• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    drbd.c
3 
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5 
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9 
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12 
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17 
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 
27  */
28 
29 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 
56 #include <linux/drbd_limits.h>
57 #include "drbd_int.h"
58 #include "drbd_protocol.h"
59 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
60 #include "drbd_vli.h"
61 #include "drbd_debugfs.h"
62 
63 static DEFINE_MUTEX(drbd_main_mutex);
64 static int drbd_open(struct block_device *bdev, fmode_t mode);
65 static void drbd_release(struct gendisk *gd, fmode_t mode);
66 static void md_sync_timer_fn(unsigned long data);
67 static int w_bitmap_io(struct drbd_work *w, int unused);
68 
69 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
70 	      "Lars Ellenberg <lars@linbit.com>");
71 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
72 MODULE_VERSION(REL_VERSION);
73 MODULE_LICENSE("GPL");
74 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
75 		 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
76 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
77 
78 #include <linux/moduleparam.h>
79 /* allow_open_on_secondary */
80 MODULE_PARM_DESC(allow_oos, "DONT USE!");
81 /* thanks to these macros, if compiled into the kernel (not-module),
82  * this becomes the boot parameter drbd.minor_count */
83 module_param(minor_count, uint, 0444);
84 module_param(disable_sendpage, bool, 0644);
85 module_param(allow_oos, bool, 0);
86 module_param(proc_details, int, 0644);
87 
88 #ifdef CONFIG_DRBD_FAULT_INJECTION
89 int enable_faults;
90 int fault_rate;
91 static int fault_count;
92 int fault_devs;
93 /* bitmap of enabled faults */
94 module_param(enable_faults, int, 0664);
95 /* fault rate % value - applies to all enabled faults */
96 module_param(fault_rate, int, 0664);
97 /* count of faults inserted */
98 module_param(fault_count, int, 0664);
99 /* bitmap of devices to insert faults on */
100 module_param(fault_devs, int, 0644);
101 #endif
102 
103 /* module parameter, defined */
104 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
105 bool disable_sendpage;
106 bool allow_oos;
107 int proc_details;       /* Detail level in proc drbd*/
108 
109 /* Module parameter for setting the user mode helper program
110  * to run. Default is /sbin/drbdadm */
111 char usermode_helper[80] = "/sbin/drbdadm";
112 
113 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
114 
115 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
116  * as member "struct gendisk *vdisk;"
117  */
118 struct idr drbd_devices;
119 struct list_head drbd_resources;
120 struct mutex resources_mutex;
121 
122 struct kmem_cache *drbd_request_cache;
123 struct kmem_cache *drbd_ee_cache;	/* peer requests */
124 struct kmem_cache *drbd_bm_ext_cache;	/* bitmap extents */
125 struct kmem_cache *drbd_al_ext_cache;	/* activity log extents */
126 mempool_t *drbd_request_mempool;
127 mempool_t *drbd_ee_mempool;
128 mempool_t *drbd_md_io_page_pool;
129 struct bio_set *drbd_md_io_bio_set;
130 
131 /* I do not use a standard mempool, because:
132    1) I want to hand out the pre-allocated objects first.
133    2) I want to be able to interrupt sleeping allocation with a signal.
134    Note: This is a single linked list, the next pointer is the private
135 	 member of struct page.
136  */
137 struct page *drbd_pp_pool;
138 spinlock_t   drbd_pp_lock;
139 int          drbd_pp_vacant;
140 wait_queue_head_t drbd_pp_wait;
141 
142 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
143 
144 static const struct block_device_operations drbd_ops = {
145 	.owner =   THIS_MODULE,
146 	.open =    drbd_open,
147 	.release = drbd_release,
148 };
149 
bio_alloc_drbd(gfp_t gfp_mask)150 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
151 {
152 	struct bio *bio;
153 
154 	if (!drbd_md_io_bio_set)
155 		return bio_alloc(gfp_mask, 1);
156 
157 	bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
158 	if (!bio)
159 		return NULL;
160 	return bio;
161 }
162 
163 #ifdef __CHECKER__
164 /* When checking with sparse, and this is an inline function, sparse will
165    give tons of false positives. When this is a real functions sparse works.
166  */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)167 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
168 {
169 	int io_allowed;
170 
171 	atomic_inc(&device->local_cnt);
172 	io_allowed = (device->state.disk >= mins);
173 	if (!io_allowed) {
174 		if (atomic_dec_and_test(&device->local_cnt))
175 			wake_up(&device->misc_wait);
176 	}
177 	return io_allowed;
178 }
179 
180 #endif
181 
182 /**
183  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
184  * @connection:	DRBD connection.
185  * @barrier_nr:	Expected identifier of the DRBD write barrier packet.
186  * @set_size:	Expected number of requests before that barrier.
187  *
188  * In case the passed barrier_nr or set_size does not match the oldest
189  * epoch of not yet barrier-acked requests, this function will cause a
190  * termination of the connection.
191  */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)192 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
193 		unsigned int set_size)
194 {
195 	struct drbd_request *r;
196 	struct drbd_request *req = NULL;
197 	int expect_epoch = 0;
198 	int expect_size = 0;
199 
200 	spin_lock_irq(&connection->resource->req_lock);
201 
202 	/* find oldest not yet barrier-acked write request,
203 	 * count writes in its epoch. */
204 	list_for_each_entry(r, &connection->transfer_log, tl_requests) {
205 		const unsigned s = r->rq_state;
206 		if (!req) {
207 			if (!(s & RQ_WRITE))
208 				continue;
209 			if (!(s & RQ_NET_MASK))
210 				continue;
211 			if (s & RQ_NET_DONE)
212 				continue;
213 			req = r;
214 			expect_epoch = req->epoch;
215 			expect_size ++;
216 		} else {
217 			if (r->epoch != expect_epoch)
218 				break;
219 			if (!(s & RQ_WRITE))
220 				continue;
221 			/* if (s & RQ_DONE): not expected */
222 			/* if (!(s & RQ_NET_MASK)): not expected */
223 			expect_size++;
224 		}
225 	}
226 
227 	/* first some paranoia code */
228 	if (req == NULL) {
229 		drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
230 			 barrier_nr);
231 		goto bail;
232 	}
233 	if (expect_epoch != barrier_nr) {
234 		drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
235 			 barrier_nr, expect_epoch);
236 		goto bail;
237 	}
238 
239 	if (expect_size != set_size) {
240 		drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
241 			 barrier_nr, set_size, expect_size);
242 		goto bail;
243 	}
244 
245 	/* Clean up list of requests processed during current epoch. */
246 	/* this extra list walk restart is paranoia,
247 	 * to catch requests being barrier-acked "unexpectedly".
248 	 * It usually should find the same req again, or some READ preceding it. */
249 	list_for_each_entry(req, &connection->transfer_log, tl_requests)
250 		if (req->epoch == expect_epoch)
251 			break;
252 	list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
253 		if (req->epoch != expect_epoch)
254 			break;
255 		_req_mod(req, BARRIER_ACKED);
256 	}
257 	spin_unlock_irq(&connection->resource->req_lock);
258 
259 	return;
260 
261 bail:
262 	spin_unlock_irq(&connection->resource->req_lock);
263 	conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
264 }
265 
266 
267 /**
268  * _tl_restart() - Walks the transfer log, and applies an action to all requests
269  * @connection:	DRBD connection to operate on.
270  * @what:       The action/event to perform with all request objects
271  *
272  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
273  * RESTART_FROZEN_DISK_IO.
274  */
275 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)276 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
277 {
278 	struct drbd_request *req, *r;
279 
280 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
281 		_req_mod(req, what);
282 }
283 
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)284 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
285 {
286 	spin_lock_irq(&connection->resource->req_lock);
287 	_tl_restart(connection, what);
288 	spin_unlock_irq(&connection->resource->req_lock);
289 }
290 
291 /**
292  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
293  * @device:	DRBD device.
294  *
295  * This is called after the connection to the peer was lost. The storage covered
296  * by the requests on the transfer gets marked as our of sync. Called from the
297  * receiver thread and the worker thread.
298  */
tl_clear(struct drbd_connection * connection)299 void tl_clear(struct drbd_connection *connection)
300 {
301 	tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
302 }
303 
304 /**
305  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
306  * @device:	DRBD device.
307  */
tl_abort_disk_io(struct drbd_device * device)308 void tl_abort_disk_io(struct drbd_device *device)
309 {
310 	struct drbd_connection *connection = first_peer_device(device)->connection;
311 	struct drbd_request *req, *r;
312 
313 	spin_lock_irq(&connection->resource->req_lock);
314 	list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
315 		if (!(req->rq_state & RQ_LOCAL_PENDING))
316 			continue;
317 		if (req->device != device)
318 			continue;
319 		_req_mod(req, ABORT_DISK_IO);
320 	}
321 	spin_unlock_irq(&connection->resource->req_lock);
322 }
323 
drbd_thread_setup(void * arg)324 static int drbd_thread_setup(void *arg)
325 {
326 	struct drbd_thread *thi = (struct drbd_thread *) arg;
327 	struct drbd_resource *resource = thi->resource;
328 	unsigned long flags;
329 	int retval;
330 
331 	snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
332 		 thi->name[0],
333 		 resource->name);
334 
335 restart:
336 	retval = thi->function(thi);
337 
338 	spin_lock_irqsave(&thi->t_lock, flags);
339 
340 	/* if the receiver has been "EXITING", the last thing it did
341 	 * was set the conn state to "StandAlone",
342 	 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
343 	 * and receiver thread will be "started".
344 	 * drbd_thread_start needs to set "RESTARTING" in that case.
345 	 * t_state check and assignment needs to be within the same spinlock,
346 	 * so either thread_start sees EXITING, and can remap to RESTARTING,
347 	 * or thread_start see NONE, and can proceed as normal.
348 	 */
349 
350 	if (thi->t_state == RESTARTING) {
351 		drbd_info(resource, "Restarting %s thread\n", thi->name);
352 		thi->t_state = RUNNING;
353 		spin_unlock_irqrestore(&thi->t_lock, flags);
354 		goto restart;
355 	}
356 
357 	thi->task = NULL;
358 	thi->t_state = NONE;
359 	smp_mb();
360 	complete_all(&thi->stop);
361 	spin_unlock_irqrestore(&thi->t_lock, flags);
362 
363 	drbd_info(resource, "Terminating %s\n", current->comm);
364 
365 	/* Release mod reference taken when thread was started */
366 
367 	if (thi->connection)
368 		kref_put(&thi->connection->kref, drbd_destroy_connection);
369 	kref_put(&resource->kref, drbd_destroy_resource);
370 	module_put(THIS_MODULE);
371 	return retval;
372 }
373 
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)374 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
375 			     int (*func) (struct drbd_thread *), const char *name)
376 {
377 	spin_lock_init(&thi->t_lock);
378 	thi->task    = NULL;
379 	thi->t_state = NONE;
380 	thi->function = func;
381 	thi->resource = resource;
382 	thi->connection = NULL;
383 	thi->name = name;
384 }
385 
drbd_thread_start(struct drbd_thread * thi)386 int drbd_thread_start(struct drbd_thread *thi)
387 {
388 	struct drbd_resource *resource = thi->resource;
389 	struct task_struct *nt;
390 	unsigned long flags;
391 
392 	/* is used from state engine doing drbd_thread_stop_nowait,
393 	 * while holding the req lock irqsave */
394 	spin_lock_irqsave(&thi->t_lock, flags);
395 
396 	switch (thi->t_state) {
397 	case NONE:
398 		drbd_info(resource, "Starting %s thread (from %s [%d])\n",
399 			 thi->name, current->comm, current->pid);
400 
401 		/* Get ref on module for thread - this is released when thread exits */
402 		if (!try_module_get(THIS_MODULE)) {
403 			drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
404 			spin_unlock_irqrestore(&thi->t_lock, flags);
405 			return false;
406 		}
407 
408 		kref_get(&resource->kref);
409 		if (thi->connection)
410 			kref_get(&thi->connection->kref);
411 
412 		init_completion(&thi->stop);
413 		thi->reset_cpu_mask = 1;
414 		thi->t_state = RUNNING;
415 		spin_unlock_irqrestore(&thi->t_lock, flags);
416 		flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
417 
418 		nt = kthread_create(drbd_thread_setup, (void *) thi,
419 				    "drbd_%c_%s", thi->name[0], thi->resource->name);
420 
421 		if (IS_ERR(nt)) {
422 			drbd_err(resource, "Couldn't start thread\n");
423 
424 			if (thi->connection)
425 				kref_put(&thi->connection->kref, drbd_destroy_connection);
426 			kref_put(&resource->kref, drbd_destroy_resource);
427 			module_put(THIS_MODULE);
428 			return false;
429 		}
430 		spin_lock_irqsave(&thi->t_lock, flags);
431 		thi->task = nt;
432 		thi->t_state = RUNNING;
433 		spin_unlock_irqrestore(&thi->t_lock, flags);
434 		wake_up_process(nt);
435 		break;
436 	case EXITING:
437 		thi->t_state = RESTARTING;
438 		drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
439 				thi->name, current->comm, current->pid);
440 		/* fall through */
441 	case RUNNING:
442 	case RESTARTING:
443 	default:
444 		spin_unlock_irqrestore(&thi->t_lock, flags);
445 		break;
446 	}
447 
448 	return true;
449 }
450 
451 
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)452 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
453 {
454 	unsigned long flags;
455 
456 	enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
457 
458 	/* may be called from state engine, holding the req lock irqsave */
459 	spin_lock_irqsave(&thi->t_lock, flags);
460 
461 	if (thi->t_state == NONE) {
462 		spin_unlock_irqrestore(&thi->t_lock, flags);
463 		if (restart)
464 			drbd_thread_start(thi);
465 		return;
466 	}
467 
468 	if (thi->t_state != ns) {
469 		if (thi->task == NULL) {
470 			spin_unlock_irqrestore(&thi->t_lock, flags);
471 			return;
472 		}
473 
474 		thi->t_state = ns;
475 		smp_mb();
476 		init_completion(&thi->stop);
477 		if (thi->task != current)
478 			force_sig(DRBD_SIGKILL, thi->task);
479 	}
480 
481 	spin_unlock_irqrestore(&thi->t_lock, flags);
482 
483 	if (wait)
484 		wait_for_completion(&thi->stop);
485 }
486 
conn_lowest_minor(struct drbd_connection * connection)487 int conn_lowest_minor(struct drbd_connection *connection)
488 {
489 	struct drbd_peer_device *peer_device;
490 	int vnr = 0, minor = -1;
491 
492 	rcu_read_lock();
493 	peer_device = idr_get_next(&connection->peer_devices, &vnr);
494 	if (peer_device)
495 		minor = device_to_minor(peer_device->device);
496 	rcu_read_unlock();
497 
498 	return minor;
499 }
500 
501 #ifdef CONFIG_SMP
502 /**
503  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
504  *
505  * Forces all threads of a resource onto the same CPU. This is beneficial for
506  * DRBD's performance. May be overwritten by user's configuration.
507  */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)508 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
509 {
510 	unsigned int *resources_per_cpu, min_index = ~0;
511 
512 	resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
513 	if (resources_per_cpu) {
514 		struct drbd_resource *resource;
515 		unsigned int cpu, min = ~0;
516 
517 		rcu_read_lock();
518 		for_each_resource_rcu(resource, &drbd_resources) {
519 			for_each_cpu(cpu, resource->cpu_mask)
520 				resources_per_cpu[cpu]++;
521 		}
522 		rcu_read_unlock();
523 		for_each_online_cpu(cpu) {
524 			if (resources_per_cpu[cpu] < min) {
525 				min = resources_per_cpu[cpu];
526 				min_index = cpu;
527 			}
528 		}
529 		kfree(resources_per_cpu);
530 	}
531 	if (min_index == ~0) {
532 		cpumask_setall(*cpu_mask);
533 		return;
534 	}
535 	cpumask_set_cpu(min_index, *cpu_mask);
536 }
537 
538 /**
539  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
540  * @device:	DRBD device.
541  * @thi:	drbd_thread object
542  *
543  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
544  * prematurely.
545  */
drbd_thread_current_set_cpu(struct drbd_thread * thi)546 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
547 {
548 	struct drbd_resource *resource = thi->resource;
549 	struct task_struct *p = current;
550 
551 	if (!thi->reset_cpu_mask)
552 		return;
553 	thi->reset_cpu_mask = 0;
554 	set_cpus_allowed_ptr(p, resource->cpu_mask);
555 }
556 #else
557 #define drbd_calc_cpu_mask(A) ({})
558 #endif
559 
560 /**
561  * drbd_header_size  -  size of a packet header
562  *
563  * The header size is a multiple of 8, so any payload following the header is
564  * word aligned on 64-bit architectures.  (The bitmap send and receive code
565  * relies on this.)
