_len,
1065 					&iter);
1066 
1067 		if (!iov_iter_count(&iter))
1068 			break;
1069 
1070 		if (ret < bvec->bv_len)
1071 			return -EFAULT;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
bio_free_pages(struct bio * bio)1077 void bio_free_pages(struct bio *bio)
1078 {
1079 	struct bio_vec *bvec;
1080 	int i;
1081 
1082 	bio_for_each_segment_all(bvec, bio, i)
1083 		__free_page(bvec->bv_page);
1084 }
1085 EXPORT_SYMBOL(bio_free_pages);
1086 
1087 /**
1088  *	bio_uncopy_user	-	finish previously mapped bio
1089  *	@bio: bio being terminated
1090  *
1091  *	Free pages allocated from bio_copy_user_iov() and write back data
1092  *	to user space in case of a read.
1093  */
bio_uncopy_user(struct bio * bio)1094 int bio_uncopy_user(struct bio *bio)
1095 {
1096 	struct bio_map_data *bmd = bio->bi_private;
1097 	int ret = 0;
1098 
1099 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1100 		/*
1101 		 * if we're in a workqueue, the request is orphaned, so
1102 		 * don't copy into a random user address space, just free
1103 		 * and return -EINTR so user space doesn't expect any data.
1104 		 */
1105 		if (!current->mm)
1106 			ret = -EINTR;
1107 		else if (bio_data_dir(bio) == READ)
1108 			ret = bio_copy_to_iter(bio, bmd->iter);
1109 		if (bmd->is_our_pages)
1110 			bio_free_pages(bio);
1111 	}
1112 	kfree(bmd);
1113 	bio_put(bio);
1114 	return ret;
1115 }
1116 
1117 /**
1118  *	bio_copy_user_iov	-	copy user data to bio
1119  *	@q:		destination block queue
1120  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1121  *	@iter:		iovec iterator
1122  *	@gfp_mask:	memory allocation flags
1123  *
1124  *	Prepares and returns a bio for indirect user io, bouncing data
1125  *	to/from kernel pages as necessary. Must be paired with
1126  *	call bio_uncopy_user() on io completion.
1127  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)1128 struct bio *bio_copy_user_iov(struct request_queue *q,
1129 			      struct rq_map_data *map_data,
1130 			      const struct iov_iter *iter,
1131 			      gfp_t gfp_mask)
1132 {
1133 	struct bio_map_data *bmd;
1134 	struct page *page;
1135 	struct bio *bio;
1136 	int i, ret;
1137 	int nr_pages = 0;
1138 	unsigned int len = iter->count;
1139 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1140 
1141 	for (i = 0; i < iter->nr_segs; i++) {
1142 		unsigned long uaddr;
1143 		unsigned long end;
1144 		unsigned long start;
1145 
1146 		uaddr = (unsigned long) iter->iov[i].iov_base;
1147 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1148 			>> PAGE_SHIFT;
1149 		start = uaddr >> PAGE_SHIFT;
1150 
1151 		/*
1152 		 * Overflow, abort
1153 		 */
1154 		if (end < start)
1155 			return ERR_PTR(-EINVAL);
1156 
1157 		nr_pages += end - start;
1158 	}
1159 
1160 	if (offset)
1161 		nr_pages++;
1162 
1163 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1164 	if (!bmd)
1165 		return ERR_PTR(-ENOMEM);
1166 
1167 	/*
1168 	 * We need to do a deep copy of the iov_iter including the iovecs.
1169 	 * The caller provided iov might point to an on-stack or otherwise
1170 	 * shortlived one.
