1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_port *ap = dev->link->ap;
617 void __iomem *data_addr = ap->ioaddr.data_addr;
618 unsigned int words = buflen >> 2;
619 int slop = buflen & 3;
620
621 if (!(ap->pflags & ATA_PFLAG_PIO32))
622 return ata_sff_data_xfer(dev, buf, buflen, rw);
623
624 /* Transfer multiple of 4 bytes */
625 if (rw == READ)
626 ioread32_rep(data_addr, buf, words);
627 else
628 iowrite32_rep(data_addr, buf, words);
629
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop)) {
632 unsigned char pad[4] = { };
633
634 /* Point buf to the tail of buffer */
635 buf += buflen - slop;
636
637 /*
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
640 */
641 if (rw == READ) {
642 if (slop < 3)
643 ioread16_rep(data_addr, pad, 1);
644 else
645 ioread32_rep(data_addr, pad, 1);
646 memcpy(buf, pad, slop);
647 } else {
648 memcpy(pad, buf, slop);
649 if (slop < 3)
650 iowrite16_rep(data_addr, pad, 1);
651 else
652 iowrite32_rep(data_addr, pad, 1);
653 }
654 }
655 return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658
659 /**
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
662 * @buf: data buffer
663 * @buflen: buffer length
664 * @rw: read/write
665 *
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
668 *
669 * LOCKING:
670 * Inherited from caller.
671 *
672 * RETURNS:
673 * Bytes consumed.
674 */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 unsigned int buflen, int rw)
677 {
678 unsigned long flags;
679 unsigned int consumed;
680
681 local_irq_save(flags);
682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 local_irq_restore(flags);
684
685 return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688
689 /**
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
692 *
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
694 *
695 * LOCKING:
696 * Inherited from caller.
697 */
ata_pio_sector(struct ata_queued_cmd * qc)698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 struct ata_port *ap = qc->ap;
702 struct page *page;
703 unsigned int offset;
704 unsigned char *buf;
705
706 if (qc->curbytes == qc->nbytes - qc->sect_size)
707 ap->hsm_task_state = HSM_ST_LAST;
708
709 page = sg_page(qc->cursg);
710 offset = qc->cursg->offset + qc->cursg_ofs;
711
712 /* get the current page and offset */
713 page = nth_page(page, (offset >> PAGE_SHIFT));
714 offset %= PAGE_SIZE;
715
716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717
718 if (PageHighMem(page)) {
719 unsigned long flags;
720
721 /* FIXME: use a bounce buffer */
722 local_irq_save(flags);
723 buf = kmap_atomic(page);
724
725 /* do the actual data transfer */
726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 do_write);
728
729 kunmap_atomic(buf);
730 local_irq_restore(flags);
731 } else {
732 buf = page_address(page);
733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 do_write);
735 }
736
737 if (!do_write && !PageSlab(page))
738 flush_dcache_page(page);
739
740 qc->curbytes += qc->sect_size;
741 qc->cursg_ofs += qc->sect_size;
742
743 if (qc->cursg_ofs == qc->cursg->length) {
744 qc->cursg = sg_next(qc->cursg);
745 qc->cursg_ofs = 0;
746 }
747 }
748
749 /**
750 * ata_pio_sectors - Transfer one or many sectors.
751 * @qc: Command on going
752 *
753 * Transfer one or many sectors of data from/to the
754 * ATA device for the DRQ request.
755 *
756 * LOCKING:
757 * Inherited from caller.
758 */
ata_pio_sectors(struct ata_queued_cmd * qc)759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 {
761 if (is_multi_taskfile(&qc->tf)) {
762 /* READ/WRITE MULTIPLE */
763 unsigned int nsect;
764
765 WARN_ON_ONCE(qc->dev->multi_count == 0);
766
767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 qc->dev->multi_count);
769 while (nsect--)
770 ata_pio_sector(qc);
771 } else
772 ata_pio_sector(qc);
773
774 ata_sff_sync(qc->ap); /* flush */
775 }
776
777 /**
778 * atapi_send_cdb - Write CDB bytes to hardware
779 * @ap: Port to which ATAPI device is attached.
780 * @qc: Taskfile currently active
781 *
782 * When device has indicated its readiness to accept
783 * a CDB, this function is called. Send the CDB.
784 *
785 * LOCKING:
786 * caller.
787 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 {
790 /* send SCSI cdb */
791 DPRINTK("send cdb\n");
792 WARN_ON_ONCE(qc->dev->cdb_len < 12);
793
794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 ata_sff_sync(ap);
796 /* FIXME: If the CDB is for DMA do we need to do the transition delay
797 or is bmdma_start guaranteed to do it ? */
798 switch (qc->tf.protocol) {
799 case ATAPI_PROT_PIO:
800 ap->hsm_task_state = HSM_ST;
801 break;
802 case ATAPI_PROT_NODATA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 break;
805 #ifdef CONFIG_ATA_BMDMA
806 case ATAPI_PROT_DMA:
807 ap->hsm_task_state = HSM_ST_LAST;
808 /* initiate bmdma */
809 ap->ops->bmdma_start(qc);
810 break;
811 #endif /* CONFIG_ATA_BMDMA */
812 default:
813 BUG();
814 }
815 }
816
817 /**
818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 * @qc: Command on going
820 * @bytes: number of bytes
821 *
822 * Transfer Transfer data from/to the ATAPI device.
823 *
824 * LOCKING:
825 * Inherited from caller.
826 *
827 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 {
830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 struct ata_port *ap = qc->ap;
832 struct ata_device *dev = qc->dev;
833 struct ata_eh_info *ehi = &dev->link->eh_info;
834 struct scatterlist *sg;
835 struct page *page;
836 unsigned char *buf;
837 unsigned int offset, count, consumed;
838
839 next_sg:
840 sg = qc->cursg;
841 if (unlikely(!sg)) {
842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 "buf=%u cur=%u bytes=%u",
844 qc->nbytes, qc->curbytes, bytes);
845 return -1;
846 }
847
848 page = sg_page(sg);
849 offset = sg->offset + qc->cursg_ofs;
850
851 /* get the current page and offset */
852 page = nth_page(page, (offset >> PAGE_SHIFT));
853 offset %= PAGE_SIZE;
854
855 /* don't overrun current sg */
856 count = min(sg->length - qc->cursg_ofs, bytes);
857
858 /* don't cross page boundaries */
859 count = min(count, (unsigned int)PAGE_SIZE - offset);
860
861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862
863 if (PageHighMem(page)) {
864 unsigned long flags;
865
866 /* FIXME: use bounce buffer */
867 local_irq_save(flags);
868 buf = kmap_atomic(page);
869
870 /* do the actual data transfer */
871 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
872 count, rw);
873
874 kunmap_atomic(buf);
875 local_irq_restore(flags);
876 } else {
877 buf = page_address(page);
878 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
879 count, rw);
880 }
881
882 bytes -= min(bytes, consumed);
883 qc->curbytes += count;
884 qc->cursg_ofs += count;
885
886 if (qc->cursg_ofs == sg->length) {
887 qc->cursg = sg_next(qc->cursg);
888 qc->cursg_ofs = 0;
889 }
890
891 /*
892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 * check correctly as it doesn't know if it is the last request being
895 * made. Somebody should implement a proper sanity check.
896 */
897 if (bytes)
898 goto next_sg;
899 return 0;
900 }
901
902 /**
903 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 * @qc: Command on going
905 *
906 * Transfer Transfer data from/to the ATAPI device.
907 *
908 * LOCKING:
909 * Inherited from caller.
910 */
atapi_pio_bytes(struct ata_queued_cmd * qc)911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 {
913 struct ata_port *ap = qc->ap;
914 struct ata_device *dev = qc->dev;
915 struct ata_eh_info *ehi = &dev->link->eh_info;
916 unsigned int ireason, bc_lo, bc_hi, bytes;
917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918
919 /* Abuse qc->result_tf for temp storage of intermediate TF
920 * here to save some kernel stack usage.
921 * For normal completion, qc->result_tf is not relevant. For
922 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 * So, the correctness of qc->result_tf is not affected.
924 */
925 ap->ops->sff_tf_read(ap, &qc->result_tf);
926 ireason = qc->result_tf.nsect;
927 bc_lo = qc->result_tf.lbam;
928 bc_hi = qc->result_tf.lbah;
929 bytes = (bc_hi << 8) | bc_lo;
930
931 /* shall be cleared to zero, indicating xfer of data */
932 if (unlikely(ireason & ATAPI_COD))
933 goto atapi_check;
934
935 /* make sure transfer direction matches expected */
936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 if (unlikely(do_write != i_write))
938 goto atapi_check;
939
940 if (unlikely(!bytes))
941 goto atapi_check;
942
943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944
945 if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 goto err_out;
947 ata_sff_sync(ap); /* flush */
948
949 return;
950
951 atapi_check:
952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 ireason, bytes);
954 err_out:
955 qc->err_mask |= AC_ERR_HSM;
956 ap->hsm_task_state = HSM_ST_ERR;
957 }
958
959 /**
960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 * @ap: the target ata_port
962 * @qc: qc on going
963 *
964 * RETURNS:
965 * 1 if ok in workqueue, 0 otherwise.
966 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 struct ata_queued_cmd *qc)
969 {
970 if (qc->tf.flags & ATA_TFLAG_POLLING)
971 return 1;
972
973 if (ap->hsm_task_state == HSM_ST_FIRST) {
974 if (qc->tf.protocol == ATA_PROT_PIO &&
975 (qc->tf.flags & ATA_TFLAG_WRITE))
976 return 1;
977
978 if (ata_is_atapi(qc->tf.protocol) &&
979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 return 1;
981 }
982
983 return 0;
984 }
985
986 /**
987 * ata_hsm_qc_complete - finish a qc running on standard HSM
988 * @qc: Command to complete
989 * @in_wq: 1 if called from workqueue, 0 otherwise
990 *
991 * Finish @qc which is running on standard HSM.
992 *
993 * LOCKING:
994 * If @in_wq is zero, spin_lock_irqsave(host lock).
995 * Otherwise, none on entry and grabs host lock.