566  */
drbd_header_size(struct drbd_connection * connection)567 unsigned int drbd_header_size(struct drbd_connection *connection)
568 {
569 	if (connection->agreed_pro_version >= 100) {
570 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
571 		return sizeof(struct p_header100);
572 	} else {
573 		BUILD_BUG_ON(sizeof(struct p_header80) !=
574 			     sizeof(struct p_header95));
575 		BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
576 		return sizeof(struct p_header80);
577 	}
578 }
579 
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)580 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
581 {
582 	h->magic   = cpu_to_be32(DRBD_MAGIC);
583 	h->command = cpu_to_be16(cmd);
584 	h->length  = cpu_to_be16(size);
585 	return sizeof(struct p_header80);
586 }
587 
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)588 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
589 {
590 	h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
591 	h->command = cpu_to_be16(cmd);
592 	h->length = cpu_to_be32(size);
593 	return sizeof(struct p_header95);
594 }
595 
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)596 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
597 				      int size, int vnr)
598 {
599 	h->magic = cpu_to_be32(DRBD_MAGIC_100);
600 	h->volume = cpu_to_be16(vnr);
601 	h->command = cpu_to_be16(cmd);
602 	h->length = cpu_to_be32(size);
603 	h->pad = 0;
604 	return sizeof(struct p_header100);
605 }
606 
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)607 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
608 				   void *buffer, enum drbd_packet cmd, int size)
609 {
610 	if (connection->agreed_pro_version >= 100)
611 		return prepare_header100(buffer, cmd, size, vnr);
612 	else if (connection->agreed_pro_version >= 95 &&
613 		 size > DRBD_MAX_SIZE_H80_PACKET)
614 		return prepare_header95(buffer, cmd, size);
615 	else
616 		return prepare_header80(buffer, cmd, size);
617 }
618 
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)619 static void *__conn_prepare_command(struct drbd_connection *connection,
620 				    struct drbd_socket *sock)
621 {
622 	if (!sock->socket)
623 		return NULL;
624 	return sock->sbuf + drbd_header_size(connection);
625 }
626 
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)627 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
628 {
629 	void *p;
630 
631 	mutex_lock(&sock->mutex);
632 	p = __conn_prepare_command(connection, sock);
633 	if (!p)
634 		mutex_unlock(&sock->mutex);
635 
636 	return p;
637 }
638 
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)639 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
640 {
641 	return conn_prepare_command(peer_device->connection, sock);
642 }
643 
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)644 static int __send_command(struct drbd_connection *connection, int vnr,
645 			  struct drbd_socket *sock, enum drbd_packet cmd,
646 			  unsigned int header_size, void *data,
647 			  unsigned int size)
648 {
649 	int msg_flags;
650 	int err;
651 
652 	/*
653 	 * Called with @data == NULL and the size of the data blocks in @size
654 	 * for commands that send data blocks.  For those commands, omit the
655 	 * MSG_MORE flag: this will increase the likelihood that data blocks
656 	 * which are page aligned on the sender will end up page aligned on the
657 	 * receiver.
658 	 */
659 	msg_flags = data ? MSG_MORE : 0;
660 
661 	header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
662 				      header_size + size);
663 	err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
664 			    msg_flags);
665 	if (data && !err)
666 		err = drbd_send_all(connection, sock->socket, data, size, 0);
667 	/* DRBD protocol "pings" are latency critical.
668 	 * This is supposed to trigger tcp_push_pending_frames() */
669 	if (!err && (cmd == P_PING || cmd == P_PING_ACK))
670 		drbd_tcp_nodelay(sock->socket);
671 
672 	return err;
673 }
674 
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)675 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
676 			       enum drbd_packet cmd, unsigned int header_size,
677 			       void *data, unsigned int size)
678 {
679 	return __send_command(connection, 0, sock, cmd, header_size, data, size);
680 }
681 
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)682 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
683 		      enum drbd_packet cmd, unsigned int header_size,
684 		      void *data, unsigned int size)
685 {
686 	int err;
687 
688 	err = __conn_send_command(connection, sock, cmd, header_size, data, size);
689 	mutex_unlock(&sock->mutex);
690 	return err;
691 }
692 
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)693 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
694 		      enum drbd_packet cmd, unsigned int header_size,
695 		      void *data, unsigned int size)
696 {
697 	int err;
698 
699 	err = __send_command(peer_device->connection, peer_device->device->vnr,
700 			     sock, cmd, header_size, data, size);
701 	mutex_unlock(&sock->mutex);
702 	return err;
703 }
704 
drbd_send_ping(struct drbd_connection * connection)705 int drbd_send_ping(struct drbd_connection *connection)
706 {
707 	struct drbd_socket *sock;
708 
709 	sock = &connection->meta;
710 	if (!conn_prepare_command(connection, sock))
711 		return -EIO;
712 	return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
713 }
714 
drbd_send_ping_ack(struct drbd_connection * connection)715 int drbd_send_ping_ack(struct drbd_connection *connection)
716 {
717 	struct drbd_socket *sock;
718 
719 	sock = &connection->meta;
720 	if (!conn_prepare_command(connection, sock))
721 		return -EIO;
722 	return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
723 }
724 
drbd_send_sync_param(struct drbd_peer_device * peer_device)725 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
726 {
727 	struct drbd_socket *sock;
728 	struct p_rs_param_95 *p;
729 	int size;
730 	const int apv = peer_device->connection->agreed_pro_version;
731 	enum drbd_packet cmd;
732 	struct net_conf *nc;
733 	struct disk_conf *dc;
734 
735 	sock = &peer_device->connection->data;
736 	p = drbd_prepare_command(peer_device, sock);
737 	if (!p)
738 		return -EIO;
739 
740 	rcu_read_lock();
741 	nc = rcu_dereference(peer_device->connection->net_conf);
742 
743 	size = apv <= 87 ? sizeof(struct p_rs_param)
744 		: apv == 88 ? sizeof(struct p_rs_param)
745 			+ strlen(nc->verify_alg) + 1
746 		: apv <= 94 ? sizeof(struct p_rs_param_89)
747 		: /* apv >= 95 */ sizeof(struct p_rs_param_95);
748 
749 	cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
750 
751 	/* initialize verify_alg and csums_alg */
752 	memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
753 
754 	if (get_ldev(peer_device->device)) {
755 		dc = rcu_dereference(peer_device->device->ldev->disk_conf);
756 		p->resync_rate = cpu_to_be32(dc->resync_rate);
757 		p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
758 		p->c_delay_target = cpu_to_be32(dc->c_delay_target);
759 		p->c_fill_target = cpu_to_be32(dc->c_fill_target);
760 		p->c_max_rate = cpu_to_be32(dc->c_max_rate);
761 		put_ldev(peer_device->device);
762 	} else {
763 		p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
764 		p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
765 		p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
766 		p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
767 		p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
768 	}
769 
770 	if (apv >= 88)
771 		strcpy(p->verify_alg, nc->verify_alg);
772 	if (apv >= 89)
773 		strcpy(p->csums_alg, nc->csums_alg);
774 	rcu_read_unlock();
775 
776 	return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
777 }
778 
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)779 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
780 {
781 	struct drbd_socket *sock;
782 	struct p_protocol *p;
783 	struct net_conf *nc;
784 	int size, cf;
785 
786 	sock = &connection->data;
787 	p = __conn_prepare_command(connection, sock);
788 	if (!p)
789 		return -EIO;
790 
791 	rcu_read_lock();
792 	nc = rcu_dereference(connection->net_conf);
793 
794 	if (nc->tentative && connection->agreed_pro_version < 92) {
795 		rcu_read_unlock();
796 		mutex_unlock(&sock->mutex);
797 		drbd_err(connection, "--dry-run is not supported by peer");
798 		return -EOPNOTSUPP;
799 	}
800 
801 	size = sizeof(*p);
802 	if (connection->agreed_pro_version >= 87)
803 		size += strlen(nc->integrity_alg) + 1;
804 
805 	p->protocol      = cpu_to_be32(nc->wire_protocol);
806 	p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
807 	p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
808 	p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
809 	p->two_primaries = cpu_to_be32(nc->two_primaries);
810 	cf = 0;
811 	if (nc->discard_my_data)
812 		cf |= CF_DISCARD_MY_DATA;
813 	if (nc->tentative)
814 		cf |= CF_DRY_RUN;
815 	p->conn_flags    = cpu_to_be32(cf);
816 
817 	if (connection->agreed_pro_version >= 87)
818 		strcpy(p->integrity_alg, nc->integrity_alg);
819 	rcu_read_unlock();
820 
821 	return __conn_send_command(connection, sock, cmd, size, NULL, 0);
822 }
823 
drbd_send_protocol(struct drbd_connection * connection)824 int drbd_send_protocol(struct drbd_connection *connection)
825 {
826 	int err;
827 
828 	mutex_lock(&connection->data.mutex);
829 	err = __drbd_send_protocol(connection, P_PROTOCOL);
830 	mutex_unlock(&connection->data.mutex);
831 
832 	return err;
833 }
834 
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)835 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
836 {
837 	struct drbd_device *device = peer_device->device;
838 	struct drbd_socket *sock;
839 	struct p_uuids *p;
840 	int i;
841 
842 	if (!get_ldev_if_state(device, D_NEGOTIATING))
843 		return 0;
844 
845 	sock = &peer_device->connection->data;
846 	p = drbd_prepare_command(peer_device, sock);
847 	if (!p) {
848 		put_ldev(device);
849 		return -EIO;
850 	}
851 	spin_lock_irq(&device->ldev->md.uuid_lock);
852 	for (i = UI_CURRENT; i < UI_SIZE; i++)
853 		p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
854 	spin_unlock_irq(&device->ldev->md.uuid_lock);
855 
856 	device->comm_bm_set = drbd_bm_total_weight(device);
857 	p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
858 	rcu_read_lock();
859 	uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
860 	rcu_read_unlock();
861 	uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
862 	uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
863 	p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
864 
865 	put_ldev(device);
866 	return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
867 }
868 
drbd_send_uuids(struct drbd_peer_device * peer_device)869 int drbd_send_uuids(struct drbd_peer_device *peer_device)
870 {
871 	return _drbd_send_uuids(peer_device, 0);
872 }
873 
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)874 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
875 {
876 	return _drbd_send_uuids(peer_device, 8);
877 }
878 
drbd_print_uuids(struct drbd_device * device,const char * text)879 void drbd_print_uuids(struct drbd_device *device, const char *text)
880 {
881 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
882 		u64 *uuid = device->ldev->md.uuid;
883 		drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
884 		     text,
885 		     (unsigned long long)uuid[UI_CURRENT],
886 		     (unsigned long long)uuid[UI_BITMAP],
887 		     (unsigned long long)uuid[UI_HISTORY_START],
888 		     (unsigned long long)uuid[UI_HISTORY_END]);
889 		put_ldev(device);
890 	} else {
891 		drbd_info(device, "%s effective data uuid: %016llX\n",
892 				text,
893 				(unsigned long long)device->ed_uuid);
894 	}
895 }
896 
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)897 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
898 {
899 	struct drbd_device *device = peer_device->device;
900 	struct drbd_socket *sock;
901 	struct p_rs_uuid *p;
902 	u64 uuid;
903 
904 	D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
905 
906 	uuid = device->ldev->md.uuid[UI_BITMAP];
907 	if (uuid && uuid != UUID_JUST_CREATED)
908 		uuid = uuid + UUID_NEW_BM_OFFSET;
909 	else
910 		get_random_bytes(&uuid, sizeof(u64));
911 	drbd_uuid_set(device, UI_BITMAP, uuid);
912 	drbd_print_uuids(device, "updated sync UUID");
913 	drbd_md_sync(device);
914 
915 	sock = &peer_device->connection->data;
916 	p = drbd_prepare_command(peer_device, sock);
917 	if (p) {
918 		p->uuid = cpu_to_be64(uuid);
919 		drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
920 	}
921 }
922 
923 /* communicated if (agreed_features & DRBD_FF_WSAME) */
assign_p_sizes_qlim(struct drbd_device * device,struct p_sizes * p,struct request_queue * q)924 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
925 {
926 	if (q) {
927 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
928 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
929 		p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
930 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
931 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
932 		p->qlim->discard_enabled = blk_queue_discard(q);
933 		p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q);
934 		p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
935 	} else {
936 		q = device->rq_queue;
937 		p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
938 		p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
939 		p->qlim->alignment_offset = 0;
940 		p->qlim->io_min = cpu_to_be32(queue_io_min(q));
941 		p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
942 		p->qlim->discard_enabled = 0;
943 		p->qlim->discard_zeroes_data = 0;
944 		p->qlim->write_same_capable = 0;
945 	}
946 }
947 
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)948 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
949 {
950 	struct drbd_device *device = peer_device->device;
951 	struct drbd_socket *sock;
952 	struct p_sizes *p;
953 	sector_t d_size, u_size;
954 	int q_order_type;
955 	unsigned int max_bio_size;
956 	unsigned int packet_size;
957 
958 	sock = &peer_device->connection->data;
959 	p = drbd_prepare_command(peer_device, sock);
960 	if (!p)
961 		return -EIO;
962 
963 	packet_size = sizeof(*p);
964 	if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
965 		packet_size += sizeof(p->qlim[0]);
966 
967 	memset(p, 0, packet_size);
968 	if (get_ldev_if_state(device, D_NEGOTIATING)) {
969 		struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
970 		d_size = drbd_get_max_capacity(device->ldev);
971 		rcu_read_lock();
972 		u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
973 		rcu_read_unlock();
974 		q_order_type = drbd_queue_order_type(device);
975 		max_bio_size = queue_max_hw_sectors(q) << 9;
976 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
977 		assign_p_sizes_qlim(device, p, q);
978 		put_ldev(device);
979 	} else {
980 		d_size = 0;
981 		u_size = 0;
982 		q_order_type = QUEUE_ORDERED_NONE;
983 		max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
984 		assign_p_sizes_qlim(device, p, NULL);
985 	}
986 
987 	if (peer_device->connection->agreed_pro_version <= 94)
988 		max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
989 	else if (peer_device->connection->agreed_pro_version < 100)
990 		max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
991 
992 	p->d_size = cpu_to_be64(d_size);
993 	p->u_size = cpu_to_be64(u_size);
994 	p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
995 	p->max_bio_size = cpu_to_be32(max_bio_size);
996 	p->queue_order_type = cpu_to_be16(q_order_type);
997 	p->dds_flags = cpu_to_be16(flags);
998 
999 	return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1000 }
1001 
1002 /**
1003  * drbd_send_current_state() - Sends the drbd state to the peer
1004  * @peer_device:	DRBD peer device.
1005  */
drbd_send_current_state(struct drbd_peer_device * peer_device)1006 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1007 {
1008 	struct drbd_socket *sock;
1009 	struct p_state *p;
1010 
1011 	sock = &peer_device->connection->data;
1012 	p = drbd_prepare_command(peer_device, sock);
1013 	if (!p)
1014 		return -EIO;
1015 	p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1016 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1017 }
1018 
1019 /**
1020  * drbd_send_state() - After a state change, sends the new state to the peer
1021  * @peer_device:      DRBD peer device.
1022  * @state:     the state to send, not necessarily the current state.
1023  *
1024  * Each state change queues an "after_state_ch" work, which will eventually
1025  * send the resulting new state to the peer. If more state changes happen
1026  * between queuing and processing of the after_state_ch work, we still
1027  * want to send each intermediary state in the order it occurred.
