• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4 
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9 
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14 
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <linux/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
51 
52 #include "horizon.h"
53 
54 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
57 
show_version(void)58 static inline void __init show_version (void) {
59   printk ("%s version %s\n", description_string, version_string);
60 }
61 
62 /*
63 
64   CREDITS
65 
66   Driver and documentation by:
67 
68   Chris Aston        Madge Networks
69   Giuliano Procida   Madge Networks
70   Simon Benham       Madge Networks
71   Simon Johnson      Madge Networks
72   Various Others     Madge Networks
73 
74   Some inspiration taken from other drivers by:
75 
76   Alexandru Cucos    UTBv
77   Kari Mettinen      University of Helsinki
78   Werner Almesberger EPFL LRC
79 
80   Theory of Operation
81 
82   I Hardware, detection, initialisation and shutdown.
83 
84   1. Supported Hardware
85 
86   This driver should handle all variants of the PCI Madge ATM adapters
87   with the Horizon chipset. These are all PCI cards supporting PIO, BM
88   DMA and a form of MMIO (registers only, not internal RAM).
89 
90   The driver is only known to work with SONET and UTP Horizon Ultra
91   cards at 155Mb/s. However, code is in place to deal with both the
92   original Horizon and 25Mb/s operation.
93 
94   There are two revisions of the Horizon ASIC: the original and the
95   Ultra. Details of hardware bugs are in section III.
96 
97   The ASIC version can be distinguished by chip markings but is NOT
98   indicated by the PCI revision (all adapters seem to have PCI rev 1).
99 
100   I believe that:
101 
102   Horizon       => Collage  25 PCI Adapter (UTP and STP)
103   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104   Ambassador x  => Collage 155 PCI Server (completely different)
105 
106   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107   have a Madge B154 plus glue logic serializer. I have also found a
108   really ancient version of this with slightly different glue. It
109   comes with the revision 0 (140-025-01) ASIC.
110 
111   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112   output (UTP) or an HP HFBR 5205 output (SONET). It has either
113   Madge's SAMBA framer or a SUNI-lite device (early versions). It
114   comes with the revision 1 (140-027-01) ASIC.
115 
116   2. Detection
117 
118   All Horizon-based cards present with the same PCI Vendor and Device
119   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120   to enable bus-mastering (with appropriate latency).
121 
122   ATM_LAYER_STATUS in the control register distinguishes between the
123   two possible physical layers (25 and 155). It is not clear whether
124   the 155 cards can also operate at 25Mbps. We rely on the fact that a
125   card operates at 155 if and only if it has the newer Horizon Ultra
126   ASIC.
127 
128   For 155 cards the two possible framers are probed for and then set
129   up for loop-timing.
130 
131   3. Initialisation
132 
133   The card is reset and then put into a known state. The physical
134   layer is configured for normal operation at the appropriate speed;
135   in the case of the 155 cards, the framer is initialised with
136   line-based timing; the internal RAM is zeroed and the allocation of
137   buffers for RX and TX is made; the Burnt In Address is read and
138   copied to the ATM ESI; various policy settings for RX (VPI bits,
139   unknown VCs, oam cells) are made. Ideally all policy items should be
140   configurable at module load (if not actually on-demand), however,
141   only the vpi vs vci bit allocation can be specified at insmod.
142 
143   4. Shutdown
144 
145   This is in response to module_cleaup. No VCs are in use and the card
146   should be idle; it is reset.
147 
148   II Driver software (as it should be)
149 
150   0. Traffic Parameters
151 
152   The traffic classes (not an enumeration) are currently: ATM_NONE (no
153   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154   (compatible with everything). Together with (perhaps only some of)
155   the following items they make up the traffic specification.
156 
157   struct atm_trafprm {
158     unsigned char traffic_class; traffic class (ATM_UBR, ...)
159     int           max_pcr;       maximum PCR in cells per second
160     int           pcr;           desired PCR in cells per second
161     int           min_pcr;       minimum PCR in cells per second
162     int           max_cdv;       maximum CDV in microseconds
163     int           max_sdu;       maximum SDU in bytes
164   };
165 
166   Note that these denote bandwidth available not bandwidth used; the
167   possibilities according to ATMF are:
168 
169   Real Time (cdv and max CDT given)
170 
171   CBR(pcr)             pcr bandwidth always available
172   rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
173 
174   Non Real Time
175 
176   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
177   UBR()
178   ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
179 
180   mbs is max burst size (bucket)
181   pcr and scr have associated cdvt values
182   mcr is like scr but has no cdtv
183   cdtv may differ at each hop
184 
185   Some of the above items are qos items (as opposed to traffic
186   parameters). We have nothing to do with qos. All except ABR can have
187   their traffic parameters converted to GCRA parameters. The GCRA may
188   be implemented as a (real-number) leaky bucket. The GCRA can be used
189   in complicated ways by switches and in simpler ways by end-stations.
190   It can be used both to filter incoming cells and shape out-going
191   cells.
192 
193   ATM Linux actually supports:
194 
195   ATM_NONE() (no traffic in this direction)
196   ATM_UBR(max_frame_size)
197   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198 
199   0 or ATM_MAX_PCR are used to indicate maximum available PCR
200 
201   A traffic specification consists of the AAL type and separate
202   traffic specifications for either direction. In ATM Linux it is:
203 
204   struct atm_qos {
205   struct atm_trafprm txtp;
206   struct atm_trafprm rxtp;
207   unsigned char aal;
208   };
209 
210   AAL types are:
211 
212   ATM_NO_AAL    AAL not specified
213   ATM_AAL0      "raw" ATM cells
214   ATM_AAL1      AAL1 (CBR)
215   ATM_AAL2      AAL2 (VBR)
216   ATM_AAL34     AAL3/4 (data)
217   ATM_AAL5      AAL5 (data)
218   ATM_SAAL      signaling AAL
219 
220   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221   it does not implement AAL 3/4 SAR and it has a different notion of
222   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223   supported by this driver.
224 
225   The Horizon has limited support for ABR (including UBR), VBR and
226   CBR. Each TX channel has a bucket (containing up to 31 cell units)
227   and two timers (PCR and SCR) associated with it that can be used to
228   govern cell emissions and host notification (in the case of ABR this
229   is presumably so that RM cells may be emitted at appropriate times).
230   The timers may either be disabled or may be set to any of 240 values
231   (determined by the clock crystal, a fixed (?) per-device divider, a
232   configurable divider and a configurable timer preload value).
233 
234   At the moment only UBR and CBR are supported by the driver. VBR will
235   be supported as soon as ATM for Linux supports it. ABR support is
236   very unlikely as RM cell handling is completely up to the driver.
237 
238   1. TX (TX channel setup and TX transfer)
239 
240   The TX half of the driver owns the TX Horizon registers. The TX
241   component in the IRQ handler is the BM completion handler. This can
242   only be entered when tx_busy is true (enforced by hardware). The
243   other TX component can only be entered when tx_busy is false
244   (enforced by driver). So TX is single-threaded.
245 
246   Apart from a minor optimisation to not re-select the last channel,
247   the TX send component works as follows:
248 
249   Atomic test and set tx_busy until we succeed; we should implement
250   some sort of timeout so that tx_busy will never be stuck at true.
251 
252   If no TX channel is set up for this VC we wait for an idle one (if
253   necessary) and set it up.
254 
255   At this point we have a TX channel ready for use. We wait for enough
256   buffers to become available then start a TX transmit (set the TX
257   descriptor, schedule transfer, exit).
258 
259   The IRQ component handles TX completion (stats, free buffer, tx_busy
260   unset, exit). We also re-schedule further transfers for the same
261   frame if needed.
262 
263   TX setup in more detail:
264 
265   TX open is a nop, the relevant information is held in the hrz_vcc
266   (vcc->dev_data) structure and is "cached" on the card.
267 
268   TX close gets the TX lock and clears the channel from the "cache".
269 
270   2. RX (Data Available and RX transfer)
271 
272   The RX half of the driver owns the RX registers. There are two RX
273   components in the IRQ handler: the data available handler deals with
274   fresh data that has arrived on the card, the BM completion handler
275   is very similar to the TX completion handler. The data available
276   handler grabs the rx_lock and it is only released once the data has
277   been discarded or completely transferred to the host. The BM
278   completion handler only runs when the lock is held; the data
279   available handler is locked out over the same period.
280 
281   Data available on the card triggers an interrupt. If the data is not
282   suitable for our existing RX channels or we cannot allocate a buffer
283   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284   transfers may be scheduled for the same frame.
285 
286   RX setup in more detail:
287 
288   RX open...
289   RX close...
290 
291   III Hardware Bugs
292 
293   0. Byte vs Word addressing of adapter RAM.
294 
295   A design feature; see the .h file (especially the memory map).
296 
297   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298 
299   The host must not start a transmit direction transfer at a
300   non-four-byte boundary in host memory. Instead the host should
301   perform a byte, or a two byte, or one byte followed by two byte
302   transfer in order to start the rest of the transfer on a four byte
303   boundary. RX is OK.
304 
305   Simultaneous transmit and receive direction bus master transfers are
306   not allowed.
307 
308   The simplest solution to these two is to always do PIO (never DMA)
309   in the TX direction on the original Horizon. More complicated
310   solutions are likely to hurt my brain.
311 
312   2. Loss of buffer on close VC
313 
314   When a VC is being closed, the buffer associated with it is not
315   returned to the pool. The host must store the reference to this
316   buffer and when opening a new VC then give it to that new VC.
317 
318   The host intervention currently consists of stacking such a buffer
319   pointer at VC close and checking the stack at VC open.
320 
321   3. Failure to close a VC
322 
323   If a VC is currently receiving a frame then closing the VC may fail
324   and the frame continues to be received.
325 
326   The solution is to make sure any received frames are flushed when
327   ready. This is currently done just before the solution to 2.
328 
329   4. PCI bus (original Horizon only, fixed in Ultra)
330 
331   Reading from the data port prior to initialisation will hang the PCI
332   bus. Just don't do that then! We don't.
333 
334   IV To Do List
335 
336   . Timer code may be broken.
337 
338   . Allow users to specify buffer allocation split for TX and RX.
339 
340   . Deal once and for all with buggy VC close.
341 
342   . Handle interrupted and/or non-blocking operations.
343 
344   . Change some macros to functions and move from .h to .c.
345 
346   . Try to limit the number of TX frames each VC may have queued, in
347     order to reduce the chances of TX buffer exhaustion.
