1 /*
2 * Copyright (C) 2013 NVIDIA Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/debugfs.h>
12 #include <linux/gpio.h>
13 #include <linux/io.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/reset.h>
19
20 #include <soc/tegra/pmc.h>
21
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_dp_helper.h>
24 #include <drm/drm_panel.h>
25
26 #include "dc.h"
27 #include "drm.h"
28 #include "sor.h"
29
30 #define SOR_REKEY 0x38
31
32 struct tegra_sor_hdmi_settings {
33 unsigned long frequency;
34
35 u8 vcocap;
36 u8 ichpmp;
37 u8 loadadj;
38 u8 termadj;
39 u8 tx_pu;
40 u8 bg_vref;
41
42 u8 drive_current[4];
43 u8 preemphasis[4];
44 };
45
46 #if 1
47 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
48 {
49 .frequency = 54000000,
50 .vcocap = 0x0,
51 .ichpmp = 0x1,
52 .loadadj = 0x3,
53 .termadj = 0x9,
54 .tx_pu = 0x10,
55 .bg_vref = 0x8,
56 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
57 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
58 }, {
59 .frequency = 75000000,
60 .vcocap = 0x3,
61 .ichpmp = 0x1,
62 .loadadj = 0x3,
63 .termadj = 0x9,
64 .tx_pu = 0x40,
65 .bg_vref = 0x8,
66 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
67 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
68 }, {
69 .frequency = 150000000,
70 .vcocap = 0x3,
71 .ichpmp = 0x1,
72 .loadadj = 0x3,
73 .termadj = 0x9,
74 .tx_pu = 0x66,
75 .bg_vref = 0x8,
76 .drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
77 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
78 }, {
79 .frequency = 300000000,
80 .vcocap = 0x3,
81 .ichpmp = 0x1,
82 .loadadj = 0x3,
83 .termadj = 0x9,
84 .tx_pu = 0x66,
85 .bg_vref = 0xa,
86 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
87 .preemphasis = { 0x00, 0x17, 0x17, 0x17 },
88 }, {
89 .frequency = 600000000,
90 .vcocap = 0x3,
91 .ichpmp = 0x1,
92 .loadadj = 0x3,
93 .termadj = 0x9,
94 .tx_pu = 0x66,
95 .bg_vref = 0x8,
96 .drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
97 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
98 },
99 };
100 #else
101 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
102 {
103 .frequency = 75000000,
104 .vcocap = 0x3,
105 .ichpmp = 0x1,
106 .loadadj = 0x3,
107 .termadj = 0x9,
108 .tx_pu = 0x40,
109 .bg_vref = 0x8,
110 .drive_current = { 0x29, 0x29, 0x29, 0x29 },
111 .preemphasis = { 0x00, 0x00, 0x00, 0x00 },
112 }, {
113 .frequency = 150000000,
114 .vcocap = 0x3,
115 .ichpmp = 0x1,
116 .loadadj = 0x3,
117 .termadj = 0x9,
118 .tx_pu = 0x66,
119 .bg_vref = 0x8,
120 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
121 .preemphasis = { 0x01, 0x02, 0x02, 0x02 },
122 }, {
123 .frequency = 300000000,
124 .vcocap = 0x3,
125 .ichpmp = 0x6,
126 .loadadj = 0x3,
127 .termadj = 0x9,
128 .tx_pu = 0x66,
129 .bg_vref = 0xf,
130 .drive_current = { 0x30, 0x37, 0x37, 0x37 },
131 .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
132 }, {
133 .frequency = 600000000,
134 .vcocap = 0x3,
135 .ichpmp = 0xa,
136 .loadadj = 0x3,
137 .termadj = 0xb,
138 .tx_pu = 0x66,
139 .bg_vref = 0xe,
140 .drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
141 .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
142 },
143 };
144 #endif
145
146 struct tegra_sor_soc {
147 bool supports_edp;
148 bool supports_lvds;
149 bool supports_hdmi;
150 bool supports_dp;
151
152 const struct tegra_sor_hdmi_settings *settings;
153 unsigned int num_settings;
154
155 const u8 *xbar_cfg;
156 };
157
158 struct tegra_sor;
159
160 struct tegra_sor_ops {
161 const char *name;
162 int (*probe)(struct tegra_sor *sor);
163 int (*remove)(struct tegra_sor *sor);
164 };
165
166 struct tegra_sor {
167 struct host1x_client client;
168 struct tegra_output output;
169 struct device *dev;
170
171 const struct tegra_sor_soc *soc;
172 void __iomem *regs;
173
174 struct reset_control *rst;
175 struct clk *clk_parent;
176 struct clk *clk_brick;
177 struct clk *clk_safe;
178 struct clk *clk_src;
179 struct clk *clk_dp;
180 struct clk *clk;
181
182 struct drm_dp_aux *aux;
183
184 struct drm_info_list *debugfs_files;
185 struct drm_minor *minor;
186 struct dentry *debugfs;
187
188 const struct tegra_sor_ops *ops;
189
190 /* for HDMI 2.0 */
191 struct tegra_sor_hdmi_settings *settings;
192 unsigned int num_settings;
193
194 struct regulator *avdd_io_supply;
195 struct regulator *vdd_pll_supply;
196 struct regulator *hdmi_supply;
197 };
198
199 struct tegra_sor_state {
200 struct drm_connector_state base;
201
202 unsigned int bpc;
203 };
204
205 static inline struct tegra_sor_state *
to_sor_state(struct drm_connector_state * state)206 to_sor_state(struct drm_connector_state *state)
207 {
208 return container_of(state, struct tegra_sor_state, base);
209 }
210
211 struct tegra_sor_config {
212 u32 bits_per_pixel;
213
214 u32 active_polarity;
215 u32 active_count;
216 u32 tu_size;
217 u32 active_frac;
218 u32 watermark;
219
220 u32 hblank_symbols;
221 u32 vblank_symbols;
222 };
223
224 static inline struct tegra_sor *
host1x_client_to_sor(struct host1x_client * client)225 host1x_client_to_sor(struct host1x_client *client)
226 {
227 return container_of(client, struct tegra_sor, client);
228 }
229
to_sor(struct tegra_output * output)230 static inline struct tegra_sor *to_sor(struct tegra_output *output)
231 {
232 return container_of(output, struct tegra_sor, output);
233 }
234
tegra_sor_readl(struct tegra_sor * sor,unsigned long offset)235 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned long offset)
236 {
237 return readl(sor->regs + (offset << 2));
238 }
239
tegra_sor_writel(struct tegra_sor * sor,u32 value,unsigned long offset)240 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
241 unsigned long offset)
242 {
243 writel(value, sor->regs + (offset << 2));
244 }
245
tegra_sor_set_parent_clock(struct tegra_sor * sor,struct clk * parent)246 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
247 {
248 int err;
249
250 clk_disable_unprepare(sor->clk);
251
252 err = clk_set_parent(sor->clk, parent);
253 if (err < 0)
254 return err;
255
256 err = clk_prepare_enable(sor->clk);
257 if (err < 0)
258 return err;
259
260 return 0;
261 }
262
263 struct tegra_clk_sor_brick {
264 struct clk_hw hw;
265 struct tegra_sor *sor;
266 };
267
to_brick(struct clk_hw * hw)268 static inline struct tegra_clk_sor_brick *to_brick(struct clk_hw *hw)
269 {
270 return container_of(hw, struct tegra_clk_sor_brick, hw);
271 }
272
273 static const char * const tegra_clk_sor_brick_parents[] = {