1028  */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1029 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1030 {
1031 	struct drbd_socket *sock;
1032 	struct p_state *p;
1033 
1034 	sock = &peer_device->connection->data;
1035 	p = drbd_prepare_command(peer_device, sock);
1036 	if (!p)
1037 		return -EIO;
1038 	p->state = cpu_to_be32(state.i); /* Within the send mutex */
1039 	return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1040 }
1041 
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1042 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1043 {
1044 	struct drbd_socket *sock;
1045 	struct p_req_state *p;
1046 
1047 	sock = &peer_device->connection->data;
1048 	p = drbd_prepare_command(peer_device, sock);
1049 	if (!p)
1050 		return -EIO;
1051 	p->mask = cpu_to_be32(mask.i);
1052 	p->val = cpu_to_be32(val.i);
1053 	return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1054 }
1055 
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1056 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1057 {
1058 	enum drbd_packet cmd;
1059 	struct drbd_socket *sock;
1060 	struct p_req_state *p;
1061 
1062 	cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1063 	sock = &connection->data;
1064 	p = conn_prepare_command(connection, sock);
1065 	if (!p)
1066 		return -EIO;
1067 	p->mask = cpu_to_be32(mask.i);
1068 	p->val = cpu_to_be32(val.i);
1069 	return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1070 }
1071 
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1072 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1073 {
1074 	struct drbd_socket *sock;
1075 	struct p_req_state_reply *p;
1076 
1077 	sock = &peer_device->connection->meta;
1078 	p = drbd_prepare_command(peer_device, sock);
1079 	if (p) {
1080 		p->retcode = cpu_to_be32(retcode);
1081 		drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1082 	}
1083 }
1084 
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1085 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1086 {
1087 	struct drbd_socket *sock;
1088 	struct p_req_state_reply *p;
1089 	enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1090 
1091 	sock = &connection->meta;
1092 	p = conn_prepare_command(connection, sock);
1093 	if (p) {
1094 		p->retcode = cpu_to_be32(retcode);
1095 		conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1096 	}
1097 }
1098 
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1099 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1100 {
1101 	BUG_ON(code & ~0xf);
1102 	p->encoding = (p->encoding & ~0xf) | code;
1103 }
1104 
dcbp_set_start(struct p_compressed_bm * p,int set)1105 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1106 {
1107 	p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1108 }
1109 
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1110 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1111 {
1112 	BUG_ON(n & ~0x7);
1113 	p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1114 }
1115 
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1116 static int fill_bitmap_rle_bits(struct drbd_device *device,
1117 			 struct p_compressed_bm *p,
1118 			 unsigned int size,
1119 			 struct bm_xfer_ctx *c)
1120 {
1121 	struct bitstream bs;
1122 	unsigned long plain_bits;
1123 	unsigned long tmp;
1124 	unsigned long rl;
1125 	unsigned len;
1126 	unsigned toggle;
1127 	int bits, use_rle;
1128 
1129 	/* may we use this feature? */
1130 	rcu_read_lock();
1131 	use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1132 	rcu_read_unlock();
1133 	if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1134 		return 0;
1135 
1136 	if (c->bit_offset >= c->bm_bits)
1137 		return 0; /* nothing to do. */
1138 
1139 	/* use at most thus many bytes */
1140 	bitstream_init(&bs, p->code, size, 0);
1141 	memset(p->code, 0, size);
1142 	/* plain bits covered in this code string */
1143 	plain_bits = 0;
1144 
1145 	/* p->encoding & 0x80 stores whether the first run length is set.
1146 	 * bit offset is implicit.
1147 	 * start with toggle == 2 to be able to tell the first iteration */
1148 	toggle = 2;
1149 
1150 	/* see how much plain bits we can stuff into one packet
1151 	 * using RLE and VLI. */
1152 	do {
1153 		tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1154 				    : _drbd_bm_find_next(device, c->bit_offset);
1155 		if (tmp == -1UL)
1156 			tmp = c->bm_bits;
1157 		rl = tmp - c->bit_offset;
1158 
1159 		if (toggle == 2) { /* first iteration */
1160 			if (rl == 0) {
1161 				/* the first checked bit was set,
1162 				 * store start value, */
1163 				dcbp_set_start(p, 1);
1164 				/* but skip encoding of zero run length */
1165 				toggle = !toggle;
1166 				continue;
1167 			}
1168 			dcbp_set_start(p, 0);
1169 		}
1170 
1171 		/* paranoia: catch zero runlength.
1172 		 * can only happen if bitmap is modified while we scan it. */
1173 		if (rl == 0) {
1174 			drbd_err(device, "unexpected zero runlength while encoding bitmap "
1175 			    "t:%u bo:%lu\n", toggle, c->bit_offset);
1176 			return -1;
1177 		}
1178 
1179 		bits = vli_encode_bits(&bs, rl);
1180 		if (bits == -ENOBUFS) /* buffer full */
1181 			break;
1182 		if (bits <= 0) {
1183 			drbd_err(device, "error while encoding bitmap: %d\n", bits);
1184 			return 0;
1185 		}
1186 
1187 		toggle = !toggle;
1188 		plain_bits += rl;
1189 		c->bit_offset = tmp;
1190 	} while (c->bit_offset < c->bm_bits);
1191 
1192 	len = bs.cur.b - p->code + !!bs.cur.bit;
1193 
1194 	if (plain_bits < (len << 3)) {
1195 		/* incompressible with this method.
1196 		 * we need to rewind both word and bit position. */
1197 		c->bit_offset -= plain_bits;
1198 		bm_xfer_ctx_bit_to_word_offset(c);
1199 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1200 		return 0;
1201 	}
1202 
1203 	/* RLE + VLI was able to compress it just fine.
1204 	 * update c->word_offset. */
1205 	bm_xfer_ctx_bit_to_word_offset(c);
1206 
1207 	/* store pad_bits */
1208 	dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1209 
1210 	return len;
1211 }
1212 
1213 /**
1214  * send_bitmap_rle_or_plain
1215  *
1216  * Return 0 when done, 1 when another iteration is needed, and a negative error
1217  * code upon failure.
1218  */
1219 static int
send_bitmap_rle_or_plain(struct drbd_device * device,struct bm_xfer_ctx * c)1220 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1221 {
1222 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1223 	unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1224 	struct p_compressed_bm *p = sock->sbuf + header_size;
1225 	int len, err;
1226 
1227 	len = fill_bitmap_rle_bits(device, p,
1228 			DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1229 	if (len < 0)
1230 		return -EIO;
1231 
1232 	if (len) {
1233 		dcbp_set_code(p, RLE_VLI_Bits);
1234 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1235 				     P_COMPRESSED_BITMAP, sizeof(*p) + len,
1236 				     NULL, 0);
1237 		c->packets[0]++;
1238 		c->bytes[0] += header_size + sizeof(*p) + len;
1239 
1240 		if (c->bit_offset >= c->bm_bits)
1241 			len = 0; /* DONE */
1242 	} else {
1243 		/* was not compressible.
1244 		 * send a buffer full of plain text bits instead. */
1245 		unsigned int data_size;
1246 		unsigned long num_words;
1247 		unsigned long *p = sock->sbuf + header_size;
1248 
1249 		data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1250 		num_words = min_t(size_t, data_size / sizeof(*p),
1251 				  c->bm_words - c->word_offset);
1252 		len = num_words * sizeof(*p);
1253 		if (len)
1254 			drbd_bm_get_lel(device, c->word_offset, num_words, p);
1255 		err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1256 		c->word_offset += num_words;
1257 		c->bit_offset = c->word_offset * BITS_PER_LONG;
1258 
1259 		c->packets[1]++;
1260 		c->bytes[1] += header_size + len;
1261 
1262 		if (c->bit_offset > c->bm_bits)
1263 			c->bit_offset = c->bm_bits;
1264 	}
1265 	if (!err) {
1266 		if (len == 0) {
1267 			INFO_bm_xfer_stats(device, "send", c);
1268 			return 0;
1269 		} else
1270 			return 1;
1271 	}
1272 	return -EIO;
1273 }
1274 
1275 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device)1276 static int _drbd_send_bitmap(struct drbd_device *device)
1277 {
1278 	struct bm_xfer_ctx c;
1279 	int err;
1280 
1281 	if (!expect(device->bitmap))
1282 		return false;
1283 
1284 	if (get_ldev(device)) {
1285 		if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1286 			drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1287 			drbd_bm_set_all(device);
1288 			if (drbd_bm_write(device)) {
1289 				/* write_bm did fail! Leave full sync flag set in Meta P_DATA
1290 				 * but otherwise process as per normal - need to tell other
1291 				 * side that a full resync is required! */
1292 				drbd_err(device, "Failed to write bitmap to disk!\n");
1293 			} else {
1294 				drbd_md_clear_flag(device, MDF_FULL_SYNC);
1295 				drbd_md_sync(device);
1296 			}
1297 		}
1298 		put_ldev(device);
1299 	}
1300 
1301 	c = (struct bm_xfer_ctx) {
1302 		.bm_bits = drbd_bm_bits(device),
1303 		.bm_words = drbd_bm_words(device),
1304 	};
1305 
1306 	do {
1307 		err = send_bitmap_rle_or_plain(device, &c);
1308 	} while (err > 0);
1309 
1310 	return err == 0;
1311 }
1312 
drbd_send_bitmap(struct drbd_device * device)1313 int drbd_send_bitmap(struct drbd_device *device)
1314 {
1315 	struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1316 	int err = -1;
1317 
1318 	mutex_lock(&sock->mutex);
1319 	if (sock->socket)
1320 		err = !_drbd_send_bitmap(device);
1321 	mutex_unlock(&sock->mutex);
1322 	return err;
1323 }
1324 
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1325 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1326 {
1327 	struct drbd_socket *sock;
1328 	struct p_barrier_ack *p;
1329 
1330 	if (connection->cstate < C_WF_REPORT_PARAMS)
1331 		return;
1332 
1333 	sock = &connection->meta;
1334 	p = conn_prepare_command(connection, sock);
1335 	if (!p)
1336 		return;
1337 	p->barrier = barrier_nr;
1338 	p->set_size = cpu_to_be32(set_size);
1339 	conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1340 }
1341 
1342 /**
1343  * _drbd_send_ack() - Sends an ack packet
1344  * @device:	DRBD device.
1345  * @cmd:	Packet command code.
1346  * @sector:	sector, needs to be in big endian byte order
1347  * @blksize:	size in byte, needs to be in big endian byte order
1348  * @block_id:	Id, big endian byte order
1349  */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1350 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1351 			  u64 sector, u32 blksize, u64 block_id)
1352 {
1353 	struct drbd_socket *sock;
1354 	struct p_block_ack *p;
1355 
1356 	if (peer_device->device->state.conn < C_CONNECTED)
1357 		return -EIO;
1358 
1359 	sock = &peer_device->connection->meta;
1360 	p = drbd_prepare_command(peer_device, sock);
1361 	if (!p)
1362 		return -EIO;
1363 	p->sector = sector;
1364 	p->block_id = block_id;
1365 	p->blksize = blksize;
1366 	p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1367 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1368 }
1369 
1370 /* dp->sector and dp->block_id already/still in network byte order,
1371  * data_size is payload size according to dp->head,
1372  * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1373 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1374 		      struct p_data *dp, int data_size)
1375 {
1376 	if (peer_device->connection->peer_integrity_tfm)
1377 		data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1378 	_drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1379 		       dp->block_id);
1380 }
1381 
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1382 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1383 		      struct p_block_req *rp)
1384 {
1385 	_drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1386 }
1387 
1388 /**
1389  * drbd_send_ack() - Sends an ack packet
1390  * @device:	DRBD device
1391  * @cmd:	packet command code
1392  * @peer_req:	peer request
1393  */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1394 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1395 		  struct drbd_peer_request *peer_req)
1396 {
1397 	return _drbd_send_ack(peer_device, cmd,
1398 			      cpu_to_be64(peer_req->i.sector),
1399 			      cpu_to_be32(peer_req->i.size),
1400 			      peer_req->block_id);
1401 }
1402 
1403 /* This function misuses the block_id field to signal if the blocks
1404  * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1405 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1406 		     sector_t sector, int blksize, u64 block_id)
1407 {
1408 	return _drbd_send_ack(peer_device, cmd,
1409 			      cpu_to_be64(sector),
1410 			      cpu_to_be32(blksize),
1411 			      cpu_to_be64(block_id));
1412 }
1413 
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1414 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1415 			     struct drbd_peer_request *peer_req)
1416 {
1417 	struct drbd_socket *sock;
1418 	struct p_block_desc *p;
1419 
1420 	sock = &peer_device->connection->data;
1421 	p = drbd_prepare_command(peer_device, sock);
1422 	if (!p)
1423 		return -EIO;
1424 	p->sector = cpu_to_be64(peer_req->i.sector);
1425 	p->blksize = cpu_to_be32(peer_req->i.size);
1426 	p->pad = 0;
1427 	return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1428 }
1429 
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1430 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1431 		       sector_t sector, int size, u64 block_id)
1432 {
1433 	struct drbd_socket *sock;
1434 	struct p_block_req *p;
1435 
1436 	sock = &peer_device->connection->data;
1437 	p = drbd_prepare_command(peer_device, sock);
1438 	if (!p)
1439 		return -EIO;
1440 	p->sector = cpu_to_be64(sector);
1441 	p->block_id = block_id;
1442 	p->blksize = cpu_to_be32(size);
1443 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1444 }
1445 
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1446 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1447 			    void *digest, int digest_size, enum drbd_packet cmd)
1448 {
1449 	struct drbd_socket *sock;
1450 	struct p_block_req *p;
1451 
1452 	/* FIXME: Put the digest into the preallocated socket buffer.  */
1453 
1454 	sock = &peer_device->connection->data;
1455 	p = drbd_prepare_command(peer_device, sock);
1456 	if (!p)
1457 		return -EIO;
1458 	p->sector = cpu_to_be64(sector);
1459 	p->block_id = ID_SYNCER /* unused */;
1460 	p->blksize = cpu_to_be32(size);
1461 	return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1462 }
1463 
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1464 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1465 {
1466 	struct drbd_socket *sock;
1467 	struct p_block_req *p;
1468 
1469 	sock = &peer_device->connection->data;
1470 	p = drbd_prepare_command(peer_device, sock);
1471 	if (!p)
1472 		return -EIO;
1473 	p->sector = cpu_to_be64(sector);
1474 	p->block_id = ID_SYNCER /* unused */;
1475 	p->blksize = cpu_to_be32(size);
1476 	return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1477 }
1478 
1479 /* called on sndtimeo
1480  * returns false if we should retry,
1481  * true if we think connection is dead
1482  */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1483 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1484 {
1485 	int drop_it;
1486 	/* long elapsed = (long)(jiffies - device->last_received); */
1487 
1488 	drop_it =   connection->meta.socket == sock
1489 		|| !connection->ack_receiver.task
1490 		|| get_t_state(&connection->ack_receiver) != RUNNING
1491 		|| connection->cstate < C_WF_REPORT_PARAMS;
1492 
1493 	if (drop_it)
1494 		return true;
1495 
1496 	drop_it = !--connection->ko_count;
1497 	if (!drop_it) {
1498 		drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1499 			 current->comm, current->pid, connection->ko_count);
1500 		request_ping(connection);
1501 	}
1502 
1503 	return drop_it; /* && (device->state == R_PRIMARY) */;
1504 }
1505 
drbd_update_congested(struct drbd_connection * connection)1506 static void drbd_update_congested(struct drbd_connection *connection)
1507 {
1508 	struct sock *sk = connection->data.socket->sk;
1509 	if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1510 		set_bit(NET_CONGESTED, &connection->flags);
1511 }
1512 
1513 /* The idea of sendpage seems to be to put some kind of reference
1514  * to the page into the skb, and to hand it over to the NIC. In
1515  * this process get_page() gets called.
1516  *
1517  * As soon as the page was really sent over the network put_page()
1518  * gets called by some part of the network layer. [ NIC driver? ]
1519  *
1520  * [ get_page() / put_page() increment/decrement the count. If count
1521  *   reaches 0 the page will be freed. ]
1522  *
1523  * This works nicely with pages from FSs.
1524  * But this means that in protocol A we might signal IO completion too early!
1525  *
1526  * In order not to corrupt data during a resync we must make sure
1527  * that we do not reuse our own buffer pages (EEs) to early, therefore
1528  * we have the net_ee list.
1529  *
1530  * XFS seems to have problems, still, it submits pages with page_count == 0!
1531  * As a workaround, we disable sendpage on pages
1532  * with page_count == 0 or PageSlab.
1533  */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1534 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1535 			      int offset, size_t size, unsigned msg_flags)
1536 {
1537 	struct socket *socket;
1538 	void *addr;
1539 	int err;
1540 
1541 	socket = peer_device->connection->data.socket;
1542 	addr = kmap(page) + offset;
1543 	err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1544 	kunmap(page);
1545 	if (!err)
1546 		peer_device->device->send_cnt += size >> 9;
1547 	return err;
1548 }
1549 
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1550 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1551 		    int offset, size_t size, unsigned msg_flags)
1552 {
1553 	struct socket *socket = peer_device->connection->data.socket;
1554 	mm_segment_t oldfs = get_fs();
1555 	int len = size;
1556 	int err = -EIO;
1557 
1558 	/* e.g. XFS meta- & log-data is in slab pages, which have a
1559 	 * page_count of 0 and/or have PageSlab() set.