996 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 {
999 struct ata_port *ap = qc->ap;
1000
1001 if (ap->ops->error_handler) {
1002 if (in_wq) {
1003 /* EH might have kicked in while host lock is
1004 * released.
1005 */
1006 qc = ata_qc_from_tag(ap, qc->tag);
1007 if (qc) {
1008 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009 ata_sff_irq_on(ap);
1010 ata_qc_complete(qc);
1011 } else
1012 ata_port_freeze(ap);
1013 }
1014 } else {
1015 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016 ata_qc_complete(qc);
1017 else
1018 ata_port_freeze(ap);
1019 }
1020 } else {
1021 if (in_wq) {
1022 ata_sff_irq_on(ap);
1023 ata_qc_complete(qc);
1024 } else
1025 ata_qc_complete(qc);
1026 }
1027 }
1028
1029 /**
1030 * ata_sff_hsm_move - move the HSM to the next state.
1031 * @ap: the target ata_port
1032 * @qc: qc on going
1033 * @status: current device status
1034 * @in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 * RETURNS:
1037 * 1 when poll next status needed, 0 otherwise.
1038 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1039 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040 u8 status, int in_wq)
1041 {
1042 struct ata_link *link = qc->dev->link;
1043 struct ata_eh_info *ehi = &link->eh_info;
1044 int poll_next;
1045
1046 lockdep_assert_held(ap->lock);
1047
1048 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050 /* Make sure ata_sff_qc_issue() does not throw things
1051 * like DMA polling into the workqueue. Notice that
1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053 */
1054 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056 fsm_start:
1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060 switch (ap->hsm_task_state) {
1061 case HSM_ST_FIRST:
1062 /* Send first data block or PACKET CDB */
1063
1064 /* If polling, we will stay in the work queue after
1065 * sending the data. Otherwise, interrupt handler
1066 * takes over after sending the data.
1067 */
1068 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070 /* check device status */
1071 if (unlikely((status & ATA_DRQ) == 0)) {
1072 /* handle BSY=0, DRQ=0 as error */
1073 if (likely(status & (ATA_ERR | ATA_DF)))
1074 /* device stops HSM for abort/error */
1075 qc->err_mask |= AC_ERR_DEV;
1076 else {
1077 /* HSM violation. Let EH handle this */
1078 ata_ehi_push_desc(ehi,
1079 "ST_FIRST: !(DRQ|ERR|DF)");
1080 qc->err_mask |= AC_ERR_HSM;
1081 }
1082
1083 ap->hsm_task_state = HSM_ST_ERR;
1084 goto fsm_start;
1085 }
1086
1087 /* Device should not ask for data transfer (DRQ=1)
1088 * when it finds something wrong.
1089 * We ignore DRQ here and stop the HSM by
1090 * changing hsm_task_state to HSM_ST_ERR and
1091 * let the EH abort the command or reset the device.
1092 */
1093 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094 /* Some ATAPI tape drives forget to clear the ERR bit
1095 * when doing the next command (mostly request sense).
1096 * We ignore ERR here to workaround and proceed sending
1097 * the CDB.
1098 */
1099 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100 ata_ehi_push_desc(ehi, "ST_FIRST: "
1101 "DRQ=1 with device error, "
1102 "dev_stat 0x%X", status);
1103 qc->err_mask |= AC_ERR_HSM;
1104 ap->hsm_task_state = HSM_ST_ERR;
1105 goto fsm_start;
1106 }
1107 }
1108
1109 if (qc->tf.protocol == ATA_PROT_PIO) {
1110 /* PIO data out protocol.
1111 * send first data block.
1112 */
1113
1114 /* ata_pio_sectors() might change the state
1115 * to HSM_ST_LAST. so, the state is changed here
1116 * before ata_pio_sectors().
1117 */
1118 ap->hsm_task_state = HSM_ST;
1119 ata_pio_sectors(qc);
1120 } else
1121 /* send CDB */
1122 atapi_send_cdb(ap, qc);
1123
1124 /* if polling, ata_sff_pio_task() handles the rest.
1125 * otherwise, interrupt handler takes over from here.
1126 */
1127 break;
1128
1129 case HSM_ST:
1130 /* complete command or read/write the data register */
1131 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132 /* ATAPI PIO protocol */
1133 if ((status & ATA_DRQ) == 0) {
1134 /* No more data to transfer or device error.
1135 * Device error will be tagged in HSM_ST_LAST.
1136 */
1137 ap->hsm_task_state = HSM_ST_LAST;
1138 goto fsm_start;
1139 }
1140
1141 /* Device should not ask for data transfer (DRQ=1)
1142 * when it finds something wrong.
1143 * We ignore DRQ here and stop the HSM by
1144 * changing hsm_task_state to HSM_ST_ERR and
1145 * let the EH abort the command or reset the device.
1146 */
1147 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149 "DRQ=1 with device error, "
1150 "dev_stat 0x%X", status);
1151 qc->err_mask |= AC_ERR_HSM;
1152 ap->hsm_task_state = HSM_ST_ERR;
1153 goto fsm_start;
1154 }
1155
1156 atapi_pio_bytes(qc);
1157
1158 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159 /* bad ireason reported by device */
1160 goto fsm_start;
1161
1162 } else {
1163 /* ATA PIO protocol */
1164 if (unlikely((status & ATA_DRQ) == 0)) {
1165 /* handle BSY=0, DRQ=0 as error */
1166 if (likely(status & (ATA_ERR | ATA_DF))) {
1167 /* device stops HSM for abort/error */
1168 qc->err_mask |= AC_ERR_DEV;
1169
1170 /* If diagnostic failed and this is
1171 * IDENTIFY, it's likely a phantom
1172 * device. Mark hint.
1173 */
1174 if (qc->dev->horkage &
1175 ATA_HORKAGE_DIAGNOSTIC)
1176 qc->err_mask |=
1177 AC_ERR_NODEV_HINT;
1178 } else {
1179 /* HSM violation. Let EH handle this.
1180 * Phantom devices also trigger this
1181 * condition. Mark hint.
1182 */
1183 ata_ehi_push_desc(ehi, "ST-ATA: "
1184 "DRQ=0 without device error, "
1185 "dev_stat 0x%X", status);
1186 qc->err_mask |= AC_ERR_HSM |
1187 AC_ERR_NODEV_HINT;
1188 }
1189
1190 ap->hsm_task_state = HSM_ST_ERR;
1191 goto fsm_start;
1192 }
1193
1194 /* For PIO reads, some devices may ask for
1195 * data transfer (DRQ=1) alone with ERR=1.
1196 * We respect DRQ here and transfer one
1197 * block of junk data before changing the
1198 * hsm_task_state to HSM_ST_ERR.
1199 *
1200 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201 * sense since the data block has been
1202 * transferred to the device.
1203 */
1204 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205 /* data might be corrputed */
1206 qc->err_mask |= AC_ERR_DEV;
1207
1208 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209 ata_pio_sectors(qc);
1210 status = ata_wait_idle(ap);
1211 }
1212
1213 if (status & (ATA_BUSY | ATA_DRQ)) {
1214 ata_ehi_push_desc(ehi, "ST-ATA: "
1215 "BUSY|DRQ persists on ERR|DF, "
1216 "dev_stat 0x%X", status);
1217 qc->err_mask |= AC_ERR_HSM;
1218 }
1219
1220 /* There are oddball controllers with
1221 * status register stuck at 0x7f and
1222 * lbal/m/h at zero which makes it
1223 * pass all other presence detection
1224 * mechanisms we have. Set NODEV_HINT
1225 * for it. Kernel bz#7241.
1226 */
1227 if (status == 0x7f)
1228 qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230 /* ata_pio_sectors() might change the
1231 * state to HSM_ST_LAST. so, the state
1232 * is changed after ata_pio_sectors().
1233 */
1234 ap->hsm_task_state = HSM_ST_ERR;
1235 goto fsm_start;
1236 }
1237
1238 ata_pio_sectors(qc);
1239
1240 if (ap->hsm_task_state == HSM_ST_LAST &&
1241 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242 /* all data read */
1243 status = ata_wait_idle(ap);
1244 goto fsm_start;
1245 }
1246 }
1247
1248 poll_next = 1;
1249 break;
1250
1251 case HSM_ST_LAST:
1252 if (unlikely(!ata_ok(status))) {
1253 qc->err_mask |= __ac_err_mask(status);
1254 ap->hsm_task_state = HSM_ST_ERR;
1255 goto fsm_start;
1256 }
1257
1258 /* no more data to transfer */
1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260 ap->print_id, qc->dev->devno, status);
1261
1262 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264 ap->hsm_task_state = HSM_ST_IDLE;
1265
1266 /* complete taskfile transaction */
1267 ata_hsm_qc_complete(qc, in_wq);
1268
1269 poll_next = 0;
1270 break;
1271
1272 case HSM_ST_ERR:
1273 ap->hsm_task_state = HSM_ST_IDLE;
1274
1275 /* complete taskfile transaction */
1276 ata_hsm_qc_complete(qc, in_wq);
1277
1278 poll_next = 0;
1279 break;
1280 default:
1281 poll_next = 0;
1282 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283 ap->print_id, ap->hsm_task_state);
1284 }
1285
1286 return poll_next;
1287 }
1288 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289
ata_sff_queue_work(struct work_struct * work)1290 void ata_sff_queue_work(struct work_struct *work)
1291 {
1292 queue_work(ata_sff_wq, work);
1293 }
1294 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1296 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297 {
1298 queue_delayed_work(ata_sff_wq, dwork, delay);
1299 }
1300 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1302 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303 {
1304 struct ata_port *ap = link->ap;
1305
1306 WARN_ON((ap->sff_pio_task_link != NULL) &&
1307 (ap->sff_pio_task_link != link));
1308 ap->sff_pio_task_link = link;
1309
1310 /* may fail if ata_sff_flush_pio_task() in progress */
1311 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312 }
1313 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314
ata_sff_flush_pio_task(struct ata_port * ap)1315 void ata_sff_flush_pio_task(struct ata_port *ap)
1316 {
1317 DPRINTK("ENTER\n");
1318
1319 cancel_delayed_work_sync(&ap->sff_pio_task);
1320
1321 /*
1322 * We wanna reset the HSM state to IDLE. If we do so without
1323 * grabbing the port lock, critical sections protected by it which
1324 * expect the HSM state to stay stable may get surprised. For
1325 * example, we may set IDLE in between the time
1326 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328 */
1329 spin_lock_irq(ap->lock);
1330 ap->hsm_task_state = HSM_ST_IDLE;
1331 spin_unlock_irq(ap->lock);
1332
1333 ap->sff_pio_task_link = NULL;
1334
1335 if (ata_msg_ctl(ap))
1336 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337 }
1338
ata_sff_pio_task(struct work_struct * work)1339 static void ata_sff_pio_task(struct work_struct *work)
1340 {
1341 struct ata_port *ap =
1342 container_of(work, struct ata_port, sff_pio_task.work);
1343 struct ata_link *link = ap->sff_pio_task_link;
1344 struct ata_queued_cmd *qc;
1345 u8 status;
1346 int poll_next;
1347
1348 spin_lock_irq(ap->lock);
1349
1350 BUG_ON(ap->sff_pio_task_link == NULL);
1351 /* qc can be NULL if timeout occurred */
1352 qc = ata_qc_from_tag(ap, link->active_tag);
1353 if (!qc) {
1354 ap->sff_pio_task_link = NULL;
1355 goto out_unlock;
1356 }
1357
1358 fsm_start:
1359 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361 /*
1362 * This is purely heuristic. This is a fast path.