274 "pll_d2_out0", "pll_dp"
275 };
276
tegra_clk_sor_brick_set_parent(struct clk_hw * hw,u8 index)277 static int tegra_clk_sor_brick_set_parent(struct clk_hw *hw, u8 index)
278 {
279 struct tegra_clk_sor_brick *brick = to_brick(hw);
280 struct tegra_sor *sor = brick->sor;
281 u32 value;
282
283 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
284 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
285
286 switch (index) {
287 case 0:
288 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
289 break;
290
291 case 1:
292 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
293 break;
294 }
295
296 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
297
298 return 0;
299 }
300
tegra_clk_sor_brick_get_parent(struct clk_hw * hw)301 static u8 tegra_clk_sor_brick_get_parent(struct clk_hw *hw)
302 {
303 struct tegra_clk_sor_brick *brick = to_brick(hw);
304 struct tegra_sor *sor = brick->sor;
305 u8 parent = U8_MAX;
306 u32 value;
307
308 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
309
310 switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
311 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
312 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
313 parent = 0;
314 break;
315
316 case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
317 case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
318 parent = 1;
319 break;
320 }
321
322 return parent;
323 }
324
325 static const struct clk_ops tegra_clk_sor_brick_ops = {
326 .set_parent = tegra_clk_sor_brick_set_parent,
327 .get_parent = tegra_clk_sor_brick_get_parent,
328 };
329
tegra_clk_sor_brick_register(struct tegra_sor * sor,const char * name)330 static struct clk *tegra_clk_sor_brick_register(struct tegra_sor *sor,
331 const char *name)
332 {
333 struct tegra_clk_sor_brick *brick;
334 struct clk_init_data init;
335 struct clk *clk;
336
337 brick = devm_kzalloc(sor->dev, sizeof(*brick), GFP_KERNEL);
338 if (!brick)
339 return ERR_PTR(-ENOMEM);
340
341 brick->sor = sor;
342
343 init.name = name;
344 init.flags = 0;
345 init.parent_names = tegra_clk_sor_brick_parents;
346 init.num_parents = ARRAY_SIZE(tegra_clk_sor_brick_parents);
347 init.ops = &tegra_clk_sor_brick_ops;
348
349 brick->hw.init = &init;
350
351 clk = devm_clk_register(sor->dev, &brick->hw);
352 if (IS_ERR(clk))
353 kfree(brick);
354
355 return clk;
356 }
357
tegra_sor_dp_train_fast(struct tegra_sor * sor,struct drm_dp_link * link)358 static int tegra_sor_dp_train_fast(struct tegra_sor *sor,
359 struct drm_dp_link *link)
360 {
361 unsigned int i;
362 u8 pattern;
363 u32 value;
364 int err;
365
366 /* setup lane parameters */
367 value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) |
368 SOR_LANE_DRIVE_CURRENT_LANE2(0x40) |
369 SOR_LANE_DRIVE_CURRENT_LANE1(0x40) |
370 SOR_LANE_DRIVE_CURRENT_LANE0(0x40);
371 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
372
373 value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) |
374 SOR_LANE_PREEMPHASIS_LANE2(0x0f) |
375 SOR_LANE_PREEMPHASIS_LANE1(0x0f) |
376 SOR_LANE_PREEMPHASIS_LANE0(0x0f);
377 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
378
379 value = SOR_LANE_POSTCURSOR_LANE3(0x00) |
380 SOR_LANE_POSTCURSOR_LANE2(0x00) |
381 SOR_LANE_POSTCURSOR_LANE1(0x00) |
382 SOR_LANE_POSTCURSOR_LANE0(0x00);
383 tegra_sor_writel(sor, value, SOR_LANE_POSTCURSOR0);
384
385 /* disable LVDS mode */
386 tegra_sor_writel(sor, 0, SOR_LVDS);
387
388 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
389 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
390 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
391 value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */
392 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
393
394 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
395 value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
396 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0;
397 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
398
399 usleep_range(10, 100);
400
401 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
402 value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
403 SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
404 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
405
406 err = drm_dp_aux_prepare(sor->aux, DP_SET_ANSI_8B10B);
407 if (err < 0)
408 return err;
409
410 for (i = 0, value = 0; i < link->num_lanes; i++) {
411 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
412 SOR_DP_TPG_SCRAMBLER_NONE |
413 SOR_DP_TPG_PATTERN_TRAIN1;
414 value = (value << 8) | lane;
415 }
416
417 tegra_sor_writel(sor, value, SOR_DP_TPG);
418
419 pattern = DP_TRAINING_PATTERN_1;
420
421 err = drm_dp_aux_train(sor->aux, link, pattern);
422 if (err < 0)
423 return err;
424
425 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
426 value |= SOR_DP_SPARE_SEQ_ENABLE;
427 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
428 value |= SOR_DP_SPARE_MACRO_SOR_CLK;
429 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
430
431 for (i = 0, value = 0; i < link->num_lanes; i++) {
432 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
433 SOR_DP_TPG_SCRAMBLER_NONE |
434 SOR_DP_TPG_PATTERN_TRAIN2;
435 value = (value << 8) | lane;
436 }
437
438 tegra_sor_writel(sor, value, SOR_DP_TPG);
439
440 pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2;
441
442 err = drm_dp_aux_train(sor->aux, link, pattern);
443 if (err < 0)
444 return err;
445
446 for (i = 0, value = 0; i < link->num_lanes; i++) {
447 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
448 SOR_DP_TPG_SCRAMBLER_GALIOS |
449 SOR_DP_TPG_PATTERN_NONE;
450 value = (value << 8) | lane;
451 }
452
453 tegra_sor_writel(sor, value, SOR_DP_TPG);
454
455 pattern = DP_TRAINING_PATTERN_DISABLE;
456
457 err = drm_dp_aux_train(sor->aux, link, pattern);
458 if (err < 0)
459 return err;
460
461 return 0;
462 }
463
tegra_sor_dp_term_calibrate(struct tegra_sor * sor)464 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
465 {
466 u32 mask = 0x08, adj = 0, value;
467
468 /* enable pad calibration logic */
469 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
470 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
471 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
472
473 value = tegra_sor_readl(sor, SOR_PLL1);
474 value |= SOR_PLL1_TMDS_TERM;
475 tegra_sor_writel(sor, value, SOR_PLL1);
476
477 while (mask) {
478 adj |= mask;
479
480 value = tegra_sor_readl(sor, SOR_PLL1);