348 
349   . Implement VBR (bucket and timers not understood) and ABR (need to
350     do RM cells manually); also no Linux support for either.
351 
352   . Implement QoS changes on open VCs (involves extracting parts of VC open
353     and close into separate functions and using them to make changes).
354 
355 */
356 
357 /********** globals **********/
358 
359 static void do_housekeeping (unsigned long arg);
360 
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
366 
367 /********** access functions **********/
368 
369 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371   outl (cpu_to_le32 (data), dev->iobase + reg);
372 }
373 
rd_regl(const hrz_dev * dev,unsigned char reg)374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375   return le32_to_cpu (inl (dev->iobase + reg));
376 }
377 
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379   outw (cpu_to_le16 (data), dev->iobase + reg);
380 }
381 
rd_regw(const hrz_dev * dev,unsigned char reg)382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383   return le16_to_cpu (inw (dev->iobase + reg));
384 }
385 
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387   outsb (dev->iobase + reg, addr, len);
388 }
389 
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391   insb (dev->iobase + reg, addr, len);
392 }
393 
394 /* Read / Write to a given address in Horizon buffer memory.
395    Interrupts must be disabled between the address register and data
396    port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400   wr_regl (dev, MEMORY_PORT_OFF, data);
401 }
402 
rd_mem(const hrz_dev * dev,HDW * addr)403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406   return rd_regl (dev, MEMORY_PORT_OFF);
407 }
408 
wr_framer(const hrz_dev * dev,u32 addr,u32 data)409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411   wr_regl (dev, MEMORY_PORT_OFF, data);
412 }
413 
rd_framer(const hrz_dev * dev,u32 addr)414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416   return rd_regl (dev, MEMORY_PORT_OFF);
417 }
418 
419 /********** specialised access functions **********/
420 
421 /* RX */
422 
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425   return;
426 }
427 
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430     ;
431   return;
432 }
433 
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436   return;
437 }
438 
WAIT_UPDATE_COMPLETE(hrz_dev * dev)439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441     ;
442   return;
443 }
444 
445 /* TX */
446 
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449   return;
450 }
451 
452 /* Update or query one configuration parameter of a particular channel. */
453 
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
457     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458     return;
459 }
460 
461 /********** dump functions **********/
462 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)463 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
464 #ifdef DEBUG_HORIZON
465   unsigned int i;
466   unsigned char * data = skb->data;
467   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
468   for (i=0; i<skb->len && i < 256;i++)
469     PRINTDM (DBG_DATA, "%02x ", data[i]);
470   PRINTDE (DBG_DATA,"");
471 #else
472   (void) prefix;
473   (void) vc;
474   (void) skb;
475 #endif
476   return;
477 }
478 
dump_regs(hrz_dev * dev)479 static inline void dump_regs (hrz_dev * dev) {
480 #ifdef DEBUG_HORIZON
481   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
482   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
483   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
484   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
485   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
486   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
487 #else
488   (void) dev;
489 #endif
490   return;
491 }
492 
dump_framer(hrz_dev * dev)493 static inline void dump_framer (hrz_dev * dev) {
494 #ifdef DEBUG_HORIZON
495   unsigned int i;
496   PRINTDB (DBG_REGS, "framer registers:");
497   for (i = 0; i < 0x10; ++i)
498     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
499   PRINTDE (DBG_REGS,"");
500 #else
501   (void) dev;
502 #endif
503   return;
504 }
505 
506 /********** VPI/VCI <-> (RX) channel conversions **********/
507 
508 /* RX channels are 10 bit integers, these fns are quite paranoid */
509 
vpivci_to_channel(u16 * channel,const short vpi,const int vci)510 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
511   unsigned short vci_bits = 10 - vpi_bits;
512   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
513     *channel = vpi<<vci_bits | vci;
514     return *channel ? 0 : -EINVAL;
515   }
516   return -EINVAL;
517 }
518 
519 /********** decode RX queue entries **********/
520 
rx_q_entry_to_length(u32 x)521 static inline u16 rx_q_entry_to_length (u32 x) {
522   return x & RX_Q_ENTRY_LENGTH_MASK;
523 }
524 
rx_q_entry_to_rx_channel(u32 x)525 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
526   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
527 }
528 
529 /* Cell Transmit Rate Values
530  *
531  * the cell transmit rate (cells per sec) can be set to a variety of
532  * different values by specifying two parameters: a timer preload from
533  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
534  * an exponent from 0 to 14; the special value 15 disables the timer).
535  *
536  * cellrate = baserate / (preload * 2^divider)
537  *
538  * The maximum cell rate that can be specified is therefore just the
539  * base rate. Halving the preload is equivalent to adding 1 to the
540  * divider and so values 1 to 8 of the preload are redundant except
541  * in the case of a maximal divider (14).
542  *
543  * Given a desired cell rate, an algorithm to determine the preload
544  * and divider is:
545  *
546  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
547  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
548  *    if x <= 16 then set p = x, d = 0 (high rates), done
549  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
550  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
551  *    we find the range (n will be between 1 and 14), set d = n
552  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
553  *
554  * The algorithm used below is a minor variant of the above.
555  *
556  * The base rate is derived from the oscillator frequency (Hz) using a
557  * fixed divider:
558  *
559  * baserate = freq / 32 in the case of some Unknown Card
560  * baserate = freq / 8  in the case of the Horizon        25
561  * baserate = freq / 8  in the case of the Horizon Ultra 155
562  *
563  * The Horizon cards have oscillators and base rates as follows:
564  *
565  * Card               Oscillator  Base Rate
566  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
567  * Horizon        25  32 MHz      4       MHz
568  * Horizon Ultra 155  40 MHz      5       MHz
569  *
570  * The following defines give the base rates in Hz. These were
571  * previously a factor of 100 larger, no doubt someone was using
572  * cps*100.
573  */
574 
575 #define BR_UKN 1031250l
576 #define BR_HRZ 4000000l
577 #define BR_ULT 5000000l
578 
579 // d is an exponent
580 #define CR_MIND 0
581 #define CR_MAXD 14
582 
583 // p ranges from 1 to a power of 2
584 #define CR_MAXPEXP 4
585 
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)586 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
587 		      u16 * bits, unsigned int * actual)
588 {
589 	// note: rounding the rate down means rounding 'p' up
590 	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
591 
592 	u32 div = CR_MIND;
593 	u32 pre;
594 
595 	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
596 	// the tests below. We could think harder about exact possibilities
597 	// of failure...
598 
599 	unsigned long br_man = br;
600 	unsigned int br_exp = 0;
601 
602 	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
603 		r == round_up ? "up" : r == round_down ? "down" : "nearest");
604 
605 	// avoid div by zero
606 	if (!c) {
607 		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
608 		return -EINVAL;
609 	}
610 
611 	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
612 		br_man = br_man >> 1;
613 		++br_exp;
614 	}
615 	// (br >>br_exp) <<br_exp == br and
616 	// br_exp <= CR_MAXPEXP+CR_MIND
617 
618 	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
619 		// Equivalent to: B <= (c << (MAXPEXP+MIND))
620 		// take care of rounding
621 		switch (r) {
622 			case round_down:
623 				pre = DIV_ROUND_UP(br, c<<div);
624 				// but p must be non-zero
625 				if (!pre)
626 					pre = 1;
627 				break;
628 			case round_nearest:
629 				pre = DIV_ROUND_CLOSEST(br, c<<div);
630 				// but p must be non-zero
631 				if (!pre)
632 					pre = 1;
633 				break;
634 			default:	/* round_up */
635 				pre = br/(c<<div);
636 				// but p must be non-zero
637 				if (!pre)
638 					return -EINVAL;
639 		}
640 		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
641 		goto got_it;
642 	}
643 
644 	// at this point we have
645 	// d == MIND and (c << (MAXPEXP+MIND)) < B
646 	while (div < CR_MAXD) {
647 		div++;
648 		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
649 			// Equivalent to: B <= (c << (MAXPEXP+d))
650 			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
651 			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
652 			// MAXP/2 < B/c2^d <= MAXP
653 			// take care of rounding
654 			switch (r) {
655 				case round_down:
656 					pre = DIV_ROUND_UP(br, c<<div);
657 					break;
658 				case round_nearest:
659 					pre = DIV_ROUND_CLOSEST(br, c<<div);
660 					break;
661 				default: /* round_up */
662 					pre = br/(c<<div);
663 			}
664 			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
665 			goto got_it;
666 		}
667 	}
668 	// at this point we have
669 	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
670 	// but we cannot go any higher
671 	// take care of rounding
672 	if (r == round_down)
673 		return -EINVAL;
674 	pre = 1 << CR_MAXPEXP;
675 	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
676 got_it:
677 	// paranoia
678 	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
679 		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
680 			div, pre);
681 		return -EINVAL;
682 	} else {
683 		if (bits)
684 			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
685 		if (actual) {
686 			*actual = DIV_ROUND_UP(br, pre<<div);
687 			PRINTD (DBG_QOS, "actual rate: %u", *actual);
688 		}
689 		return 0;
690 	}
691 }
692 
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)693 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
694 				     u16 * bit_pattern, unsigned int * actual) {
695   unsigned int my_actual;
696 
697   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
698 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
699 
700   if (!actual)
701     // actual rate is not returned
702     actual = &my_actual;
703 
704   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
705     // should never happen as round_nearest always succeeds
706     return -1;
707 
708   if (c - tol <= *actual && *actual <= c + tol)
709     // within tolerance
710     return 0;
711   else
712     // intolerant, try rounding instead
713     return make_rate (dev, c, r, bit_pattern, actual);
714 }
715 
716 /********** Listen on a VC **********/
717 
hrz_open_rx(hrz_dev * dev,u16 channel)718 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
719   // is there any guarantee that we don't get two simulataneous
720   // identical calls of this function from different processes? yes
721   // rate_lock
722   unsigned long flags;
723   u32 channel_type; // u16?
724 
725   u16 buf_ptr = RX_CHANNEL_IDLE;
726 
727   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
728 
729   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
730 
731   spin_lock_irqsave (&dev->mem_lock, flags);
732   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
733   spin_unlock_irqrestore (&dev->mem_lock, flags);
734 
735   // very serious error, should never occur
736   if (channel_type != RX_CHANNEL_DISABLED) {
737     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
738     return -EBUSY; // clean up?