1363 * Sometimes when we enter, BSY will be cleared in
1364 * a chk-status or two. If not, the drive is probably seeking
1365 * or something. Snooze for a couple msecs, then
1366 * chk-status again. If still busy, queue delayed work.
1367 */
1368 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369 if (status & ATA_BUSY) {
1370 spin_unlock_irq(ap->lock);
1371 ata_msleep(ap, 2);
1372 spin_lock_irq(ap->lock);
1373
1374 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375 if (status & ATA_BUSY) {
1376 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377 goto out_unlock;
1378 }
1379 }
1380
1381 /*
1382 * hsm_move() may trigger another command to be processed.
1383 * clean the link beforehand.
1384 */
1385 ap->sff_pio_task_link = NULL;
1386 /* move the HSM */
1387 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388
1389 /* another command or interrupt handler
1390 * may be running at this point.
1391 */
1392 if (poll_next)
1393 goto fsm_start;
1394 out_unlock:
1395 spin_unlock_irq(ap->lock);
1396 }
1397
1398 /**
1399 * ata_sff_qc_issue - issue taskfile to a SFF controller
1400 * @qc: command to issue to device
1401 *
1402 * This function issues a PIO or NODATA command to a SFF
1403 * controller.
1404 *
1405 * LOCKING:
1406 * spin_lock_irqsave(host lock)
1407 *
1408 * RETURNS:
1409 * Zero on success, AC_ERR_* mask on failure
1410 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1411 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412 {
1413 struct ata_port *ap = qc->ap;
1414 struct ata_link *link = qc->dev->link;
1415
1416 /* Use polling pio if the LLD doesn't handle
1417 * interrupt driven pio and atapi CDB interrupt.
1418 */
1419 if (ap->flags & ATA_FLAG_PIO_POLLING)
1420 qc->tf.flags |= ATA_TFLAG_POLLING;
1421
1422 /* select the device */
1423 ata_dev_select(ap, qc->dev->devno, 1, 0);
1424
1425 /* start the command */
1426 switch (qc->tf.protocol) {
1427 case ATA_PROT_NODATA:
1428 if (qc->tf.flags & ATA_TFLAG_POLLING)
1429 ata_qc_set_polling(qc);
1430
1431 ata_tf_to_host(ap, &qc->tf);
1432 ap->hsm_task_state = HSM_ST_LAST;
1433
1434 if (qc->tf.flags & ATA_TFLAG_POLLING)
1435 ata_sff_queue_pio_task(link, 0);
1436
1437 break;
1438
1439 case ATA_PROT_PIO:
1440 if (qc->tf.flags & ATA_TFLAG_POLLING)
1441 ata_qc_set_polling(qc);
1442
1443 ata_tf_to_host(ap, &qc->tf);
1444
1445 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446 /* PIO data out protocol */
1447 ap->hsm_task_state = HSM_ST_FIRST;
1448 ata_sff_queue_pio_task(link, 0);
1449
1450 /* always send first data block using the
1451 * ata_sff_pio_task() codepath.
1452 */
1453 } else {
1454 /* PIO data in protocol */
1455 ap->hsm_task_state = HSM_ST;
1456
1457 if (qc->tf.flags & ATA_TFLAG_POLLING)
1458 ata_sff_queue_pio_task(link, 0);
1459
1460 /* if polling, ata_sff_pio_task() handles the
1461 * rest. otherwise, interrupt handler takes
1462 * over from here.
1463 */
1464 }
1465
1466 break;
1467
1468 case ATAPI_PROT_PIO:
1469 case ATAPI_PROT_NODATA:
1470 if (qc->tf.flags & ATA_TFLAG_POLLING)
1471 ata_qc_set_polling(qc);
1472
1473 ata_tf_to_host(ap, &qc->tf);
1474
1475 ap->hsm_task_state = HSM_ST_FIRST;
1476
1477 /* send cdb by polling if no cdb interrupt */
1478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479 (qc->tf.flags & ATA_TFLAG_POLLING))
1480 ata_sff_queue_pio_task(link, 0);
1481 break;
1482
1483 default:
1484 return AC_ERR_SYSTEM;
1485 }
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1490
1491 /**
1492 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1493 * @qc: qc to fill result TF for
1494 *
1495 * @qc is finished and result TF needs to be filled. Fill it
1496 * using ->sff_tf_read.
1497 *
1498 * LOCKING:
1499 * spin_lock_irqsave(host lock)
1500 *
1501 * RETURNS:
1502 * true indicating that result TF is successfully filled.
1503 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1504 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1505 {
1506 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1507 return true;
1508 }
1509 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1510
ata_sff_idle_irq(struct ata_port * ap)1511 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1512 {
1513 ap->stats.idle_irq++;
1514
1515 #ifdef ATA_IRQ_TRAP
1516 if ((ap->stats.idle_irq % 1000) == 0) {
1517 ap->ops->sff_check_status(ap);
1518 if (ap->ops->sff_irq_clear)
1519 ap->ops->sff_irq_clear(ap);
1520 ata_port_warn(ap, "irq trap\n");
1521 return 1;
1522 }
1523 #endif
1524 return 0; /* irq not handled */
1525 }
1526
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1527 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1528 struct ata_queued_cmd *qc,
1529 bool hsmv_on_idle)
1530 {
1531 u8 status;
1532
1533 VPRINTK("ata%u: protocol %d task_state %d\n",
1534 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1535
1536 /* Check whether we are expecting interrupt in this state */
1537 switch (ap->hsm_task_state) {
1538 case HSM_ST_FIRST:
1539 /* Some pre-ATAPI-4 devices assert INTRQ
1540 * at this state when ready to receive CDB.
1541 */
1542
1543 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1544 * The flag was turned on only for atapi devices. No
1545 * need to check ata_is_atapi(qc->tf.protocol) again.
1546 */
1547 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1548 return ata_sff_idle_irq(ap);
1549 break;
1550 case HSM_ST_IDLE:
1551 return ata_sff_idle_irq(ap);
1552 default:
1553 break;
1554 }
1555
1556 /* check main status, clearing INTRQ if needed */
1557 status = ata_sff_irq_status(ap);
1558 if (status & ATA_BUSY) {
1559 if (hsmv_on_idle) {
1560 /* BMDMA engine is already stopped, we're screwed */
1561 qc->err_mask |= AC_ERR_HSM;
1562 ap->hsm_task_state = HSM_ST_ERR;
1563 } else
1564 return ata_sff_idle_irq(ap);
1565 }
1566
1567 /* clear irq events */
1568 if (ap->ops->sff_irq_clear)
1569 ap->ops->sff_irq_clear(ap);
1570
1571 ata_sff_hsm_move(ap, qc, status, 0);
1572
1573 return 1; /* irq handled */
1574 }
1575
1576 /**
1577 * ata_sff_port_intr - Handle SFF port interrupt
1578 * @ap: Port on which interrupt arrived (possibly...)
1579 * @qc: Taskfile currently active in engine
1580 *
1581 * Handle port interrupt for given queued command.
1582 *
1583 * LOCKING:
1584 * spin_lock_irqsave(host lock)
1585 *
1586 * RETURNS:
1587 * One if interrupt was handled, zero if not (shared irq).
1588 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1589 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1590 {
1591 return __ata_sff_port_intr(ap, qc, false);
1592 }
1593 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1594
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1595 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1596 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1597 {
1598 struct ata_host *host = dev_instance;
1599 bool retried = false;
1600 unsigned int i;
1601 unsigned int handled, idle, polling;
1602 unsigned long flags;
1603
1604 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1605 spin_lock_irqsave(&host->lock, flags);
1606
1607 retry:
1608 handled = idle = polling = 0;
1609 for (i = 0; i < host->n_ports; i++) {
1610 struct ata_port *ap = host->ports[i];
1611 struct ata_queued_cmd *qc;
1612
1613 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1614 if (qc) {
1615 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1616 handled |= port_intr(ap, qc);
1617 else
1618 polling |= 1 << i;
1619 } else
1620 idle |= 1 << i;
1621 }
1622
1623 /*
1624 * If no port was expecting IRQ but the controller is actually
1625 * asserting IRQ line, nobody cared will ensue. Check IRQ
1626 * pending status if available and clear spurious IRQ.
1627 */
1628 if (!handled && !retried) {
1629 bool retry = false;
1630
1631 for (i = 0; i < host->n_ports; i++) {
1632 struct ata_port *ap = host->ports[i];
1633
1634 if (polling & (1 << i))
1635 continue;
1636
1637 if (!ap->ops->sff_irq_check ||
1638 !ap->ops->sff_irq_check(ap))
1639 continue;
1640
1641 if (idle & (1 << i)) {
1642 ap->ops->sff_check_status(ap);
1643 if (ap->ops->sff_irq_clear)
1644 ap->ops->sff_irq_clear(ap);
1645 } else {
1646 /* clear INTRQ and check if BUSY cleared */
1647 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1648 retry |= true;
1649 /*
1650 * With command in flight, we can't do
1651 * sff_irq_clear() w/o racing with completion.