481 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
482 value |= SOR_PLL1_TMDS_TERMADJ(adj);
483 tegra_sor_writel(sor, value, SOR_PLL1);
484
485 usleep_range(100, 200);
486
487 value = tegra_sor_readl(sor, SOR_PLL1);
488 if (value & SOR_PLL1_TERM_COMPOUT)
489 adj &= ~mask;
490
491 mask >>= 1;
492 }
493
494 value = tegra_sor_readl(sor, SOR_PLL1);
495 value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
496 value |= SOR_PLL1_TMDS_TERMADJ(adj);
497 tegra_sor_writel(sor, value, SOR_PLL1);
498
499 /* disable pad calibration logic */
500 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
501 value |= SOR_DP_PADCTL_PAD_CAL_PD;
502 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
503 }
504
tegra_sor_super_update(struct tegra_sor * sor)505 static void tegra_sor_super_update(struct tegra_sor *sor)
506 {
507 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
508 tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
509 tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
510 }
511
tegra_sor_update(struct tegra_sor * sor)512 static void tegra_sor_update(struct tegra_sor *sor)
513 {
514 tegra_sor_writel(sor, 0, SOR_STATE0);
515 tegra_sor_writel(sor, 1, SOR_STATE0);
516 tegra_sor_writel(sor, 0, SOR_STATE0);
517 }
518
tegra_sor_setup_pwm(struct tegra_sor * sor,unsigned long timeout)519 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
520 {
521 u32 value;
522
523 value = tegra_sor_readl(sor, SOR_PWM_DIV);
524 value &= ~SOR_PWM_DIV_MASK;
525 value |= 0x400; /* period */
526 tegra_sor_writel(sor, value, SOR_PWM_DIV);
527
528 value = tegra_sor_readl(sor, SOR_PWM_CTL);
529 value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
530 value |= 0x400; /* duty cycle */
531 value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
532 value |= SOR_PWM_CTL_TRIGGER;
533 tegra_sor_writel(sor, value, SOR_PWM_CTL);
534
535 timeout = jiffies + msecs_to_jiffies(timeout);
536
537 while (time_before(jiffies, timeout)) {
538 value = tegra_sor_readl(sor, SOR_PWM_CTL);
539 if ((value & SOR_PWM_CTL_TRIGGER) == 0)
540 return 0;
541
542 usleep_range(25, 100);
543 }
544
545 return -ETIMEDOUT;
546 }
547
tegra_sor_attach(struct tegra_sor * sor)548 static int tegra_sor_attach(struct tegra_sor *sor)
549 {
550 unsigned long value, timeout;
551
552 /* wake up in normal mode */
553 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
554 value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
555 value |= SOR_SUPER_STATE_MODE_NORMAL;
556 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
557 tegra_sor_super_update(sor);
558
559 /* attach */
560 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
561 value |= SOR_SUPER_STATE_ATTACHED;
562 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
563 tegra_sor_super_update(sor);
564
565 timeout = jiffies + msecs_to_jiffies(250);
566
567 while (time_before(jiffies, timeout)) {
568 value = tegra_sor_readl(sor, SOR_TEST);
569 if ((value & SOR_TEST_ATTACHED) != 0)
570 return 0;
571
572 usleep_range(25, 100);
573 }
574
575 return -ETIMEDOUT;
576 }
577
tegra_sor_wakeup(struct tegra_sor * sor)578 static int tegra_sor_wakeup(struct tegra_sor *sor)
579 {
580 unsigned long value, timeout;
581
582 timeout = jiffies + msecs_to_jiffies(250);
583
584 /* wait for head to wake up */
585 while (time_before(jiffies, timeout)) {
586 value = tegra_sor_readl(sor, SOR_TEST);
587 value &= SOR_TEST_HEAD_MODE_MASK;
588
589 if (value == SOR_TEST_HEAD_MODE_AWAKE)
590 return 0;
591
592 usleep_range(25, 100);
593 }
594
595 return -ETIMEDOUT;
596 }
597
tegra_sor_power_up(struct tegra_sor * sor,unsigned long timeout)598 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
599 {
600 u32 value;
601
602 value = tegra_sor_readl(sor, SOR_PWR);
603 value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
604 tegra_sor_writel(sor, value, SOR_PWR);
605
606 timeout = jiffies + msecs_to_jiffies(timeout);
607
608 while (time_before(jiffies, timeout)) {
609 value = tegra_sor_readl(sor, SOR_PWR);
610 if ((value & SOR_PWR_TRIGGER) == 0)
611 return 0;
612
613 usleep_range(25, 100);
614 }
615
616 return -ETIMEDOUT;
617 }
618
619 struct tegra_sor_params {
620 /* number of link clocks per line */
621 unsigned int num_clocks;
622 /* ratio between input and output */
623 u64 ratio;
624 /* precision factor */
625 u64 precision;
626
627 unsigned int active_polarity;
628 unsigned int active_count;
629 unsigned int active_frac;
630 unsigned int tu_size;
631 unsigned int error;
632 };
633
tegra_sor_compute_params(struct tegra_sor * sor,struct tegra_sor_params * params,unsigned int tu_size)634 static int tegra_sor_compute_params(struct tegra_sor *sor,
635 struct tegra_sor_params *params,
636 unsigned int tu_size)
637 {
638 u64 active_sym, active_count, frac, approx;
639 u32 active_polarity, active_frac = 0;
640 const u64 f = params->precision;
641 s64 error;
642
643 active_sym = params->ratio * tu_size;
644 active_count = div_u64(active_sym, f) * f;
645 frac = active_sym - active_count;
646
647 /* fraction < 0.5 */
648 if (frac >= (f / 2)) {
649 active_polarity = 1;
650 frac = f - frac;
651 } else {
652 active_polarity = 0;
653 }
654
655 if (frac != 0) {
656 frac = div_u64(f * f, frac); /* 1/fraction */
657 if (frac <= (15 * f)) {
658 active_frac = div_u64(frac, f);
659
660 /* round up */
661 if (active_polarity)
662 active_frac++;
663 } else {
664 active_frac = active_polarity ? 1 : 15;
665 }
666 }
667
668 if (active_frac == 1)
669 active_polarity = 0;
670
671 if (active_polarity == 1) {
672 if (active_frac) {
673 approx = active_count + (active_frac * (f - 1)) * f;
674 approx = div_u64(approx, active_frac * f);
675 } else {
676 approx = active_count + f;
677 }
678 } else {
679 if (active_frac)
680 approx = active_count + div_u64(f, active_frac);
681 else
682 approx = active_count;
683 }
684
685 error = div_s64(active_sym - approx, tu_size);
686 error *= params->num_clocks;
687
688 if (error <= 0 && abs(error) < params->error) {
689 params->active_count = div_u64(active_count, f);
690 params->active_polarity = active_polarity;
691 params->active_frac = active_frac;
692 params->error = abs(error);
693 params->tu_size = tu_size;
694
695 if (error == 0)
696 return true;
697 }
698
699 return false;
700 }
701
tegra_sor_compute_config(struct tegra_sor * sor,const struct drm_display_mode * mode,struct tegra_sor_config * config,struct drm_dp_link * link)702 static int tegra_sor_compute_config(struct tegra_sor *sor,