1171 	 */
1172 	bmd->is_our_pages = map_data ? 0 : 1;
1173 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1174 	bmd->iter = *iter;
1175 	bmd->iter.iov = bmd->iov;
1176 
1177 	ret = -ENOMEM;
1178 	bio = bio_kmalloc(gfp_mask, nr_pages);
1179 	if (!bio)
1180 		goto out_bmd;
1181 
1182 	if (iter->type & WRITE)
1183 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1184 
1185 	ret = 0;
1186 
1187 	if (map_data) {
1188 		nr_pages = 1 << map_data->page_order;
1189 		i = map_data->offset / PAGE_SIZE;
1190 	}
1191 	while (len) {
1192 		unsigned int bytes = PAGE_SIZE;
1193 
1194 		bytes -= offset;
1195 
1196 		if (bytes > len)
1197 			bytes = len;
1198 
1199 		if (map_data) {
1200 			if (i == map_data->nr_entries * nr_pages) {
1201 				ret = -ENOMEM;
1202 				break;
1203 			}
1204 
1205 			page = map_data->pages[i / nr_pages];
1206 			page += (i % nr_pages);
1207 
1208 			i++;
1209 		} else {
1210 			page = alloc_page(q->bounce_gfp | gfp_mask);
1211 			if (!page) {
1212 				ret = -ENOMEM;
1213 				break;
1214 			}
1215 		}
1216 
1217 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1218 			break;
1219 
1220 		len -= bytes;
1221 		offset = 0;
1222 	}
1223 
1224 	if (ret)
1225 		goto cleanup;
1226 
1227 	/*
1228 	 * success
1229 	 */
1230 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1231 	    (map_data && map_data->from_user)) {
1232 		ret = bio_copy_from_iter(bio, *iter);
1233 		if (ret)
1234 			goto cleanup;
1235 	}
1236 
1237 	bio->bi_private = bmd;
1238 	return bio;
1239 cleanup:
1240 	if (!map_data)
1241 		bio_free_pages(bio);
1242 	bio_put(bio);
1243 out_bmd:
1244 	kfree(bmd);
1245 	return ERR_PTR(ret);
1246 }
1247 
1248 /**
1249  *	bio_map_user_iov - map user iovec into bio
1250  *	@q:		the struct request_queue for the bio
1251  *	@iter:		iovec iterator
1252  *	@gfp_mask:	memory allocation flags
1253  *
1254  *	Map the user space address into a bio suitable for io to a block
1255  *	device. Returns an error pointer in case of error.
1256  */
bio_map_user_iov(struct request_queue * q,const struct iov_iter * iter,gfp_t gfp_mask)1257 struct bio *bio_map_user_iov(struct request_queue *q,
1258 			     const struct iov_iter *iter,
1259 			     gfp_t gfp_mask)
1260 {
1261 	int j;
1262 	int nr_pages = 0;
1263 	struct page **pages;
1264 	struct bio *bio;
1265 	int cur_page = 0;
1266 	int ret, offset;
1267 	struct iov_iter i;
1268 	struct iovec iov;
1269 	struct bio_vec *bvec;
1270 
1271 	iov_for_each(iov, i, *iter) {
1272 		unsigned long uaddr = (unsigned long) iov.iov_base;
1273 		unsigned long len = iov.iov_len;
1274 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1275 		unsigned long start = uaddr >> PAGE_SHIFT;
1276 
1277 		/*
1278 		 * Overflow, abort
1279 		 */
1280 		if (end < start)
1281 			return ERR_PTR(-EINVAL);
1282 
1283 		nr_pages += end - start;
1284 		/*
1285 		 * buffer must be aligned to at least logical block size for now
1286 		 */
1287 		if (uaddr & queue_dma_alignment(q))
1288 			return ERR_PTR(-EINVAL);
1289 	}
1290 
1291 	if (!nr_pages)
1292 		return ERR_PTR(-EINVAL);
1293 
1294 	bio = bio_kmalloc(gfp_mask, nr_pages);
1295 	if (!bio)
1296 		return ERR_PTR(-ENOMEM);
1297 
1298 	ret = -ENOMEM;
1299 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1300 	if (!pages)
1301 		goto out;
1302 
1303 	iov_for_each(iov, i, *iter) {
1304 		unsigned long uaddr = (unsigned long) iov.iov_base;
1305 		unsigned long len = iov.iov_len;
1306 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1307 		unsigned long start = uaddr >> PAGE_SHIFT;
1308 		const int local_nr_pages = end - start;
1309 		const int page_limit = cur_page + local_nr_pages;
1310 
1311 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1312 				(iter->type & WRITE) != WRITE,
1313 				&pages[cur_page]);
1314 		if (unlikely(ret < local_nr_pages)) {
1315 			for (j = cur_page; j < page_limit; j++) {
1316 				if (!pages[j])
1317 					break;
1318 				put_page(pages[j]);
1319 			}
1320 			ret = -EFAULT;
1321 			goto out_unmap;
1322 		}
1323 
1324 		offset = offset_in_page(uaddr);
1325 		for (j = cur_page; j < page_limit; j++) {
1326 			unsigned int bytes = PAGE_SIZE - offset;
1327 			unsigned short prev_bi_vcnt = bio->bi_vcnt;
1328 
1329 			if (len <= 0)
1330 				break;
1331 
1332 			if (bytes > len)
1333 				bytes = len;
1334 
1335 			/*
1336 			 * sorry...
