• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
3  *
4  * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
5  *
6  * This file add support for MD5 and SHA1.
7  *
8  * You could find the datasheet in Documentation/arm/sunxi/README
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 #include "sun4i-ss.h"
16 #include <linux/scatterlist.h>
17 
18 /* This is a totally arbitrary value */
19 #define SS_TIMEOUT 100
20 
sun4i_hash_crainit(struct crypto_tfm * tfm)21 int sun4i_hash_crainit(struct crypto_tfm *tfm)
22 {
23 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
24 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
25 	struct sun4i_ss_alg_template *algt;
26 
27 	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
28 
29 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
30 	op->ss = algt->ss;
31 
32 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
33 				 sizeof(struct sun4i_req_ctx));
34 	return 0;
35 }
36 
37 /* sun4i_hash_init: initialize request context */
sun4i_hash_init(struct ahash_request * areq)38 int sun4i_hash_init(struct ahash_request *areq)
39 {
40 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
41 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
42 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
43 	struct sun4i_ss_alg_template *algt;
44 
45 	memset(op, 0, sizeof(struct sun4i_req_ctx));
46 
47 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
48 	op->mode = algt->mode;
49 
50 	return 0;
51 }
52 
sun4i_hash_export_md5(struct ahash_request * areq,void * out)53 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
54 {
55 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
56 	struct md5_state *octx = out;
57 	int i;
58 
59 	octx->byte_count = op->byte_count + op->len;
60 
61 	memcpy(octx->block, op->buf, op->len);
62 
63 	if (op->byte_count > 0) {
64 		for (i = 0; i < 4; i++)
65 			octx->hash[i] = op->hash[i];
66 	} else {
67 		octx->hash[0] = SHA1_H0;
68 		octx->hash[1] = SHA1_H1;
69 		octx->hash[2] = SHA1_H2;
70 		octx->hash[3] = SHA1_H3;
71 	}
72 
73 	return 0;
74 }
75 
sun4i_hash_import_md5(struct ahash_request * areq,const void * in)76 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
77 {
78 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
79 	const struct md5_state *ictx = in;
80 	int i;
81 
82 	sun4i_hash_init(areq);
83 
84 	op->byte_count = ictx->byte_count & ~0x3F;
85 	op->len = ictx->byte_count & 0x3F;
86 
87 	memcpy(op->buf, ictx->block, op->len);
88 
89 	for (i = 0; i < 4; i++)
90 		op->hash[i] = ictx->hash[i];
91 
92 	return 0;
93 }
94 
sun4i_hash_export_sha1(struct ahash_request * areq,void * out)95 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
96 {
97 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
98 	struct sha1_state *octx = out;
99 	int i;
100 
101 	octx->count = op->byte_count + op->len;
102 
103 	memcpy(octx->buffer, op->buf, op->len);
104 
105 	if (op->byte_count > 0) {
106 		for (i = 0; i < 5; i++)
107 			octx->state[i] = op->hash[i];
108 	} else {
109 		octx->state[0] = SHA1_H0;
110 		octx->state[1] = SHA1_H1;
111 		octx->state[2] = SHA1_H2;
112 		octx->state[3] = SHA1_H3;
113 		octx->state[4] = SHA1_H4;
114 	}
115 
116 	return 0;
117 }
118 
sun4i_hash_import_sha1(struct ahash_request * areq,const void * in)119 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
120 {
121 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
122 	const struct sha1_state *ictx = in;
123 	int i;
124 
125 	sun4i_hash_init(areq);
126 
127 	op->byte_count = ictx->count & ~0x3F;
128 	op->len = ictx->count & 0x3F;
129 
130 	memcpy(op->buf, ictx->buffer, op->len);
131 
132 	for (i = 0; i < 5; i++)
133 		op->hash[i] = ictx->state[i];
134 
135 	return 0;
136 }
137 
138 #define SS_HASH_UPDATE 1
139 #define SS_HASH_FINAL 2
140 
141 /*
142  * sun4i_hash_update: update hash engine
143  *
144  * Could be used for both SHA1 and MD5
145  * Write data by step of 32bits and put then in the SS.