703 const struct drm_display_mode *mode,
704 struct tegra_sor_config *config,
705 struct drm_dp_link *link)
706 {
707 const u64 f = 100000, link_rate = link->rate * 1000;
708 const u64 pclk = mode->clock * 1000;
709 u64 input, output, watermark, num;
710 struct tegra_sor_params params;
711 u32 num_syms_per_line;
712 unsigned int i;
713
714 if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel)
715 return -EINVAL;
716
717 output = link_rate * 8 * link->num_lanes;
718 input = pclk * config->bits_per_pixel;
719
720 if (input >= output)
721 return -ERANGE;
722
723 memset(¶ms, 0, sizeof(params));
724 params.ratio = div64_u64(input * f, output);
725 params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
726 params.precision = f;
727 params.error = 64 * f;
728 params.tu_size = 64;
729
730 for (i = params.tu_size; i >= 32; i--)
731 if (tegra_sor_compute_params(sor, ¶ms, i))
732 break;
733
734 if (params.active_frac == 0) {
735 config->active_polarity = 0;
736 config->active_count = params.active_count;
737
738 if (!params.active_polarity)
739 config->active_count--;
740
741 config->tu_size = params.tu_size;
742 config->active_frac = 1;
743 } else {
744 config->active_polarity = params.active_polarity;
745 config->active_count = params.active_count;
746 config->active_frac = params.active_frac;
747 config->tu_size = params.tu_size;
748 }
749
750 dev_dbg(sor->dev,
751 "polarity: %d active count: %d tu size: %d active frac: %d\n",
752 config->active_polarity, config->active_count,
753 config->tu_size, config->active_frac);
754
755 watermark = params.ratio * config->tu_size * (f - params.ratio);
756 watermark = div_u64(watermark, f);
757
758 watermark = div_u64(watermark + params.error, f);
759 config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
760 num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
761 (link->num_lanes * 8);
762
763 if (config->watermark > 30) {
764 config->watermark = 30;
765 dev_err(sor->dev,
766 "unable to compute TU size, forcing watermark to %u\n",
767 config->watermark);
768 } else if (config->watermark > num_syms_per_line) {
769 config->watermark = num_syms_per_line;
770 dev_err(sor->dev, "watermark too high, forcing to %u\n",
771 config->watermark);
772 }
773
774 /* compute the number of symbols per horizontal blanking interval */
775 num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
776 config->hblank_symbols = div_u64(num, pclk);
777
778 if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
779 config->hblank_symbols -= 3;
780
781 config->hblank_symbols -= 12 / link->num_lanes;
782
783 /* compute the number of symbols per vertical blanking interval */
784 num = (mode->hdisplay - 25) * link_rate;
785 config->vblank_symbols = div_u64(num, pclk);
786 config->vblank_symbols -= 36 / link->num_lanes + 4;
787
788 dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
789 config->vblank_symbols);
790
791 return 0;
792 }
793
tegra_sor_apply_config(struct tegra_sor * sor,const struct tegra_sor_config * config)794 static void tegra_sor_apply_config(struct tegra_sor *sor,
795 const struct tegra_sor_config *config)
796 {
797 u32 value;
798
799 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
800 value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
801 value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
802 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
803
804 value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
805 value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
806 value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
807
808 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
809 value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
810
811 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
812 value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
813
814 if (config->active_polarity)
815 value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
816 else
817 value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
818
819 value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
820 value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
821 tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
822
823 value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
824 value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
825 value |= config->hblank_symbols & 0xffff;
826 tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
827
828 value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
829 value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
830 value |= config->vblank_symbols & 0xffff;
831 tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
832 }
833
tegra_sor_mode_set(struct tegra_sor * sor,const struct drm_display_mode * mode,struct tegra_sor_state * state)834 static void tegra_sor_mode_set(struct tegra_sor *sor,
835 const struct drm_display_mode *mode,
836 struct tegra_sor_state *state)
837 {
838 struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
839 unsigned int vbe, vse, hbe, hse, vbs, hbs;
840 u32 value;
841
842 value = tegra_sor_readl(sor, SOR_STATE1);
843 value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
844 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
845 value &= ~SOR_STATE_ASY_OWNER_MASK;
846
847 value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
848 SOR_STATE_ASY_OWNER(dc->pipe + 1);
849
850 if (mode->flags & DRM_MODE_FLAG_PHSYNC)
851 value &= ~SOR_STATE_ASY_HSYNCPOL;
852
853 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
854 value |= SOR_STATE_ASY_HSYNCPOL;
855
856 if (mode->flags & DRM_MODE_FLAG_PVSYNC)
857 value &= ~SOR_STATE_ASY_VSYNCPOL;
858
859 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
860 value |= SOR_STATE_ASY_VSYNCPOL;
861
862 switch (state->bpc) {
863 case 16:
864 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
865 break;
866
867 case 12:
868 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
869 break;
870
871 case 10:
872 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
873 break;
874
875 case 8:
876 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
877 break;
878
879 case 6:
880 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
881 break;
882
883 default:
884 value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
885 break;
886 }
887
888 tegra_sor_writel(sor, value, SOR_STATE1);
889
890 /*
891 * TODO: The video timing programming below doesn't seem to match the
892 * register definitions.