1652 */
1653 }
1654 }
1655
1656 if (retry) {
1657 retried = true;
1658 goto retry;
1659 }
1660 }
1661
1662 spin_unlock_irqrestore(&host->lock, flags);
1663
1664 return IRQ_RETVAL(handled);
1665 }
1666
1667 /**
1668 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1669 * @irq: irq line (unused)
1670 * @dev_instance: pointer to our ata_host information structure
1671 *
1672 * Default interrupt handler for PCI IDE devices. Calls
1673 * ata_sff_port_intr() for each port that is not disabled.
1674 *
1675 * LOCKING:
1676 * Obtains host lock during operation.
1677 *
1678 * RETURNS:
1679 * IRQ_NONE or IRQ_HANDLED.
1680 */
ata_sff_interrupt(int irq,void * dev_instance)1681 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1682 {
1683 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1684 }
1685 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1686
1687 /**
1688 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1689 * @ap: port that appears to have timed out
1690 *
1691 * Called from the libata error handlers when the core code suspects
1692 * an interrupt has been lost. If it has complete anything we can and
1693 * then return. Interface must support altstatus for this faster
1694 * recovery to occur.
1695 *
1696 * Locking:
1697 * Caller holds host lock
1698 */
1699
ata_sff_lost_interrupt(struct ata_port * ap)1700 void ata_sff_lost_interrupt(struct ata_port *ap)
1701 {
1702 u8 status;
1703 struct ata_queued_cmd *qc;
1704
1705 /* Only one outstanding command per SFF channel */
1706 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1707 /* We cannot lose an interrupt on a non-existent or polled command */
1708 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1709 return;
1710 /* See if the controller thinks it is still busy - if so the command
1711 isn't a lost IRQ but is still in progress */
1712 status = ata_sff_altstatus(ap);
1713 if (status & ATA_BUSY)
1714 return;
1715
1716 /* There was a command running, we are no longer busy and we have
1717 no interrupt. */
1718 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1719 status);
1720 /* Run the host interrupt logic as if the interrupt had not been
1721 lost */
1722 ata_sff_port_intr(ap, qc);
1723 }
1724 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1725
1726 /**
1727 * ata_sff_freeze - Freeze SFF controller port
1728 * @ap: port to freeze
1729 *
1730 * Freeze SFF controller port.
1731 *
1732 * LOCKING:
1733 * Inherited from caller.
1734 */
ata_sff_freeze(struct ata_port * ap)1735 void ata_sff_freeze(struct ata_port *ap)
1736 {
1737 ap->ctl |= ATA_NIEN;
1738 ap->last_ctl = ap->ctl;
1739
1740 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1741 ata_sff_set_devctl(ap, ap->ctl);
1742
1743 /* Under certain circumstances, some controllers raise IRQ on
1744 * ATA_NIEN manipulation. Also, many controllers fail to mask
1745 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1746 */
1747 ap->ops->sff_check_status(ap);
1748
1749 if (ap->ops->sff_irq_clear)
1750 ap->ops->sff_irq_clear(ap);
1751 }
1752 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1753
1754 /**
1755 * ata_sff_thaw - Thaw SFF controller port
1756 * @ap: port to thaw
1757 *
1758 * Thaw SFF controller port.
1759 *
1760 * LOCKING:
1761 * Inherited from caller.
1762 */
ata_sff_thaw(struct ata_port * ap)1763 void ata_sff_thaw(struct ata_port *ap)
1764 {
1765 /* clear & re-enable interrupts */
1766 ap->ops->sff_check_status(ap);
1767 if (ap->ops->sff_irq_clear)
1768 ap->ops->sff_irq_clear(ap);
1769 ata_sff_irq_on(ap);
1770 }
1771 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1772
1773 /**
1774 * ata_sff_prereset - prepare SFF link for reset
1775 * @link: SFF link to be reset
1776 * @deadline: deadline jiffies for the operation
1777 *
1778 * SFF link @link is about to be reset. Initialize it. It first
1779 * calls ata_std_prereset() and wait for !BSY if the port is
1780 * being softreset.
1781 *
1782 * LOCKING:
1783 * Kernel thread context (may sleep)
1784 *
1785 * RETURNS:
1786 * 0 on success, -errno otherwise.
1787 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1788 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1789 {
1790 struct ata_eh_context *ehc = &link->eh_context;
1791 int rc;
1792
1793 rc = ata_std_prereset(link, deadline);
1794 if (rc)
1795 return rc;
1796
1797 /* if we're about to do hardreset, nothing more to do */
1798 if (ehc->i.action & ATA_EH_HARDRESET)
1799 return 0;
1800
1801 /* wait for !BSY if we don't know that no device is attached */
1802 if (!ata_link_offline(link)) {
1803 rc = ata_sff_wait_ready(link, deadline);
1804 if (rc && rc != -ENODEV) {
1805 ata_link_warn(link,
1806 "device not ready (errno=%d), forcing hardreset\n",
1807 rc);
1808 ehc->i.action |= ATA_EH_HARDRESET;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1815
1816 /**
1817 * ata_devchk - PATA device presence detection
1818 * @ap: ATA channel to examine
1819 * @device: Device to examine (starting at zero)
1820 *
1821 * This technique was originally described in
1822 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1823 * later found its way into the ATA/ATAPI spec.
1824 *
1825 * Write a pattern to the ATA shadow registers,
1826 * and if a device is present, it will respond by
1827 * correctly storing and echoing back the
1828 * ATA shadow register contents.
1829 *
1830 * LOCKING:
1831 * caller.
1832 */
ata_devchk(struct ata_port * ap,unsigned int device)1833 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1834 {
1835 struct ata_ioports *ioaddr = &ap->ioaddr;
1836 u8 nsect, lbal;
1837
1838 ap->ops->sff_dev_select(ap, device);
1839
1840 iowrite8(0x55, ioaddr->nsect_addr);
1841 iowrite8(0xaa, ioaddr->lbal_addr);
1842
1843 iowrite8(0xaa, ioaddr->nsect_addr);
1844 iowrite8(0x55, ioaddr->lbal_addr);
1845
1846 iowrite8(0x55, ioaddr->nsect_addr);
1847 iowrite8(0xaa, ioaddr->lbal_addr);
1848
1849 nsect = ioread8(ioaddr->nsect_addr);
1850 lbal = ioread8(ioaddr->lbal_addr);
1851
1852 if ((nsect == 0x55) && (lbal == 0xaa))
1853 return 1; /* we found a device */
1854
1855 return 0; /* nothing found */
1856 }
1857
1858 /**
1859 * ata_sff_dev_classify - Parse returned ATA device signature
1860 * @dev: ATA device to classify (starting at zero)
1861 * @present: device seems present
1862 * @r_err: Value of error register on completion
1863 *
1864 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1865 * an ATA/ATAPI-defined set of values is placed in the ATA
1866 * shadow registers, indicating the results of device detection
1867 * and diagnostics.
1868 *
1869 * Select the ATA device, and read the values from the ATA shadow
1870 * registers. Then parse according to the Error register value,
1871 * and the spec-defined values examined by ata_dev_classify().
1872 *
1873 * LOCKING:
1874 * caller.
1875 *
1876 * RETURNS:
1877 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1878 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1879 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1880 u8 *r_err)
1881 {
1882 struct ata_port *ap = dev->link->ap;
1883 struct ata_taskfile tf;
1884 unsigned int class;
1885 u8 err;
1886
1887 ap->ops->sff_dev_select(ap, dev->devno);
1888
1889 memset(&tf, 0, sizeof(tf));
1890
1891 ap->ops->sff_tf_read(ap, &tf);
1892 err = tf.feature;
1893 if (r_err)
1894 *r_err = err;
1895
1896 /* see if device passed diags: continue and warn later */
1897 if (err == 0)
1898 /* diagnostic fail : do nothing _YET_ */
1899 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1900 else if (err == 1)
1901 /* do nothing */ ;
1902 else if ((dev->devno == 0) && (err == 0x81))
1903 /* do nothing */ ;
1904 else
1905 return ATA_DEV_NONE;
1906
1907 /* determine if device is ATA or ATAPI */
1908 class = ata_dev_classify(&tf);
1909
1910 if (class == ATA_DEV_UNKNOWN) {
1911 /* If the device failed diagnostic, it's likely to
1912 * have reported incorrect device signature too.
1913 * Assume ATA device if the device seems present but
1914 * device signature is invalid with diagnostic
1915 * failure.
1916 */
1917 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1918 class = ATA_DEV_ATA;
1919 else
1920 class = ATA_DEV_NONE;
1921 } else if ((class == ATA_DEV_ATA) &&
1922 (ap->ops->sff_check_status(ap) == 0))
1923 class = ATA_DEV_NONE;
1924
1925 return class;
1926 }
1927 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1928
1929 /**
1930 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1931 * @link: SFF link which is just reset
1932 * @devmask: mask of present devices
1933 * @deadline: deadline jiffies for the operation
1934 *
1935 * Wait devices attached to SFF @link to become ready after
1936 * reset. It contains preceding 150ms wait to avoid accessing TF
1937 * status register too early.
1938 *
1939 * LOCKING:
1940 * Kernel thread context (may sleep).
1941 *
1942 * RETURNS:
1943 * 0 on success, -ENODEV if some or all of devices in @devmask
1944 * don't seem to exist. -errno on other errors.
1945 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1946 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1947 unsigned long deadline)
1948 {
1949 struct ata_port *ap = link->ap;
1950 struct ata_ioports *ioaddr = &ap->ioaddr;
1951 unsigned int dev0 = devmask & (1 << 0);
1952 unsigned int dev1 = devmask & (1 << 1);
1953 int rc, ret = 0;
1954
1955 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1956
1957 /* always check readiness of the master device */
1958 rc = ata_sff_wait_ready(link, deadline);
1959 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1960 * and TF status is 0xff, bail out on it too.
1961 */
1962 if (rc)
1963 return rc;
1964
1965 /* if device 1 was found in ata_devchk, wait for register
1966 * access briefly, then wait for BSY to clear.