739   }
740 
741   // Give back spare buffer
742   if (dev->noof_spare_buffers) {
743     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
744     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
745     // should never occur
746     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
747       // but easy to recover from
748       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
749       buf_ptr = RX_CHANNEL_IDLE;
750     }
751   } else {
752     PRINTD (DBG_VCC, "using IDLE buffer pointer");
753   }
754 
755   // Channel is currently disabled so change its status to idle
756 
757   // do we really need to save the flags again?
758   spin_lock_irqsave (&dev->mem_lock, flags);
759 
760   wr_mem (dev, &rx_desc->wr_buf_type,
761 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
762   if (buf_ptr != RX_CHANNEL_IDLE)
763     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
764 
765   spin_unlock_irqrestore (&dev->mem_lock, flags);
766 
767   // rxer->rate = make_rate (qos->peak_cells);
768 
769   PRINTD (DBG_FLOW, "hrz_open_rx ok");
770 
771   return 0;
772 }
773 
774 #if 0
775 /********** change vc rate for a given vc **********/
776 
777 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
778   rxer->rate = make_rate (qos->peak_cells);
779 }
780 #endif
781 
782 /********** free an skb (as per ATM device driver documentation) **********/
783 
hrz_kfree_skb(struct sk_buff * skb)784 static void hrz_kfree_skb (struct sk_buff * skb) {
785   if (ATM_SKB(skb)->vcc->pop) {
786     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
787   } else {
788     dev_kfree_skb_any (skb);
789   }
790 }
791 
792 /********** cancel listen on a VC **********/
793 
hrz_close_rx(hrz_dev * dev,u16 vc)794 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
795   unsigned long flags;
796 
797   u32 value;
798 
799   u32 r1, r2;
800 
801   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
802 
803   int was_idle = 0;
804 
805   spin_lock_irqsave (&dev->mem_lock, flags);
806   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
807   spin_unlock_irqrestore (&dev->mem_lock, flags);
808 
809   if (value == RX_CHANNEL_DISABLED) {
810     // I suppose this could happen once we deal with _NONE traffic properly
811     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
812     return;
813   }
814   if (value == RX_CHANNEL_IDLE)
815     was_idle = 1;
816 
817   spin_lock_irqsave (&dev->mem_lock, flags);
818 
819   for (;;) {
820     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
821 
822     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
823       break;
824 
825     was_idle = 0;
826   }
827 
828   if (was_idle) {
829     spin_unlock_irqrestore (&dev->mem_lock, flags);
830     return;
831   }
832 
833   WAIT_FLUSH_RX_COMPLETE(dev);
834 
835   // XXX Is this all really necessary? We can rely on the rx_data_av
836   // handler to discard frames that remain queued for delivery. If the
837   // worry is that immediately reopening the channel (perhaps by a
838   // different process) may cause some data to be mis-delivered then
839   // there may still be a simpler solution (such as busy-waiting on
840   // rx_busy once the channel is disabled or before a new one is
841   // opened - does this leave any holes?). Arguably setting up and
842   // tearing down the TX and RX halves of each virtual circuit could
843   // most safely be done within ?x_busy protected regions.
844 
845   // OK, current changes are that Simon's marker is disabled and we DO
846   // look for NULL rxer elsewhere. The code here seems flush frames
847   // and then remember the last dead cell belonging to the channel
848   // just disabled - the cell gets relinked at the next vc_open.
849   // However, when all VCs are closed or only a few opened there are a
850   // handful of buffers that are unusable.
851 
852   // Does anyone feel like documenting spare_buffers properly?
853   // Does anyone feel like fixing this in a nicer way?
854 
855   // Flush any data which is left in the channel
856   for (;;) {
857     // Change the rx channel port to something different to the RX
858     // channel we are trying to close to force Horizon to flush the rx
859     // channel read and write pointers.
860 
861     u16 other = vc^(RX_CHANS/2);
862 
863     SELECT_RX_CHANNEL (dev, other);
864     WAIT_UPDATE_COMPLETE (dev);
865 
866     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
867 
868     // Select this RX channel. Flush doesn't seem to work unless we
869     // select an RX channel before hand
870 
871     SELECT_RX_CHANNEL (dev, vc);
872     WAIT_UPDATE_COMPLETE (dev);
873 
874     // Attempt to flush a frame on this RX channel
875 
876     FLUSH_RX_CHANNEL (dev, vc);
877     WAIT_FLUSH_RX_COMPLETE (dev);
878 
879     // Force Horizon to flush rx channel read and write pointers as before
880 
881     SELECT_RX_CHANNEL (dev, other);
882     WAIT_UPDATE_COMPLETE (dev);
883 
884     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
885 
886     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
887 
888     if (r1 == r2) {
889       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
890       break;
891     }
892   }
893 
894 #if 0
895   {
896     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
897     rx_q_entry * rd_ptr = dev->rx_q_entry;
898 
899     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
900 
901     while (rd_ptr != wr_ptr) {
902       u32 x = rd_mem (dev, (HDW *) rd_ptr);
903 
904       if (vc == rx_q_entry_to_rx_channel (x)) {
905 	x |= SIMONS_DODGEY_MARKER;
906 
907 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
908 
909 	wr_mem (dev, (HDW *) rd_ptr, x);
910       }
911 
912       if (rd_ptr == dev->rx_q_wrap)
913 	rd_ptr = dev->rx_q_reset;
914       else
915 	rd_ptr++;
916     }
917   }
918 #endif
919 
920   spin_unlock_irqrestore (&dev->mem_lock, flags);
921 
922   return;
923 }
924 
925 /********** schedule RX transfers **********/
926 
927 // Note on tail recursion: a GCC developer said that it is not likely
928 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
929 // are sure it does as you may otherwise overflow the kernel stack.
930 
931 // giving this fn a return value would help GCC, allegedly
932 
rx_schedule(hrz_dev * dev,int irq)933 static void rx_schedule (hrz_dev * dev, int irq) {
934   unsigned int rx_bytes;
935 
936   int pio_instead = 0;
937 #ifndef TAILRECURSIONWORKS
938   pio_instead = 1;
939   while (pio_instead) {
940 #endif
941     // bytes waiting for RX transfer
942     rx_bytes = dev->rx_bytes;
943 
944 #if 0
945     spin_count = 0;
946     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
947       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
948       if (++spin_count > 10) {
949 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
950 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
951 	clear_bit (rx_busy, &dev->flags);
952 	hrz_kfree_skb (dev->rx_skb);
953 	return;
954       }
955     }
956 #endif
957 
958     // this code follows the TX code but (at the moment) there is only
959     // one region - the skb itself. I don't know if this will change,
960     // but it doesn't hurt to have the code here, disabled.
961 
962     if (rx_bytes) {
963       // start next transfer within same region
964       if (rx_bytes <= MAX_PIO_COUNT) {
965 	PRINTD (DBG_RX|DBG_BUS, "(pio)");
966 	pio_instead = 1;
967       }
968       if (rx_bytes <= MAX_TRANSFER_COUNT) {
969 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
970 	dev->rx_bytes = 0;
971       } else {
972 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
973 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
974 	rx_bytes = MAX_TRANSFER_COUNT;
975       }
976     } else {
977       // rx_bytes == 0 -- we're between regions
978       // regions remaining to transfer
979 #if 0
980       unsigned int rx_regions = dev->rx_regions;
981 #else
982       unsigned int rx_regions = 0;
983 #endif
984 
985       if (rx_regions) {
986 #if 0
987 	// start a new region
988 	dev->rx_addr = dev->rx_iovec->iov_base;
989 	rx_bytes = dev->rx_iovec->iov_len;
990 	++dev->rx_iovec;
991 	dev->rx_regions = rx_regions - 1;
992 
993 	if (rx_bytes <= MAX_PIO_COUNT) {
994 	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
995 	  pio_instead = 1;
996 	}
997 	if (rx_bytes <= MAX_TRANSFER_COUNT) {
998 	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
999 	  dev->rx_bytes = 0;
1000 	} else {
1001 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003 	  rx_bytes = MAX_TRANSFER_COUNT;
1004 	}
1005 #endif
1006       } else {
1007 	// rx_regions == 0
1008 	// that's all folks - end of frame
1009 	struct sk_buff * skb = dev->rx_skb;
1010 	// dev->rx_iovec = 0;
1011 
1012 	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1013 
1014 	dump_skb ("<<<", dev->rx_channel, skb);
1015 
1016 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1017 
1018 	{
1019 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020 	  // VC layer stats
1021 	  atomic_inc(&vcc->stats->rx);
1022 	  __net_timestamp(skb);
1023 	  // end of our responsibility
1024 	  vcc->push (vcc, skb);
1025 	}
1026       }
1027     }
1028 
1029     // note: writing RX_COUNT clears any interrupt condition
1030     if (rx_bytes) {
1031       if (pio_instead) {
1032 	if (irq)
1033 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035       } else {
1036 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1038       }
1039       dev->rx_addr += rx_bytes;
1040     } else {
1041       if (irq)
1042 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043       // allow another RX thread to start
1044       YELLOW_LED_ON(dev);
1045       clear_bit (rx_busy, &dev->flags);
1046       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1047     }
1048 
1049 #ifdef TAILRECURSIONWORKS
1050     // and we all bless optimised tail calls
1051     if (pio_instead)
1052       return rx_schedule (dev, 0);
1053     return;
1054 #else
1055     // grrrrrrr!