893 */
894
895 value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
896 tegra_sor_writel(sor, value, SOR_HEAD_STATE1(dc->pipe));
897
898 /* sync end = sync width - 1 */
899 vse = mode->vsync_end - mode->vsync_start - 1;
900 hse = mode->hsync_end - mode->hsync_start - 1;
901
902 value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
903 tegra_sor_writel(sor, value, SOR_HEAD_STATE2(dc->pipe));
904
905 /* blank end = sync end + back porch */
906 vbe = vse + (mode->vtotal - mode->vsync_end);
907 hbe = hse + (mode->htotal - mode->hsync_end);
908
909 value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
910 tegra_sor_writel(sor, value, SOR_HEAD_STATE3(dc->pipe));
911
912 /* blank start = blank end + active */
913 vbs = vbe + mode->vdisplay;
914 hbs = hbe + mode->hdisplay;
915
916 value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
917 tegra_sor_writel(sor, value, SOR_HEAD_STATE4(dc->pipe));
918
919 /* XXX interlacing support */
920 tegra_sor_writel(sor, 0x001, SOR_HEAD_STATE5(dc->pipe));
921 }
922
tegra_sor_detach(struct tegra_sor * sor)923 static int tegra_sor_detach(struct tegra_sor *sor)
924 {
925 unsigned long value, timeout;
926
927 /* switch to safe mode */
928 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
929 value &= ~SOR_SUPER_STATE_MODE_NORMAL;
930 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
931 tegra_sor_super_update(sor);
932
933 timeout = jiffies + msecs_to_jiffies(250);
934
935 while (time_before(jiffies, timeout)) {
936 value = tegra_sor_readl(sor, SOR_PWR);
937 if (value & SOR_PWR_MODE_SAFE)
938 break;
939 }
940
941 if ((value & SOR_PWR_MODE_SAFE) == 0)
942 return -ETIMEDOUT;
943
944 /* go to sleep */
945 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
946 value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
947 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
948 tegra_sor_super_update(sor);
949
950 /* detach */
951 value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
952 value &= ~SOR_SUPER_STATE_ATTACHED;
953 tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
954 tegra_sor_super_update(sor);
955
956 timeout = jiffies + msecs_to_jiffies(250);
957
958 while (time_before(jiffies, timeout)) {
959 value = tegra_sor_readl(sor, SOR_TEST);
960 if ((value & SOR_TEST_ATTACHED) == 0)
961 break;
962
963 usleep_range(25, 100);
964 }
965
966 if ((value & SOR_TEST_ATTACHED) != 0)
967 return -ETIMEDOUT;
968
969 return 0;
970 }
971
tegra_sor_power_down(struct tegra_sor * sor)972 static int tegra_sor_power_down(struct tegra_sor *sor)
973 {
974 unsigned long value, timeout;
975 int err;
976
977 value = tegra_sor_readl(sor, SOR_PWR);
978 value &= ~SOR_PWR_NORMAL_STATE_PU;
979 value |= SOR_PWR_TRIGGER;
980 tegra_sor_writel(sor, value, SOR_PWR);
981
982 timeout = jiffies + msecs_to_jiffies(250);
983
984 while (time_before(jiffies, timeout)) {
985 value = tegra_sor_readl(sor, SOR_PWR);
986 if ((value & SOR_PWR_TRIGGER) == 0)
987 return 0;
988
989 usleep_range(25, 100);
990 }
991
992 if ((value & SOR_PWR_TRIGGER) != 0)
993 return -ETIMEDOUT;
994
995 /* switch to safe parent clock */
996 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
997 if (err < 0)
998 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
999
1000 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
1001 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
1002 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
1003 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
1004
1005 /* stop lane sequencer */
1006 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
1007 SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
1008 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1009
1010 timeout = jiffies + msecs_to_jiffies(250);
1011
1012 while (time_before(jiffies, timeout)) {
1013 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1014 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1015 break;
1016
1017 usleep_range(25, 100);
1018 }
1019
1020 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
1021 return -ETIMEDOUT;
1022
1023 value = tegra_sor_readl(sor, SOR_PLL2);
1024 value |= SOR_PLL2_PORT_POWERDOWN;
1025 tegra_sor_writel(sor, value, SOR_PLL2);
1026
1027 usleep_range(20, 100);
1028
1029 value = tegra_sor_readl(sor, SOR_PLL0);
1030 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1031 tegra_sor_writel(sor, value, SOR_PLL0);
1032
1033 value = tegra_sor_readl(sor, SOR_PLL2);
1034 value |= SOR_PLL2_SEQ_PLLCAPPD;
1035 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1036 tegra_sor_writel(sor, value, SOR_PLL2);
1037
1038 usleep_range(20, 100);
1039
1040 return 0;
1041 }
1042
tegra_sor_crc_wait(struct tegra_sor * sor,unsigned long timeout)1043 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1044 {
1045 u32 value;
1046
1047 timeout = jiffies + msecs_to_jiffies(timeout);
1048
1049 while (time_before(jiffies, timeout)) {
1050 value = tegra_sor_readl(sor, SOR_CRCA);
1051 if (value & SOR_CRCA_VALID)
1052 return 0;
1053
1054 usleep_range(100, 200);
1055 }
1056
1057 return -ETIMEDOUT;
1058 }
1059
tegra_sor_show_crc(struct seq_file * s,void * data)1060 static int tegra_sor_show_crc(struct seq_file *s, void *data)
1061 {
1062 struct drm_info_node *node = s->private;
1063 struct tegra_sor *sor = node->info_ent->data;
1064 struct drm_crtc *crtc = sor->output.encoder.crtc;
1065 struct drm_device *drm = node->minor->dev;
1066 int err = 0;
1067 u32 value;
1068
1069 drm_modeset_lock_all(drm);
1070
1071 if (!crtc || !crtc->state->active) {
1072 err = -EBUSY;
1073 goto unlock;
1074 }
1075
1076 value = tegra_sor_readl(sor, SOR_STATE1);
1077 value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1078 tegra_sor_writel(sor, value, SOR_STATE1);
1079
1080 value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1081 value |= SOR_CRC_CNTRL_ENABLE;
1082 tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1083
1084 value = tegra_sor_readl(sor, SOR_TEST);
1085 value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1086 tegra_sor_writel(sor, value, SOR_TEST);
1087
1088 err = tegra_sor_crc_wait(sor, 100);
1089 if (err < 0)
1090 goto unlock;
1091
1092 tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1093 value = tegra_sor_readl(sor, SOR_CRCB);
1094
1095 seq_printf(s, "%08x\n", value);