1337 			 */
1338 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1339 					    bytes)
1340 				break;
1341 
1342 			/*
1343 			 * check if vector was merged with previous
1344 			 * drop page reference if needed
1345 			 */
1346 			if (bio->bi_vcnt == prev_bi_vcnt)
1347 				put_page(pages[j]);
1348 
1349 			len -= bytes;
1350 			offset = 0;
1351 		}
1352 
1353 		cur_page = j;
1354 		/*
1355 		 * release the pages we didn't map into the bio, if any
1356 		 */
1357 		while (j < page_limit)
1358 			put_page(pages[j++]);
1359 	}
1360 
1361 	kfree(pages);
1362 
1363 	/*
1364 	 * set data direction, and check if mapped pages need bouncing
1365 	 */
1366 	if (iter->type & WRITE)
1367 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1368 
1369 	bio_set_flag(bio, BIO_USER_MAPPED);
1370 
1371 	/*
1372 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1373 	 * it would normally disappear when its bi_end_io is run.
1374 	 * however, we need it for the unmap, so grab an extra
1375 	 * reference to it
1376 	 */
1377 	bio_get(bio);
1378 	return bio;
1379 
1380  out_unmap:
1381 	bio_for_each_segment_all(bvec, bio, j) {
1382 		put_page(bvec->bv_page);
1383 	}
1384  out:
1385 	kfree(pages);
1386 	bio_put(bio);
1387 	return ERR_PTR(ret);
1388 }
1389 
__bio_unmap_user(struct bio * bio)1390 static void __bio_unmap_user(struct bio *bio)
1391 {
1392 	struct bio_vec *bvec;
1393 	int i;
1394 
1395 	/*
1396 	 * make sure we dirty pages we wrote to
1397 	 */
1398 	bio_for_each_segment_all(bvec, bio, i) {
1399 		if (bio_data_dir(bio) == READ)
1400 			set_page_dirty_lock(bvec->bv_page);
1401 
1402 		put_page(bvec->bv_page);
1403 	}
1404 
1405 	bio_put(bio);
1406 }
1407 
1408 /**
1409  *	bio_unmap_user	-	unmap a bio
1410  *	@bio:		the bio being unmapped
1411  *
1412  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1413  *	a process context.
1414  *
1415  *	bio_unmap_user() may sleep.
1416  */
bio_unmap_user(struct bio * bio)1417 void bio_unmap_user(struct bio *bio)
1418 {
1419 	__bio_unmap_user(bio);
1420 	bio_put(bio);
1421 }
1422 
bio_map_kern_endio(struct bio * bio)1423 static void bio_map_kern_endio(struct bio *bio)
1424 {
1425 	bio_put(bio);
1426 }
1427 
1428 /**
1429  *	bio_map_kern	-	map kernel address into bio
1430  *	@q: the struct request_queue for the bio
1431  *	@data: pointer to buffer to map
1432  *	@len: length in bytes
1433  *	@gfp_mask: allocation flags for bio allocation
1434  *
1435  *	Map the kernel address into a bio suitable for io to a block
1436  *	device. Returns an error pointer in case of error.