1056     irq = 0;
1057   }
1058   return;
1059 #endif
1060 }
1061 
1062 /********** handle RX bus master complete events **********/
1063 
rx_bus_master_complete_handler(hrz_dev * dev)1064 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065   if (test_bit (rx_busy, &dev->flags)) {
1066     rx_schedule (dev, 1);
1067   } else {
1068     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069     // clear interrupt condition on adapter
1070     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1071   }
1072   return;
1073 }
1074 
1075 /********** (queue to) become the next TX thread **********/
1076 
tx_hold(hrz_dev * dev)1077 static int tx_hold (hrz_dev * dev) {
1078   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081   if (signal_pending (current))
1082     return -1;
1083   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084   return 0;
1085 }
1086 
1087 /********** allow another TX thread to start **********/
1088 
tx_release(hrz_dev * dev)1089 static inline void tx_release (hrz_dev * dev) {
1090   clear_bit (tx_busy, &dev->flags);
1091   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092   wake_up_interruptible (&dev->tx_queue);
1093 }
1094 
1095 /********** schedule TX transfers **********/
1096 
tx_schedule(hrz_dev * const dev,int irq)1097 static void tx_schedule (hrz_dev * const dev, int irq) {
1098   unsigned int tx_bytes;
1099 
1100   int append_desc = 0;
1101 
1102   int pio_instead = 0;
1103 #ifndef TAILRECURSIONWORKS
1104   pio_instead = 1;
1105   while (pio_instead) {
1106 #endif
1107     // bytes in current region waiting for TX transfer
1108     tx_bytes = dev->tx_bytes;
1109 
1110 #if 0
1111     spin_count = 0;
1112     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114       if (++spin_count > 10) {
1115 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117 	tx_release (dev);
1118 	hrz_kfree_skb (dev->tx_skb);
1119 	return;
1120       }
1121     }
1122 #endif
1123 
1124     if (tx_bytes) {
1125       // start next transfer within same region
1126       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127 	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128 	pio_instead = 1;
1129       }
1130       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132 	if (!dev->tx_iovec) {
1133 	  // end of last region
1134 	  append_desc = 1;
1135 	}
1136 	dev->tx_bytes = 0;
1137       } else {
1138 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140 	tx_bytes = MAX_TRANSFER_COUNT;
1141       }
1142     } else {
1143       // tx_bytes == 0 -- we're between regions
1144       // regions remaining to transfer
1145       unsigned int tx_regions = dev->tx_regions;
1146 
1147       if (tx_regions) {
1148 	// start a new region
1149 	dev->tx_addr = dev->tx_iovec->iov_base;
1150 	tx_bytes = dev->tx_iovec->iov_len;
1151 	++dev->tx_iovec;
1152 	dev->tx_regions = tx_regions - 1;
1153 
1154 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155 	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156 	  pio_instead = 1;
1157 	}
1158 	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159 	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160 	  dev->tx_bytes = 0;
1161 	} else {
1162 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164 	  tx_bytes = MAX_TRANSFER_COUNT;
1165 	}
1166       } else {
1167 	// tx_regions == 0
1168 	// that's all folks - end of frame
1169 	struct sk_buff * skb = dev->tx_skb;
1170 	dev->tx_iovec = NULL;
1171 
1172 	// VC layer stats
1173 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1174 
1175 	// free the skb
1176 	hrz_kfree_skb (skb);
1177       }
1178     }
1179 
1180     // note: writing TX_COUNT clears any interrupt condition
1181     if (tx_bytes) {
1182       if (pio_instead) {
1183 	if (irq)
1184 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186 	if (append_desc)
1187 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188       } else {
1189 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190 	if (append_desc)
1191 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193 		 append_desc
1194 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195 		 : tx_bytes);
1196       }
1197       dev->tx_addr += tx_bytes;
1198     } else {
1199       if (irq)
1200 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201       YELLOW_LED_ON(dev);
1202       tx_release (dev);
1203     }
1204 
1205 #ifdef TAILRECURSIONWORKS
1206     // and we all bless optimised tail calls
1207     if (pio_instead)
1208       return tx_schedule (dev, 0);
1209     return;
1210 #else
1211     // grrrrrrr!
1212     irq = 0;
1213   }
1214   return;
1215 #endif
1216 }
1217 
1218 /********** handle TX bus master complete events **********/
1219 
tx_bus_master_complete_handler(hrz_dev * dev)1220 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221   if (test_bit (tx_busy, &dev->flags)) {
1222     tx_schedule (dev, 1);
1223   } else {
1224     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225     // clear interrupt condition on adapter
1226     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1227   }
1228   return;
1229 }
1230 
1231 /********** move RX Q pointer to next item in circular buffer **********/
1232 
1233 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1234 static u32 rx_queue_entry_next (hrz_dev * dev) {
1235   u32 rx_queue_entry;
1236   spin_lock (&dev->mem_lock);
1237   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238   if (dev->rx_q_entry == dev->rx_q_wrap)
1239     dev->rx_q_entry = dev->rx_q_reset;
1240   else
1241     dev->rx_q_entry++;
1242   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243   spin_unlock (&dev->mem_lock);
1244   return rx_queue_entry;
1245 }
1246 
1247 /********** handle RX data received by device **********/
1248 
1249 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1250 static void rx_data_av_handler (hrz_dev * dev) {
1251   u32 rx_queue_entry;
1252   u32 rx_queue_entry_flags;
1253   u16 rx_len;
1254   u16 rx_channel;
1255 
1256   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1257 
1258   // try to grab rx lock (not possible during RX bus mastering)
1259   if (test_and_set_bit (rx_busy, &dev->flags)) {
1260     PRINTD (DBG_RX, "locked out of rx lock");
1261     return;
1262   }
1263   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264   // lock is cleared if we fail now, o/w after bus master completion
1265 
1266   YELLOW_LED_OFF(dev);
1267 
1268   rx_queue_entry = rx_queue_entry_next (dev);
1269 
1270   rx_len = rx_q_entry_to_length (rx_queue_entry);
1271   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1272 
1273   WAIT_FLUSH_RX_COMPLETE (dev);
1274 
1275   SELECT_RX_CHANNEL (dev, rx_channel);
1276 
1277   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1279 
1280   if (!rx_len) {
1281     // (at least) bus-mastering breaks if we try to handle a
1282     // zero-length frame, besides AAL5 does not support them
1283     PRINTK (KERN_ERR, "zero-length frame!");
1284     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1285   }
1286 
1287   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1289   }
1290   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291     struct atm_vcc * atm_vcc;
1292 
1293     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1294 
1295     atm_vcc = dev->rxer[rx_channel];
1296     // if no vcc is assigned to this channel, we should drop the frame
1297     // (is this what SIMONS etc. was trying to achieve?)
1298 
1299     if (atm_vcc) {
1300 
1301       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1302 
1303 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1304 
1305 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306 	  if (skb) {
1307 	    // remember this so we can push it later
1308 	    dev->rx_skb = skb;
1309 	    // remember this so we can flush it later
1310 	    dev->rx_channel = rx_channel;
1311 
1312 	    // prepare socket buffer
1313 	    skb_put (skb, rx_len);
1314 	    ATM_SKB(skb)->vcc = atm_vcc;
1315 
1316 	    // simple transfer
1317 	    // dev->rx_regions = 0;
1318 	    // dev->rx_iovec = 0;
1319 	    dev->rx_bytes = rx_len;
1320 	    dev->rx_addr = skb->data;
1321 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322 		    skb->data, rx_len);
1323 
1324 	    // do the business
1325 	    rx_schedule (dev, 0);
1326 	    return;
1327 
1328 	  } else {
1329 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1330 	  }
1331 
1332 	} else {
1333 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334 	  // do we count this?
1335 	}
1336 
1337       } else {
1338 	PRINTK (KERN_WARNING, "dropped over-size frame");
1339 	// do we count this?
1340       }
1341 
1342     } else {
1343       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344       // do we count this?
1345     }
1346 
1347   } else {
1348     // Wait update complete ? SPONG
1349   }
1350 
1351   // RX was aborted
1352   YELLOW_LED_ON(dev);
1353 
1354   FLUSH_RX_CHANNEL (dev,rx_channel);
1355   clear_bit (rx_busy, &dev->flags);
1356 
1357   return;
1358 }
1359 
1360 /********** interrupt handler **********/
1361 
interrupt_handler(int irq,void * dev_id)1362 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1363 {
1364   hrz_dev *dev = dev_id;
1365   u32 int_source;
1366   unsigned int irq_ok;
1367 
1368   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1369 
1370   // definitely for us
1371   irq_ok = 0;
1372   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373 	  & INTERESTING_INTERRUPTS)) {
1374     // In the interests of fairness, the handlers below are
1375     // called in sequence and without immediate return to the head of
1376     // the while loop. This is only of issue for slow hosts (or when
1377     // debugging messages are on). Really slow hosts may find a fast
1378     // sender keeps them permanently in the IRQ handler. :(
1379 
1380     // (only an issue for slow hosts) RX completion goes before
1381     // rx_data_av as the former implies rx_busy and so the latter
1382     // would just abort. If it reschedules another transfer
1383     // (continuing the same frame) then it will not clear rx_busy.
1384 
1385     // (only an issue for slow hosts) TX completion goes before RX
1386     // data available as it is a much shorter routine - there is the
1387     // chance that any further transfers it schedules will be complete
1388     // by the time of the return to the head of the while loop
1389 
1390     if (int_source & RX_BUS_MASTER_COMPLETE) {
1391       ++irq_ok;
1392       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393       rx_bus_master_complete_handler (dev);
1394     }
1395     if (int_source & TX_BUS_MASTER_COMPLETE) {
1396       ++irq_ok;
1397       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398       tx_bus_master_complete_handler (dev);
1399     }
1400     if (int_source & RX_DATA_AV) {
1401       ++irq_ok;
1402       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403       rx_data_av_handler (dev);
1404     }
1405   }
1406   if (irq_ok) {
1407     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408   } else {
1409     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1410   }
1411 
1412   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413   if (irq_ok)
1414 	return IRQ_HANDLED;
1415   return IRQ_NONE;
1416 }
1417 
1418 /********** housekeeping **********/
1419 
do_housekeeping(unsigned long arg)1420 static void do_housekeeping (unsigned long arg) {
1421   // just stats at the moment
1422   hrz_dev * dev = (hrz_dev *) arg;
1423 
1424   // collect device-specific (not driver/atm-linux) stats here
1425   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1429 
1430   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1431 
1432   return;
1433 }
1434 
1435 /********** find an idle channel for TX and set it up **********/
1436 
1437 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1438 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439   unsigned short idle_channels;
1440   short tx_channel = -1;
1441   unsigned int spin_count;
1442   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1443 
1444   // better would be to fail immediately, the caller can then decide whether
1445   // to wait or drop (depending on whether this is UBR etc.)
1446   spin_count = 0;
1447   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449     // delay a bit here
1450     if (++spin_count > 100) {
1451       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452       return -EBUSY;
1453     }
1454   }
1455 
1456   // got an idle channel
1457   {
1458     // tx_idle ensures we look for idle channels in RR order
1459     int chan = dev->tx_idle;
1460 
1461     int keep_going = 1;
1462     while (keep_going) {
1463       if (idle_channels & (1<<chan)) {
1464 	tx_channel = chan;
1465 	keep_going = 0;
1466       }
1467       ++chan;
1468       if (chan == TX_CHANS)
1469 	chan = 0;
1470     }
1471 
1472     dev->tx_idle = chan;
1473   }
1474 
1475   // set up the channel we found
1476   {
1477     // Initialise the cell header in the transmit channel descriptor
1478     // a.k.a. prepare the channel and remember that we have done so.