1560 	 * we cannot use send_page for those, as that does get_page();
1561 	 * put_page(); and would cause either a VM_BUG directly, or
1562 	 * __page_cache_release a page that would actually still be referenced
1563 	 * by someone, leading to some obscure delayed Oops somewhere else. */
1564 	if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1565 		return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1566 
1567 	msg_flags |= MSG_NOSIGNAL;
1568 	drbd_update_congested(peer_device->connection);
1569 	set_fs(KERNEL_DS);
1570 	do {
1571 		int sent;
1572 
1573 		sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1574 		if (sent <= 0) {
1575 			if (sent == -EAGAIN) {
1576 				if (we_should_drop_the_connection(peer_device->connection, socket))
1577 					break;
1578 				continue;
1579 			}
1580 			drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1581 			     __func__, (int)size, len, sent);
1582 			if (sent < 0)
1583 				err = sent;
1584 			break;
1585 		}
1586 		len    -= sent;
1587 		offset += sent;
1588 	} while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1589 	set_fs(oldfs);
1590 	clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1591 
1592 	if (len == 0) {
1593 		err = 0;
1594 		peer_device->device->send_cnt += size >> 9;
1595 	}
1596 	return err;
1597 }
1598 
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1599 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1600 {
1601 	struct bio_vec bvec;
1602 	struct bvec_iter iter;
1603 
1604 	/* hint all but last page with MSG_MORE */
1605 	bio_for_each_segment(bvec, bio, iter) {
1606 		int err;
1607 
1608 		err = _drbd_no_send_page(peer_device, bvec.bv_page,
1609 					 bvec.bv_offset, bvec.bv_len,
1610 					 bio_iter_last(bvec, iter)
1611 					 ? 0 : MSG_MORE);
1612 		if (err)
1613 			return err;
1614 		/* REQ_OP_WRITE_SAME has only one segment */
1615 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1616 			break;
1617 	}
1618 	return 0;
1619 }
1620 
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1621 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1622 {
1623 	struct bio_vec bvec;
1624 	struct bvec_iter iter;
1625 
1626 	/* hint all but last page with MSG_MORE */
1627 	bio_for_each_segment(bvec, bio, iter) {
1628 		int err;
1629 
1630 		err = _drbd_send_page(peer_device, bvec.bv_page,
1631 				      bvec.bv_offset, bvec.bv_len,
1632 				      bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1633 		if (err)
1634 			return err;
1635 		/* REQ_OP_WRITE_SAME has only one segment */
1636 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
1637 			break;
1638 	}
1639 	return 0;
1640 }
1641 
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1642 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1643 			    struct drbd_peer_request *peer_req)
1644 {
1645 	struct page *page = peer_req->pages;
1646 	unsigned len = peer_req->i.size;
1647 	int err;
1648 
1649 	/* hint all but last page with MSG_MORE */
1650 	page_chain_for_each(page) {
1651 		unsigned l = min_t(unsigned, len, PAGE_SIZE);
1652 
1653 		err = _drbd_send_page(peer_device, page, 0, l,
1654 				      page_chain_next(page) ? MSG_MORE : 0);
1655 		if (err)
1656 			return err;
1657 		len -= l;
1658 	}
1659 	return 0;
1660 }
1661 
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1662 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1663 			     struct bio *bio)
1664 {
1665 	if (connection->agreed_pro_version >= 95)
1666 		return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1667 			(bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1668 			(bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1669 			(bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1670 			(bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0);
1671 	else
1672 		return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1673 }
1674 
1675 /* Used to send write or TRIM aka REQ_DISCARD requests
1676  * R_PRIMARY -> Peer	(P_DATA, P_TRIM)
1677  */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1678 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1679 {
1680 	struct drbd_device *device = peer_device->device;
1681 	struct drbd_socket *sock;
1682 	struct p_data *p;
1683 	struct p_wsame *wsame = NULL;
1684 	void *digest_out;
1685 	unsigned int dp_flags = 0;
1686 	int digest_size;
1687 	int err;
1688 
1689 	sock = &peer_device->connection->data;
1690 	p = drbd_prepare_command(peer_device, sock);
1691 	digest_size = peer_device->connection->integrity_tfm ?
1692 		      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1693 
1694 	if (!p)
1695 		return -EIO;
1696 	p->sector = cpu_to_be64(req->i.sector);
1697 	p->block_id = (unsigned long)req;
1698 	p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1699 	dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1700 	if (device->state.conn >= C_SYNC_SOURCE &&
1701 	    device->state.conn <= C_PAUSED_SYNC_T)
1702 		dp_flags |= DP_MAY_SET_IN_SYNC;
1703 	if (peer_device->connection->agreed_pro_version >= 100) {
1704 		if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1705 			dp_flags |= DP_SEND_RECEIVE_ACK;
1706 		/* During resync, request an explicit write ack,
1707 		 * even in protocol != C */
1708 		if (req->rq_state & RQ_EXP_WRITE_ACK
1709 		|| (dp_flags & DP_MAY_SET_IN_SYNC))
1710 			dp_flags |= DP_SEND_WRITE_ACK;
1711 	}
1712 	p->dp_flags = cpu_to_be32(dp_flags);
1713 
1714 	if (dp_flags & DP_DISCARD) {
1715 		struct p_trim *t = (struct p_trim*)p;
1716 		t->size = cpu_to_be32(req->i.size);
1717 		err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1718 		goto out;
1719 	}
1720 	if (dp_flags & DP_WSAME) {
1721 		/* this will only work if DRBD_FF_WSAME is set AND the
1722 		 * handshake agreed that all nodes and backend devices are
1723 		 * WRITE_SAME capable and agree on logical_block_size */
1724 		wsame = (struct p_wsame*)p;
1725 		digest_out = wsame + 1;
1726 		wsame->size = cpu_to_be32(req->i.size);
1727 	} else
1728 		digest_out = p + 1;
1729 
1730 	/* our digest is still only over the payload.
1731 	 * TRIM does not carry any payload. */
1732 	if (digest_size)
1733 		drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1734 	if (wsame) {
1735 		err =
1736 		    __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1737 				   sizeof(*wsame) + digest_size, NULL,
1738 				   bio_iovec(req->master_bio).bv_len);
1739 	} else
1740 		err =
1741 		    __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1742 				   sizeof(*p) + digest_size, NULL, req->i.size);
1743 	if (!err) {
1744 		/* For protocol A, we have to memcpy the payload into
1745 		 * socket buffers, as we may complete right away
1746 		 * as soon as we handed it over to tcp, at which point the data
1747 		 * pages may become invalid.
1748 		 *
1749 		 * For data-integrity enabled, we copy it as well, so we can be
1750 		 * sure that even if the bio pages may still be modified, it
1751 		 * won't change the data on the wire, thus if the digest checks
1752 		 * out ok after sending on this side, but does not fit on the
1753 		 * receiving side, we sure have detected corruption elsewhere.
1754 		 */
1755 		if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1756 			err = _drbd_send_bio(peer_device, req->master_bio);
1757 		else
1758 			err = _drbd_send_zc_bio(peer_device, req->master_bio);
1759 
1760 		/* double check digest, sometimes buffers have been modified in flight. */
1761 		if (digest_size > 0 && digest_size <= 64) {
1762 			/* 64 byte, 512 bit, is the largest digest size
1763 			 * currently supported in kernel crypto. */
1764 			unsigned char digest[64];
1765 			drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1766 			if (memcmp(p + 1, digest, digest_size)) {
1767 				drbd_warn(device,
1768 					"Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1769 					(unsigned long long)req->i.sector, req->i.size);
1770 			}
1771 		} /* else if (digest_size > 64) {
1772 		     ... Be noisy about digest too large ...
1773 		} */
1774 	}
1775 out:
1776 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1777 
1778 	return err;
1779 }
1780 
1781 /* answer packet, used to send data back for read requests:
1782  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1783  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1784  */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1785 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1786 		    struct drbd_peer_request *peer_req)
1787 {
1788 	struct drbd_device *device = peer_device->device;
1789 	struct drbd_socket *sock;
1790 	struct p_data *p;
1791 	int err;
1792 	int digest_size;
1793 
1794 	sock = &peer_device->connection->data;
1795 	p = drbd_prepare_command(peer_device, sock);
1796 
1797 	digest_size = peer_device->connection->integrity_tfm ?
1798 		      crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1799 
1800 	if (!p)
1801 		return -EIO;
1802 	p->sector = cpu_to_be64(peer_req->i.sector);
1803 	p->block_id = peer_req->block_id;
1804 	p->seq_num = 0;  /* unused */
1805 	p->dp_flags = 0;
1806 	if (digest_size)
1807 		drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1808 	err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1809 	if (!err)
1810 		err = _drbd_send_zc_ee(peer_device, peer_req);
1811 	mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1812 
1813 	return err;
1814 }
1815 
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1816 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1817 {
1818 	struct drbd_socket *sock;
1819 	struct p_block_desc *p;
1820 
1821 	sock = &peer_device->connection->data;
1822 	p = drbd_prepare_command(peer_device, sock);
1823 	if (!p)
1824 		return -EIO;
1825 	p->sector = cpu_to_be64(req->i.sector);
1826 	p->blksize = cpu_to_be32(req->i.size);
1827 	return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1828 }
1829 
1830 /*
1831   drbd_send distinguishes two cases:
1832 
1833   Packets sent via the data socket "sock"
1834   and packets sent via the meta data socket "msock"
1835 
1836 		    sock                      msock
1837   -----------------+-------------------------+------------------------------
1838   timeout           conf.timeout / 2          conf.timeout / 2
1839   timeout action    send a ping via msock     Abort communication
1840 					      and close all sockets
1841 */
1842 
1843 /*
1844  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1845  */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1846 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1847 	      void *buf, size_t size, unsigned msg_flags)
1848 {
1849 	struct kvec iov;
1850 	struct msghdr msg;
1851 	int rv, sent = 0;
1852 
1853 	if (!sock)
1854 		return -EBADR;
1855 
1856 	/* THINK  if (signal_pending) return ... ? */
1857 
1858 	iov.iov_base = buf;
1859 	iov.iov_len  = size;
1860 
1861 	msg.msg_name       = NULL;
1862 	msg.msg_namelen    = 0;
1863 	msg.msg_control    = NULL;
1864 	msg.msg_controllen = 0;
1865 	msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1866 
1867 	if (sock == connection->data.socket) {
1868 		rcu_read_lock();
1869 		connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1870 		rcu_read_unlock();
1871 		drbd_update_congested(connection);
1872 	}
1873 	do {
1874 		rv = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
1875 		if (rv == -EAGAIN) {
1876 			if (we_should_drop_the_connection(connection, sock))
1877 				break;
1878 			else
1879 				continue;
1880 		}
1881 		if (rv == -EINTR) {
1882 			flush_signals(current);
1883 			rv = 0;
1884 		}
1885 		if (rv < 0)
1886 			break;
1887 		sent += rv;
1888 		iov.iov_base += rv;
1889 		iov.iov_len  -= rv;
1890 	} while (sent < size);
1891 
1892 	if (sock == connection->data.socket)
1893 		clear_bit(NET_CONGESTED, &connection->flags);
1894 
1895 	if (rv <= 0) {
1896 		if (rv != -EAGAIN) {
1897 			drbd_err(connection, "%s_sendmsg returned %d\n",
1898 				 sock == connection->meta.socket ? "msock" : "sock",
1899 				 rv);
1900 			conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1901 		} else
1902 			conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1903 	}
1904 
1905 	return sent;
1906 }
1907 
1908 /**
1909  * drbd_send_all  -  Send an entire buffer
1910  *
1911  * Returns 0 upon success and a negative error value otherwise.
1912  */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1913 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1914 		  size_t size, unsigned msg_flags)
1915 {
1916 	int err;
1917 
1918 	err = drbd_send(connection, sock, buffer, size, msg_flags);
1919 	if (err < 0)
1920 		return err;
1921 	if (err != size)
1922 		return -EIO;
1923 	return 0;
1924 }
1925 
drbd_open(struct block_device * bdev,fmode_t mode)1926 static int drbd_open(struct block_device *bdev, fmode_t mode)
1927 {
1928 	struct drbd_device *device = bdev->bd_disk->private_data;
1929 	unsigned long flags;
1930 	int rv = 0;
1931 
1932 	mutex_lock(&drbd_main_mutex);
1933 	spin_lock_irqsave(&device->resource->req_lock, flags);
1934 	/* to have a stable device->state.role
1935 	 * and no race with updating open_cnt */
1936 
1937 	if (device->state.role != R_PRIMARY) {
1938 		if (mode & FMODE_WRITE)
1939 			rv = -EROFS;
1940 		else if (!allow_oos)
1941 			rv = -EMEDIUMTYPE;
1942 	}
1943 
1944 	if (!rv)
1945 		device->open_cnt++;
1946 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
1947 	mutex_unlock(&drbd_main_mutex);
1948 
1949 	return rv;
1950 }
1951 
drbd_release(struct gendisk * gd,fmode_t mode)1952 static void drbd_release(struct gendisk *gd, fmode_t mode)
1953 {
1954 	struct drbd_device *device = gd->private_data;
1955 	mutex_lock(&drbd_main_mutex);
1956 	device->open_cnt--;
1957 	mutex_unlock(&drbd_main_mutex);
1958 }
1959 
drbd_set_defaults(struct drbd_device * device)1960 static void drbd_set_defaults(struct drbd_device *device)
1961 {
1962 	/* Beware! The actual layout differs
1963 	 * between big endian and little endian */
1964 	device->state = (union drbd_dev_state) {
1965 		{ .role = R_SECONDARY,
1966 		  .peer = R_UNKNOWN,
1967 		  .conn = C_STANDALONE,
1968 		  .disk = D_DISKLESS,
1969 		  .pdsk = D_UNKNOWN,
1970 		} };
1971 }
1972 
drbd_init_set_defaults(struct drbd_device * device)1973 void drbd_init_set_defaults(struct drbd_device *device)
1974 {
1975 	/* the memset(,0,) did most of this.