1437  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1438 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1439 			 gfp_t gfp_mask)
1440 {
1441 	unsigned long kaddr = (unsigned long)data;
1442 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1443 	unsigned long start = kaddr >> PAGE_SHIFT;
1444 	const int nr_pages = end - start;
1445 	int offset, i;
1446 	struct bio *bio;
1447 
1448 	bio = bio_kmalloc(gfp_mask, nr_pages);
1449 	if (!bio)
1450 		return ERR_PTR(-ENOMEM);
1451 
1452 	offset = offset_in_page(kaddr);
1453 	for (i = 0; i < nr_pages; i++) {
1454 		unsigned int bytes = PAGE_SIZE - offset;
1455 
1456 		if (len <= 0)
1457 			break;
1458 
1459 		if (bytes > len)
1460 			bytes = len;
1461 
1462 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1463 				    offset) < bytes) {
1464 			/* we don't support partial mappings */
1465 			bio_put(bio);
1466 			return ERR_PTR(-EINVAL);
1467 		}
1468 
1469 		data += bytes;
1470 		len -= bytes;
1471 		offset = 0;
1472 	}
1473 
1474 	bio->bi_end_io = bio_map_kern_endio;
1475 	return bio;
1476 }
1477 EXPORT_SYMBOL(bio_map_kern);
1478 
bio_copy_kern_endio(struct bio * bio)1479 static void bio_copy_kern_endio(struct bio *bio)
1480 {
1481 	bio_free_pages(bio);
1482 	bio_put(bio);
1483 }
1484 
bio_copy_kern_endio_read(struct bio * bio)1485 static void bio_copy_kern_endio_read(struct bio *bio)
1486 {
1487 	char *p = bio->bi_private;
1488 	struct bio_vec *bvec;
1489 	int i;
1490 
1491 	bio_for_each_segment_all(bvec, bio, i) {
1492 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1493 		p += bvec->bv_len;
1494 	}
1495 
1496 	bio_copy_kern_endio(bio);
1497 }
1498 
1499 /**
1500  *	bio_copy_kern	-	copy kernel address into bio
1501  *	@q: the struct request_queue for the bio
1502  *	@data: pointer to buffer to copy
1503  *	@len: length in bytes
1504  *	@gfp_mask: allocation flags for bio and page allocation
1505  *	@reading: data direction is READ
1506  *
1507  *	copy the kernel address into a bio suitable for io to a block
1508  *	device. Returns an error pointer in case of error.
1509  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1510 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1511 			  gfp_t gfp_mask, int reading)
1512 {
1513 	unsigned long kaddr = (unsigned long)data;
1514 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1515 	unsigned long start = kaddr >> PAGE_SHIFT;
1516 	struct bio *bio;
1517 	void *p = data;
1518 	int nr_pages = 0;
1519 
1520 	/*
1521 	 * Overflow, abort
1522 	 */
1523 	if (end < start)
1524 		return ERR_PTR(-EINVAL);
1525 
1526 	nr_pages = end - start;
1527 	bio = bio_kmalloc(gfp_mask, nr_pages);
1528 	if (!bio)
1529 		return ERR_PTR(-ENOMEM);
1530 
1531 	while (len) {
1532 		struct page *page;
1533 		unsigned int bytes = PAGE_SIZE;
1534 
1535 		if (bytes > len)
1536 			bytes = len;
1537 
1538 		page = alloc_page(q->bounce_gfp | gfp_mask);
1539 		if (!page)
1540 			goto cleanup;
1541 
1542 		if (!reading)
1543 			memcpy(page_address(page), p, bytes);
1544 
1545 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1546 			break;
1547 
1548 		len -= bytes;
1549 		p += bytes;
1550 	}
1551 
1552 	if (reading) {
1553 		bio->bi_end_io = bio_copy_kern_endio_read;
1554 		bio->bi_private = data;
1555 	} else {
1556 		bio->bi_end_io = bio_copy_kern_endio;
1557 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1558 	}
1559 
1560 	return bio;
1561 
1562 cleanup:
1563 	bio_free_pages(bio);
1564 	bio_put(bio);
1565 	return ERR_PTR(-ENOMEM);
1566 }
1567 
1568 /*
1569  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1570  * for performing direct-IO in BIOs.
1571  *
1572  * The problem is that we cannot run set_page_dirty() from interrupt context
1573  * because the required locks are not interrupt-safe.  So what we can do is to
1574  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1575  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1576  * in process context.
1577  *
1578  * We special-case compound pages here: normally this means reads into hugetlb
1579  * pages.  The logic in here doesn't really work right for compound pages
1580  * because the VM does not uniformly chase down the head page in all cases.
1581  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1582  * handle them at all.  So we skip compound pages here at an early stage.