1479 
1480     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481     u32 rd_ptr;
1482     u32 wr_ptr;
1483     u16 channel = vcc->channel;
1484 
1485     unsigned long flags;
1486     spin_lock_irqsave (&dev->mem_lock, flags);
1487 
1488     // Update the transmit channel record.
1489     dev->tx_channel_record[tx_channel] = channel;
1490 
1491     // xBR channel
1492     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493 			      vcc->tx_xbr_bits);
1494 
1495     // Update the PCR counter preload value etc.
1496     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497 			      vcc->tx_pcr_bits);
1498 
1499 #if 0
1500     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501       // SCR timer
1502       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503 				vcc->tx_scr_bits);
1504 
1505       // Bucket size...
1506       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507 				vcc->tx_bucket_bits);
1508 
1509       // ... and fullness
1510       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511 				vcc->tx_bucket_bits);
1512     }
1513 #endif
1514 
1515     // Initialise the read and write buffer pointers
1516     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1518 
1519     // idle TX channels should have identical pointers
1520     if (rd_ptr != wr_ptr) {
1521       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522       // spin_unlock... return -E...
1523       // I wonder if gcc would get rid of one of the pointer aliases
1524     }
1525     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526 	    rd_ptr, wr_ptr);
1527 
1528     switch (vcc->aal) {
1529       case aal0:
1530 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533 	break;
1534       case aal34:
1535 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536 	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537 	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538 	break;
1539       case aal5:
1540 	rd_ptr |= CHANNEL_TYPE_AAL5;
1541 	wr_ptr |= CHANNEL_TYPE_AAL5;
1542 	// Initialise the CRC
1543 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544 	break;
1545     }
1546 
1547     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1549 
1550     // Write the Cell Header
1551     // Payload Type, CLP and GFC would go here if non-zero
1552     wr_mem (dev, &tx_desc->cell_header, channel);
1553 
1554     spin_unlock_irqrestore (&dev->mem_lock, flags);
1555   }
1556 
1557   return tx_channel;
1558 }
1559 
1560 /********** send a frame **********/
1561 
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1562 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563   unsigned int spin_count;
1564   int free_buffers;
1565   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567   u16 channel = vcc->channel;
1568 
1569   u32 buffers_required;
1570 
1571   /* signed for error return */
1572   short tx_channel;
1573 
1574   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575 	  channel, skb->data, skb->len);
1576 
1577   dump_skb (">>>", channel, skb);
1578 
1579   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581     hrz_kfree_skb (skb);
1582     return -EIO;
1583   }
1584 
1585   // don't understand this
1586   ATM_SKB(skb)->vcc = atm_vcc;
1587 
1588   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590     hrz_kfree_skb (skb);
1591     return -EIO;
1592   }
1593 
1594   if (!channel) {
1595     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596     hrz_kfree_skb (skb);
1597     return -EIO;
1598   }
1599 
1600 #if 0
1601   {
1602     // where would be a better place for this? housekeeping?
1603     u16 status;
1604     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609       if (test_bit (tx_busy, &dev->flags)) {
1610 	hrz_kfree_skb (dev->tx_skb);
1611 	tx_release (dev);
1612       }
1613     }
1614   }
1615 #endif
1616 
1617 #ifdef DEBUG_HORIZON
1618   /* wey-hey! */
1619   if (channel == 1023) {
1620     unsigned int i;
1621     unsigned short d = 0;
1622     char * s = skb->data;
1623     if (*s++ == 'D') {
1624 	for (i = 0; i < 4; ++i)
1625 		d = (d << 4) | hex_to_bin(*s++);
1626       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1627     }
1628   }
1629 #endif
1630 
1631   // wait until TX is free and grab lock
1632   if (tx_hold (dev)) {
1633     hrz_kfree_skb (skb);
1634     return -ERESTARTSYS;
1635   }
1636 
1637   // Wait for enough space to be available in transmit buffer memory.
1638 
1639   // should be number of cells needed + 2 (according to hardware docs)
1640   // = ((framelen+8)+47) / 48 + 2
1641   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1643 
1644   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645   spin_count = 0;
1646   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648 	    free_buffers, buffers_required);
1649     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650     // mdelay (1);
1651     // what happens if we kill (current_pid, SIGKILL) ?
1652     schedule();
1653     if (++spin_count > 1000) {
1654       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655 	      free_buffers, buffers_required);
1656       tx_release (dev);
1657       hrz_kfree_skb (skb);
1658       return -ERESTARTSYS;
1659     }
1660   }
1661 
1662   // Select a channel to transmit the frame on.
1663   if (channel == dev->last_vc) {
1664     PRINTD (DBG_TX, "last vc hack: hit");
1665     tx_channel = dev->tx_last;
1666   } else {
1667     PRINTD (DBG_TX, "last vc hack: miss");
1668     // Are we currently transmitting this VC on one of the channels?
1669     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670       if (dev->tx_channel_record[tx_channel] == channel) {
1671 	PRINTD (DBG_TX, "vc already on channel: hit");
1672 	break;
1673       }
1674     if (tx_channel == TX_CHANS) {
1675       PRINTD (DBG_TX, "vc already on channel: miss");
1676       // Find and set up an idle channel.
1677       tx_channel = setup_idle_tx_channel (dev, vcc);
1678       if (tx_channel < 0) {
1679 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680 	tx_release (dev);
1681 	return tx_channel;
1682       }
1683     }
1684 
1685     PRINTD (DBG_TX, "got channel");
1686     SELECT_TX_CHANNEL(dev, tx_channel);
1687 
1688     dev->last_vc = channel;
1689     dev->tx_last = tx_channel;
1690   }
1691 
1692   PRINTD (DBG_TX, "using channel %u", tx_channel);
1693 
1694   YELLOW_LED_OFF(dev);
1695 
1696   // TX start transfer
1697 
1698   {
1699     unsigned int tx_len = skb->len;
1700     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701     // remember this so we can free it later
1702     dev->tx_skb = skb;
1703 
1704     if (tx_iovcnt) {
1705       // scatter gather transfer
1706       dev->tx_regions = tx_iovcnt;
1707       dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1708       dev->tx_bytes = 0;
1709       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710 	      skb->data, tx_len);
1711       tx_release (dev);
1712       hrz_kfree_skb (skb);
1713       return -EIO;
1714     } else {
1715       // simple transfer
1716       dev->tx_regions = 0;
1717       dev->tx_iovec = NULL;
1718       dev->tx_bytes = tx_len;
1719       dev->tx_addr = skb->data;
1720       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721 	      skb->data, tx_len);
1722     }
1723 
1724     // and do the business
1725     tx_schedule (dev, 0);
1726 
1727   }
1728 
1729   return 0;
1730 }
1731 
1732 /********** reset a card **********/
1733 
hrz_reset(const hrz_dev * dev)1734 static void hrz_reset (const hrz_dev * dev) {
1735   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1736 
1737   // why not set RESET_HORIZON to one and wait for the card to
1738   // reassert that bit as zero? Like so:
1739   control_0_reg = control_0_reg & RESET_HORIZON;
1740   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741   while (control_0_reg & RESET_HORIZON)
1742     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1743 
1744   // old reset code retained:
1745   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747   // just guessing here
1748   udelay (1000);
1749 
1750   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1751 }
1752 
1753 /********** read the burnt in address **********/
1754 
WRITE_IT_WAIT(const hrz_dev * dev,u32 ctrl)1755 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1756 {
1757 	wr_regl (dev, CONTROL_0_REG, ctrl);
1758 	udelay (5);
1759 }
1760 
CLOCK_IT(const hrz_dev * dev,u32 ctrl)1761 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1762 {
1763 	// DI must be valid around rising SK edge
1764 	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765 	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1766 }
1767 
read_bia(const hrz_dev * dev,u16 addr)1768 static u16 read_bia(const hrz_dev *dev, u16 addr)
1769 {
1770   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1771 
1772   const unsigned int addr_bits = 6;
1773   const unsigned int data_bits = 16;
1774 
1775   unsigned int i;
1776 
1777   u16 res;
1778 
1779   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780   WRITE_IT_WAIT(dev, ctrl);
1781 
1782   // wake Serial EEPROM and send 110 (READ) command
1783   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1784   CLOCK_IT(dev, ctrl);
1785 
1786   ctrl |= SEEPROM_DI;
1787   CLOCK_IT(dev, ctrl);
1788 
1789   ctrl &= ~SEEPROM_DI;
1790   CLOCK_IT(dev, ctrl);
1791 
1792   for (i=0; i<addr_bits; i++) {
1793     if (addr & (1 << (addr_bits-1)))
1794       ctrl |= SEEPROM_DI;
1795     else
1796       ctrl &= ~SEEPROM_DI;
1797 
1798     CLOCK_IT(dev, ctrl);
1799 
1800     addr = addr << 1;
1801   }
1802 
1803   // we could check that we have DO = 0 here
1804   ctrl &= ~SEEPROM_DI;
1805 
1806   res = 0;
1807   for (i=0;i<data_bits;i++) {
1808     res = res >> 1;
1809 
1810     CLOCK_IT(dev, ctrl);
1811 
1812     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813       res |= (1 << (data_bits-1));
1814   }
1815 
1816   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817   WRITE_IT_WAIT(dev, ctrl);
1818 
1819   return res;
1820 }
1821 
1822 /********** initialise a card **********/
1823 
hrz_init(hrz_dev * dev)1824 static int hrz_init(hrz_dev *dev)
1825 {
1826   int onefivefive;
1827 
1828   u16 chan;
1829 
1830   int buff_count;
1831 
1832   HDW * mem;
1833 
1834   cell_buf * tx_desc;
1835   cell_buf * rx_desc;
1836 
1837   u32 ctrl;
1838 
1839   ctrl = rd_regl (dev, CONTROL_0_REG);
1840   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841   onefivefive = ctrl & ATM_LAYER_STATUS;
1842 
1843   if (onefivefive)
1844     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845   else
1846     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1847 
1848   printk (":");
1849   // Reset the card to get everything in a known state
1850 
1851   printk (" reset");
1852   hrz_reset (dev);
1853 
1854   // Clear all the buffer memory
1855 
1856   printk (" clearing memory");
1857 
1858   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859     wr_mem (dev, mem, 0);
1860 
1861   printk (" tx channels");
1862 
1863   // All transmit eight channels are set up as AAL5 ABR channels with
1864   // a 16us cell spacing. Why?
1865 
1866   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867   // buffer at 110h etc.