1976 	 * note: only assignments, no allocation in here */
1977 
1978 	drbd_set_defaults(device);
1979 
1980 	atomic_set(&device->ap_bio_cnt, 0);
1981 	atomic_set(&device->ap_actlog_cnt, 0);
1982 	atomic_set(&device->ap_pending_cnt, 0);
1983 	atomic_set(&device->rs_pending_cnt, 0);
1984 	atomic_set(&device->unacked_cnt, 0);
1985 	atomic_set(&device->local_cnt, 0);
1986 	atomic_set(&device->pp_in_use_by_net, 0);
1987 	atomic_set(&device->rs_sect_in, 0);
1988 	atomic_set(&device->rs_sect_ev, 0);
1989 	atomic_set(&device->ap_in_flight, 0);
1990 	atomic_set(&device->md_io.in_use, 0);
1991 
1992 	mutex_init(&device->own_state_mutex);
1993 	device->state_mutex = &device->own_state_mutex;
1994 
1995 	spin_lock_init(&device->al_lock);
1996 	spin_lock_init(&device->peer_seq_lock);
1997 
1998 	INIT_LIST_HEAD(&device->active_ee);
1999 	INIT_LIST_HEAD(&device->sync_ee);
2000 	INIT_LIST_HEAD(&device->done_ee);
2001 	INIT_LIST_HEAD(&device->read_ee);
2002 	INIT_LIST_HEAD(&device->net_ee);
2003 	INIT_LIST_HEAD(&device->resync_reads);
2004 	INIT_LIST_HEAD(&device->resync_work.list);
2005 	INIT_LIST_HEAD(&device->unplug_work.list);
2006 	INIT_LIST_HEAD(&device->bm_io_work.w.list);
2007 	INIT_LIST_HEAD(&device->pending_master_completion[0]);
2008 	INIT_LIST_HEAD(&device->pending_master_completion[1]);
2009 	INIT_LIST_HEAD(&device->pending_completion[0]);
2010 	INIT_LIST_HEAD(&device->pending_completion[1]);
2011 
2012 	device->resync_work.cb  = w_resync_timer;
2013 	device->unplug_work.cb  = w_send_write_hint;
2014 	device->bm_io_work.w.cb = w_bitmap_io;
2015 
2016 	init_timer(&device->resync_timer);
2017 	init_timer(&device->md_sync_timer);
2018 	init_timer(&device->start_resync_timer);
2019 	init_timer(&device->request_timer);
2020 	device->resync_timer.function = resync_timer_fn;
2021 	device->resync_timer.data = (unsigned long) device;
2022 	device->md_sync_timer.function = md_sync_timer_fn;
2023 	device->md_sync_timer.data = (unsigned long) device;
2024 	device->start_resync_timer.function = start_resync_timer_fn;
2025 	device->start_resync_timer.data = (unsigned long) device;
2026 	device->request_timer.function = request_timer_fn;
2027 	device->request_timer.data = (unsigned long) device;
2028 
2029 	init_waitqueue_head(&device->misc_wait);
2030 	init_waitqueue_head(&device->state_wait);
2031 	init_waitqueue_head(&device->ee_wait);
2032 	init_waitqueue_head(&device->al_wait);
2033 	init_waitqueue_head(&device->seq_wait);
2034 
2035 	device->resync_wenr = LC_FREE;
2036 	device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2037 	device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2038 }
2039 
drbd_device_cleanup(struct drbd_device * device)2040 void drbd_device_cleanup(struct drbd_device *device)
2041 {
2042 	int i;
2043 	if (first_peer_device(device)->connection->receiver.t_state != NONE)
2044 		drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2045 				first_peer_device(device)->connection->receiver.t_state);
2046 
2047 	device->al_writ_cnt  =
2048 	device->bm_writ_cnt  =
2049 	device->read_cnt     =
2050 	device->recv_cnt     =
2051 	device->send_cnt     =
2052 	device->writ_cnt     =
2053 	device->p_size       =
2054 	device->rs_start     =
2055 	device->rs_total     =
2056 	device->rs_failed    = 0;
2057 	device->rs_last_events = 0;
2058 	device->rs_last_sect_ev = 0;
2059 	for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2060 		device->rs_mark_left[i] = 0;
2061 		device->rs_mark_time[i] = 0;
2062 	}
2063 	D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2064 
2065 	drbd_set_my_capacity(device, 0);
2066 	if (device->bitmap) {
2067 		/* maybe never allocated. */
2068 		drbd_bm_resize(device, 0, 1);
2069 		drbd_bm_cleanup(device);
2070 	}
2071 
2072 	drbd_backing_dev_free(device, device->ldev);
2073 	device->ldev = NULL;
2074 
2075 	clear_bit(AL_SUSPENDED, &device->flags);
2076 
2077 	D_ASSERT(device, list_empty(&device->active_ee));
2078 	D_ASSERT(device, list_empty(&device->sync_ee));
2079 	D_ASSERT(device, list_empty(&device->done_ee));
2080 	D_ASSERT(device, list_empty(&device->read_ee));
2081 	D_ASSERT(device, list_empty(&device->net_ee));
2082 	D_ASSERT(device, list_empty(&device->resync_reads));
2083 	D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2084 	D_ASSERT(device, list_empty(&device->resync_work.list));
2085 	D_ASSERT(device, list_empty(&device->unplug_work.list));
2086 
2087 	drbd_set_defaults(device);
2088 }
2089 
2090 
drbd_destroy_mempools(void)2091 static void drbd_destroy_mempools(void)
2092 {
2093 	struct page *page;
2094 
2095 	while (drbd_pp_pool) {
2096 		page = drbd_pp_pool;
2097 		drbd_pp_pool = (struct page *)page_private(page);
2098 		__free_page(page);
2099 		drbd_pp_vacant--;
2100 	}
2101 
2102 	/* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2103 
2104 	if (drbd_md_io_bio_set)
2105 		bioset_free(drbd_md_io_bio_set);
2106 	if (drbd_md_io_page_pool)
2107 		mempool_destroy(drbd_md_io_page_pool);
2108 	if (drbd_ee_mempool)
2109 		mempool_destroy(drbd_ee_mempool);
2110 	if (drbd_request_mempool)
2111 		mempool_destroy(drbd_request_mempool);
2112 	if (drbd_ee_cache)
2113 		kmem_cache_destroy(drbd_ee_cache);
2114 	if (drbd_request_cache)
2115 		kmem_cache_destroy(drbd_request_cache);
2116 	if (drbd_bm_ext_cache)
2117 		kmem_cache_destroy(drbd_bm_ext_cache);
2118 	if (drbd_al_ext_cache)
2119 		kmem_cache_destroy(drbd_al_ext_cache);
2120 
2121 	drbd_md_io_bio_set   = NULL;
2122 	drbd_md_io_page_pool = NULL;
2123 	drbd_ee_mempool      = NULL;
2124 	drbd_request_mempool = NULL;
2125 	drbd_ee_cache        = NULL;
2126 	drbd_request_cache   = NULL;
2127 	drbd_bm_ext_cache    = NULL;
2128 	drbd_al_ext_cache    = NULL;
2129 
2130 	return;
2131 }
2132 
drbd_create_mempools(void)2133 static int drbd_create_mempools(void)
2134 {
2135 	struct page *page;
2136 	const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2137 	int i;
2138 
2139 	/* prepare our caches and mempools */
2140 	drbd_request_mempool = NULL;
2141 	drbd_ee_cache        = NULL;
2142 	drbd_request_cache   = NULL;
2143 	drbd_bm_ext_cache    = NULL;
2144 	drbd_al_ext_cache    = NULL;
2145 	drbd_pp_pool         = NULL;
2146 	drbd_md_io_page_pool = NULL;
2147 	drbd_md_io_bio_set   = NULL;
2148 
2149 	/* caches */
2150 	drbd_request_cache = kmem_cache_create(
2151 		"drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2152 	if (drbd_request_cache == NULL)
2153 		goto Enomem;
2154 
2155 	drbd_ee_cache = kmem_cache_create(
2156 		"drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2157 	if (drbd_ee_cache == NULL)
2158 		goto Enomem;
2159 
2160 	drbd_bm_ext_cache = kmem_cache_create(
2161 		"drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2162 	if (drbd_bm_ext_cache == NULL)
2163 		goto Enomem;
2164 
2165 	drbd_al_ext_cache = kmem_cache_create(
2166 		"drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2167 	if (drbd_al_ext_cache == NULL)
2168 		goto Enomem;
2169 
2170 	/* mempools */
2171 	drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2172 	if (drbd_md_io_bio_set == NULL)
2173 		goto Enomem;
2174 
2175 	drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2176 	if (drbd_md_io_page_pool == NULL)
2177 		goto Enomem;
2178 
2179 	drbd_request_mempool = mempool_create_slab_pool(number,
2180 		drbd_request_cache);
2181 	if (drbd_request_mempool == NULL)
2182 		goto Enomem;
2183 
2184 	drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2185 	if (drbd_ee_mempool == NULL)
2186 		goto Enomem;
2187 
2188 	/* drbd's page pool */
2189 	spin_lock_init(&drbd_pp_lock);
2190 
2191 	for (i = 0; i < number; i++) {
2192 		page = alloc_page(GFP_HIGHUSER);
2193 		if (!page)
2194 			goto Enomem;
2195 		set_page_private(page, (unsigned long)drbd_pp_pool);
2196 		drbd_pp_pool = page;
2197 	}
2198 	drbd_pp_vacant = number;
2199 
2200 	return 0;
2201 
2202 Enomem:
2203 	drbd_destroy_mempools(); /* in case we allocated some */
2204 	return -ENOMEM;
2205 }
2206 
drbd_release_all_peer_reqs(struct drbd_device * device)2207 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2208 {
2209 	int rr;
2210 
2211 	rr = drbd_free_peer_reqs(device, &device->active_ee);
2212 	if (rr)
2213 		drbd_err(device, "%d EEs in active list found!\n", rr);
2214 
2215 	rr = drbd_free_peer_reqs(device, &device->sync_ee);
2216 	if (rr)
2217 		drbd_err(device, "%d EEs in sync list found!\n", rr);
2218 
2219 	rr = drbd_free_peer_reqs(device, &device->read_ee);
2220 	if (rr)
2221 		drbd_err(device, "%d EEs in read list found!\n", rr);
2222 
2223 	rr = drbd_free_peer_reqs(device, &device->done_ee);
2224 	if (rr)
2225 		drbd_err(device, "%d EEs in done list found!\n", rr);
2226 
2227 	rr = drbd_free_peer_reqs(device, &device->net_ee);
2228 	if (rr)
2229 		drbd_err(device, "%d EEs in net list found!\n", rr);
2230 }
2231 
2232 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2233 void drbd_destroy_device(struct kref *kref)
2234 {
2235 	struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2236 	struct drbd_resource *resource = device->resource;
2237 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2238 
2239 	del_timer_sync(&device->request_timer);
2240 
2241 	/* paranoia asserts */
2242 	D_ASSERT(device, device->open_cnt == 0);
2243 	/* end paranoia asserts */
2244 
2245 	/* cleanup stuff that may have been allocated during
2246 	 * device (re-)configuration or state changes */
2247 
2248 	if (device->this_bdev)
2249 		bdput(device->this_bdev);
2250 
2251 	drbd_backing_dev_free(device, device->ldev);
2252 	device->ldev = NULL;
2253 
2254 	drbd_release_all_peer_reqs(device);
2255 
2256 	lc_destroy(device->act_log);
2257 	lc_destroy(device->resync);
2258 
2259 	kfree(device->p_uuid);
2260 	/* device->p_uuid = NULL; */
2261 
2262 	if (device->bitmap) /* should no longer be there. */
2263 		drbd_bm_cleanup(device);
2264 	__free_page(device->md_io.page);
2265 	put_disk(device->vdisk);
2266 	blk_cleanup_queue(device->rq_queue);
2267 	kfree(device->rs_plan_s);
2268 
2269 	/* not for_each_connection(connection, resource):
2270 	 * those may have been cleaned up and disassociated already.
2271 	 */
2272 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2273 		kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2274 		kfree(peer_device);
2275 	}
2276 	memset(device, 0xfd, sizeof(*device));
2277 	kfree(device);
2278 	kref_put(&resource->kref, drbd_destroy_resource);
2279 }
2280 
2281 /* One global retry thread, if we need to push back some bio and have it
2282  * reinserted through our make request function.
2283  */
2284 static struct retry_worker {
2285 	struct workqueue_struct *wq;
2286 	struct work_struct worker;
2287 
2288 	spinlock_t lock;
2289 	struct list_head writes;
2290 } retry;
2291 
do_retry(struct work_struct * ws)2292 static void do_retry(struct work_struct *ws)
2293 {
2294 	struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2295 	LIST_HEAD(writes);
2296 	struct drbd_request *req, *tmp;
2297 
2298 	spin_lock_irq(&retry->lock);
2299 	list_splice_init(&retry->writes, &writes);
2300 	spin_unlock_irq(&retry->lock);
2301 
2302 	list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2303 		struct drbd_device *device = req->device;
2304 		struct bio *bio = req->master_bio;
2305 		unsigned long start_jif = req->start_jif;
2306 		bool expected;
2307 
2308 		expected =
2309 			expect(atomic_read(&req->completion_ref) == 0) &&
2310 			expect(req->rq_state & RQ_POSTPONED) &&
2311 			expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2312 				(req->rq_state & RQ_LOCAL_ABORTED) != 0);
2313 
2314 		if (!expected)
2315 			drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2316 				req, atomic_read(&req->completion_ref),
2317 				req->rq_state);
2318 
2319 		/* We still need to put one kref associated with the
2320 		 * "completion_ref" going zero in the code path that queued it
2321 		 * here.  The request object may still be referenced by a
2322 		 * frozen local req->private_bio, in case we force-detached.
2323 		 */
2324 		kref_put(&req->kref, drbd_req_destroy);
2325 
2326 		/* A single suspended or otherwise blocking device may stall
2327 		 * all others as well.  Fortunately, this code path is to
2328 		 * recover from a situation that "should not happen":
2329 		 * concurrent writes in multi-primary setup.
2330 		 * In a "normal" lifecycle, this workqueue is supposed to be
2331 		 * destroyed without ever doing anything.
2332 		 * If it turns out to be an issue anyways, we can do per
2333 		 * resource (replication group) or per device (minor) retry
2334 		 * workqueues instead.
2335 		 */
2336 
2337 		/* We are not just doing generic_make_request(),
2338 		 * as we want to keep the start_time information. */
2339 		inc_ap_bio(device);
2340 		__drbd_make_request(device, bio, start_jif);
2341 	}
2342 }
2343 
2344 /* called via drbd_req_put_completion_ref(),
2345  * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2346 void drbd_restart_request(struct drbd_request *req)
2347 {
2348 	unsigned long flags;
2349 	spin_lock_irqsave(&retry.lock, flags);
2350 	list_move_tail(&req->tl_requests, &retry.writes);
2351 	spin_unlock_irqrestore(&retry.lock, flags);
2352 
2353 	/* Drop the extra reference that would otherwise
2354 	 * have been dropped by complete_master_bio.
2355 	 * do_retry() needs to grab a new one. */
2356 	dec_ap_bio(req->device);
2357 
2358 	queue_work(retry.wq, &retry.worker);
2359 }
2360 
drbd_destroy_resource(struct kref * kref)2361 void drbd_destroy_resource(struct kref *kref)
2362 {
2363 	struct drbd_resource *resource =
2364 		container_of(kref, struct drbd_resource, kref);
2365 
2366 	idr_destroy(&resource->devices);
2367 	free_cpumask_var(resource->cpu_mask);
2368 	kfree(resource->name);
2369 	memset(resource, 0xf2, sizeof(*resource));
2370 	kfree(resource);
2371 }
2372 
drbd_free_resource(struct drbd_resource * resource)2373 void drbd_free_resource(struct drbd_resource *resource)
2374 {
2375 	struct drbd_connection *connection, *tmp;
2376 
2377 	for_each_connection_safe(connection, tmp, resource) {
2378 		list_del(&connection->connections);
2379 		drbd_debugfs_connection_cleanup(connection);
2380 		kref_put(&connection->kref, drbd_destroy_connection);
2381 	}
2382 	drbd_debugfs_resource_cleanup(resource);
2383 	kref_put(&resource->kref, drbd_destroy_resource);
2384 }
2385 
drbd_cleanup(void)2386 static void drbd_cleanup(void)
2387 {
2388 	unsigned int i;
2389 	struct drbd_device *device;
2390 	struct drbd_resource *resource, *tmp;
2391 
2392 	/* first remove proc,
2393 	 * drbdsetup uses it's presence to detect
2394 	 * whether DRBD is loaded.
2395 	 * If we would get stuck in proc removal,
2396 	 * but have netlink already deregistered,
2397 	 * some drbdsetup commands may wait forever
2398 	 * for an answer.
2399 	 */
2400 	if (drbd_proc)
2401 		remove_proc_entry("drbd", NULL);
2402 
2403 	if (retry.wq)
2404 		destroy_workqueue(retry.wq);
2405 
2406 	drbd_genl_unregister();
2407 	drbd_debugfs_cleanup();
2408 
2409 	idr_for_each_entry(&drbd_devices, device, i)
2410 		drbd_delete_device(device);
2411 
2412 	/* not _rcu since, no other updater anymore. Genl already unregistered */
2413 	for_each_resource_safe(resource, tmp, &drbd_resources) {
2414 		list_del(&resource->resources);
2415 		drbd_free_resource(resource);
2416 	}
2417 
2418 	drbd_destroy_mempools();
2419 	unregister_blkdev(DRBD_MAJOR, "drbd");
2420 
2421 	idr_destroy(&drbd_devices);
2422 
2423 	pr_info("module cleanup done.\n");
2424 }
2425 
2426 /**
2427  * drbd_congested() - Callback for the flusher thread
2428  * @congested_data:	User data
2429  * @bdi_bits:		Bits the BDI flusher thread is currently interested in
2430  *
2431  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2432  */
drbd_congested(void * congested_data,int bdi_bits)2433 static int drbd_congested(void *congested_data, int bdi_bits)
2434 {
2435 	struct drbd_device *device = congested_data;
2436 	struct request_queue *q;
2437 	char reason = '-';
2438 	int r = 0;
2439 
2440 	if (!may_inc_ap_bio(device)) {
2441 		/* DRBD has frozen IO */
2442 		r = bdi_bits;
2443 		reason = 'd';
2444 		goto out;
2445 	}
2446 
2447 	if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2448 		r |= (1 << WB_async_congested);
2449 		/* Without good local data, we would need to read from remote,
2450 		 * and that would need the worker thread as well, which is
2451 		 * currently blocked waiting for that usermode helper to
2452 		 * finish.