1583  *
1584  * Note that this code is very hard to test under normal circumstances because
1585  * direct-io pins the pages with get_user_pages().  This makes
1586  * is_page_cache_freeable return false, and the VM will not clean the pages.
1587  * But other code (eg, flusher threads) could clean the pages if they are mapped
1588  * pagecache.
1589  *
1590  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1591  * deferred bio dirtying paths.
1592  */
1593 
1594 /*
1595  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1596  */
bio_set_pages_dirty(struct bio * bio)1597 void bio_set_pages_dirty(struct bio *bio)
1598 {
1599 	struct bio_vec *bvec;
1600 	int i;
1601 
1602 	bio_for_each_segment_all(bvec, bio, i) {
1603 		struct page *page = bvec->bv_page;
1604 
1605 		if (page && !PageCompound(page))
1606 			set_page_dirty_lock(page);
1607 	}
1608 }
1609 
bio_release_pages(struct bio * bio)1610 static void bio_release_pages(struct bio *bio)
1611 {
1612 	struct bio_vec *bvec;
1613 	int i;
1614 
1615 	bio_for_each_segment_all(bvec, bio, i) {
1616 		struct page *page = bvec->bv_page;
1617 
1618 		if (page)
1619 			put_page(page);
1620 	}
1621 }
1622 
1623 /*
1624  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1625  * If they are, then fine.  If, however, some pages are clean then they must
1626  * have been written out during the direct-IO read.  So we take another ref on
1627  * the BIO and the offending pages and re-dirty the pages in process context.
1628  *
1629  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1630  * here on.  It will run one put_page() against each page and will run one
1631  * bio_put() against the BIO.
1632  */
1633 
1634 static void bio_dirty_fn(struct work_struct *work);
1635 
1636 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1637 static DEFINE_SPINLOCK(bio_dirty_lock);
1638 static struct bio *bio_dirty_list;
1639 
1640 /*
1641  * This runs in process context
1642  */
bio_dirty_fn(struct work_struct * work)1643 static void bio_dirty_fn(struct work_struct *work)
1644 {
1645 	unsigned long flags;
1646 	struct bio *bio;
1647 
1648 	spin_lock_irqsave(&bio_dirty_lock, flags);
1649 	bio = bio_dirty_list;
1650 	bio_dirty_list = NULL;
1651 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1652 
1653 	while (bio) {
1654 		struct bio *next = bio->bi_private;
1655 
1656 		bio_set_pages_dirty(bio);
1657 		bio_release_pages(bio);
1658 		bio_put(bio);
1659 		bio = next;
1660 	}
1661 }
1662 
bio_check_pages_dirty(struct bio * bio)1663 void bio_check_pages_dirty(struct bio *bio)
1664 {
1665 	struct bio_vec *bvec;
1666 	int nr_clean_pages = 0;
1667 	int i;
1668 
1669 	bio_for_each_segment_all(bvec, bio, i) {
1670 		struct page *page = bvec->bv_page;
1671 
1672 		if (PageDirty(page) || PageCompound(page)) {
1673 			put_page(page);
1674 			bvec->bv_page = NULL;
1675 		} else {
1676 			nr_clean_pages++;
1677 		}
1678 	}
1679 
1680 	if (nr_clean_pages) {
1681 		unsigned long flags;
1682 
1683 		spin_lock_irqsave(&bio_dirty_lock, flags);
1684 		bio->bi_private = bio_dirty_list;
1685 		bio_dirty_list = bio;
1686 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1687 		schedule_work(&bio_dirty_work);
1688 	} else {
1689 		bio_put(bio);
1690 	}
1691 }
1692 
generic_start_io_acct(int rw,unsigned long sectors,struct hd_struct * part)1693 void generic_start_io_acct(int rw, unsigned long sectors,
1694 			   struct hd_struct *part)
1695 {
1696 	int cpu = part_stat_lock();
1697 
1698 	part_round_stats(cpu, part);
1699 	part_stat_inc(cpu, part, ios[rw]);