1096
1097 unlock:
1098 drm_modeset_unlock_all(drm);
1099 return err;
1100 }
1101
tegra_sor_show_regs(struct seq_file * s,void * data)1102 static int tegra_sor_show_regs(struct seq_file *s, void *data)
1103 {
1104 struct drm_info_node *node = s->private;
1105 struct tegra_sor *sor = node->info_ent->data;
1106 struct drm_crtc *crtc = sor->output.encoder.crtc;
1107 struct drm_device *drm = node->minor->dev;
1108 int err = 0;
1109
1110 drm_modeset_lock_all(drm);
1111
1112 if (!crtc || !crtc->state->active) {
1113 err = -EBUSY;
1114 goto unlock;
1115 }
1116
1117 #define DUMP_REG(name) \
1118 seq_printf(s, "%-38s %#05x %08x\n", #name, name, \
1119 tegra_sor_readl(sor, name))
1120
1121 DUMP_REG(SOR_CTXSW);
1122 DUMP_REG(SOR_SUPER_STATE0);
1123 DUMP_REG(SOR_SUPER_STATE1);
1124 DUMP_REG(SOR_STATE0);
1125 DUMP_REG(SOR_STATE1);
1126 DUMP_REG(SOR_HEAD_STATE0(0));
1127 DUMP_REG(SOR_HEAD_STATE0(1));
1128 DUMP_REG(SOR_HEAD_STATE1(0));
1129 DUMP_REG(SOR_HEAD_STATE1(1));
1130 DUMP_REG(SOR_HEAD_STATE2(0));
1131 DUMP_REG(SOR_HEAD_STATE2(1));
1132 DUMP_REG(SOR_HEAD_STATE3(0));
1133 DUMP_REG(SOR_HEAD_STATE3(1));
1134 DUMP_REG(SOR_HEAD_STATE4(0));
1135 DUMP_REG(SOR_HEAD_STATE4(1));
1136 DUMP_REG(SOR_HEAD_STATE5(0));
1137 DUMP_REG(SOR_HEAD_STATE5(1));
1138 DUMP_REG(SOR_CRC_CNTRL);
1139 DUMP_REG(SOR_DP_DEBUG_MVID);
1140 DUMP_REG(SOR_CLK_CNTRL);
1141 DUMP_REG(SOR_CAP);
1142 DUMP_REG(SOR_PWR);
1143 DUMP_REG(SOR_TEST);
1144 DUMP_REG(SOR_PLL0);
1145 DUMP_REG(SOR_PLL1);
1146 DUMP_REG(SOR_PLL2);
1147 DUMP_REG(SOR_PLL3);
1148 DUMP_REG(SOR_CSTM);
1149 DUMP_REG(SOR_LVDS);
1150 DUMP_REG(SOR_CRCA);
1151 DUMP_REG(SOR_CRCB);
1152 DUMP_REG(SOR_BLANK);
1153 DUMP_REG(SOR_SEQ_CTL);
1154 DUMP_REG(SOR_LANE_SEQ_CTL);
1155 DUMP_REG(SOR_SEQ_INST(0));
1156 DUMP_REG(SOR_SEQ_INST(1));
1157 DUMP_REG(SOR_SEQ_INST(2));
1158 DUMP_REG(SOR_SEQ_INST(3));
1159 DUMP_REG(SOR_SEQ_INST(4));
1160 DUMP_REG(SOR_SEQ_INST(5));
1161 DUMP_REG(SOR_SEQ_INST(6));
1162 DUMP_REG(SOR_SEQ_INST(7));
1163 DUMP_REG(SOR_SEQ_INST(8));
1164 DUMP_REG(SOR_SEQ_INST(9));
1165 DUMP_REG(SOR_SEQ_INST(10));
1166 DUMP_REG(SOR_SEQ_INST(11));
1167 DUMP_REG(SOR_SEQ_INST(12));
1168 DUMP_REG(SOR_SEQ_INST(13));
1169 DUMP_REG(SOR_SEQ_INST(14));
1170 DUMP_REG(SOR_SEQ_INST(15));
1171 DUMP_REG(SOR_PWM_DIV);
1172 DUMP_REG(SOR_PWM_CTL);
1173 DUMP_REG(SOR_VCRC_A0);
1174 DUMP_REG(SOR_VCRC_A1);
1175 DUMP_REG(SOR_VCRC_B0);
1176 DUMP_REG(SOR_VCRC_B1);
1177 DUMP_REG(SOR_CCRC_A0);
1178 DUMP_REG(SOR_CCRC_A1);
1179 DUMP_REG(SOR_CCRC_B0);
1180 DUMP_REG(SOR_CCRC_B1);
1181 DUMP_REG(SOR_EDATA_A0);
1182 DUMP_REG(SOR_EDATA_A1);
1183 DUMP_REG(SOR_EDATA_B0);
1184 DUMP_REG(SOR_EDATA_B1);
1185 DUMP_REG(SOR_COUNT_A0);
1186 DUMP_REG(SOR_COUNT_A1);
1187 DUMP_REG(SOR_COUNT_B0);
1188 DUMP_REG(SOR_COUNT_B1);
1189 DUMP_REG(SOR_DEBUG_A0);
1190 DUMP_REG(SOR_DEBUG_A1);
1191 DUMP_REG(SOR_DEBUG_B0);
1192 DUMP_REG(SOR_DEBUG_B1);
1193 DUMP_REG(SOR_TRIG);
1194 DUMP_REG(SOR_MSCHECK);
1195 DUMP_REG(SOR_XBAR_CTRL);
1196 DUMP_REG(SOR_XBAR_POL);
1197 DUMP_REG(SOR_DP_LINKCTL0);
1198 DUMP_REG(SOR_DP_LINKCTL1);
1199 DUMP_REG(SOR_LANE_DRIVE_CURRENT0);
1200 DUMP_REG(SOR_LANE_DRIVE_CURRENT1);
1201 DUMP_REG(SOR_LANE4_DRIVE_CURRENT0);
1202 DUMP_REG(SOR_LANE4_DRIVE_CURRENT1);
1203 DUMP_REG(SOR_LANE_PREEMPHASIS0);
1204 DUMP_REG(SOR_LANE_PREEMPHASIS1);
1205 DUMP_REG(SOR_LANE4_PREEMPHASIS0);
1206 DUMP_REG(SOR_LANE4_PREEMPHASIS1);
1207 DUMP_REG(SOR_LANE_POSTCURSOR0);
1208 DUMP_REG(SOR_LANE_POSTCURSOR1);
1209 DUMP_REG(SOR_DP_CONFIG0);
1210 DUMP_REG(SOR_DP_CONFIG1);
1211 DUMP_REG(SOR_DP_MN0);
1212 DUMP_REG(SOR_DP_MN1);
1213 DUMP_REG(SOR_DP_PADCTL0);
1214 DUMP_REG(SOR_DP_PADCTL1);
1215 DUMP_REG(SOR_DP_DEBUG0);
1216 DUMP_REG(SOR_DP_DEBUG1);
1217 DUMP_REG(SOR_DP_SPARE0);
1218 DUMP_REG(SOR_DP_SPARE1);
1219 DUMP_REG(SOR_DP_AUDIO_CTRL);
1220 DUMP_REG(SOR_DP_AUDIO_HBLANK_SYMBOLS);
1221 DUMP_REG(SOR_DP_AUDIO_VBLANK_SYMBOLS);
1222 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_HEADER);
1223 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK0);
1224 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK1);
1225 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK2);
1226 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK3);
1227 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK4);
1228 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK5);
1229 DUMP_REG(SOR_DP_GENERIC_INFOFRAME_SUBPACK6);
1230 DUMP_REG(SOR_DP_TPG);
1231 DUMP_REG(SOR_DP_TPG_CONFIG);
1232 DUMP_REG(SOR_DP_LQ_CSTM0);
1233 DUMP_REG(SOR_DP_LQ_CSTM1);
1234 DUMP_REG(SOR_DP_LQ_CSTM2);
1235
1236 #undef DUMP_REG
1237
1238 unlock:
1239 drm_modeset_unlock_all(drm);
1240 return err;
1241 }
1242
1243 static const struct drm_info_list debugfs_files[] = {
1244 { "crc", tegra_sor_show_crc, 0, NULL },
1245 { "regs", tegra_sor_show_regs, 0, NULL },
1246 };
1247
tegra_sor_debugfs_init(struct tegra_sor * sor,struct drm_minor * minor)1248 static int tegra_sor_debugfs_init(struct tegra_sor *sor,
1249 struct drm_minor *minor)
1250 {
1251 const char *name = sor->soc->supports_dp ? "sor1" : "sor";
1252 unsigned int i;
1253 int err;
1254
1255 sor->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1256 if (!sor->debugfs)
1257 return -ENOMEM;
1258
1259 sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1260 GFP_KERNEL);
1261 if (!sor->debugfs_files) {
1262 err = -ENOMEM;
1263 goto remove;
1264 }
1265
1266 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1267 sor->debugfs_files[i].data = sor;
1268
1269 err = drm_debugfs_create_files(sor->debugfs_files,
1270 ARRAY_SIZE(debugfs_files),
1271 sor->debugfs, minor);
1272 if (err < 0)
1273 goto free;
1274
1275 sor->minor = minor;
1276
1277 return 0;
1278
1279 free:
1280 kfree(sor->debugfs_files);
1281 sor->debugfs_files = NULL;
1282 remove:
1283 debugfs_remove_recursive(sor->debugfs);
1284 sor->debugfs = NULL;
1285 return err;
1286 }
1287
tegra_sor_debugfs_exit(struct tegra_sor * sor)1288 static void tegra_sor_debugfs_exit(struct tegra_sor *sor)
1289 {
1290 drm_debugfs_remove_files(sor->debugfs_files, ARRAY_SIZE(debugfs_files),
1291 sor->minor);
1292 sor->minor = NULL;
1293
1294 kfree(sor->debugfs_files);
1295 sor->debugfs_files = NULL;
1296
1297 debugfs_remove_recursive(sor->debugfs);
1298 sor->debugfs = NULL;
1299 }
1300