1967 */
1968 if (dev1) {
1969 int i;
1970
1971 ap->ops->sff_dev_select(ap, 1);
1972
1973 /* Wait for register access. Some ATAPI devices fail
1974 * to set nsect/lbal after reset, so don't waste too
1975 * much time on it. We're gonna wait for !BSY anyway.
1976 */
1977 for (i = 0; i < 2; i++) {
1978 u8 nsect, lbal;
1979
1980 nsect = ioread8(ioaddr->nsect_addr);
1981 lbal = ioread8(ioaddr->lbal_addr);
1982 if ((nsect == 1) && (lbal == 1))
1983 break;
1984 ata_msleep(ap, 50); /* give drive a breather */
1985 }
1986
1987 rc = ata_sff_wait_ready(link, deadline);
1988 if (rc) {
1989 if (rc != -ENODEV)
1990 return rc;
1991 ret = rc;
1992 }
1993 }
1994
1995 /* is all this really necessary? */
1996 ap->ops->sff_dev_select(ap, 0);
1997 if (dev1)
1998 ap->ops->sff_dev_select(ap, 1);
1999 if (dev0)
2000 ap->ops->sff_dev_select(ap, 0);
2001
2002 return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2005
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2006 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2007 unsigned long deadline)
2008 {
2009 struct ata_ioports *ioaddr = &ap->ioaddr;
2010
2011 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2012
2013 if (ap->ioaddr.ctl_addr) {
2014 /* software reset. causes dev0 to be selected */
2015 iowrite8(ap->ctl, ioaddr->ctl_addr);
2016 udelay(20); /* FIXME: flush */
2017 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2018 udelay(20); /* FIXME: flush */
2019 iowrite8(ap->ctl, ioaddr->ctl_addr);
2020 ap->last_ctl = ap->ctl;
2021 }
2022
2023 /* wait the port to become ready */
2024 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2025 }
2026
2027 /**
2028 * ata_sff_softreset - reset host port via ATA SRST
2029 * @link: ATA link to reset
2030 * @classes: resulting classes of attached devices
2031 * @deadline: deadline jiffies for the operation
2032 *
2033 * Reset host port using ATA SRST.
2034 *
2035 * LOCKING:
2036 * Kernel thread context (may sleep)
2037 *
2038 * RETURNS:
2039 * 0 on success, -errno otherwise.
2040 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2041 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2042 unsigned long deadline)
2043 {
2044 struct ata_port *ap = link->ap;
2045 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2046 unsigned int devmask = 0;
2047 int rc;
2048 u8 err;
2049
2050 DPRINTK("ENTER\n");
2051
2052 /* determine if device 0/1 are present */
2053 if (ata_devchk(ap, 0))
2054 devmask |= (1 << 0);
2055 if (slave_possible && ata_devchk(ap, 1))
2056 devmask |= (1 << 1);
2057
2058 /* select device 0 again */
2059 ap->ops->sff_dev_select(ap, 0);
2060
2061 /* issue bus reset */
2062 DPRINTK("about to softreset, devmask=%x\n", devmask);
2063 rc = ata_bus_softreset(ap, devmask, deadline);
2064 /* if link is occupied, -ENODEV too is an error */
2065 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2066 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2067 return rc;
2068 }
2069
2070 /* determine by signature whether we have ATA or ATAPI devices */
2071 classes[0] = ata_sff_dev_classify(&link->device[0],
2072 devmask & (1 << 0), &err);
2073 if (slave_possible && err != 0x81)
2074 classes[1] = ata_sff_dev_classify(&link->device[1],
2075 devmask & (1 << 1), &err);
2076
2077 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2078 return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2081
2082 /**
2083 * sata_sff_hardreset - reset host port via SATA phy reset
2084 * @link: link to reset
2085 * @class: resulting class of attached device
2086 * @deadline: deadline jiffies for the operation
2087 *
2088 * SATA phy-reset host port using DET bits of SControl register,
2089 * wait for !BSY and classify the attached device.
2090 *
2091 * LOCKING:
2092 * Kernel thread context (may sleep)
2093 *
2094 * RETURNS:
2095 * 0 on success, -errno otherwise.
2096 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2097 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2098 unsigned long deadline)
2099 {
2100 struct ata_eh_context *ehc = &link->eh_context;
2101 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2102 bool online;
2103 int rc;
2104
2105 rc = sata_link_hardreset(link, timing, deadline, &online,
2106 ata_sff_check_ready);
2107 if (online)
2108 *class = ata_sff_dev_classify(link->device, 1, NULL);
2109
2110 DPRINTK("EXIT, class=%u\n", *class);
2111 return rc;
2112 }
2113 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2114
2115 /**
2116 * ata_sff_postreset - SFF postreset callback
2117 * @link: the target SFF ata_link
2118 * @classes: classes of attached devices
2119 *
2120 * This function is invoked after a successful reset. It first
2121 * calls ata_std_postreset() and performs SFF specific postreset
2122 * processing.
2123 *
2124 * LOCKING:
2125 * Kernel thread context (may sleep)
2126 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2127 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2128 {
2129 struct ata_port *ap = link->ap;
2130
2131 ata_std_postreset(link, classes);
2132
2133 /* is double-select really necessary? */
2134 if (classes[0] != ATA_DEV_NONE)
2135 ap->ops->sff_dev_select(ap, 1);
2136 if (classes[1] != ATA_DEV_NONE)
2137 ap->ops->sff_dev_select(ap, 0);
2138
2139 /* bail out if no device is present */
2140 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2141 DPRINTK("EXIT, no device\n");
2142 return;
2143 }
2144
2145 /* set up device control */
2146 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2147 ata_sff_set_devctl(ap, ap->ctl);
2148 ap->last_ctl = ap->ctl;
2149 }
2150 }
2151 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2152
2153 /**
2154 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2155 * @qc: command
2156 *
2157 * Drain the FIFO and device of any stuck data following a command
2158 * failing to complete. In some cases this is necessary before a
2159 * reset will recover the device.
2160 *
2161 */
2162
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2163 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2164 {
2165 int count;
2166 struct ata_port *ap;
2167
2168 /* We only need to flush incoming data when a command was running */
2169 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2170 return;
2171
2172 ap = qc->ap;
2173 /* Drain up to 64K of data before we give up this recovery method */
2174 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2175 && count < 65536; count += 2)
2176 ioread16(ap->ioaddr.data_addr);
2177
2178 /* Can become DEBUG later */
2179 if (count)
2180 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2181
2182 }
2183 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2184
2185 /**
2186 * ata_sff_error_handler - Stock error handler for SFF controller
2187 * @ap: port to handle error for
2188 *
2189 * Stock error handler for SFF controller. It can handle both
2190 * PATA and SATA controllers. Many controllers should be able to
2191 * use this EH as-is or with some added handling before and
2192 * after.
2193 *
2194 * LOCKING:
2195 * Kernel thread context (may sleep)
2196 */
ata_sff_error_handler(struct ata_port * ap)2197 void ata_sff_error_handler(struct ata_port *ap)
2198 {
2199 ata_reset_fn_t softreset = ap->ops->softreset;
2200 ata_reset_fn_t hardreset = ap->ops->hardreset;
2201 struct ata_queued_cmd *qc;
2202 unsigned long flags;
2203
2204 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2205 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2206 qc = NULL;
2207
2208 spin_lock_irqsave(ap->lock, flags);
2209
2210 /*
2211 * We *MUST* do FIFO draining before we issue a reset as
2212 * several devices helpfully clear their internal state and
2213 * will lock solid if we touch the data port post reset. Pass
2214 * qc in case anyone wants to do different PIO/DMA recovery or
2215 * has per command fixups
2216 */
2217 if (ap->ops->sff_drain_fifo)
2218 ap->ops->sff_drain_fifo(qc);
2219
2220 spin_unlock_irqrestore(ap->lock, flags);
2221
2222 /* ignore built-in hardresets if SCR access is not available */
2223 if ((hardreset == sata_std_hardreset ||
2224 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2225 hardreset = NULL;
2226
2227 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2228 ap->ops->postreset);
2229 }
2230 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2231
2232 /**
2233 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2234 * @ioaddr: IO address structure to be initialized
2235 *
2236 * Utility function which initializes data_addr, error_addr,
2237 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2238 * device_addr, status_addr, and command_addr to standard offsets
2239 * relative to cmd_addr.
2240 *
2241 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2243 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2244 {
2245 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2246 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2247 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2248 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2249 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2250 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2251 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2252 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2253 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2254 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2255 }
2256 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2257
2258 #ifdef CONFIG_PCI
2259
ata_resources_present(struct pci_dev * pdev,int port)2260 static int ata_resources_present(struct pci_dev *pdev, int port)
2261 {
2262 int i;
2263
2264 /* Check the PCI resources for this channel are enabled */
2265 port = port * 2;
2266 for (i = 0; i < 2; i++) {
2267 if (pci_resource_start(pdev, port + i) == 0 ||
2268 pci_resource_len(pdev, port + i) == 0)
2269 return 0;
2270 }
2271 return 1;
2272 }
2273
2274 /**
2275 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2276 * @host: target ATA host
2277 *
2278 * Acquire native PCI ATA resources for @host and initialize the
2279 * first two ports of @host accordingly. Ports marked dummy are
2280 * skipped and allocation failure makes the port dummy.
2281 *
2282 * Note that native PCI resources are valid even for legacy hosts
2283 * as we fix up pdev resources array early in boot, so this
2284 * function can be used for both native and legacy SFF hosts.
2285 *
2286 * LOCKING:
2287 * Inherited from calling layer (may sleep).
2288 *
2289 * RETURNS:
2290 * 0 if at least one port is initialized, -ENODEV if no port is
2291 * available.
2292 */
ata_pci_sff_init_host(struct ata_host * host)2293 int ata_pci_sff_init_host(struct ata_host *host)
2294 {
2295 struct device *gdev = host->dev;
2296 struct pci_dev *pdev = to_pci_dev(gdev);
2297 unsigned int mask = 0;
2298 int i, rc;
2299
2300 /* request, iomap BARs and init port addresses accordingly */
2301 for (i = 0; i < 2; i++) {
2302 struct ata_port *ap = host->ports[i];
2303 int base = i * 2;
2304 void __iomem * const *iomap;
2305
2306 if (ata_port_is_dummy(ap))
2307 continue;
2308
2309 /* Discard disabled ports. Some controllers show
2310 * their unused channels this way. Disabled ports are
2311 * made dummy.