1700 	part_stat_add(cpu, part, sectors[rw], sectors);
1701 	part_inc_in_flight(part, rw);
1702 
1703 	part_stat_unlock();
1704 }
1705 EXPORT_SYMBOL(generic_start_io_acct);
1706 
generic_end_io_acct(int rw,struct hd_struct * part,unsigned long start_time)1707 void generic_end_io_acct(int rw, struct hd_struct *part,
1708 			 unsigned long start_time)
1709 {
1710 	unsigned long duration = jiffies - start_time;
1711 	int cpu = part_stat_lock();
1712 
1713 	part_stat_add(cpu, part, ticks[rw], duration);
1714 	part_round_stats(cpu, part);
1715 	part_dec_in_flight(part, rw);
1716 
1717 	part_stat_unlock();
1718 }
1719 EXPORT_SYMBOL(generic_end_io_acct);
1720 
1721 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1722 void bio_flush_dcache_pages(struct bio *bi)
1723 {
1724 	struct bio_vec bvec;
1725 	struct bvec_iter iter;
1726 
1727 	bio_for_each_segment(bvec, bi, iter)
1728 		flush_dcache_page(bvec.bv_page);
1729 }
1730 EXPORT_SYMBOL(bio_flush_dcache_pages);
1731 #endif
1732 
bio_remaining_done(struct bio * bio)1733 static inline bool bio_remaining_done(struct bio *bio)
1734 {
1735 	/*
1736 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1737 	 * we always end io on the first invocation.
1738 	 */
1739 	if (!bio_flagged(bio, BIO_CHAIN))
1740 		return true;
1741 
1742 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1743 
1744 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1745 		bio_clear_flag(bio, BIO_CHAIN);
1746 		return true;
1747 	}
1748 
1749 	return false;
1750 }
1751 
1752 /**
1753  * bio_endio - end I/O on a bio
1754  * @bio:	bio
1755  *
1756  * Description:
1757  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1758  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1759  *   bio unless they own it and thus know that it has an end_io function.
1760  **/
bio_endio(struct bio * bio)1761 void bio_endio(struct bio *bio)
1762 {
1763 again:
1764 	if (!bio_remaining_done(bio))
1765 		return;
1766 
1767 	/*
1768 	 * Need to have a real endio function for chained bios, otherwise
1769 	 * various corner cases will break (like stacking block devices that
1770 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1771 	 * recursion and blowing the stack. Tail call optimization would
1772 	 * handle this, but compiling with frame pointers also disables
1773 	 * gcc's sibling call optimization.
1774 	 */
1775 	if (bio->bi_end_io == bio_chain_endio) {
1776 		bio = __bio_chain_endio(bio);
1777 		goto again;
1778 	}
1779 
1780 	if (bio->bi_end_io)
1781 		bio->bi_end_io(bio);
1782 }
1783 EXPORT_SYMBOL(bio_endio);
1784 
1785 /**
1786  * bio_split - split a bio
1787  * @bio:	bio to split
1788  * @sectors:	number of sectors to split from the front of @bio
1789  * @gfp:	gfp mask
1790  * @bs:		bio set to allocate from
1791  *
1792  * Allocates and returns a new bio which represents @sectors from the start of
1793  * @bio, and updates @bio to represent the remaining sectors.
1794  *
1795  * Unless this is a discard request the newly allocated bio will point
1796  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1797  * @bio is not freed before the split.
1798  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1799 struct bio *bio_split(struct bio *bio, int sectors,
1800 		      gfp_t gfp, struct bio_set *bs)
1801 {
1802 	struct bio *split = NULL;
1803 
1804 	BUG_ON(sectors <= 0);
1805 	BUG_ON(sectors >= bio_sectors(bio));
1806 
1807 	/*
1808 	 * Discards need a mutable bio_vec to accommodate the payload
1809 	 * required by the DSM TRIM and UNMAP commands.