1868 
1869   for (chan = 0; chan < TX_CHANS; ++chan) {
1870     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871     cell_buf * buf = &memmap->inittxbufs[chan];
1872 
1873     // initialise the read and write buffer pointers
1874     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1876 
1877     // set the status of the initial buffers to empty
1878     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1879   }
1880 
1881   // Use space bufn3 at the moment for tx buffers
1882 
1883   printk (" tx buffers");
1884 
1885   tx_desc = memmap->bufn3;
1886 
1887   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1888 
1889   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891     tx_desc++;
1892   }
1893 
1894   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1895 
1896   // Initialise the transmit free buffer count
1897   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1898 
1899   printk (" rx channels");
1900 
1901   // Initialise all of the receive channels to be AAL5 disabled with
1902   // an interrupt threshold of 0
1903 
1904   for (chan = 0; chan < RX_CHANS; ++chan) {
1905     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1906 
1907     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1908   }
1909 
1910   printk (" rx buffers");
1911 
1912   // Use space bufn4 at the moment for rx buffers
1913 
1914   rx_desc = memmap->bufn4;
1915 
1916   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1917 
1918   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1920 
1921     rx_desc++;
1922   }
1923 
1924   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1925 
1926   // Initialise the receive free buffer count
1927   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1928 
1929   // Initialize Horizons registers
1930 
1931   // TX config
1932   wr_regw (dev, TX_CONFIG_OFF,
1933 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1934 
1935   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936   wr_regw (dev, RX_CONFIG_OFF,
1937 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1938 
1939   // RX line config
1940   wr_regw (dev, RX_LINE_CONFIG_OFF,
1941 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1942 
1943   // Set the max AAL5 cell count to be just enough to contain the
1944   // largest AAL5 frame that the user wants to receive
1945   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946 	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1947 
1948   // Enable receive
1949   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1950 
1951   printk (" control");
1952 
1953   // Drive the OE of the LEDs then turn the green LED on
1954   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955   wr_regl (dev, CONTROL_0_REG, ctrl);
1956 
1957   // Test for a 155-capable card
1958 
1959   if (onefivefive) {
1960     // Select 155 mode... make this a choice (or: how do we detect
1961     // external line speed and switch?)
1962     ctrl |= ATM_LAYER_SELECT;
1963     wr_regl (dev, CONTROL_0_REG, ctrl);
1964 
1965     // test SUNI-lite vs SAMBA
1966 
1967     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1969     // engineers.  It'll never work.
1970 
1971     if (rd_framer (dev, 0) & 0x00f0) {
1972       // SUNI
1973       printk (" SUNI");
1974 
1975       // Reset, just in case
1976       wr_framer (dev, 0x00, 0x0080);
1977       wr_framer (dev, 0x00, 0x0000);
1978 
1979       // Configure transmit FIFO
1980       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1981 
1982       // Set line timed mode
1983       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984     } else {
1985       // SAMBA
1986       printk (" SAMBA");
1987 
1988       // Reset, just in case
1989       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1991 
1992       // Turn off diagnostic loopback and enable line-timed mode
1993       wr_framer (dev, 0, 0x0002);
1994 
1995       // Turn on transmit outputs
1996       wr_framer (dev, 2, 0x0B80);
1997     }
1998   } else {
1999     // Select 25 mode
2000     ctrl &= ~ATM_LAYER_SELECT;
2001 
2002     // Madge B154 setup
2003     // none required?
2004   }
2005 
2006   printk (" LEDs");
2007 
2008   GREEN_LED_ON(dev);
2009   YELLOW_LED_ON(dev);
2010 
2011   printk (" ESI=");
2012 
2013   {
2014     u16 b = 0;
2015     int i;
2016     u8 * esi = dev->atm_dev->esi;
2017 
2018     // in the card I have, EEPROM
2019     // addresses 0, 1, 2 contain 0
2020     // addresess 5, 6 etc. contain ffff
2021     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022     // the read_bia routine gets the BIA in Ethernet bit order
2023 
2024     for (i=0; i < ESI_LEN; ++i) {
2025       if (i % 2 == 0)
2026 	b = read_bia (dev, i/2 + 2);
2027       else
2028 	b = b >> 8;
2029       esi[i] = b & 0xFF;
2030       printk ("%02x", esi[i]);
2031     }
2032   }
2033 
2034   // Enable RX_Q and ?X_COMPLETE interrupts only
2035   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036   printk (" IRQ on");
2037 
2038   printk (".\n");
2039 
2040   return onefivefive;
2041 }
2042 
2043 /********** check max_sdu **********/
2044 
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2045 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2047 
2048   switch (aal) {
2049     case aal0:
2050       if (!(tp->max_sdu)) {
2051 	PRINTD (DBG_QOS, "defaulting max_sdu");
2052 	tp->max_sdu = ATM_AAL0_SDU;
2053       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055 	return -EINVAL;
2056       }
2057       break;
2058     case aal34:
2059       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061 	tp->max_sdu = ATM_MAX_AAL34_PDU;
2062       }
2063       break;
2064     case aal5:
2065       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067 	tp->max_sdu = max_frame_size;
2068       }
2069       break;
2070   }
2071   return 0;
2072 }
2073 
2074 /********** check pcr **********/
2075 
2076 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2077 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078   // we are assuming non-UBR, and non-special values of pcr
2079   if (tp->min_pcr == ATM_MAX_PCR)
2080     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081   else if (tp->min_pcr < 0)
2082     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083   else if (tp->min_pcr && tp->min_pcr > pcr)
2084     PRINTD (DBG_QOS, "pcr less than min_pcr");
2085   else
2086     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088     // [this would get rid of next two conditionals]
2089     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095     else {
2096       // each limit unspecified or not violated
2097       PRINTD (DBG_QOS, "xBR(pcr) OK");
2098       return 0;
2099     }
2100   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102   return -EINVAL;
2103 }
2104 
2105 /********** open VC **********/
2106 
hrz_open(struct atm_vcc * atm_vcc)2107 static int hrz_open (struct atm_vcc *atm_vcc)
2108 {
2109   int error;
2110   u16 channel;
2111 
2112   struct atm_qos * qos;
2113   struct atm_trafprm * txtp;
2114   struct atm_trafprm * rxtp;
2115 
2116   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117   hrz_vcc vcc;
2118   hrz_vcc * vccp; // allocated late
2119   short vpi = atm_vcc->vpi;
2120   int vci = atm_vcc->vci;
2121   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2122 
2123 #ifdef ATM_VPI_UNSPEC
2124   // UNSPEC is deprecated, remove this code eventually
2125   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127     return -EINVAL;
2128   }
2129 #endif
2130 
2131   error = vpivci_to_channel (&channel, vpi, vci);
2132   if (error) {
2133     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134     return error;
2135   }
2136 
2137   vcc.channel = channel;
2138   // max speed for the moment
2139   vcc.tx_rate = 0x0;
2140 
2141   qos = &atm_vcc->qos;
2142 
2143   // check AAL and remember it
2144   switch (qos->aal) {
2145     case ATM_AAL0:
2146       // we would if it were 48 bytes and not 52!
2147       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148       vcc.aal = aal0;
2149       break;
2150     case ATM_AAL34:
2151       // we would if I knew how do the SAR!
2152       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153       vcc.aal = aal34;
2154       break;
2155     case ATM_AAL5:
2156       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157       vcc.aal = aal5;
2158       break;
2159     default:
2160       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161       return -EINVAL;
2162   }
2163 
2164   // TX traffic parameters
2165 
2166   // there are two, interrelated problems here: 1. the reservation of
2167   // PCR is not a binary choice, we are given bounds and/or a
2168   // desirable value; 2. the device is only capable of certain values,
2169   // most of which are not integers. It is almost certainly acceptable
2170   // to be off by a maximum of 1 to 10 cps.
2171 
2172   // Pragmatic choice: always store an integral PCR as that which has
2173   // been allocated, even if we allocate a little (or a lot) less,
2174   // after rounding. The actual allocation depends on what we can
2175   // manage with our rate selection algorithm. The rate selection
2176   // algorithm is given an integral PCR and a tolerance and told
2177   // whether it should round the value up or down if the tolerance is
2178   // exceeded; it returns: a) the actual rate selected (rounded up to
2179   // the nearest integer), b) a bit pattern to feed to the timer
2180   // register, and c) a failure value if no applicable rate exists.
2181 
2182   // Part of the job is done by atm_pcr_goal which gives us a PCR
2183   // specification which says: EITHER grab the maximum available PCR
2184   // (and perhaps a lower bound which we musn't pass), OR grab this
2185   // amount, rounding down if you have to (and perhaps a lower bound
2186   // which we musn't pass) OR grab this amount, rounding up if you
2187   // have to (and perhaps an upper bound which we musn't pass). If any
2188   // bounds ARE passed we fail. Note that rounding is only rounding to
2189   // match device limitations, we do not round down to satisfy
2190   // bandwidth availability even if this would not violate any given
2191   // lower bound.
2192 
2193   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194   // (say) so this is not even a binary fixpoint cell rate (but this
2195   // device can do it). To avoid this sort of hassle we use a
2196   // tolerance parameter (currently fixed at 10 cps).
2197 
2198   PRINTD (DBG_QOS, "TX:");
2199 
2200   txtp = &qos->txtp;
2201 
2202   // set up defaults for no traffic
2203   vcc.tx_rate = 0;
2204   // who knows what would actually happen if you try and send on this?
2205   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206   vcc.tx_pcr_bits = CLOCK_DISABLE;
2207 #if 0
2208   vcc.tx_scr_bits = CLOCK_DISABLE;
2209   vcc.tx_bucket_bits = 0;
2210 #endif
2211 
2212   if (txtp->traffic_class != ATM_NONE) {
2213     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214     if (error) {
2215       PRINTD (DBG_QOS, "TX max_sdu check failed");
2216       return error;
2217     }
2218 
2219     switch (txtp->traffic_class) {
2220       case ATM_UBR: {
2221 	// we take "the PCR" as a rate-cap
2222 	// not reserved
2223 	vcc.tx_rate = 0;
2224 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226 	break;
2227       }
2228 #if 0
2229       case ATM_ABR: {
2230 	// reserve min, allow up to max
2231 	vcc.tx_rate = 0; // ?