2312 */
2313 if (!ata_resources_present(pdev, i)) {
2314 ap->ops = &ata_dummy_port_ops;
2315 continue;
2316 }
2317
2318 rc = pcim_iomap_regions(pdev, 0x3 << base,
2319 dev_driver_string(gdev));
2320 if (rc) {
2321 dev_warn(gdev,
2322 "failed to request/iomap BARs for port %d (errno=%d)\n",
2323 i, rc);
2324 if (rc == -EBUSY)
2325 pcim_pin_device(pdev);
2326 ap->ops = &ata_dummy_port_ops;
2327 continue;
2328 }
2329 host->iomap = iomap = pcim_iomap_table(pdev);
2330
2331 ap->ioaddr.cmd_addr = iomap[base];
2332 ap->ioaddr.altstatus_addr =
2333 ap->ioaddr.ctl_addr = (void __iomem *)
2334 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2335 ata_sff_std_ports(&ap->ioaddr);
2336
2337 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2338 (unsigned long long)pci_resource_start(pdev, base),
2339 (unsigned long long)pci_resource_start(pdev, base + 1));
2340
2341 mask |= 1 << i;
2342 }
2343
2344 if (!mask) {
2345 dev_err(gdev, "no available native port\n");
2346 return -ENODEV;
2347 }
2348
2349 return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2352
2353 /**
2354 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2355 * @pdev: target PCI device
2356 * @ppi: array of port_info, must be enough for two ports
2357 * @r_host: out argument for the initialized ATA host
2358 *
2359 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2360 * all PCI resources and initialize it accordingly in one go.
2361 *
2362 * LOCKING:
2363 * Inherited from calling layer (may sleep).
2364 *
2365 * RETURNS:
2366 * 0 on success, -errno otherwise.
2367 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2368 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2369 const struct ata_port_info * const *ppi,
2370 struct ata_host **r_host)
2371 {
2372 struct ata_host *host;
2373 int rc;
2374
2375 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2376 return -ENOMEM;
2377
2378 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2379 if (!host) {
2380 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2381 rc = -ENOMEM;
2382 goto err_out;
2383 }
2384
2385 rc = ata_pci_sff_init_host(host);
2386 if (rc)
2387 goto err_out;
2388
2389 devres_remove_group(&pdev->dev, NULL);
2390 *r_host = host;
2391 return 0;
2392
2393 err_out:
2394 devres_release_group(&pdev->dev, NULL);
2395 return rc;
2396 }
2397 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2398
2399 /**
2400 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2401 * @host: target SFF ATA host
2402 * @irq_handler: irq_handler used when requesting IRQ(s)
2403 * @sht: scsi_host_template to use when registering the host
2404 *
2405 * This is the counterpart of ata_host_activate() for SFF ATA
2406 * hosts. This separate helper is necessary because SFF hosts
2407 * use two separate interrupts in legacy mode.
2408 *
2409 * LOCKING:
2410 * Inherited from calling layer (may sleep).
2411 *
2412 * RETURNS:
2413 * 0 on success, -errno otherwise.
2414 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2415 int ata_pci_sff_activate_host(struct ata_host *host,
2416 irq_handler_t irq_handler,
2417 struct scsi_host_template *sht)
2418 {
2419 struct device *dev = host->dev;
2420 struct pci_dev *pdev = to_pci_dev(dev);
2421 const char *drv_name = dev_driver_string(host->dev);
2422 int legacy_mode = 0, rc;
2423
2424 rc = ata_host_start(host);
2425 if (rc)
2426 return rc;
2427
2428 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2429 u8 tmp8, mask;
2430
2431 /* TODO: What if one channel is in native mode ... */
2432 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2433 mask = (1 << 2) | (1 << 0);
2434 if ((tmp8 & mask) != mask)
2435 legacy_mode = 1;
2436 }
2437
2438 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2439 return -ENOMEM;
2440
2441 if (!legacy_mode && pdev->irq) {
2442 int i;
2443
2444 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2445 IRQF_SHARED, drv_name, host);
2446 if (rc)
2447 goto out;
2448
2449 for (i = 0; i < 2; i++) {
2450 if (ata_port_is_dummy(host->ports[i]))
2451 continue;
2452 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2453 }
2454 } else if (legacy_mode) {
2455 if (!ata_port_is_dummy(host->ports[0])) {
2456 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2457 irq_handler, IRQF_SHARED,
2458 drv_name, host);
2459 if (rc)
2460 goto out;
2461
2462 ata_port_desc(host->ports[0], "irq %d",
2463 ATA_PRIMARY_IRQ(pdev));
2464 }
2465
2466 if (!ata_port_is_dummy(host->ports[1])) {
2467 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2468 irq_handler, IRQF_SHARED,
2469 drv_name, host);
2470 if (rc)
2471 goto out;
2472
2473 ata_port_desc(host->ports[1], "irq %d",
2474 ATA_SECONDARY_IRQ(pdev));
2475 }
2476 }
2477
2478 rc = ata_host_register(host, sht);
2479 out:
2480 if (rc == 0)
2481 devres_remove_group(dev, NULL);
2482 else
2483 devres_release_group(dev, NULL);
2484
2485 return rc;
2486 }
2487 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2488
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2489 static const struct ata_port_info *ata_sff_find_valid_pi(
2490 const struct ata_port_info * const *ppi)
2491 {
2492 int i;
2493
2494 /* look up the first valid port_info */
2495 for (i = 0; i < 2 && ppi[i]; i++)
2496 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2497 return ppi[i];
2498
2499 return NULL;
2500 }
2501
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2502 static int ata_pci_init_one(struct pci_dev *pdev,
2503 const struct ata_port_info * const *ppi,
2504 struct scsi_host_template *sht, void *host_priv,
2505 int hflags, bool bmdma)
2506 {
2507 struct device *dev = &pdev->dev;
2508 const struct ata_port_info *pi;
2509 struct ata_host *host = NULL;
2510 int rc;
2511
2512 DPRINTK("ENTER\n");
2513
2514 pi = ata_sff_find_valid_pi(ppi);
2515 if (!pi) {
2516 dev_err(&pdev->dev, "no valid port_info specified\n");
2517 return -EINVAL;
2518 }
2519
2520 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2521 return -ENOMEM;
2522
2523 rc = pcim_enable_device(pdev);
2524 if (rc)
2525 goto out;
2526
2527 #ifdef CONFIG_ATA_BMDMA
2528 if (bmdma)
2529 /* prepare and activate BMDMA host */
2530 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2531 else
2532 #endif
2533 /* prepare and activate SFF host */
2534 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2535 if (rc)
2536 goto out;
2537 host->private_data = host_priv;
2538 host->flags |= hflags;
2539
2540 #ifdef CONFIG_ATA_BMDMA
2541 if (bmdma) {
2542 pci_set_master(pdev);
2543 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2544 } else
2545 #endif
2546 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2547 out:
2548 if (rc == 0)
2549 devres_remove_group(&pdev->dev, NULL);
2550 else
2551 devres_release_group(&pdev->dev, NULL);
2552
2553 return rc;
2554 }
2555
2556 /**
2557 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2558 * @pdev: Controller to be initialized
2559 * @ppi: array of port_info, must be enough for two ports
2560 * @sht: scsi_host_template to use when registering the host
2561 * @host_priv: host private_data
2562 * @hflag: host flags
2563 *
2564 * This is a helper function which can be called from a driver's
2565 * xxx_init_one() probe function if the hardware uses traditional
2566 * IDE taskfile registers and is PIO only.
2567 *
2568 * ASSUMPTION:
2569 * Nobody makes a single channel controller that appears solely as
2570 * the secondary legacy port on PCI.
2571 *
2572 * LOCKING:
2573 * Inherited from PCI layer (may sleep).
2574 *
2575 * RETURNS:
2576 * Zero on success, negative on errno-based value on error.
2577 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2578 int ata_pci_sff_init_one(struct pci_dev *pdev,
2579 const struct ata_port_info * const *ppi,
2580 struct scsi_host_template *sht, void *host_priv, int hflag)
2581 {
2582 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2583 }
2584 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2585
2586 #endif /* CONFIG_PCI */
2587
2588 /*
2589 * BMDMA support
2590 */
2591
2592 #ifdef CONFIG_ATA_BMDMA
2593
2594 const struct ata_port_operations ata_bmdma_port_ops = {
2595 .inherits = &ata_sff_port_ops,
2596
2597 .error_handler = ata_bmdma_error_handler,
2598 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2599
2600 .qc_prep = ata_bmdma_qc_prep,
2601 .qc_issue = ata_bmdma_qc_issue,
2602
2603 .sff_irq_clear = ata_bmdma_irq_clear,
2604 .bmdma_setup = ata_bmdma_setup,
2605 .bmdma_start = ata_bmdma_start,
2606 .bmdma_stop = ata_bmdma_stop,
2607 .bmdma_status = ata_bmdma_status,
2608
2609 .port_start = ata_bmdma_port_start,
2610 };
2611 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2612
2613 const struct ata_port_operations ata_bmdma32_port_ops = {
2614 .inherits = &ata_bmdma_port_ops,
2615
2616 .sff_data_xfer = ata_sff_data_xfer32,
2617 .port_start = ata_bmdma_port_start32,
2618 };
2619 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2620
2621 /**
2622 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2623 * @qc: Metadata associated with taskfile to be transferred
2624 *
2625 * Fill PCI IDE PRD (scatter-gather) table with segments
2626 * associated with the current disk command.
2627 *
2628 * LOCKING:
2629 * spin_lock_irqsave(host lock)
2630 *
2631 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2632 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2633 {
2634 struct ata_port *ap = qc->ap;
2635 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2636 struct scatterlist *sg;
2637 unsigned int si, pi;
2638
2639 pi = 0;
2640 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2641 u32 addr, offset;
2642 u32 sg_len, len;
2643
2644 /* determine if physical DMA addr spans 64K boundary.