146  *
147  * Since we cannot leave partial data and hash state in the engine,
148  * we need to get the hash state at the end of this function.
149  * We can get the hash state every 64 bytes
150  *
151  * So the first work is to get the number of bytes to write to SS modulo 64
152  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
153  *
154  * So at the begin of update()
155  * if op->len + areq->nbytes < 64
156  * => all data will be written to wait buffer (op->buf) and end=0
157  * if not, write all data from op->buf to the device and position end to
158  * complete to 64bytes
159  *
160  * example 1:
161  * update1 60o => op->len=60
162  * update2 60o => need one more word to have 64 bytes
163  * end=4
164  * so write all data from op->buf and one word of SGs
165  * write remaining data in op->buf
166  * final state op->len=56
167  */
sun4i_hash(struct ahash_request * areq)168 static int sun4i_hash(struct ahash_request *areq)
169 {
170 	u32 v, ivmode = 0;
171 	unsigned int i = 0;
172 	/*
173 	 * i is the total bytes read from SGs, to be compared to areq->nbytes
174 	 * i is important because we cannot rely on SG length since the sum of
175 	 * SG->length could be greater than areq->nbytes
176 	 */
177 
178 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
179 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
180 	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
181 	struct sun4i_ss_ctx *ss = tfmctx->ss;
182 	unsigned int in_i = 0; /* advancement in the current SG */
183 	unsigned int end;
184 	/*
185 	 * end is the position when we need to stop writing to the device,
186 	 * to be compared to i
187 	 */
188 	int in_r, err = 0;
189 	unsigned int todo;
190 	u32 spaces, rx_cnt = SS_RX_DEFAULT;
191 	size_t copied = 0;
192 	struct sg_mapping_iter mi;
193 	unsigned int j = 0;
194 	int zeros;
195 	unsigned int index, padlen;
196 	__be64 bits;
197 	u32 bf[32];
198 	u32 wb = 0;
199 	unsigned int nwait, nbw = 0;
200 	struct scatterlist *in_sg = areq->src;
201 
202 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
203 		__func__, crypto_tfm_alg_name(areq->base.tfm),
204 		op->byte_count, areq->nbytes, op->mode,
205 		op->len, op->hash[0]);
206 
207 	if (unlikely(areq->nbytes == 0) && (op->flags & SS_HASH_FINAL) == 0)
208 		return 0;
209 
210 	/* protect against overflow */
211 	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
212 		dev_err(ss->dev, "Cannot process too large request\n");
213 		return -EINVAL;
214 	}
215 
216 	if (op->len + areq->nbytes < 64 && (op->flags & SS_HASH_FINAL) == 0) {
217 		/* linearize data to op->buf */
218 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
219 					    op->buf + op->len, areq->nbytes, 0);
220 		op->len += copied;
221 		return 0;
222 	}
223 
224 	spin_lock_bh(&ss->slock);
225 
226 	/*
227 	 * if some data have been processed before,
228 	 * we need to restore the partial hash state
229 	 */
230 	if (op->byte_count > 0) {
231 		ivmode = SS_IV_ARBITRARY;
232 		for (i = 0; i < 5; i++)
233 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
234 	}
235 	/* Enable the device */
236 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
237 
238 	if ((op->flags & SS_HASH_UPDATE) == 0)
239 		goto hash_final;
240 
241 	/* start of handling data */
242 	if ((op->flags & SS_HASH_FINAL) == 0) {
243 		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
244 
245 		if (end > areq->nbytes || areq->nbytes - end > 63) {
246 			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
247 				end, areq->nbytes);
248 			err = -EINVAL;
249 			goto release_ss;
250 		}
251 	} else {
252 		/* Since we have the flag final, we can go up to modulo 4 */
253 		end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
254 	}
255 
256 	/* TODO if SGlen % 4 and op->len == 0 then DMA */
257 	i = 1;
258 	while (in_sg && i == 1) {
259 		if ((in_sg->length % 4) != 0)