tegra_sor_connector_reset(struct drm_connector * connector)1301 static void tegra_sor_connector_reset(struct drm_connector *connector)
1302 {
1303 struct tegra_sor_state *state;
1304
1305 state = kzalloc(sizeof(*state), GFP_KERNEL);
1306 if (!state)
1307 return;
1308
1309 if (connector->state) {
1310 __drm_atomic_helper_connector_destroy_state(connector->state);
1311 kfree(connector->state);
1312 }
1313
1314 __drm_atomic_helper_connector_reset(connector, &state->base);
1315 }
1316
1317 static enum drm_connector_status
tegra_sor_connector_detect(struct drm_connector * connector,bool force)1318 tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1319 {
1320 struct tegra_output *output = connector_to_output(connector);
1321 struct tegra_sor *sor = to_sor(output);
1322
1323 if (sor->aux)
1324 return drm_dp_aux_detect(sor->aux);
1325
1326 return tegra_output_connector_detect(connector, force);
1327 }
1328
1329 static struct drm_connector_state *
tegra_sor_connector_duplicate_state(struct drm_connector * connector)1330 tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1331 {
1332 struct tegra_sor_state *state = to_sor_state(connector->state);
1333 struct tegra_sor_state *copy;
1334
1335 copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1336 if (!copy)
1337 return NULL;
1338
1339 __drm_atomic_helper_connector_duplicate_state(connector, ©->base);
1340
1341 return ©->base;
1342 }
1343
1344 static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1345 .dpms = drm_atomic_helper_connector_dpms,
1346 .reset = tegra_sor_connector_reset,
1347 .detect = tegra_sor_connector_detect,
1348 .fill_modes = drm_helper_probe_single_connector_modes,
1349 .destroy = tegra_output_connector_destroy,
1350 .atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1351 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1352 };
1353
tegra_sor_connector_get_modes(struct drm_connector * connector)1354 static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1355 {
1356 struct tegra_output *output = connector_to_output(connector);
1357 struct tegra_sor *sor = to_sor(output);
1358 int err;
1359
1360 if (sor->aux)
1361 drm_dp_aux_enable(sor->aux);
1362
1363 err = tegra_output_connector_get_modes(connector);
1364
1365 if (sor->aux)
1366 drm_dp_aux_disable(sor->aux);
1367
1368 return err;
1369 }
1370
1371 static enum drm_mode_status
tegra_sor_connector_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1372 tegra_sor_connector_mode_valid(struct drm_connector *connector,
1373 struct drm_display_mode *mode)
1374 {
1375 /* HDMI 2.0 modes are not yet supported */
1376 if (mode->clock > 340000)
1377 return MODE_NOCLOCK;
1378
1379 return MODE_OK;
1380 }
1381
1382 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1383 .get_modes = tegra_sor_connector_get_modes,
1384 .mode_valid = tegra_sor_connector_mode_valid,
1385 };
1386
1387 static const struct drm_encoder_funcs tegra_sor_encoder_funcs = {
1388 .destroy = tegra_output_encoder_destroy,
1389 };
1390
tegra_sor_edp_disable(struct drm_encoder * encoder)1391 static void tegra_sor_edp_disable(struct drm_encoder *encoder)
1392 {
1393 struct tegra_output *output = encoder_to_output(encoder);
1394 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1395 struct tegra_sor *sor = to_sor(output);
1396 u32 value;
1397 int err;
1398
1399 if (output->panel)
1400 drm_panel_disable(output->panel);
1401
1402 err = tegra_sor_detach(sor);
1403 if (err < 0)
1404 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
1405
1406 tegra_sor_writel(sor, 0, SOR_STATE1);
1407 tegra_sor_update(sor);
1408
1409 /*
1410 * The following accesses registers of the display controller, so make
1411 * sure it's only executed when the output is attached to one.
1412 */
1413 if (dc) {
1414 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1415 value &= ~SOR_ENABLE;
1416 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1417
1418 tegra_dc_commit(dc);
1419 }
1420
1421 err = tegra_sor_power_down(sor);
1422 if (err < 0)
1423 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
1424
1425 if (sor->aux) {
1426 err = drm_dp_aux_disable(sor->aux);
1427 if (err < 0)
1428 dev_err(sor->dev, "failed to disable DP: %d\n", err);
1429 }
1430
1431 err = tegra_io_rail_power_off(TEGRA_IO_RAIL_LVDS);
1432 if (err < 0)
1433 dev_err(sor->dev, "failed to power off I/O rail: %d\n", err);
1434
1435 if (output->panel)
1436 drm_panel_unprepare(output->panel);
1437
1438 pm_runtime_put(sor->dev);
1439 }
1440
1441 #if 0
1442 static int calc_h_ref_to_sync(const struct drm_display_mode *mode,
1443 unsigned int *value)
1444 {
1445 unsigned int hfp, hsw, hbp, a = 0, b;
1446
1447 hfp = mode->hsync_start - mode->hdisplay;
1448 hsw = mode->hsync_end - mode->hsync_start;
1449 hbp = mode->htotal - mode->hsync_end;
1450
1451 pr_info("hfp: %u, hsw: %u, hbp: %u\n", hfp, hsw, hbp);
1452
1453 b = hfp - 1;
1454
1455 pr_info("a: %u, b: %u\n", a, b);
1456 pr_info("a + hsw + hbp = %u\n", a + hsw + hbp);
1457
1458 if (a + hsw + hbp <= 11) {
1459 a = 1 + 11 - hsw - hbp;
1460 pr_info("a: %u\n", a);
1461 }
1462
1463 if (a > b)
1464 return -EINVAL;
1465
1466 if (hsw < 1)
1467 return -EINVAL;
1468
1469 if (mode->hdisplay < 16)
1470 return -EINVAL;
1471
1472 if (value) {
1473 if (b > a && a % 2)
1474 *value = a + 1;
1475 else
1476 *value = a;
1477 }
1478
1479 return 0;
1480 }
1481 #endif
1482
tegra_sor_edp_enable(struct drm_encoder * encoder)1483 static void tegra_sor_edp_enable(struct drm_encoder *encoder)
1484 {
1485 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
1486 struct tegra_output *output = encoder_to_output(encoder);
1487 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1488 struct tegra_sor *sor = to_sor(output);
1489 struct tegra_sor_config config;
1490 struct tegra_sor_state *state;
1491 struct drm_dp_link link;
1492 u8 rate, lanes;
1493 unsigned int i;
1494 int err = 0;
1495 u32 value;
1496
1497 state = to_sor_state(output->connector.state);
1498
1499 pm_runtime_get_sync(sor->dev);
1500
1501 if (output->panel)
1502 drm_panel_prepare(output->panel);
1503
1504 err = drm_dp_aux_enable(sor->aux);
1505 if (err < 0)
1506 dev_err(sor->dev, "failed to enable DP: %d\n", err);
1507
1508 err = drm_dp_link_probe(sor->aux, &link);
1509 if (err < 0) {
1510 dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1511 return;