2645 * Note h/w doesn't support 64-bit, so we unconditionally
2646 * truncate dma_addr_t to u32.
2647 */
2648 addr = (u32) sg_dma_address(sg);
2649 sg_len = sg_dma_len(sg);
2650
2651 while (sg_len) {
2652 offset = addr & 0xffff;
2653 len = sg_len;
2654 if ((offset + sg_len) > 0x10000)
2655 len = 0x10000 - offset;
2656
2657 prd[pi].addr = cpu_to_le32(addr);
2658 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2659 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2660
2661 pi++;
2662 sg_len -= len;
2663 addr += len;
2664 }
2665 }
2666
2667 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2668 }
2669
2670 /**
2671 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2672 * @qc: Metadata associated with taskfile to be transferred
2673 *
2674 * Fill PCI IDE PRD (scatter-gather) table with segments
2675 * associated with the current disk command. Perform the fill
2676 * so that we avoid writing any length 64K records for
2677 * controllers that don't follow the spec.
2678 *
2679 * LOCKING:
2680 * spin_lock_irqsave(host lock)
2681 *
2682 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2683 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2684 {
2685 struct ata_port *ap = qc->ap;
2686 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2687 struct scatterlist *sg;
2688 unsigned int si, pi;
2689
2690 pi = 0;
2691 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2692 u32 addr, offset;
2693 u32 sg_len, len, blen;
2694
2695 /* determine if physical DMA addr spans 64K boundary.
2696 * Note h/w doesn't support 64-bit, so we unconditionally
2697 * truncate dma_addr_t to u32.
2698 */
2699 addr = (u32) sg_dma_address(sg);
2700 sg_len = sg_dma_len(sg);
2701
2702 while (sg_len) {
2703 offset = addr & 0xffff;
2704 len = sg_len;
2705 if ((offset + sg_len) > 0x10000)
2706 len = 0x10000 - offset;
2707
2708 blen = len & 0xffff;
2709 prd[pi].addr = cpu_to_le32(addr);
2710 if (blen == 0) {
2711 /* Some PATA chipsets like the CS5530 can't
2712 cope with 0x0000 meaning 64K as the spec
2713 says */
2714 prd[pi].flags_len = cpu_to_le32(0x8000);
2715 blen = 0x8000;
2716 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2717 }
2718 prd[pi].flags_len = cpu_to_le32(blen);
2719 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2720
2721 pi++;
2722 sg_len -= len;
2723 addr += len;
2724 }
2725 }
2726
2727 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2728 }
2729
2730 /**
2731 * ata_bmdma_qc_prep - Prepare taskfile for submission
2732 * @qc: Metadata associated with taskfile to be prepared
2733 *
2734 * Prepare ATA taskfile for submission.
2735 *
2736 * LOCKING:
2737 * spin_lock_irqsave(host lock)
2738 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2739 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2740 {
2741 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2742 return;
2743
2744 ata_bmdma_fill_sg(qc);
2745 }
2746 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2747
2748 /**
2749 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2750 * @qc: Metadata associated with taskfile to be prepared
2751 *
2752 * Prepare ATA taskfile for submission.
2753 *
2754 * LOCKING:
2755 * spin_lock_irqsave(host lock)
2756 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2757 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2758 {
2759 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2760 return;
2761
2762 ata_bmdma_fill_sg_dumb(qc);
2763 }
2764 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2765
2766 /**
2767 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2768 * @qc: command to issue to device
2769 *
2770 * This function issues a PIO, NODATA or DMA command to a
2771 * SFF/BMDMA controller. PIO and NODATA are handled by
2772 * ata_sff_qc_issue().
2773 *
2774 * LOCKING:
2775 * spin_lock_irqsave(host lock)
2776 *
2777 * RETURNS:
2778 * Zero on success, AC_ERR_* mask on failure
2779 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2780 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2781 {
2782 struct ata_port *ap = qc->ap;
2783 struct ata_link *link = qc->dev->link;
2784
2785 /* defer PIO handling to sff_qc_issue */
2786 if (!ata_is_dma(qc->tf.protocol))
2787 return ata_sff_qc_issue(qc);
2788
2789 /* select the device */
2790 ata_dev_select(ap, qc->dev->devno, 1, 0);
2791
2792 /* start the command */
2793 switch (qc->tf.protocol) {
2794 case ATA_PROT_DMA:
2795 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2796
2797 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2798 ap->ops->bmdma_setup(qc); /* set up bmdma */
2799 ap->ops->bmdma_start(qc); /* initiate bmdma */
2800 ap->hsm_task_state = HSM_ST_LAST;
2801 break;
2802
2803 case ATAPI_PROT_DMA:
2804 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805
2806 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2807 ap->ops->bmdma_setup(qc); /* set up bmdma */
2808 ap->hsm_task_state = HSM_ST_FIRST;
2809
2810 /* send cdb by polling if no cdb interrupt */
2811 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2812 ata_sff_queue_pio_task(link, 0);
2813 break;
2814
2815 default:
2816 WARN_ON(1);
2817 return AC_ERR_SYSTEM;
2818 }
2819
2820 return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2823
2824 /**
2825 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2826 * @ap: Port on which interrupt arrived (possibly...)
2827 * @qc: Taskfile currently active in engine
2828 *
2829 * Handle port interrupt for given queued command.
2830 *
2831 * LOCKING:
2832 * spin_lock_irqsave(host lock)
2833 *
2834 * RETURNS:
2835 * One if interrupt was handled, zero if not (shared irq).
2836 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2837 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2838 {
2839 struct ata_eh_info *ehi = &ap->link.eh_info;
2840 u8 host_stat = 0;
2841 bool bmdma_stopped = false;
2842 unsigned int handled;
2843
2844 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2845 /* check status of DMA engine */
2846 host_stat = ap->ops->bmdma_status(ap);
2847 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2848
2849 /* if it's not our irq... */
2850 if (!(host_stat & ATA_DMA_INTR))
2851 return ata_sff_idle_irq(ap);
2852
2853 /* before we do anything else, clear DMA-Start bit */
2854 ap->ops->bmdma_stop(qc);
2855 bmdma_stopped = true;
2856
2857 if (unlikely(host_stat & ATA_DMA_ERR)) {
2858 /* error when transferring data to/from memory */
2859 qc->err_mask |= AC_ERR_HOST_BUS;
2860 ap->hsm_task_state = HSM_ST_ERR;
2861 }
2862 }
2863
2864 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2865
2866 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2867 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2868
2869 return handled;
2870 }
2871 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2872
2873 /**
2874 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2875 * @irq: irq line (unused)
2876 * @dev_instance: pointer to our ata_host information structure
2877 *
2878 * Default interrupt handler for PCI IDE devices. Calls
2879 * ata_bmdma_port_intr() for each port that is not disabled.
2880 *
2881 * LOCKING:
2882 * Obtains host lock during operation.
2883 *
2884 * RETURNS:
2885 * IRQ_NONE or IRQ_HANDLED.
2886 */
ata_bmdma_interrupt(int irq,void * dev_instance)2887 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2888 {
2889 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2890 }
2891 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2892
2893 /**
2894 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2895 * @ap: port to handle error for
2896 *
2897 * Stock error handler for BMDMA controller. It can handle both
2898 * PATA and SATA controllers. Most BMDMA controllers should be
2899 * able to use this EH as-is or with some added handling before
2900 * and after.
2901 *
2902 * LOCKING:
2903 * Kernel thread context (may sleep)
2904 */
ata_bmdma_error_handler(struct ata_port * ap)2905 void ata_bmdma_error_handler(struct ata_port *ap)
2906 {
2907 struct ata_queued_cmd *qc;
2908 unsigned long flags;
2909 bool thaw = false;
2910
2911 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2912 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2913 qc = NULL;
2914
2915 /* reset PIO HSM and stop DMA engine */
2916 spin_lock_irqsave(ap->lock, flags);
2917
2918 if (qc && ata_is_dma(qc->tf.protocol)) {
2919 u8 host_stat;
2920
2921 host_stat = ap->ops->bmdma_status(ap);
2922
2923 /* BMDMA controllers indicate host bus error by
2924 * setting DMA_ERR bit and timing out. As it wasn't
2925 * really a timeout event, adjust error mask and
2926 * cancel frozen state.
2927 */
2928 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2929 qc->err_mask = AC_ERR_HOST_BUS;
2930 thaw = true;
2931 }
2932
2933 ap->ops->bmdma_stop(qc);
2934
2935 /* if we're gonna thaw, make sure IRQ is clear */
2936 if (thaw) {
2937 ap->ops->sff_check_status(ap);
2938 if (ap->ops->sff_irq_clear)
2939 ap->ops->sff_irq_clear(ap);
2940 }
2941 }
2942
2943 spin_unlock_irqrestore(ap->lock, flags);
2944
2945 if (thaw)
2946 ata_eh_thaw_port(ap);
2947
2948 ata_sff_error_handler(ap);
2949 }
2950 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2951
2952 /**
2953 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2954 * @qc: internal command to clean up
2955 *
2956 * LOCKING:
2957 * Kernel thread context (may sleep)
2958 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2959 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2960 {
2961 struct ata_port *ap = qc->ap;
2962 unsigned long flags;
2963
2964 if (ata_is_dma(qc->tf.protocol)) {
2965 spin_lock_irqsave(ap->lock, flags);
2966 ap->ops->bmdma_stop(qc);
2967 spin_unlock_irqrestore(ap->lock, flags);
2968 }
2969 }
2970 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2971
2972 /**
2973 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2974 * @ap: Port associated with this ATA transaction.
2975 *
2976 * Clear interrupt and error flags in DMA status register.
2977 *
2978 * May be used as the irq_clear() entry in ata_port_operations.
2979 *
2980 * LOCKING:
2981 * spin_lock_irqsave(host lock)
2982 */
ata_bmdma_irq_clear(struct ata_port * ap)2983 void ata_bmdma_irq_clear(struct ata_port *ap)
2984 {
2985 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2986
2987 if (!mmio)
2988 return;
2989
2990 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2991 }
2992 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2993
2994 /**
2995 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2996 * @qc: Info associated with this ATA transaction.