260 			i = 0;
261 		in_sg = sg_next(in_sg);
262 	}
263 	if (i == 1 && op->len == 0)
264 		dev_dbg(ss->dev, "We can DMA\n");
265 
266 	i = 0;
267 	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
268 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
269 	sg_miter_next(&mi);
270 	in_i = 0;
271 
272 	do {
273 		/*
274 		 * we need to linearize in two case:
275 		 * - the buffer is already used
276 		 * - the SG does not have enough byte remaining ( < 4)
277 		 */
278 		if (op->len > 0 || (mi.length - in_i) < 4) {
279 			/*
280 			 * if we have entered here we have two reason to stop
281 			 * - the buffer is full
282 			 * - reach the end
283 			 */
284 			while (op->len < 64 && i < end) {
285 				/* how many bytes we can read from current SG */
286 				in_r = min3(mi.length - in_i, end - i,
287 					    64 - op->len);
288 				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
289 				op->len += in_r;
290 				i += in_r;
291 				in_i += in_r;
292 				if (in_i == mi.length) {
293 					sg_miter_next(&mi);
294 					in_i = 0;
295 				}
296 			}
297 			if (op->len > 3 && (op->len % 4) == 0) {
298 				/* write buf to the device */
299 				writesl(ss->base + SS_RXFIFO, op->buf,
300 					op->len / 4);
301 				op->byte_count += op->len;
302 				op->len = 0;
303 			}
304 		}
305 		if (mi.length - in_i > 3 && i < end) {
306 			/* how many bytes we can read from current SG */
307 			in_r = min3(mi.length - in_i, areq->nbytes - i,
308 				    ((mi.length - in_i) / 4) * 4);
309 			/* how many bytes we can write in the device*/
310 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
311 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
312 			op->byte_count += todo * 4;
313 			i += todo * 4;
314 			in_i += todo * 4;
315 			rx_cnt -= todo;
316 			if (rx_cnt == 0) {
317 				spaces = readl(ss->base + SS_FCSR);
318 				rx_cnt = SS_RXFIFO_SPACES(spaces);
319 			}
320 			if (in_i == mi.length) {
321 				sg_miter_next(&mi);
322 				in_i = 0;
323 			}
324 		}
325 	} while (i < end);
326 
327 	/*
328 	 * Now we have written to the device all that we can,
329 	 * store the remaining bytes in op->buf
330 	 */
331 	if ((areq->nbytes - i) < 64) {
332 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
333 			/* how many bytes we can read from current SG */
334 			in_r = min3(mi.length - in_i, areq->nbytes - i,
335 				    64 - op->len);
336 			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
337 			op->len += in_r;
338 			i += in_r;
339 			in_i += in_r;
340 			if (in_i == mi.length) {
341 				sg_miter_next(&mi);
342 				in_i = 0;
343 			}
344 		}
345 	}
346 
347 	sg_miter_stop(&mi);
348 
349 	/*
350 	 * End of data process
351 	 * Now if we have the flag final go to finalize part
352 	 * If not, store the partial hash
353 	 */
354 	if ((op->flags & SS_HASH_FINAL) > 0)
355 		goto hash_final;
356 
357 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
358 	i = 0;
359 	do {
360 		v = readl(ss->base + SS_CTL);
361 		i++;
362 	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
363 	if (unlikely(i >= SS_TIMEOUT)) {
364 		dev_err_ratelimited(ss->dev,
365 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
366 				    i, SS_TIMEOUT, v, areq->nbytes);
367 		err = -EIO;
368 		goto release_ss;
369 	}
370 
371 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
372 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
373 
374 	goto release_ss;
375 
376 /*
377  * hash_final: finalize hashing operation
378  *
379  * If we have some remaining bytes, we write them.
380  * Then ask the SS for finalizing the hashing operation
381  *
382  * I do not check RX FIFO size in this function since the size is 32
383  * after each enabling and this function neither write more than 32 words.
384  * If we come from the update part, we cannot have more than
385  * 3 remaining bytes to write and SS is fast enough to not care about it.