2453 		 */
2454 		if (!get_ldev_if_state(device, D_UP_TO_DATE))
2455 			r |= (1 << WB_sync_congested);
2456 		else
2457 			put_ldev(device);
2458 		r &= bdi_bits;
2459 		reason = 'c';
2460 		goto out;
2461 	}
2462 
2463 	if (get_ldev(device)) {
2464 		q = bdev_get_queue(device->ldev->backing_bdev);
2465 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
2466 		put_ldev(device);
2467 		if (r)
2468 			reason = 'b';
2469 	}
2470 
2471 	if (bdi_bits & (1 << WB_async_congested) &&
2472 	    test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2473 		r |= (1 << WB_async_congested);
2474 		reason = reason == 'b' ? 'a' : 'n';
2475 	}
2476 
2477 out:
2478 	device->congestion_reason = reason;
2479 	return r;
2480 }
2481 
drbd_init_workqueue(struct drbd_work_queue * wq)2482 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2483 {
2484 	spin_lock_init(&wq->q_lock);
2485 	INIT_LIST_HEAD(&wq->q);
2486 	init_waitqueue_head(&wq->q_wait);
2487 }
2488 
2489 struct completion_work {
2490 	struct drbd_work w;
2491 	struct completion done;
2492 };
2493 
w_complete(struct drbd_work * w,int cancel)2494 static int w_complete(struct drbd_work *w, int cancel)
2495 {
2496 	struct completion_work *completion_work =
2497 		container_of(w, struct completion_work, w);
2498 
2499 	complete(&completion_work->done);
2500 	return 0;
2501 }
2502 
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2503 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2504 {
2505 	struct completion_work completion_work;
2506 
2507 	completion_work.w.cb = w_complete;
2508 	init_completion(&completion_work.done);
2509 	drbd_queue_work(work_queue, &completion_work.w);
2510 	wait_for_completion(&completion_work.done);
2511 }
2512 
drbd_find_resource(const char * name)2513 struct drbd_resource *drbd_find_resource(const char *name)
2514 {
2515 	struct drbd_resource *resource;
2516 
2517 	if (!name || !name[0])
2518 		return NULL;
2519 
2520 	rcu_read_lock();
2521 	for_each_resource_rcu(resource, &drbd_resources) {
2522 		if (!strcmp(resource->name, name)) {
2523 			kref_get(&resource->kref);
2524 			goto found;
2525 		}
2526 	}
2527 	resource = NULL;
2528 found:
2529 	rcu_read_unlock();
2530 	return resource;
2531 }
2532 
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2533 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2534 				     void *peer_addr, int peer_addr_len)
2535 {
2536 	struct drbd_resource *resource;
2537 	struct drbd_connection *connection;
2538 
2539 	rcu_read_lock();
2540 	for_each_resource_rcu(resource, &drbd_resources) {
2541 		for_each_connection_rcu(connection, resource) {
2542 			if (connection->my_addr_len == my_addr_len &&
2543 			    connection->peer_addr_len == peer_addr_len &&
2544 			    !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2545 			    !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2546 				kref_get(&connection->kref);
2547 				goto found;
2548 			}
2549 		}
2550 	}
2551 	connection = NULL;
2552 found:
2553 	rcu_read_unlock();
2554 	return connection;
2555 }
2556 
drbd_alloc_socket(struct drbd_socket * socket)2557 static int drbd_alloc_socket(struct drbd_socket *socket)
2558 {
2559 	socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2560 	if (!socket->rbuf)
2561 		return -ENOMEM;
2562 	socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2563 	if (!socket->sbuf)
2564 		return -ENOMEM;
2565 	return 0;
2566 }
2567 
drbd_free_socket(struct drbd_socket * socket)2568 static void drbd_free_socket(struct drbd_socket *socket)
2569 {
2570 	free_page((unsigned long) socket->sbuf);
2571 	free_page((unsigned long) socket->rbuf);
2572 }
2573 
conn_free_crypto(struct drbd_connection * connection)2574 void conn_free_crypto(struct drbd_connection *connection)
2575 {
2576 	drbd_free_sock(connection);
2577 
2578 	crypto_free_ahash(connection->csums_tfm);
2579 	crypto_free_ahash(connection->verify_tfm);
2580 	crypto_free_shash(connection->cram_hmac_tfm);
2581 	crypto_free_ahash(connection->integrity_tfm);
2582 	crypto_free_ahash(connection->peer_integrity_tfm);
2583 	kfree(connection->int_dig_in);
2584 	kfree(connection->int_dig_vv);
2585 
2586 	connection->csums_tfm = NULL;
2587 	connection->verify_tfm = NULL;
2588 	connection->cram_hmac_tfm = NULL;
2589 	connection->integrity_tfm = NULL;
2590 	connection->peer_integrity_tfm = NULL;
2591 	connection->int_dig_in = NULL;
2592 	connection->int_dig_vv = NULL;
2593 }
2594 
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2595 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2596 {
2597 	struct drbd_connection *connection;
2598 	cpumask_var_t new_cpu_mask;
2599 	int err;
2600 
2601 	if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2602 		return -ENOMEM;
2603 
2604 	/* silently ignore cpu mask on UP kernel */
2605 	if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2606 		err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2607 				   cpumask_bits(new_cpu_mask), nr_cpu_ids);
2608 		if (err == -EOVERFLOW) {
2609 			/* So what. mask it out. */
2610 			cpumask_var_t tmp_cpu_mask;
2611 			if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2612 				cpumask_setall(tmp_cpu_mask);
2613 				cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2614 				drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2615 					res_opts->cpu_mask,
2616 					strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2617 					nr_cpu_ids);
2618 				free_cpumask_var(tmp_cpu_mask);
2619 				err = 0;
2620 			}
2621 		}
2622 		if (err) {
2623 			drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2624 			/* retcode = ERR_CPU_MASK_PARSE; */
2625 			goto fail;
2626 		}
2627 	}
2628 	resource->res_opts = *res_opts;
2629 	if (cpumask_empty(new_cpu_mask))
2630 		drbd_calc_cpu_mask(&new_cpu_mask);
2631 	if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2632 		cpumask_copy(resource->cpu_mask, new_cpu_mask);
2633 		for_each_connection_rcu(connection, resource) {
2634 			connection->receiver.reset_cpu_mask = 1;
2635 			connection->ack_receiver.reset_cpu_mask = 1;
2636 			connection->worker.reset_cpu_mask = 1;
2637 		}
2638 	}
2639 	err = 0;
2640 
2641 fail:
2642 	free_cpumask_var(new_cpu_mask);
2643 	return err;
2644 
2645 }
2646 
drbd_create_resource(const char * name)2647 struct drbd_resource *drbd_create_resource(const char *name)
2648 {
2649 	struct drbd_resource *resource;
2650 
2651 	resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2652 	if (!resource)
2653 		goto fail;
2654 	resource->name = kstrdup(name, GFP_KERNEL);
2655 	if (!resource->name)
2656 		goto fail_free_resource;
2657 	if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2658 		goto fail_free_name;
2659 	kref_init(&resource->kref);
2660 	idr_init(&resource->devices);
2661 	INIT_LIST_HEAD(&resource->connections);
2662 	resource->write_ordering = WO_BDEV_FLUSH;
2663 	list_add_tail_rcu(&resource->resources, &drbd_resources);
2664 	mutex_init(&resource->conf_update);
2665 	mutex_init(&resource->adm_mutex);
2666 	spin_lock_init(&resource->req_lock);
2667 	drbd_debugfs_resource_add(resource);
2668 	return resource;
2669 
2670 fail_free_name:
2671 	kfree(resource->name);
2672 fail_free_resource:
2673 	kfree(resource);
2674 fail:
2675 	return NULL;
2676 }
2677 
2678 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2679 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2680 {
2681 	struct drbd_resource *resource;
2682 	struct drbd_connection *connection;
2683 
2684 	connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2685 	if (!connection)
2686 		return NULL;
2687 
2688 	if (drbd_alloc_socket(&connection->data))
2689 		goto fail;
2690 	if (drbd_alloc_socket(&connection->meta))
2691 		goto fail;
2692 
2693 	connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2694 	if (!connection->current_epoch)
2695 		goto fail;
2696 
2697 	INIT_LIST_HEAD(&connection->transfer_log);
2698 
2699 	INIT_LIST_HEAD(&connection->current_epoch->list);
2700 	connection->epochs = 1;
2701 	spin_lock_init(&connection->epoch_lock);
2702 
2703 	connection->send.seen_any_write_yet = false;
2704 	connection->send.current_epoch_nr = 0;
2705 	connection->send.current_epoch_writes = 0;
2706 
2707 	resource = drbd_create_resource(name);
2708 	if (!resource)
2709 		goto fail;
2710 
2711 	connection->cstate = C_STANDALONE;
2712 	mutex_init(&connection->cstate_mutex);
2713 	init_waitqueue_head(&connection->ping_wait);
2714 	idr_init(&connection->peer_devices);
2715 
2716 	drbd_init_workqueue(&connection->sender_work);
2717 	mutex_init(&connection->data.mutex);
2718 	mutex_init(&connection->meta.mutex);
2719 
2720 	drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2721 	connection->receiver.connection = connection;
2722 	drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2723 	connection->worker.connection = connection;
2724 	drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2725 	connection->ack_receiver.connection = connection;
2726 
2727 	kref_init(&connection->kref);
2728 
2729 	connection->resource = resource;
2730 
2731 	if (set_resource_options(resource, res_opts))
2732 		goto fail_resource;
2733 
2734 	kref_get(&resource->kref);
2735 	list_add_tail_rcu(&connection->connections, &resource->connections);
2736 	drbd_debugfs_connection_add(connection);
2737 	return connection;
2738 
2739 fail_resource:
2740 	list_del(&resource->resources);
2741 	drbd_free_resource(resource);
2742 fail:
2743 	kfree(connection->current_epoch);
2744 	drbd_free_socket(&connection->meta);
2745 	drbd_free_socket(&connection->data);
2746 	kfree(connection);
2747 	return NULL;
2748 }
2749 
drbd_destroy_connection(struct kref * kref)2750 void drbd_destroy_connection(struct kref *kref)
2751 {
2752 	struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2753 	struct drbd_resource *resource = connection->resource;
2754 
2755 	if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2756 		drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2757 	kfree(connection->current_epoch);
2758 
2759 	idr_destroy(&connection->peer_devices);
2760 
2761 	drbd_free_socket(&connection->meta);
2762 	drbd_free_socket(&connection->data);
2763 	kfree(connection->int_dig_in);
2764 	kfree(connection->int_dig_vv);
2765 	memset(connection, 0xfc, sizeof(*connection));
2766 	kfree(connection);
2767 	kref_put(&resource->kref, drbd_destroy_resource);
2768 }
2769 
init_submitter(struct drbd_device * device)2770 static int init_submitter(struct drbd_device *device)
2771 {
2772 	/* opencoded create_singlethread_workqueue(),
2773 	 * to be able to say "drbd%d", ..., minor */
2774 	device->submit.wq =
2775 		alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2776 	if (!device->submit.wq)
2777 		return -ENOMEM;
2778 
2779 	INIT_WORK(&device->submit.worker, do_submit);
2780 	INIT_LIST_HEAD(&device->submit.writes);
2781 	return 0;
2782 }
2783 
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2784 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2785 {
2786 	struct drbd_resource *resource = adm_ctx->resource;
2787 	struct drbd_connection *connection;
2788 	struct drbd_device *device;
2789 	struct drbd_peer_device *peer_device, *tmp_peer_device;
2790 	struct gendisk *disk;
2791 	struct request_queue *q;
2792 	int id;
2793 	int vnr = adm_ctx->volume;
2794 	enum drbd_ret_code err = ERR_NOMEM;
2795 
2796 	device = minor_to_device(minor);
2797 	if (device)
2798 		return ERR_MINOR_OR_VOLUME_EXISTS;
2799 
2800 	/* GFP_KERNEL, we are outside of all write-out paths */
2801 	device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2802 	if (!device)
2803 		return ERR_NOMEM;
2804 	kref_init(&device->kref);
2805 
2806 	kref_get(&resource->kref);
2807 	device->resource = resource;
2808 	device->minor = minor;
2809 	device->vnr = vnr;
2810 
2811 	drbd_init_set_defaults(device);
2812 
2813 	q = blk_alloc_queue(GFP_KERNEL);
2814 	if (!q)
2815 		goto out_no_q;
2816 	device->rq_queue = q;
2817 	q->queuedata   = device;
2818 
2819 	disk = alloc_disk(1);
2820 	if (!disk)
2821 		goto out_no_disk;
2822 	device->vdisk = disk;
2823 
2824 	set_disk_ro(disk, true);
2825 
2826 	disk->queue = q;
2827 	disk->major = DRBD_MAJOR;
2828 	disk->first_minor = minor;
2829 	disk->fops = &drbd_ops;
2830 	sprintf(disk->disk_name, "drbd%d", minor);
2831 	disk->private_data = device;
2832 
2833 	device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2834 	/* we have no partitions. we contain only ourselves. */
2835 	device->this_bdev->bd_contains = device->this_bdev;
2836 
2837 	q->backing_dev_info.congested_fn = drbd_congested;
2838 	q->backing_dev_info.congested_data = device;
2839 
2840 	blk_queue_make_request(q, drbd_make_request);
2841 	blk_queue_write_cache(q, true, true);
2842 	/* Setting the max_hw_sectors to an odd value of 8kibyte here
2843 	   This triggers a max_bio_size message upon first attach or connect */
2844 	blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2845 	blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2846 	q->queue_lock = &resource->req_lock;
2847 
2848 	device->md_io.page = alloc_page(GFP_KERNEL);
2849 	if (!device->md_io.page)
2850 		goto out_no_io_page;
2851 
2852 	if (drbd_bm_init(device))
2853 		goto out_no_bitmap;
2854 	device->read_requests = RB_ROOT;
2855 	device->write_requests = RB_ROOT;
2856 
2857 	id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2858 	if (id < 0) {
2859 		if (id == -ENOSPC)
2860 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2861 		goto out_no_minor_idr;
2862 	}
2863 	kref_get(&device->kref);
2864 
2865 	id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2866 	if (id < 0) {
2867 		if (id == -ENOSPC)
2868 			err = ERR_MINOR_OR_VOLUME_EXISTS;
2869 		goto out_idr_remove_minor;
2870 	}
2871 	kref_get(&device->kref);
2872 
2873 	INIT_LIST_HEAD(&device->peer_devices);
2874 	INIT_LIST_HEAD(&device->pending_bitmap_io);
2875 	for_each_connection(connection, resource) {
2876 		peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2877 		if (!peer_device)
2878 			goto out_idr_remove_from_resource;
2879 		peer_device->connection = connection;
2880 		peer_device->device = device;
2881 
2882 		list_add(&peer_device->peer_devices, &device->peer_devices);
2883 		kref_get(&device->kref);
2884 
2885 		id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2886 		if (id < 0) {
2887 			if (id == -ENOSPC)
2888 				err = ERR_INVALID_REQUEST;
2889 			goto out_idr_remove_from_resource;
2890 		}
2891 		kref_get(&connection->kref);
2892 		INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2893 	}
2894 
2895 	if (init_submitter(device)) {
2896 		err = ERR_NOMEM;
2897 		goto out_idr_remove_vol;
2898 	}
2899 
2900 	add_disk(disk);
2901 
2902 	/* inherit the connection state */
2903 	device->state.conn = first_connection(resource)->cstate;
2904 	if (device->state.conn == C_WF_REPORT_PARAMS) {
2905 		for_each_peer_device(peer_device, device)
2906 			drbd_connected(peer_device);
2907 	}
2908 	/* move to create_peer_device() */
2909 	for_each_peer_device(peer_device, device)
2910 		drbd_debugfs_peer_device_add(peer_device);
2911 	drbd_debugfs_device_add(device);
2912 	return NO_ERROR;
2913 
2914 out_idr_remove_vol:
2915 	idr_remove(&connection->peer_devices, vnr);
2916 out_idr_remove_from_resource:
2917 	for_each_connection(connection, resource) {
2918 		peer_device = idr_find(&connection->peer_devices, vnr);
2919 		if (peer_device) {
2920 			idr_remove(&connection->peer_devices, vnr);
2921 			kref_put(&connection->kref, drbd_destroy_connection);
2922 		}
2923 	}
2924 	for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2925 		list_del(&peer_device->peer_devices);
2926 		kfree(peer_device);
2927 	}
2928 	idr_remove(&resource->devices, vnr);
2929 out_idr_remove_minor:
2930 	idr_remove(&drbd_devices, minor);
2931 	synchronize_rcu();
2932 out_no_minor_idr:
2933 	drbd_bm_cleanup(device);
2934 out_no_bitmap:
2935 	__free_page(device->md_io.page);
2936 out_no_io_page:
2937 	put_disk(disk);
2938 out_no_disk:
2939 	blk_cleanup_queue(q);
2940 out_no_q:
2941 	kref_put(&resource->kref, drbd_destroy_resource);
2942 	kfree(device);
2943 	return err;
2944 }
2945 
drbd_delete_device(struct drbd_device * device)2946 void drbd_delete_device(struct drbd_device *device)
2947 {
2948 	struct drbd_resource *resource = device->resource;
2949 	struct drbd_connection *connection;
2950 	struct drbd_peer_device *peer_device;
2951 	int refs = 3;
2952 
2953 	/* move to free_peer_device() */
2954 	for_each_peer_device(peer_device, device)
2955 		drbd_debugfs_peer_device_cleanup(peer_device);
2956 	drbd_debugfs_device_cleanup(device);
2957 	for_each_connection(connection, resource) {
2958 		idr_remove(&connection->peer_devices, device->vnr);
2959 		refs++;
2960 	}
2961 	idr_remove(&resource->devices, device->vnr);
2962 	idr_remove(&drbd_devices, device_to_minor(device));
2963 	del_gendisk(device->vdisk);
2964 	synchronize_rcu();
2965 	kref_sub(&device->kref, refs, drbd_destroy_device);
2966 }
2967 
drbd_init(void)2968 static int __init drbd_init(void)
2969 {
2970 	int err;
2971 
2972 	if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2973 		pr_err("invalid minor_count (%d)\n", minor_count);
2974 #ifdef MODULE
2975 		return -EINVAL;
2976 #else
2977 		minor_count = DRBD_MINOR_COUNT_DEF;
2978 #endif
2979 	}
2980 
2981 	err = register_blkdev(DRBD_MAJOR, "drbd");
2982 	if (err) {
2983 		pr_err("unable to register block device major %d\n",
2984 		       DRBD_MAJOR);
2985 		return err;
2986 	}
2987 
2988 	/*
2989 	 * allocate all necessary structs
2990 	 */
2991 	init_waitqueue_head(&drbd_pp_wait);