2997 *
2998 * LOCKING:
2999 * spin_lock_irqsave(host lock)
3000 */
ata_bmdma_setup(struct ata_queued_cmd * qc)3001 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3002 {
3003 struct ata_port *ap = qc->ap;
3004 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3005 u8 dmactl;
3006
3007 /* load PRD table addr. */
3008 mb(); /* make sure PRD table writes are visible to controller */
3009 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3010
3011 /* specify data direction, triple-check start bit is clear */
3012 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3013 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3014 if (!rw)
3015 dmactl |= ATA_DMA_WR;
3016 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3017
3018 /* issue r/w command */
3019 ap->ops->sff_exec_command(ap, &qc->tf);
3020 }
3021 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3022
3023 /**
3024 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3025 * @qc: Info associated with this ATA transaction.
3026 *
3027 * LOCKING:
3028 * spin_lock_irqsave(host lock)
3029 */
ata_bmdma_start(struct ata_queued_cmd * qc)3030 void ata_bmdma_start(struct ata_queued_cmd *qc)
3031 {
3032 struct ata_port *ap = qc->ap;
3033 u8 dmactl;
3034
3035 /* start host DMA transaction */
3036 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3037 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038
3039 /* Strictly, one may wish to issue an ioread8() here, to
3040 * flush the mmio write. However, control also passes
3041 * to the hardware at this point, and it will interrupt
3042 * us when we are to resume control. So, in effect,
3043 * we don't care when the mmio write flushes.
3044 * Further, a read of the DMA status register _immediately_
3045 * following the write may not be what certain flaky hardware
3046 * is expected, so I think it is best to not add a readb()
3047 * without first all the MMIO ATA cards/mobos.
3048 * Or maybe I'm just being paranoid.
3049 *
3050 * FIXME: The posting of this write means I/O starts are
3051 * unnecessarily delayed for MMIO
3052 */
3053 }
3054 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3055
3056 /**
3057 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3058 * @qc: Command we are ending DMA for
3059 *
3060 * Clears the ATA_DMA_START flag in the dma control register
3061 *
3062 * May be used as the bmdma_stop() entry in ata_port_operations.
3063 *
3064 * LOCKING:
3065 * spin_lock_irqsave(host lock)
3066 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3067 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3068 {
3069 struct ata_port *ap = qc->ap;
3070 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3071
3072 /* clear start/stop bit */
3073 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3074 mmio + ATA_DMA_CMD);
3075
3076 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3077 ata_sff_dma_pause(ap);
3078 }
3079 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3080
3081 /**
3082 * ata_bmdma_status - Read PCI IDE BMDMA status
3083 * @ap: Port associated with this ATA transaction.
3084 *
3085 * Read and return BMDMA status register.
3086 *
3087 * May be used as the bmdma_status() entry in ata_port_operations.
3088 *
3089 * LOCKING:
3090 * spin_lock_irqsave(host lock)
3091 */
ata_bmdma_status(struct ata_port * ap)3092 u8 ata_bmdma_status(struct ata_port *ap)
3093 {
3094 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3095 }
3096 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3097
3098
3099 /**
3100 * ata_bmdma_port_start - Set port up for bmdma.
3101 * @ap: Port to initialize
3102 *
3103 * Called just after data structures for each port are
3104 * initialized. Allocates space for PRD table.
3105 *
3106 * May be used as the port_start() entry in ata_port_operations.
3107 *
3108 * LOCKING:
3109 * Inherited from caller.
3110 */
ata_bmdma_port_start(struct ata_port * ap)3111 int ata_bmdma_port_start(struct ata_port *ap)
3112 {
3113 if (ap->mwdma_mask || ap->udma_mask) {
3114 ap->bmdma_prd =
3115 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3116 &ap->bmdma_prd_dma, GFP_KERNEL);
3117 if (!ap->bmdma_prd)
3118 return -ENOMEM;
3119 }
3120
3121 return 0;
3122 }
3123 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3124
3125 /**
3126 * ata_bmdma_port_start32 - Set port up for dma.
3127 * @ap: Port to initialize
3128 *
3129 * Called just after data structures for each port are
3130 * initialized. Enables 32bit PIO and allocates space for PRD
3131 * table.
3132 *
3133 * May be used as the port_start() entry in ata_port_operations for
3134 * devices that are capable of 32bit PIO.
3135 *
3136 * LOCKING:
3137 * Inherited from caller.
3138 */
ata_bmdma_port_start32(struct ata_port * ap)3139 int ata_bmdma_port_start32(struct ata_port *ap)
3140 {
3141 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3142 return ata_bmdma_port_start(ap);
3143 }
3144 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3145
3146 #ifdef CONFIG_PCI
3147
3148 /**
3149 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3150 * @pdev: PCI device
3151 *
3152 * Some PCI ATA devices report simplex mode but in fact can be told to
3153 * enter non simplex mode. This implements the necessary logic to
3154 * perform the task on such devices. Calling it on other devices will
3155 * have -undefined- behaviour.
3156 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3157 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3158 {
3159 unsigned long bmdma = pci_resource_start(pdev, 4);
3160 u8 simplex;
3161
3162 if (bmdma == 0)
3163 return -ENOENT;
3164
3165 simplex = inb(bmdma + 0x02);
3166 outb(simplex & 0x60, bmdma + 0x02);
3167 simplex = inb(bmdma + 0x02);
3168 if (simplex & 0x80)
3169 return -EOPNOTSUPP;
3170 return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3173
ata_bmdma_nodma(struct ata_host * host,const char * reason)3174 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3175 {
3176 int i;
3177
3178 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3179
3180 for (i = 0; i < 2; i++) {
3181 host->ports[i]->mwdma_mask = 0;
3182 host->ports[i]->udma_mask = 0;
3183 }
3184 }
3185
3186 /**
3187 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3188 * @host: target ATA host
3189 *
3190 * Acquire PCI BMDMA resources and initialize @host accordingly.
3191 *
3192 * LOCKING:
3193 * Inherited from calling layer (may sleep).
3194 */
ata_pci_bmdma_init(struct ata_host * host)3195 void ata_pci_bmdma_init(struct ata_host *host)
3196 {
3197 struct device *gdev = host->dev;
3198 struct pci_dev *pdev = to_pci_dev(gdev);
3199 int i, rc;
3200
3201 /* No BAR4 allocation: No DMA */
3202 if (pci_resource_start(pdev, 4) == 0) {
3203 ata_bmdma_nodma(host, "BAR4 is zero");
3204 return;
3205 }
3206
3207 /*
3208 * Some controllers require BMDMA region to be initialized
3209 * even if DMA is not in use to clear IRQ status via
3210 * ->sff_irq_clear method. Try to initialize bmdma_addr
3211 * regardless of dma masks.
3212 */
3213 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3214 if (rc)
3215 ata_bmdma_nodma(host, "failed to set dma mask");
3216 if (!rc) {
3217 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3218 if (rc)
3219 ata_bmdma_nodma(host,
3220 "failed to set consistent dma mask");
3221 }
3222
3223 /* request and iomap DMA region */
3224 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3225 if (rc) {
3226 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3227 return;
3228 }
3229 host->iomap = pcim_iomap_table(pdev);
3230
3231 for (i = 0; i < 2; i++) {
3232 struct ata_port *ap = host->ports[i];
3233 void __iomem *bmdma = host->iomap[4] + 8 * i;
3234
3235 if (ata_port_is_dummy(ap))
3236 continue;
3237
3238 ap->ioaddr.bmdma_addr = bmdma;
3239 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3240 (ioread8(bmdma + 2) & 0x80))
3241 host->flags |= ATA_HOST_SIMPLEX;
3242
3243 ata_port_desc(ap, "bmdma 0x%llx",
3244 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3245 }
3246 }
3247 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3248
3249 /**
3250 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3251 * @pdev: target PCI device
3252 * @ppi: array of port_info, must be enough for two ports
3253 * @r_host: out argument for the initialized ATA host
3254 *
3255 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3256 * resources and initialize it accordingly in one go.
3257 *
3258 * LOCKING:
3259 * Inherited from calling layer (may sleep).
3260 *
3261 * RETURNS:
3262 * 0 on success, -errno otherwise.
3263 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3264 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3265 const struct ata_port_info * const * ppi,
3266 struct ata_host **r_host)
3267 {
3268 int rc;
3269
3270 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3271 if (rc)
3272 return rc;
3273
3274 ata_pci_bmdma_init(*r_host);
3275 return 0;
3276 }
3277 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3278
3279 /**
3280 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3281 * @pdev: Controller to be initialized
3282 * @ppi: array of port_info, must be enough for two ports
3283 * @sht: scsi_host_template to use when registering the host
3284 * @host_priv: host private_data
3285 * @hflags: host flags
3286 *
3287 * This function is similar to ata_pci_sff_init_one() but also
3288 * takes care of BMDMA initialization.
3289 *
3290 * LOCKING:
3291 * Inherited from PCI layer (may sleep).
3292 *
3293 * RETURNS:
3294 * Zero on success, negative on errno-based value on error.
3295 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3296 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3297 const struct ata_port_info * const * ppi,
3298 struct scsi_host_template *sht, void *host_priv,
3299 int hflags)
3300 {
3301 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3302 }
3303 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3304
3305 #endif /* CONFIG_PCI */
3306 #endif /* CONFIG_ATA_BMDMA */
3307
3308 /**
3309 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3310 * @ap: Port to initialize
3311 *
3312 * Called on port allocation to initialize SFF/BMDMA specific
3313 * fields.
3314 *
3315 * LOCKING:
3316 * None.
3317 */
ata_sff_port_init(struct ata_port * ap)3318 void ata_sff_port_init(struct ata_port *ap)
3319 {
3320 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3321 ap->ctl = ATA_DEVCTL_OBS;
3322 ap->last_ctl = 0xFF;
3323 }
3324
ata_sff_init(void)3325 int __init ata_sff_init(void)
3326 {
3327 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3328 if (!ata_sff_wq)
3329 return -ENOMEM;
3330
3331 return 0;
3332 }
3333
ata_sff_exit(void)3334 void ata_sff_exit(void)
3335 {
3336 destroy_workqueue(ata_sff_wq);
3337 }
3338