386  */
387 
388 hash_final:
389 
390 	/* write the remaining words of the wait buffer */
391 	if (op->len > 0) {
392 		nwait = op->len / 4;
393 		if (nwait > 0) {
394 			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
395 			op->byte_count += 4 * nwait;
396 		}
397 		nbw = op->len - 4 * nwait;
398 		wb = *(u32 *)(op->buf + nwait * 4);
399 		wb &= (0xFFFFFFFF >> (4 - nbw) * 8);
400 	}
401 
402 	/* write the remaining bytes of the nbw buffer */
403 	if (nbw > 0) {
404 		wb |= ((1 << 7) << (nbw * 8));
405 		bf[j++] = wb;
406 	} else {
407 		bf[j++] = 1 << 7;
408 	}
409 
410 	/*
411 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
412 	 * I take the operations from other MD5/SHA1 implementations
413 	 */
414 
415 	/* we have already send 4 more byte of which nbw data */
416 	if (op->mode == SS_OP_MD5) {
417 		index = (op->byte_count + 4) & 0x3f;
418 		op->byte_count += nbw;
419 		if (index > 56)
420 			zeros = (120 - index) / 4;
421 		else
422 			zeros = (56 - index) / 4;
423 	} else {
424 		op->byte_count += nbw;
425 		index = op->byte_count & 0x3f;
426 		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
427 		zeros = (padlen - 1) / 4;
428 	}
429 
430 	memset(bf + j, 0, 4 * zeros);
431 	j += zeros;
432 
433 	/* write the length of data */
434 	if (op->mode == SS_OP_SHA1) {
435 		bits = cpu_to_be64(op->byte_count << 3);
436 		bf[j++] = bits & 0xffffffff;
437 		bf[j++] = (bits >> 32) & 0xffffffff;
438 	} else {
439 		bf[j++] = (op->byte_count << 3) & 0xffffffff;
440 		bf[j++] = (op->byte_count >> 29) & 0xffffffff;
441 	}
442 	writesl(ss->base + SS_RXFIFO, bf, j);
443 
444 	/* Tell the SS to stop the hashing */
445 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
446 
447 	/*
448 	 * Wait for SS to finish the hash.
449 	 * The timeout could happen only in case of bad overclocking
450 	 * or driver bug.
451 	 */
452 	i = 0;
453 	do {
454 		v = readl(ss->base + SS_CTL);
455 		i++;
456 	} while (i < SS_TIMEOUT && (v & SS_DATA_END) > 0);
457 	if (unlikely(i >= SS_TIMEOUT)) {
458 		dev_err_ratelimited(ss->dev,
459 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
460 				    i, SS_TIMEOUT, v, areq->nbytes);
461 		err = -EIO;
462 		goto release_ss;
463 	}
464 
465 	/* Get the hash from the device */
466 	if (op->mode == SS_OP_SHA1) {
467 		for (i = 0; i < 5; i++) {
468 			v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
469 			memcpy(areq->result + i * 4, &v, 4);
470 		}
471 	} else {
472 		for (i = 0; i < 4; i++) {
473 			v = readl(ss->base + SS_MD0 + i * 4);
474 			memcpy(areq->result + i * 4, &v, 4);
475 		}
476 	}
477 
478 release_ss:
479 	writel(0, ss->base + SS_CTL);
480 	spin_unlock_bh(&ss->slock);
481 	return err;
482 }
483 
sun4i_hash_final(struct ahash_request * areq)484 int sun4i_hash_final(struct ahash_request *areq)
485 {
486 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
487 
488 	op->flags = SS_HASH_FINAL;
489 	return sun4i_hash(areq);
490 }
491 
sun4i_hash_update(struct ahash_request * areq)492 int sun4i_hash_update(struct ahash_request *areq)
493 {
494 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
495 
496 	op->flags = SS_HASH_UPDATE;
497 	return sun4i_hash(areq);
498 }
499 
500 /* sun4i_hash_finup: finalize hashing operation after an update */
sun4i_hash_finup(struct ahash_request * areq)501 int sun4i_hash_finup(struct ahash_request *areq)
502 {
503 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
504 
505 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
506 	return sun4i_hash(areq);
507 }
508 
509 /* combo of init/update/final functions */
sun4i_hash_digest(struct ahash_request * areq)510 int sun4i_hash_digest(struct ahash_request *areq)
511 {
512 	int err;
513 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
514 
515 	err = sun4i_hash_init(areq);
516 	if (err != 0)
517 		return err;
518 
519 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
520 	return sun4i_hash(areq);
521 }
522