2992 
2993 	drbd_proc = NULL; /* play safe for drbd_cleanup */
2994 	idr_init(&drbd_devices);
2995 
2996 	mutex_init(&resources_mutex);
2997 	INIT_LIST_HEAD(&drbd_resources);
2998 
2999 	err = drbd_genl_register();
3000 	if (err) {
3001 		pr_err("unable to register generic netlink family\n");
3002 		goto fail;
3003 	}
3004 
3005 	err = drbd_create_mempools();
3006 	if (err)
3007 		goto fail;
3008 
3009 	err = -ENOMEM;
3010 	drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3011 	if (!drbd_proc)	{
3012 		pr_err("unable to register proc file\n");
3013 		goto fail;
3014 	}
3015 
3016 	retry.wq = create_singlethread_workqueue("drbd-reissue");
3017 	if (!retry.wq) {
3018 		pr_err("unable to create retry workqueue\n");
3019 		goto fail;
3020 	}
3021 	INIT_WORK(&retry.worker, do_retry);
3022 	spin_lock_init(&retry.lock);
3023 	INIT_LIST_HEAD(&retry.writes);
3024 
3025 	if (drbd_debugfs_init())
3026 		pr_notice("failed to initialize debugfs -- will not be available\n");
3027 
3028 	pr_info("initialized. "
3029 	       "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3030 	       API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3031 	pr_info("%s\n", drbd_buildtag());
3032 	pr_info("registered as block device major %d\n", DRBD_MAJOR);
3033 	return 0; /* Success! */
3034 
3035 fail:
3036 	drbd_cleanup();
3037 	if (err == -ENOMEM)
3038 		pr_err("ran out of memory\n");
3039 	else
3040 		pr_err("initialization failure\n");
3041 	return err;
3042 }
3043 
drbd_free_one_sock(struct drbd_socket * ds)3044 static void drbd_free_one_sock(struct drbd_socket *ds)
3045 {
3046 	struct socket *s;
3047 	mutex_lock(&ds->mutex);
3048 	s = ds->socket;
3049 	ds->socket = NULL;
3050 	mutex_unlock(&ds->mutex);
3051 	if (s) {
3052 		/* so debugfs does not need to mutex_lock() */
3053 		synchronize_rcu();
3054 		kernel_sock_shutdown(s, SHUT_RDWR);
3055 		sock_release(s);
3056 	}
3057 }
3058 
drbd_free_sock(struct drbd_connection * connection)3059 void drbd_free_sock(struct drbd_connection *connection)
3060 {
3061 	if (connection->data.socket)
3062 		drbd_free_one_sock(&connection->data);
3063 	if (connection->meta.socket)
3064 		drbd_free_one_sock(&connection->meta);
3065 }
3066 
3067 /* meta data management */
3068 
conn_md_sync(struct drbd_connection * connection)3069 void conn_md_sync(struct drbd_connection *connection)
3070 {
3071 	struct drbd_peer_device *peer_device;
3072 	int vnr;
3073 
3074 	rcu_read_lock();
3075 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3076 		struct drbd_device *device = peer_device->device;
3077 
3078 		kref_get(&device->kref);
3079 		rcu_read_unlock();
3080 		drbd_md_sync(device);
3081 		kref_put(&device->kref, drbd_destroy_device);
3082 		rcu_read_lock();
3083 	}
3084 	rcu_read_unlock();
3085 }
3086 
3087 /* aligned 4kByte */
3088 struct meta_data_on_disk {
3089 	u64 la_size_sect;      /* last agreed size. */
3090 	u64 uuid[UI_SIZE];   /* UUIDs. */
3091 	u64 device_uuid;
3092 	u64 reserved_u64_1;
3093 	u32 flags;             /* MDF */
3094 	u32 magic;
3095 	u32 md_size_sect;
3096 	u32 al_offset;         /* offset to this block */
3097 	u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3098 	      /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3099 	u32 bm_offset;         /* offset to the bitmap, from here */
3100 	u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3101 	u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3102 
3103 	/* see al_tr_number_to_on_disk_sector() */
3104 	u32 al_stripes;
3105 	u32 al_stripe_size_4k;
3106 
3107 	u8 reserved_u8[4096 - (7*8 + 10*4)];
3108 } __packed;
3109 
3110 
3111 
drbd_md_write(struct drbd_device * device,void * b)3112 void drbd_md_write(struct drbd_device *device, void *b)
3113 {
3114 	struct meta_data_on_disk *buffer = b;
3115 	sector_t sector;
3116 	int i;
3117 
3118 	memset(buffer, 0, sizeof(*buffer));
3119 
3120 	buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3121 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3122 		buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3123 	buffer->flags = cpu_to_be32(device->ldev->md.flags);
3124 	buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3125 
3126 	buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3127 	buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3128 	buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3129 	buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3130 	buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3131 
3132 	buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3133 	buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3134 
3135 	buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3136 	buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3137 
3138 	D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3139 	sector = device->ldev->md.md_offset;
3140 
3141 	if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3142 		/* this was a try anyways ... */
3143 		drbd_err(device, "meta data update failed!\n");
3144 		drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3145 	}
3146 }
3147 
3148 /**
3149  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3150  * @device:	DRBD device.
3151  */
drbd_md_sync(struct drbd_device * device)3152 void drbd_md_sync(struct drbd_device *device)
3153 {
3154 	struct meta_data_on_disk *buffer;
3155 
3156 	/* Don't accidentally change the DRBD meta data layout. */
3157 	BUILD_BUG_ON(UI_SIZE != 4);
3158 	BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3159 
3160 	del_timer(&device->md_sync_timer);
3161 	/* timer may be rearmed by drbd_md_mark_dirty() now. */
3162 	if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3163 		return;
3164 
3165 	/* We use here D_FAILED and not D_ATTACHING because we try to write
3166 	 * metadata even if we detach due to a disk failure! */
3167 	if (!get_ldev_if_state(device, D_FAILED))
3168 		return;
3169 
3170 	buffer = drbd_md_get_buffer(device, __func__);
3171 	if (!buffer)
3172 		goto out;
3173 
3174 	drbd_md_write(device, buffer);
3175 
3176 	/* Update device->ldev->md.la_size_sect,
3177 	 * since we updated it on metadata. */
3178 	device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3179 
3180 	drbd_md_put_buffer(device);
3181 out:
3182 	put_ldev(device);
3183 }
3184 
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3185 static int check_activity_log_stripe_size(struct drbd_device *device,
3186 		struct meta_data_on_disk *on_disk,
3187 		struct drbd_md *in_core)
3188 {
3189 	u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3190 	u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3191 	u64 al_size_4k;
3192 
3193 	/* both not set: default to old fixed size activity log */
3194 	if (al_stripes == 0 && al_stripe_size_4k == 0) {
3195 		al_stripes = 1;
3196 		al_stripe_size_4k = MD_32kB_SECT/8;
3197 	}
3198 
3199 	/* some paranoia plausibility checks */
3200 
3201 	/* we need both values to be set */
3202 	if (al_stripes == 0 || al_stripe_size_4k == 0)
3203 		goto err;
3204 
3205 	al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3206 
3207 	/* Upper limit of activity log area, to avoid potential overflow
3208 	 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3209 	 * than 72 * 4k blocks total only increases the amount of history,
3210 	 * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3211 	if (al_size_4k > (16 * 1024 * 1024/4))
3212 		goto err;
3213 
3214 	/* Lower limit: we need at least 8 transaction slots (32kB)
3215 	 * to not break existing setups */
3216 	if (al_size_4k < MD_32kB_SECT/8)
3217 		goto err;
3218 
3219 	in_core->al_stripe_size_4k = al_stripe_size_4k;
3220 	in_core->al_stripes = al_stripes;
3221 	in_core->al_size_4k = al_size_4k;
3222 
3223 	return 0;
3224 err:
3225 	drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3226 			al_stripes, al_stripe_size_4k);
3227 	return -EINVAL;
3228 }
3229 
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3230 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3231 {
3232 	sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3233 	struct drbd_md *in_core = &bdev->md;
3234 	s32 on_disk_al_sect;
3235 	s32 on_disk_bm_sect;
3236 
3237 	/* The on-disk size of the activity log, calculated from offsets, and
3238 	 * the size of the activity log calculated from the stripe settings,
3239 	 * should match.
3240 	 * Though we could relax this a bit: it is ok, if the striped activity log
3241 	 * fits in the available on-disk activity log size.
3242 	 * Right now, that would break how resize is implemented.
3243 	 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3244 	 * of possible unused padding space in the on disk layout. */
3245 	if (in_core->al_offset < 0) {
3246 		if (in_core->bm_offset > in_core->al_offset)
3247 			goto err;
3248 		on_disk_al_sect = -in_core->al_offset;
3249 		on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3250 	} else {
3251 		if (in_core->al_offset != MD_4kB_SECT)
3252 			goto err;
3253 		if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3254 			goto err;
3255 
3256 		on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3257 		on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3258 	}
3259 
3260 	/* old fixed size meta data is exactly that: fixed. */
3261 	if (in_core->meta_dev_idx >= 0) {
3262 		if (in_core->md_size_sect != MD_128MB_SECT
3263 		||  in_core->al_offset != MD_4kB_SECT
3264 		||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3265 		||  in_core->al_stripes != 1
3266 		||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3267 			goto err;
3268 	}
3269 
3270 	if (capacity < in_core->md_size_sect)
3271 		goto err;
3272 	if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3273 		goto err;
3274 
3275 	/* should be aligned, and at least 32k */
3276 	if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3277 		goto err;
3278 
3279 	/* should fit (for now: exactly) into the available on-disk space;
3280 	 * overflow prevention is in check_activity_log_stripe_size() above. */
3281 	if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3282 		goto err;
3283 
3284 	/* again, should be aligned */
3285 	if (in_core->bm_offset & 7)
3286 		goto err;
3287 
3288 	/* FIXME check for device grow with flex external meta data? */
3289 
3290 	/* can the available bitmap space cover the last agreed device size? */
3291 	if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3292 		goto err;
3293 
3294 	return 0;
3295 
3296 err:
3297 	drbd_err(device, "meta data offsets don't make sense: idx=%d "
3298 			"al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3299 			"md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3300 			in_core->meta_dev_idx,
3301 			in_core->al_stripes, in_core->al_stripe_size_4k,
3302 			in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3303 			(unsigned long long)in_core->la_size_sect,
3304 			(unsigned long long)capacity);
3305 
3306 	return -EINVAL;
3307 }
3308 
3309 
3310 /**
3311  * drbd_md_read() - Reads in the meta data super block
3312  * @device:	DRBD device.
3313  * @bdev:	Device from which the meta data should be read in.
3314  *
3315  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3316  * something goes wrong.
3317  *
3318  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3319  * even before @bdev is assigned to @device->ldev.
3320  */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3321 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3322 {
3323 	struct meta_data_on_disk *buffer;
3324 	u32 magic, flags;
3325 	int i, rv = NO_ERROR;
3326 
3327 	if (device->state.disk != D_DISKLESS)
3328 		return ERR_DISK_CONFIGURED;
3329 
3330 	buffer = drbd_md_get_buffer(device, __func__);
3331 	if (!buffer)
3332 		return ERR_NOMEM;
3333 
3334 	/* First, figure out where our meta data superblock is located,
3335 	 * and read it. */
3336 	bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3337 	bdev->md.md_offset = drbd_md_ss(bdev);
3338 	/* Even for (flexible or indexed) external meta data,
3339 	 * initially restrict us to the 4k superblock for now.
3340 	 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3341 	bdev->md.md_size_sect = 8;
3342 
3343 	if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3344 				 REQ_OP_READ)) {
3345 		/* NOTE: can't do normal error processing here as this is
3346 		   called BEFORE disk is attached */
3347 		drbd_err(device, "Error while reading metadata.\n");
3348 		rv = ERR_IO_MD_DISK;
3349 		goto err;
3350 	}
3351 
3352 	magic = be32_to_cpu(buffer->magic);
3353 	flags = be32_to_cpu(buffer->flags);
3354 	if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3355 	    (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3356 			/* btw: that's Activity Log clean, not "all" clean. */
3357 		drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3358 		rv = ERR_MD_UNCLEAN;
3359 		goto err;
3360 	}
3361 
3362 	rv = ERR_MD_INVALID;
3363 	if (magic != DRBD_MD_MAGIC_08) {
3364 		if (magic == DRBD_MD_MAGIC_07)
3365 			drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3366 		else
3367 			drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3368 		goto err;
3369 	}
3370 
3371 	if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3372 		drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3373 		    be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3374 		goto err;
3375 	}
3376 
3377 
3378 	/* convert to in_core endian */
3379 	bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3380 	for (i = UI_CURRENT; i < UI_SIZE; i++)
3381 		bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3382 	bdev->md.flags = be32_to_cpu(buffer->flags);
3383 	bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3384 
3385 	bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3386 	bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3387 	bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3388 
3389 	if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3390 		goto err;
3391 	if (check_offsets_and_sizes(device, bdev))
3392 		goto err;
3393 
3394 	if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3395 		drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3396 		    be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3397 		goto err;
3398 	}
3399 	if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3400 		drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3401 		    be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3402 		goto err;
3403 	}
3404 
3405 	rv = NO_ERROR;
3406 
3407 	spin_lock_irq(&device->resource->req_lock);
3408 	if (device->state.conn < C_CONNECTED) {
3409 		unsigned int peer;
3410 		peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3411 		peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3412 		device->peer_max_bio_size = peer;
3413 	}
3414 	spin_unlock_irq(&device->resource->req_lock);
3415 
3416  err:
3417 	drbd_md_put_buffer(device);
3418 
3419 	return rv;
3420 }
3421 
3422 /**
3423  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3424  * @device:	DRBD device.
3425  *
3426  * Call this function if you change anything that should be written to
3427  * the meta-data super block. This function sets MD_DIRTY, and starts a
3428  * timer that ensures that within five seconds you have to call drbd_md_sync().
3429  */
3430 #ifdef DEBUG
drbd_md_mark_dirty_(struct drbd_device * device,unsigned int line,const char * func)3431 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3432 {
3433 	if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3434 		mod_timer(&device->md_sync_timer, jiffies + HZ);
3435 		device->last_md_mark_dirty.line = line;
3436 		device->last_md_mark_dirty.func = func;
3437 	}
3438 }
3439 #else
drbd_md_mark_dirty(struct drbd_device * device)3440 void drbd_md_mark_dirty(struct drbd_device *device)
3441 {
3442 	if (!test_and_set_bit(MD_DIRTY, &device->flags))
3443 		mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3444 }
3445 #endif
3446 
drbd_uuid_move_history(struct drbd_device * device)3447 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3448 {
3449 	int i;
3450 
3451 	for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3452 		device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3453 }
3454 
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3455 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3456 {
3457 	if (idx == UI_CURRENT) {
3458 		if (device->state.role == R_PRIMARY)
3459 			val |= 1;
3460 		else
3461 			val &= ~((u64)1);
3462 
3463 		drbd_set_ed_uuid(device, val);
3464 	}
3465 
3466 	device->ldev->md.uuid[idx] = val;
3467 	drbd_md_mark_dirty(device);
3468 }
3469 
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3470 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3471 {
3472 	unsigned long flags;
3473 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3474 	__drbd_uuid_set(device, idx, val);
3475 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3476 }
3477 
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3478 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3479 {
3480 	unsigned long flags;
3481 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3482 	if (device->ldev->md.uuid[idx]) {
3483 		drbd_uuid_move_history(device);
3484 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3485 	}
3486 	__drbd_uuid_set(device, idx, val);
3487 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3488 }
3489 
3490 /**
3491  * drbd_uuid_new_current() - Creates a new current UUID
3492  * @device:	DRBD device.