2232 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234 	break;
2235       }
2236 #endif
2237       case ATM_CBR: {
2238 	int pcr = atm_pcr_goal (txtp);
2239 	rounding r;
2240 	if (!pcr) {
2241 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242 	  // should really have: once someone gets unlimited bandwidth
2243 	  // that no more non-UBR channels can be opened until the
2244 	  // unlimited one closes?? For the moment, round_down means
2245 	  // greedy people actually get something and not nothing
2246 	  r = round_down;
2247 	  // slight race (no locking) here so we may get -EAGAIN
2248 	  // later; the greedy bastards would deserve it :)
2249 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250 	  pcr = dev->tx_avail;
2251 	} else if (pcr < 0) {
2252 	  r = round_down;
2253 	  pcr = -pcr;
2254 	} else {
2255 	  r = round_up;
2256 	}
2257 	error = make_rate_with_tolerance (dev, pcr, r, 10,
2258 					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2259 	if (error) {
2260 	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261 	  return error;
2262 	}
2263 	// not really clear what further checking is needed
2264 	error = atm_pcr_check (txtp, vcc.tx_rate);
2265 	if (error) {
2266 	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267 	  return error;
2268 	}
2269 	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270 	break;
2271       }
2272 #if 0
2273       case ATM_VBR: {
2274 	int pcr = atm_pcr_goal (txtp);
2275 	// int scr = atm_scr_goal (txtp);
2276 	int scr = pcr/2; // just for fun
2277 	unsigned int mbs = 60; // just for fun
2278 	rounding pr;
2279 	rounding sr;
2280 	unsigned int bucket;
2281 	if (!pcr) {
2282 	  pr = round_nearest;
2283 	  pcr = 1<<30;
2284 	} else if (pcr < 0) {
2285 	  pr = round_down;
2286 	  pcr = -pcr;
2287 	} else {
2288 	  pr = round_up;
2289 	}
2290 	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291 					  &vcc.tx_pcr_bits, 0);
2292 	if (!scr) {
2293 	  // see comments for PCR with CBR above
2294 	  sr = round_down;
2295 	  // slight race (no locking) here so we may get -EAGAIN
2296 	  // later; the greedy bastards would deserve it :)
2297 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298 	  scr = dev->tx_avail;
2299 	} else if (scr < 0) {
2300 	  sr = round_down;
2301 	  scr = -scr;
2302 	} else {
2303 	  sr = round_up;
2304 	}
2305 	error = make_rate_with_tolerance (dev, scr, sr, 10,
2306 					  &vcc.tx_scr_bits, &vcc.tx_rate);
2307 	if (error) {
2308 	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309 	  return error;
2310 	}
2311 	// not really clear what further checking is needed
2312 	// error = atm_scr_check (txtp, vcc.tx_rate);
2313 	if (error) {
2314 	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315 	  return error;
2316 	}
2317 	// bucket calculations (from a piece of paper...) cell bucket
2318 	// capacity must be largest integer smaller than m(p-s)/p + 1
2319 	// where m = max burst size, p = pcr, s = scr
2320 	bucket = mbs*(pcr-scr)/pcr;
2321 	if (bucket*pcr != mbs*(pcr-scr))
2322 	  bucket += 1;
2323 	if (bucket > BUCKET_MAX_SIZE) {
2324 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325 		  bucket, BUCKET_MAX_SIZE);
2326 	  bucket = BUCKET_MAX_SIZE;
2327 	}
2328 	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329 	vcc.tx_bucket_bits = bucket;
2330 	break;
2331       }
2332 #endif
2333       default: {
2334 	PRINTD (DBG_QOS, "unsupported TX traffic class");
2335 	return -EINVAL;
2336       }
2337     }
2338   }
2339 
2340   // RX traffic parameters
2341 
2342   PRINTD (DBG_QOS, "RX:");
2343 
2344   rxtp = &qos->rxtp;
2345 
2346   // set up defaults for no traffic
2347   vcc.rx_rate = 0;
2348 
2349   if (rxtp->traffic_class != ATM_NONE) {
2350     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351     if (error) {
2352       PRINTD (DBG_QOS, "RX max_sdu check failed");
2353       return error;
2354     }
2355     switch (rxtp->traffic_class) {
2356       case ATM_UBR: {
2357 	// not reserved
2358 	break;
2359       }
2360 #if 0
2361       case ATM_ABR: {
2362 	// reserve min
2363 	vcc.rx_rate = 0; // ?
2364 	break;
2365       }
2366 #endif
2367       case ATM_CBR: {
2368 	int pcr = atm_pcr_goal (rxtp);
2369 	if (!pcr) {
2370 	  // slight race (no locking) here so we may get -EAGAIN
2371 	  // later; the greedy bastards would deserve it :)
2372 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373 	  pcr = dev->rx_avail;
2374 	} else if (pcr < 0) {
2375 	  pcr = -pcr;
2376 	}
2377 	vcc.rx_rate = pcr;
2378 	// not really clear what further checking is needed
2379 	error = atm_pcr_check (rxtp, vcc.rx_rate);
2380 	if (error) {
2381 	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382 	  return error;
2383 	}
2384 	break;
2385       }
2386 #if 0
2387       case ATM_VBR: {
2388 	// int scr = atm_scr_goal (rxtp);
2389 	int scr = 1<<16; // just for fun
2390 	if (!scr) {
2391 	  // slight race (no locking) here so we may get -EAGAIN
2392 	  // later; the greedy bastards would deserve it :)
2393 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394 	  scr = dev->rx_avail;
2395 	} else if (scr < 0) {
2396 	  scr = -scr;
2397 	}
2398 	vcc.rx_rate = scr;
2399 	// not really clear what further checking is needed
2400 	// error = atm_scr_check (rxtp, vcc.rx_rate);
2401 	if (error) {
2402 	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403 	  return error;
2404 	}
2405 	break;
2406       }
2407 #endif
2408       default: {
2409 	PRINTD (DBG_QOS, "unsupported RX traffic class");
2410 	return -EINVAL;
2411       }
2412     }
2413   }
2414 
2415 
2416   // late abort useful for diagnostics
2417   if (vcc.aal != aal5) {
2418     PRINTD (DBG_QOS, "AAL not supported");
2419     return -EINVAL;
2420   }
2421 
2422   // get space for our vcc stuff and copy parameters into it
2423   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424   if (!vccp) {
2425     PRINTK (KERN_ERR, "out of memory!");
2426     return -ENOMEM;
2427   }
2428   *vccp = vcc;
2429 
2430   // clear error and grab cell rate resource lock
2431   error = 0;
2432   spin_lock (&dev->rate_lock);
2433 
2434   if (vcc.tx_rate > dev->tx_avail) {
2435     PRINTD (DBG_QOS, "not enough TX PCR left");
2436     error = -EAGAIN;
2437   }
2438 
2439   if (vcc.rx_rate > dev->rx_avail) {
2440     PRINTD (DBG_QOS, "not enough RX PCR left");
2441     error = -EAGAIN;
2442   }
2443 
2444   if (!error) {
2445     // really consume cell rates
2446     dev->tx_avail -= vcc.tx_rate;
2447     dev->rx_avail -= vcc.rx_rate;
2448     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449 	    vcc.tx_rate, vcc.rx_rate);
2450   }
2451 
2452   // release lock and exit on error
2453   spin_unlock (&dev->rate_lock);
2454   if (error) {
2455     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456     kfree (vccp);
2457     return error;
2458   }
2459 
2460   // this is "immediately before allocating the connection identifier
2461   // in hardware" - so long as the next call does not fail :)
2462   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2463 
2464   // any errors here are very serious and should never occur
2465 
2466   if (rxtp->traffic_class != ATM_NONE) {
2467     if (dev->rxer[channel]) {
2468       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469       error = -EBUSY;
2470     }
2471     if (!error)
2472       error = hrz_open_rx (dev, channel);
2473     if (error) {
2474       kfree (vccp);
2475       return error;
2476     }
2477     // this link allows RX frames through
2478     dev->rxer[channel] = atm_vcc;
2479   }
2480 
2481   // success, set elements of atm_vcc
2482   atm_vcc->dev_data = (void *) vccp;
2483 
2484   // indicate readiness
2485   set_bit(ATM_VF_READY,&atm_vcc->flags);
2486 
2487   return 0;
2488 }
2489 
2490 /********** close VC **********/
2491 
hrz_close(struct atm_vcc * atm_vcc)2492 static void hrz_close (struct atm_vcc * atm_vcc) {
2493   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495   u16 channel = vcc->channel;
2496   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2497 
2498   // indicate unreadiness
2499   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2500 
2501   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502     unsigned int i;
2503 
2504     // let any TX on this channel that has started complete
2505     // no restart, just keep trying
2506     while (tx_hold (dev))
2507       ;
2508     // remove record of any tx_channel having been setup for this channel
2509     for (i = 0; i < TX_CHANS; ++i)
2510       if (dev->tx_channel_record[i] == channel) {
2511 	dev->tx_channel_record[i] = -1;
2512 	break;
2513       }
2514     if (dev->last_vc == channel)
2515       dev->tx_last = -1;
2516     tx_release (dev);
2517   }
2518 
2519   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520     // disable RXing - it tries quite hard
2521     hrz_close_rx (dev, channel);
2522     // forget the vcc - no more skbs will be pushed
2523     if (atm_vcc != dev->rxer[channel])
2524       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525 	      "arghhh! we're going to die!",
2526 	      atm_vcc, dev->rxer[channel]);
2527     dev->rxer[channel] = NULL;
2528   }
2529 
2530   // atomically release our rate reservation
2531   spin_lock (&dev->rate_lock);
2532   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533 	  vcc->tx_rate, vcc->rx_rate);
2534   dev->tx_avail += vcc->tx_rate;
2535   dev->rx_avail += vcc->rx_rate;
2536   spin_unlock (&dev->rate_lock);
2537 
2538   // free our structure
2539   kfree (vcc);
2540   // say the VPI/VCI is free again
2541   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2542 }
2543 
2544 #if 0
2545 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546 			   void *optval, int optlen) {
2547   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549   switch (level) {
2550     case SOL_SOCKET:
2551       switch (optname) {
2552 //	case SO_BCTXOPT:
2553 //	  break;
2554 //	case SO_BCRXOPT:
2555 //	  break;
2556 	default:
2557 	  return -ENOPROTOOPT;
2558       };
2559       break;
2560   }
2561   return -EINVAL;
2562 }
2563 
2564 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565 			   void *optval, unsigned int optlen) {