1810 	 */
1811 	if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
1812 		split = bio_clone_bioset(bio, gfp, bs);
1813 	else
1814 		split = bio_clone_fast(bio, gfp, bs);
1815 
1816 	if (!split)
1817 		return NULL;
1818 
1819 	split->bi_iter.bi_size = sectors << 9;
1820 
1821 	if (bio_integrity(split))
1822 		bio_integrity_trim(split, 0, sectors);
1823 
1824 	bio_advance(bio, split->bi_iter.bi_size);
1825 
1826 	return split;
1827 }
1828 EXPORT_SYMBOL(bio_split);
1829 
1830 /**
1831  * bio_trim - trim a bio
1832  * @bio:	bio to trim
1833  * @offset:	number of sectors to trim from the front of @bio
1834  * @size:	size we want to trim @bio to, in sectors
1835  */
bio_trim(struct bio * bio,int offset,int size)1836 void bio_trim(struct bio *bio, int offset, int size)
1837 {
1838 	/* 'bio' is a cloned bio which we need to trim to match
1839 	 * the given offset and size.
1840 	 */
1841 
1842 	size <<= 9;
1843 	if (offset == 0 && size == bio->bi_iter.bi_size)
1844 		return;
1845 
1846 	bio_clear_flag(bio, BIO_SEG_VALID);
1847 
1848 	bio_advance(bio, offset << 9);
1849 
1850 	bio->bi_iter.bi_size = size;
1851 }
1852 EXPORT_SYMBOL_GPL(bio_trim);
1853 
1854 /*
1855  * create memory pools for biovec's in a bio_set.
1856  * use the global biovec slabs created for general use.
1857  */
biovec_create_pool(int pool_entries)1858 mempool_t *biovec_create_pool(int pool_entries)
1859 {
1860 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1861 
1862 	return mempool_create_slab_pool(pool_entries, bp->slab);
1863 }
1864 
bioset_free(struct bio_set * bs)1865 void bioset_free(struct bio_set *bs)
1866 {
1867 	if (bs->rescue_workqueue)
1868 		destroy_workqueue(bs->rescue_workqueue);
1869 
1870 	if (bs->bio_pool)
1871 		mempool_destroy(bs->bio_pool);
1872 
1873 	if (bs->bvec_pool)
1874 		mempool_destroy(bs->bvec_pool);
1875 
1876 	bioset_integrity_free(bs);
1877 	bio_put_slab(bs);
1878 
1879 	kfree(bs);
1880 }
1881 EXPORT_SYMBOL(bioset_free);
1882 
__bioset_create(unsigned int pool_size,unsigned int front_pad,bool create_bvec_pool)1883 static struct bio_set *__bioset_create(unsigned int pool_size,
1884 				       unsigned int front_pad,
1885 				       bool create_bvec_pool)
1886 {
1887 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1888 	struct bio_set *bs;
1889 
1890 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1891 	if (!bs)
1892 		return NULL;
1893 
1894 	bs->front_pad = front_pad;
1895 
1896 	spin_lock_init(&bs->rescue_lock);
1897 	bio_list_init(&bs->rescue_list);
1898 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1899 
1900 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1901 	if (!bs->bio_slab) {
1902 		kfree(bs);
1903 		return NULL;
1904 	}
1905 
1906 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1907 	if (!bs->bio_pool)
1908 		goto bad;
1909 
1910 	if (create_bvec_pool) {
1911 		bs->bvec_pool = biovec_create_pool(pool_size);
1912 		if (!bs->bvec_pool)
1913 			goto bad;
1914 	}
1915 
1916 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1917 	if (!bs->rescue_workqueue)
1918 		goto bad;
1919 
1920 	return bs;
1921 bad:
1922 	bioset_free(bs);
1923 	return NULL;
1924 }
1925 
1926 /**
1927  * bioset_create  - Create a bio_set
1928  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1929  * @front_pad:	Number of bytes to allocate in front of the returned bio
1930  *
1931  * Description:
1932  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1933  *    to ask for a number of bytes to be allocated in front of the bio.
1934  *    Front pad allocation is useful for embedding the bio inside
1935  *    another structure, to avoid allocating extra data to go with the bio.
1936  *    Note that the bio must be embedded at the END of that structure always,
1937  *    or things will break badly.