3493  *
3494  * Creates a new current UUID, and rotates the old current UUID into
3495  * the bitmap slot. Causes an incremental resync upon next connect.
3496  */
drbd_uuid_new_current(struct drbd_device * device)3497 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3498 {
3499 	u64 val;
3500 	unsigned long long bm_uuid;
3501 
3502 	get_random_bytes(&val, sizeof(u64));
3503 
3504 	spin_lock_irq(&device->ldev->md.uuid_lock);
3505 	bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3506 
3507 	if (bm_uuid)
3508 		drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3509 
3510 	device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3511 	__drbd_uuid_set(device, UI_CURRENT, val);
3512 	spin_unlock_irq(&device->ldev->md.uuid_lock);
3513 
3514 	drbd_print_uuids(device, "new current UUID");
3515 	/* get it to stable storage _now_ */
3516 	drbd_md_sync(device);
3517 }
3518 
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3519 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3520 {
3521 	unsigned long flags;
3522 	if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3523 		return;
3524 
3525 	spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3526 	if (val == 0) {
3527 		drbd_uuid_move_history(device);
3528 		device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3529 		device->ldev->md.uuid[UI_BITMAP] = 0;
3530 	} else {
3531 		unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3532 		if (bm_uuid)
3533 			drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3534 
3535 		device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3536 	}
3537 	spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3538 
3539 	drbd_md_mark_dirty(device);
3540 }
3541 
3542 /**
3543  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3544  * @device:	DRBD device.
3545  *
3546  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3547  */
drbd_bmio_set_n_write(struct drbd_device * device)3548 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3549 {
3550 	int rv = -EIO;
3551 
3552 	drbd_md_set_flag(device, MDF_FULL_SYNC);
3553 	drbd_md_sync(device);
3554 	drbd_bm_set_all(device);
3555 
3556 	rv = drbd_bm_write(device);
3557 
3558 	if (!rv) {
3559 		drbd_md_clear_flag(device, MDF_FULL_SYNC);
3560 		drbd_md_sync(device);
3561 	}
3562 
3563 	return rv;
3564 }
3565 
3566 /**
3567  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3568  * @device:	DRBD device.
3569  *
3570  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3571  */
drbd_bmio_clear_n_write(struct drbd_device * device)3572 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3573 {
3574 	drbd_resume_al(device);
3575 	drbd_bm_clear_all(device);
3576 	return drbd_bm_write(device);
3577 }
3578 
w_bitmap_io(struct drbd_work * w,int unused)3579 static int w_bitmap_io(struct drbd_work *w, int unused)
3580 {
3581 	struct drbd_device *device =
3582 		container_of(w, struct drbd_device, bm_io_work.w);
3583 	struct bm_io_work *work = &device->bm_io_work;
3584 	int rv = -EIO;
3585 
3586 	if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3587 		int cnt = atomic_read(&device->ap_bio_cnt);
3588 		if (cnt)
3589 			drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3590 					cnt, work->why);
3591 	}
3592 
3593 	if (get_ldev(device)) {
3594 		drbd_bm_lock(device, work->why, work->flags);
3595 		rv = work->io_fn(device);
3596 		drbd_bm_unlock(device);
3597 		put_ldev(device);
3598 	}
3599 
3600 	clear_bit_unlock(BITMAP_IO, &device->flags);
3601 	wake_up(&device->misc_wait);
3602 
3603 	if (work->done)
3604 		work->done(device, rv);
3605 
3606 	clear_bit(BITMAP_IO_QUEUED, &device->flags);
3607 	work->why = NULL;
3608 	work->flags = 0;
3609 
3610 	return 0;
3611 }
3612 
3613 /**
3614  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3615  * @device:	DRBD device.
3616  * @io_fn:	IO callback to be called when bitmap IO is possible
3617  * @done:	callback to be called after the bitmap IO was performed
3618  * @why:	Descriptive text of the reason for doing the IO
3619  *
3620  * While IO on the bitmap happens we freeze application IO thus we ensure
3621  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3622  * called from worker context. It MUST NOT be used while a previous such
3623  * work is still pending!
3624  *
3625  * Its worker function encloses the call of io_fn() by get_ldev() and
3626  * put_ldev().
3627  */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags)3628 void drbd_queue_bitmap_io(struct drbd_device *device,
3629 			  int (*io_fn)(struct drbd_device *),
3630 			  void (*done)(struct drbd_device *, int),
3631 			  char *why, enum bm_flag flags)
3632 {
3633 	D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3634 
3635 	D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3636 	D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3637 	D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3638 	if (device->bm_io_work.why)
3639 		drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3640 			why, device->bm_io_work.why);
3641 
3642 	device->bm_io_work.io_fn = io_fn;
3643 	device->bm_io_work.done = done;
3644 	device->bm_io_work.why = why;
3645 	device->bm_io_work.flags = flags;
3646 
3647 	spin_lock_irq(&device->resource->req_lock);
3648 	set_bit(BITMAP_IO, &device->flags);
3649 	/* don't wait for pending application IO if the caller indicates that
3650 	 * application IO does not conflict anyways. */
3651 	if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3652 		if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3653 			drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3654 					&device->bm_io_work.w);
3655 	}
3656 	spin_unlock_irq(&device->resource->req_lock);
3657 }
3658 
3659 /**
3660  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3661  * @device:	DRBD device.
3662  * @io_fn:	IO callback to be called when bitmap IO is possible
3663  * @why:	Descriptive text of the reason for doing the IO
3664  *
3665  * freezes application IO while that the actual IO operations runs. This
3666  * functions MAY NOT be called from worker context.
3667  */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),char * why,enum bm_flag flags)3668 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3669 		char *why, enum bm_flag flags)
3670 {
3671 	/* Only suspend io, if some operation is supposed to be locked out */
3672 	const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3673 	int rv;
3674 
3675 	D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3676 
3677 	if (do_suspend_io)
3678 		drbd_suspend_io(device);
3679 
3680 	drbd_bm_lock(device, why, flags);
3681 	rv = io_fn(device);
3682 	drbd_bm_unlock(device);
3683 
3684 	if (do_suspend_io)
3685 		drbd_resume_io(device);
3686 
3687 	return rv;
3688 }
3689 
drbd_md_set_flag(struct drbd_device * device,int flag)3690 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3691 {
3692 	if ((device->ldev->md.flags & flag) != flag) {
3693 		drbd_md_mark_dirty(device);
3694 		device->ldev->md.flags |= flag;
3695 	}
3696 }
3697 
drbd_md_clear_flag(struct drbd_device * device,int flag)3698 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3699 {
3700 	if ((device->ldev->md.flags & flag) != 0) {
3701 		drbd_md_mark_dirty(device);
3702 		device->ldev->md.flags &= ~flag;
3703 	}
3704 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3705 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3706 {
3707 	return (bdev->md.flags & flag) != 0;
3708 }
3709 
md_sync_timer_fn(unsigned long data)3710 static void md_sync_timer_fn(unsigned long data)
3711 {
3712 	struct drbd_device *device = (struct drbd_device *) data;
3713 	drbd_device_post_work(device, MD_SYNC);
3714 }
3715 
cmdname(enum drbd_packet cmd)3716 const char *cmdname(enum drbd_packet cmd)
3717 {
3718 	/* THINK may need to become several global tables
3719 	 * when we want to support more than
3720 	 * one PRO_VERSION */
3721 	static const char *cmdnames[] = {
3722 		[P_DATA]	        = "Data",
3723 		[P_WSAME]	        = "WriteSame",
3724 		[P_TRIM]	        = "Trim",
3725 		[P_DATA_REPLY]	        = "DataReply",
3726 		[P_RS_DATA_REPLY]	= "RSDataReply",
3727 		[P_BARRIER]	        = "Barrier",
3728 		[P_BITMAP]	        = "ReportBitMap",
3729 		[P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3730 		[P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3731 		[P_UNPLUG_REMOTE]	= "UnplugRemote",
3732 		[P_DATA_REQUEST]	= "DataRequest",
3733 		[P_RS_DATA_REQUEST]     = "RSDataRequest",
3734 		[P_SYNC_PARAM]	        = "SyncParam",
3735 		[P_SYNC_PARAM89]	= "SyncParam89",
3736 		[P_PROTOCOL]            = "ReportProtocol",
3737 		[P_UUIDS]	        = "ReportUUIDs",
3738 		[P_SIZES]	        = "ReportSizes",
3739 		[P_STATE]	        = "ReportState",
3740 		[P_SYNC_UUID]           = "ReportSyncUUID",
3741 		[P_AUTH_CHALLENGE]      = "AuthChallenge",
3742 		[P_AUTH_RESPONSE]	= "AuthResponse",
3743 		[P_PING]		= "Ping",
3744 		[P_PING_ACK]	        = "PingAck",
3745 		[P_RECV_ACK]	        = "RecvAck",
3746 		[P_WRITE_ACK]	        = "WriteAck",
3747 		[P_RS_WRITE_ACK]	= "RSWriteAck",
3748 		[P_SUPERSEDED]          = "Superseded",
3749 		[P_NEG_ACK]	        = "NegAck",
3750 		[P_NEG_DREPLY]	        = "NegDReply",
3751 		[P_NEG_RS_DREPLY]	= "NegRSDReply",
3752 		[P_BARRIER_ACK]	        = "BarrierAck",
3753 		[P_STATE_CHG_REQ]       = "StateChgRequest",
3754 		[P_STATE_CHG_REPLY]     = "StateChgReply",
3755 		[P_OV_REQUEST]          = "OVRequest",
3756 		[P_OV_REPLY]            = "OVReply",
3757 		[P_OV_RESULT]           = "OVResult",
3758 		[P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3759 		[P_RS_IS_IN_SYNC]	= "CsumRSIsInSync",
3760 		[P_COMPRESSED_BITMAP]   = "CBitmap",
3761 		[P_DELAY_PROBE]         = "DelayProbe",
3762 		[P_OUT_OF_SYNC]		= "OutOfSync",
3763 		[P_RETRY_WRITE]		= "RetryWrite",
3764 		[P_RS_CANCEL]		= "RSCancel",
3765 		[P_CONN_ST_CHG_REQ]	= "conn_st_chg_req",
3766 		[P_CONN_ST_CHG_REPLY]	= "conn_st_chg_reply",
3767 		[P_RETRY_WRITE]		= "retry_write",
3768 		[P_PROTOCOL_UPDATE]	= "protocol_update",
3769 		[P_RS_THIN_REQ]         = "rs_thin_req",
3770 		[P_RS_DEALLOCATED]      = "rs_deallocated",
3771 
3772 		/* enum drbd_packet, but not commands - obsoleted flags:
3773 		 *	P_MAY_IGNORE
3774 		 *	P_MAX_OPT_CMD
3775 		 */
3776 	};
3777 
3778 	/* too big for the array: 0xfffX */
3779 	if (cmd == P_INITIAL_META)
3780 		return "InitialMeta";
3781 	if (cmd == P_INITIAL_DATA)
3782 		return "InitialData";
3783 	if (cmd == P_CONNECTION_FEATURES)
3784 		return "ConnectionFeatures";
3785 	if (cmd >= ARRAY_SIZE(cmdnames))
3786 		return "Unknown";
3787 	return cmdnames[cmd];
3788 }
3789 
3790 /**
3791  * drbd_wait_misc  -  wait for a request to make progress
3792  * @device:	device associated with the request
3793  * @i:		the struct drbd_interval embedded in struct drbd_request or
3794  *		struct drbd_peer_request
3795  */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3796 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3797 {
3798 	struct net_conf *nc;
3799 	DEFINE_WAIT(wait);
3800 	long timeout;
3801 
3802 	rcu_read_lock();
3803 	nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3804 	if (!nc) {
3805 		rcu_read_unlock();
3806 		return -ETIMEDOUT;
3807 	}
3808 	timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3809 	rcu_read_unlock();
3810 
3811 	/* Indicate to wake up device->misc_wait on progress.  */
3812 	i->waiting = true;
3813 	prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3814 	spin_unlock_irq(&device->resource->req_lock);
3815 	timeout = schedule_timeout(timeout);
3816 	finish_wait(&device->misc_wait, &wait);
3817 	spin_lock_irq(&device->resource->req_lock);
3818 	if (!timeout || device->state.conn < C_CONNECTED)
3819 		return -ETIMEDOUT;
3820 	if (signal_pending(current))
3821 		return -ERESTARTSYS;
3822 	return 0;
3823 }
3824 
lock_all_resources(void)3825 void lock_all_resources(void)
3826 {
3827 	struct drbd_resource *resource;
3828 	int __maybe_unused i = 0;
3829 
3830 	mutex_lock(&resources_mutex);
3831 	local_irq_disable();
3832 	for_each_resource(resource, &drbd_resources)
3833 		spin_lock_nested(&resource->req_lock, i++);
3834 }
3835 
unlock_all_resources(void)3836 void unlock_all_resources(void)
3837 {
3838 	struct drbd_resource *resource;
3839 
3840 	for_each_resource(resource, &drbd_resources)
3841 		spin_unlock(&resource->req_lock);
3842 	local_irq_enable();
3843 	mutex_unlock(&resources_mutex);
3844 }
3845 
3846 #ifdef CONFIG_DRBD_FAULT_INJECTION
3847 /* Fault insertion support including random number generator shamelessly
3848  * stolen from kernel/rcutorture.c */
3849 struct fault_random_state {
3850 	unsigned long state;
3851 	unsigned long count;
3852 };
3853 
3854 #define FAULT_RANDOM_MULT 39916801  /* prime */
3855 #define FAULT_RANDOM_ADD	479001701 /* prime */
3856 #define FAULT_RANDOM_REFRESH 10000
3857 
3858 /*
3859  * Crude but fast random-number generator.  Uses a linear congruential
3860  * generator, with occasional help from get_random_bytes().
3861  */
3862 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3863 _drbd_fault_random(struct fault_random_state *rsp)
3864 {
3865 	long refresh;
3866 
3867 	if (!rsp->count--) {
3868 		get_random_bytes(&refresh, sizeof(refresh));
3869 		rsp->state += refresh;
3870 		rsp->count = FAULT_RANDOM_REFRESH;
3871 	}
3872 	rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3873 	return swahw32(rsp->state);
3874 }
3875 
3876 static char *
_drbd_fault_str(unsigned int type)3877 _drbd_fault_str(unsigned int type) {
3878 	static char *_faults[] = {
3879 		[DRBD_FAULT_MD_WR] = "Meta-data write",
3880 		[DRBD_FAULT_MD_RD] = "Meta-data read",
3881 		[DRBD_FAULT_RS_WR] = "Resync write",
3882 		[DRBD_FAULT_RS_RD] = "Resync read",
3883 		[DRBD_FAULT_DT_WR] = "Data write",
3884 		[DRBD_FAULT_DT_RD] = "Data read",
3885 		[DRBD_FAULT_DT_RA] = "Data read ahead",
3886 		[DRBD_FAULT_BM_ALLOC] = "BM allocation",
3887 		[DRBD_FAULT_AL_EE] = "EE allocation",
3888 		[DRBD_FAULT_RECEIVE] = "receive data corruption",
3889 	};
3890 
3891 	return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3892 }
3893 
3894 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3895 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3896 {
3897 	static struct fault_random_state rrs = {0, 0};
3898 
3899 	unsigned int ret = (
3900 		(fault_devs == 0 ||
3901 			((1 << device_to_minor(device)) & fault_devs) != 0) &&
3902 		(((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3903 
3904 	if (ret) {
3905 		fault_count++;
3906 
3907 		if (__ratelimit(&drbd_ratelimit_state))
3908 			drbd_warn(device, "***Simulating %s failure\n",
3909 				_drbd_fault_str(type));
3910 	}
3911 
3912 	return ret;
3913 }
3914 #endif
3915 
drbd_buildtag(void)3916 const char *drbd_buildtag(void)
3917 {
3918 	/* DRBD built from external sources has here a reference to the
3919 	   git hash of the source code. */
3920 
3921 	static char buildtag[38] = "\0uilt-in";
3922 
3923 	if (buildtag[0] == 0) {
3924 #ifdef MODULE
3925 		sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3926 #else
3927 		buildtag[0] = 'b';
3928 #endif
3929 	}
3930 
3931 	return buildtag;
3932 }
3933 
3934 module_init(drbd_init)
3935 module_exit(drbd_cleanup)
3936 
3937 EXPORT_SYMBOL(drbd_conn_str);
3938 EXPORT_SYMBOL(drbd_role_str);
3939 EXPORT_SYMBOL(drbd_disk_str);
3940 EXPORT_SYMBOL(drbd_set_st_err_str);
3941