2566   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568   switch (level) {
2569     case SOL_SOCKET:
2570       switch (optname) {
2571 //	case SO_BCTXOPT:
2572 //	  break;
2573 //	case SO_BCRXOPT:
2574 //	  break;
2575 	default:
2576 	  return -ENOPROTOOPT;
2577       };
2578       break;
2579   }
2580   return -EINVAL;
2581 }
2582 #endif
2583 
2584 #if 0
2585 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586   hrz_dev * dev = HRZ_DEV(atm_dev);
2587   PRINTD (DBG_FLOW, "hrz_ioctl");
2588   return -1;
2589 }
2590 
2591 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592   hrz_dev * dev = HRZ_DEV(atm_dev);
2593   PRINTD (DBG_FLOW, "hrz_phy_get");
2594   return 0;
2595 }
2596 
2597 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598 			 unsigned long addr) {
2599   hrz_dev * dev = HRZ_DEV(atm_dev);
2600   PRINTD (DBG_FLOW, "hrz_phy_put");
2601 }
2602 
2603 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604   hrz_dev * dev = HRZ_DEV(vcc->dev);
2605   PRINTD (DBG_FLOW, "hrz_change_qos");
2606   return -1;
2607 }
2608 #endif
2609 
2610 /********** proc file contents **********/
2611 
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2612 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613   hrz_dev * dev = HRZ_DEV(atm_dev);
2614   int left = *pos;
2615   PRINTD (DBG_FLOW, "hrz_proc_read");
2616 
2617   /* more diagnostics here? */
2618 
2619 #if 0
2620   if (!left--) {
2621     unsigned int count = sprintf (page, "vbr buckets:");
2622     unsigned int i;
2623     for (i = 0; i < TX_CHANS; ++i)
2624       count += sprintf (page, " %u/%u",
2625 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627     count += sprintf (page+count, ".\n");
2628     return count;
2629   }
2630 #endif
2631 
2632   if (!left--)
2633     return sprintf (page,
2634 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635 		    dev->tx_cell_count, dev->rx_cell_count,
2636 		    dev->hec_error_count, dev->unassigned_cell_count);
2637 
2638   if (!left--)
2639     return sprintf (page,
2640 		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643 		    dev->noof_spare_buffers);
2644 
2645   if (!left--)
2646     return sprintf (page,
2647 		    "cps remaining: TX %u, RX %u\n",
2648 		    dev->tx_avail, dev->rx_avail);
2649 
2650   return 0;
2651 }
2652 
2653 static const struct atmdev_ops hrz_ops = {
2654   .open	= hrz_open,
2655   .close	= hrz_close,
2656   .send	= hrz_send,
2657   .proc_read	= hrz_proc_read,
2658   .owner	= THIS_MODULE,
2659 };
2660 
hrz_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2661 static int hrz_probe(struct pci_dev *pci_dev,
2662 		     const struct pci_device_id *pci_ent)
2663 {
2664 	hrz_dev * dev;
2665 	int err = 0;
2666 
2667 	// adapter slot free, read resources from PCI configuration space
2668 	u32 iobase = pci_resource_start (pci_dev, 0);
2669 	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670 	unsigned int irq;
2671 	unsigned char lat;
2672 
2673 	PRINTD (DBG_FLOW, "hrz_probe");
2674 
2675 	if (pci_enable_device(pci_dev))
2676 		return -EINVAL;
2677 
2678 	/* XXX DEV_LABEL is a guess */
2679 	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680 		err = -EINVAL;
2681 		goto out_disable;
2682 	}
2683 
2684 	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685 	if (!dev) {
2686 		// perhaps we should be nice: deregister all adapters and abort?
2687 		PRINTD(DBG_ERR, "out of memory");
2688 		err = -ENOMEM;
2689 		goto out_release;
2690 	}
2691 
2692 	pci_set_drvdata(pci_dev, dev);
2693 
2694 	// grab IRQ and install handler - move this someplace more sensible
2695 	irq = pci_dev->irq;
2696 	if (request_irq(irq,
2697 			interrupt_handler,
2698 			IRQF_SHARED, /* irqflags guess */
2699 			DEV_LABEL, /* name guess */
2700 			dev)) {
2701 		PRINTD(DBG_WARN, "request IRQ failed!");
2702 		err = -EINVAL;
2703 		goto out_free;
2704 	}
2705 
2706 	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707 	       iobase, irq, membase);
2708 
2709 	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710 					NULL);
2711 	if (!(dev->atm_dev)) {
2712 		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713 		err = -EINVAL;
2714 		goto out_free_irq;
2715 	}
2716 
2717 	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718 	       dev->atm_dev->number, dev, dev->atm_dev);
2719 	dev->atm_dev->dev_data = (void *) dev;
2720 	dev->pci_dev = pci_dev;
2721 
2722 	// enable bus master accesses
2723 	pci_set_master(pci_dev);
2724 
2725 	// frobnicate latency (upwards, usually)
2726 	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727 	if (pci_lat) {
2728 		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729 		       "changing", lat, pci_lat);
2730 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731 	} else if (lat < MIN_PCI_LATENCY) {
2732 		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733 		       "increasing", lat, MIN_PCI_LATENCY);
2734 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2735 	}
2736 
2737 	dev->iobase = iobase;
2738 	dev->irq = irq;
2739 	dev->membase = membase;
2740 
2741 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2743 
2744 	// these next three are performance hacks
2745 	dev->last_vc = -1;
2746 	dev->tx_last = -1;
2747 	dev->tx_idle = 0;
2748 
2749 	dev->tx_regions = 0;
2750 	dev->tx_bytes = 0;
2751 	dev->tx_skb = NULL;
2752 	dev->tx_iovec = NULL;
2753 
2754 	dev->tx_cell_count = 0;
2755 	dev->rx_cell_count = 0;
2756 	dev->hec_error_count = 0;
2757 	dev->unassigned_cell_count = 0;
2758 
2759 	dev->noof_spare_buffers = 0;
2760 
2761 	{
2762 		unsigned int i;
2763 		for (i = 0; i < TX_CHANS; ++i)
2764 			dev->tx_channel_record[i] = -1;
2765 	}
2766 
2767 	dev->flags = 0;
2768 
2769 	// Allocate cell rates and remember ASIC version
2770 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2773 
2774 	if (hrz_init(dev)) {
2775 		// to be really pedantic, this should be ATM_OC3c_PCR
2776 		dev->tx_avail = ATM_OC3_PCR;
2777 		dev->rx_avail = ATM_OC3_PCR;
2778 		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779 	} else {
2780 		dev->tx_avail = ((25600000/8)*26)/(27*53);
2781 		dev->rx_avail = ((25600000/8)*26)/(27*53);
2782 		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2783 	}
2784 
2785 	// rate changes spinlock
2786 	spin_lock_init(&dev->rate_lock);
2787 
2788 	// on-board memory access spinlock; we want atomic reads and
2789 	// writes to adapter memory (handles IRQ and SMP)
2790 	spin_lock_init(&dev->mem_lock);
2791 
2792 	init_waitqueue_head(&dev->tx_queue);
2793 
2794 	// vpi in 0..4, vci in 6..10
2795 	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2797 
2798 	setup_timer(&dev->housekeeping, do_housekeeping, (unsigned long) dev);
2799 	mod_timer(&dev->housekeeping, jiffies);
2800 
2801 out:
2802 	return err;
2803 
2804 out_free_irq:
2805 	free_irq(irq, dev);
2806 out_free:
2807 	kfree(dev);
2808 out_release:
2809 	release_region(iobase, HRZ_IO_EXTENT);
2810 out_disable:
2811 	pci_disable_device(pci_dev);
2812 	goto out;
2813 }
2814 
hrz_remove_one(struct pci_dev * pci_dev)2815 static void hrz_remove_one(struct pci_dev *pci_dev)
2816 {
2817 	hrz_dev *dev;
2818 
2819 	dev = pci_get_drvdata(pci_dev);
2820 
2821 	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2822 	del_timer_sync(&dev->housekeeping);
2823 	hrz_reset(dev);
2824 	atm_dev_deregister(dev->atm_dev);
2825 	free_irq(dev->irq, dev);
2826 	release_region(dev->iobase, HRZ_IO_EXTENT);
2827 	kfree(dev);
2828 
2829 	pci_disable_device(pci_dev);
2830 }
2831 
hrz_check_args(void)2832 static void __init hrz_check_args (void) {
2833 #ifdef DEBUG_HORIZON
2834   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2835 #else
2836   if (debug)
2837     PRINTK (KERN_NOTICE, "no debug support in this image");
2838 #endif
2839 
2840   if (vpi_bits > HRZ_MAX_VPI)
2841     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2842 	    vpi_bits = HRZ_MAX_VPI);
2843 
2844   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2845     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2846 	    max_tx_size = TX_AAL5_LIMIT);
2847 
2848   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2849     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2850 	    max_rx_size = RX_AAL5_LIMIT);
2851 
2852   return;
2853 }
2854 
2855 MODULE_AUTHOR(maintainer_string);
2856 MODULE_DESCRIPTION(description_string);
2857 MODULE_LICENSE("GPL");
2858 module_param(debug, ushort, 0644);
2859 module_param(vpi_bits, ushort, 0);
2860 module_param(max_tx_size, int, 0);
2861 module_param(max_rx_size, int, 0);
2862 module_param(pci_lat, byte, 0);
2863 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2864 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2865 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2866 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2867 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2868 
2869 static struct pci_device_id hrz_pci_tbl[] = {
2870 	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2871 	  0, 0, 0 },
2872 	{ 0, }
2873 };
2874 
2875 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2876 
2877 static struct pci_driver hrz_driver = {
2878 	.name =		"horizon",
2879 	.probe =	hrz_probe,
2880 	.remove =	hrz_remove_one,
2881 	.id_table =	hrz_pci_tbl,
2882 };
2883 
2884 /********** module entry **********/
2885 
hrz_module_init(void)2886 static int __init hrz_module_init (void) {
2887   // sanity check - cast is needed since printk does not support %Zu
2888   if (sizeof(struct MEMMAP) != 128*1024/4) {
2889     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2890 	    (unsigned long) sizeof(struct MEMMAP));
2891     return -ENOMEM;
2892   }
2893 
2894   show_version();
2895 
2896   // check arguments
2897   hrz_check_args();
2898 
2899   // get the juice
2900   return pci_register_driver(&hrz_driver);
2901 }
2902 
2903 /********** module exit **********/
2904 
hrz_module_exit(void)2905 static void __exit hrz_module_exit (void) {
2906   PRINTD (DBG_FLOW, "cleanup_module");
2907 
2908   pci_unregister_driver(&hrz_driver);
2909 }
2910 
2911 module_init(hrz_module_init);
2912 module_exit(hrz_module_exit);
2913