1938  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1939 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1940 {
1941 	return __bioset_create(pool_size, front_pad, true);
1942 }
1943 EXPORT_SYMBOL(bioset_create);
1944 
1945 /**
1946  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1947  * @pool_size:	Number of bio to cache in the mempool
1948  * @front_pad:	Number of bytes to allocate in front of the returned bio
1949  *
1950  * Description:
1951  *    Same functionality as bioset_create() except that mempool is not
1952  *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1953  */
bioset_create_nobvec(unsigned int pool_size,unsigned int front_pad)1954 struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1955 {
1956 	return __bioset_create(pool_size, front_pad, false);
1957 }
1958 EXPORT_SYMBOL(bioset_create_nobvec);
1959 
1960 #ifdef CONFIG_BLK_CGROUP
1961 
1962 /**
1963  * bio_associate_blkcg - associate a bio with the specified blkcg
1964  * @bio: target bio
1965  * @blkcg_css: css of the blkcg to associate
1966  *
1967  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1968  * treat @bio as if it were issued by a task which belongs to the blkcg.
1969  *
1970  * This function takes an extra reference of @blkcg_css which will be put
1971  * when @bio is released.  The caller must own @bio and is responsible for
1972  * synchronizing calls to this function.
1973  */
bio_associate_blkcg(struct bio * bio,struct cgroup_subsys_state * blkcg_css)1974 int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1975 {
1976 	if (unlikely(bio->bi_css))
1977 		return -EBUSY;
1978 	css_get(blkcg_css);
1979 	bio->bi_css = blkcg_css;
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1983 
1984 /**
1985  * bio_associate_current - associate a bio with %current
1986  * @bio: target bio
1987  *
1988  * Associate @bio with %current if it hasn't been associated yet.  Block
1989  * layer will treat @bio as if it were issued by %current no matter which
1990  * task actually issues it.
1991  *
1992  * This function takes an extra reference of @task's io_context and blkcg
1993  * which will be put when @bio is released.  The caller must own @bio,
1994  * ensure %current->io_context exists, and is responsible for synchronizing
1995  * calls to this function.
1996  */
bio_associate_current(struct bio * bio)1997 int bio_associate_current(struct bio *bio)
1998 {
1999 	struct io_context *ioc;
2000 
2001 	if (bio->bi_css)
2002 		return -EBUSY;
2003 
2004 	ioc = current->io_context;
2005 	if (!ioc)
2006 		return -ENOENT;
2007 
2008 	get_io_context_active(ioc);
2009 	bio->bi_ioc = ioc;
2010 	bio->bi_css = task_get_css(current, io_cgrp_id);
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(bio_associate_current);
2014 
2015 /**
2016  * bio_disassociate_task - undo bio_associate_current()
2017  * @bio: target bio
2018  */
bio_disassociate_task(struct bio * bio)2019 void bio_disassociate_task(struct bio *bio)
2020 {
2021 	if (bio->bi_ioc) {
2022 		put_io_context(bio->bi_ioc);
2023 		bio->bi_ioc = NULL;
2024 	}
2025 	if (bio->bi_css) {
2026 		css_put(bio->bi_css);
2027 		bio->bi_css = NULL;
2028 	}
2029 }
2030 
2031 /**
2032  * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2033  * @dst: destination bio
2034  * @src: source bio
2035  */
bio_clone_blkcg_association(struct bio * dst,struct bio * src)2036 void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2037 {
2038 	if (src->bi_css)
2039 		WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2040 }
2041 
2042 #endif /* CONFIG_BLK_CGROUP */
2043 
biovec_init_slabs(void)2044 static void __init biovec_init_slabs(void)
2045 {
2046 	int i;
2047 
2048 	for (i = 0; i < BVEC_POOL_NR; i++) {
2049 		int size;
2050 		struct biovec_slab *bvs = bvec_slabs + i;
2051 
2052 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2053 			bvs->slab = NULL;
2054 			continue;
2055 		}
2056 
2057 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2058 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2059                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2060 	}
2061 }
2062 
init_bio(void)2063 static int __init init_bio(void)
2064 {
2065 	bio_slab_max = 2;
2066 	bio_slab_nr = 0;
2067 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2068 	if (!bio_slabs)
2069 		panic("bio: can't allocate bios\n");
2070 
2071 	bio_integrity_init();
2072 	biovec_init_slabs();
2073 
2074 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2075 	if (!fs_bio_set)
2076 		panic("bio: can't allocate bios\n");
2077 
2078 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2079 		panic("bio: can't create integrity pool\n");
2080 
2081 	return 0;
2082 }
2083 subsys_initcall(init_bio);
2084