1512 }
1513
1514 /* switch to safe parent clock */
1515 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1516 if (err < 0)
1517 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1518
1519 memset(&config, 0, sizeof(config));
1520 config.bits_per_pixel = state->bpc * 3;
1521
1522 err = tegra_sor_compute_config(sor, mode, &config, &link);
1523 if (err < 0)
1524 dev_err(sor->dev, "failed to compute configuration: %d\n", err);
1525
1526 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1527 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
1528 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
1529 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1530
1531 value = tegra_sor_readl(sor, SOR_PLL2);
1532 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1533 tegra_sor_writel(sor, value, SOR_PLL2);
1534 usleep_range(20, 100);
1535
1536 value = tegra_sor_readl(sor, SOR_PLL3);
1537 value |= SOR_PLL3_PLL_VDD_MODE_3V3;
1538 tegra_sor_writel(sor, value, SOR_PLL3);
1539
1540 value = SOR_PLL0_ICHPMP(0xf) | SOR_PLL0_VCOCAP_RST |
1541 SOR_PLL0_PLLREG_LEVEL_V45 | SOR_PLL0_RESISTOR_EXT;
1542 tegra_sor_writel(sor, value, SOR_PLL0);
1543
1544 value = tegra_sor_readl(sor, SOR_PLL2);
1545 value |= SOR_PLL2_SEQ_PLLCAPPD;
1546 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1547 value |= SOR_PLL2_LVDS_ENABLE;
1548 tegra_sor_writel(sor, value, SOR_PLL2);
1549
1550 value = SOR_PLL1_TERM_COMPOUT | SOR_PLL1_TMDS_TERM;
1551 tegra_sor_writel(sor, value, SOR_PLL1);
1552
1553 while (true) {
1554 value = tegra_sor_readl(sor, SOR_PLL2);
1555 if ((value & SOR_PLL2_SEQ_PLLCAPPD_ENFORCE) == 0)
1556 break;
1557
1558 usleep_range(250, 1000);
1559 }
1560
1561 value = tegra_sor_readl(sor, SOR_PLL2);
1562 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
1563 value &= ~SOR_PLL2_PORT_POWERDOWN;
1564 tegra_sor_writel(sor, value, SOR_PLL2);
1565
1566 /*
1567 * power up
1568 */
1569
1570 /* set safe link bandwidth (1.62 Gbps) */
1571 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1572 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1573 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62;
1574 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1575
1576 /* step 1 */
1577 value = tegra_sor_readl(sor, SOR_PLL2);
1578 value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL2_PORT_POWERDOWN |
1579 SOR_PLL2_BANDGAP_POWERDOWN;
1580 tegra_sor_writel(sor, value, SOR_PLL2);
1581
1582 value = tegra_sor_readl(sor, SOR_PLL0);
1583 value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1584 tegra_sor_writel(sor, value, SOR_PLL0);
1585
1586 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
1587 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
1588 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
1589
1590 /* step 2 */
1591 err = tegra_io_rail_power_on(TEGRA_IO_RAIL_LVDS);
1592 if (err < 0)
1593 dev_err(sor->dev, "failed to power on I/O rail: %d\n", err);
1594
1595 usleep_range(5, 100);
1596
1597 /* step 3 */
1598 value = tegra_sor_readl(sor, SOR_PLL2);
1599 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
1600 tegra_sor_writel(sor, value, SOR_PLL2);
1601
1602 usleep_range(20, 100);
1603
1604 /* step 4 */
1605 value = tegra_sor_readl(sor, SOR_PLL0);
1606 value &= ~SOR_PLL0_VCOPD;
1607 value &= ~SOR_PLL0_PWR;
1608 tegra_sor_writel(sor, value, SOR_PLL0);
1609
1610 value = tegra_sor_readl(sor, SOR_PLL2);
1611 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1612 tegra_sor_writel(sor, value, SOR_PLL2);
1613
1614 usleep_range(200, 1000);
1615
1616 /* step 5 */
1617 value = tegra_sor_readl(sor, SOR_PLL2);
1618 value &= ~SOR_PLL2_PORT_POWERDOWN;
1619 tegra_sor_writel(sor, value, SOR_PLL2);
1620
1621 /* XXX not in TRM */
1622 for (value = 0, i = 0; i < 5; i++)
1623 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
1624 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
1625
1626 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
1627 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
1628
1629 /* switch to DP parent clock */
1630 err = tegra_sor_set_parent_clock(sor, sor->clk_dp);
1631 if (err < 0)
1632 dev_err(sor->dev, "failed to set parent clock: %d\n", err);
1633
1634 /* power DP lanes */
1635 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
1636
1637 if (link.num_lanes <= 2)
1638 value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2);
1639 else
1640 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2;
1641
1642 if (link.num_lanes <= 1)
1643 value &= ~SOR_DP_PADCTL_PD_TXD_1;
1644 else
1645 value |= SOR_DP_PADCTL_PD_TXD_1;
1646
1647 if (link.num_lanes == 0)
1648 value &= ~SOR_DP_PADCTL_PD_TXD_0;
1649 else
1650 value |= SOR_DP_PADCTL_PD_TXD_0;
1651
1652 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
1653
1654 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1655 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1656 value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes);
1657 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1658
1659 /* start lane sequencer */
1660 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
1661 SOR_LANE_SEQ_CTL_POWER_STATE_UP;
1662 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
1663
1664 while (true) {
1665 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
1666 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
1667 break;
1668
1669 usleep_range(250, 1000);
1670 }
1671
1672 /* set link bandwidth */
1673 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1674 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1675 value |= drm_dp_link_rate_to_bw_code(link.rate) << 2;
1676 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1677
1678 tegra_sor_apply_config(sor, &config);
1679
1680 /* enable link */
1681 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1682 value |= SOR_DP_LINKCTL_ENABLE;
1683 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1684 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1685
1686 for (i = 0, value = 0; i < 4; i++) {
1687 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1688 SOR_DP_TPG_SCRAMBLER_GALIOS |
1689 SOR_DP_TPG_PATTERN_NONE;
1690 value = (value << 8) | lane;
1691 }
1692
1693 tegra_sor_writel(sor, value, SOR_DP_TPG);
1694
1695 /* enable pad calibration logic */
1696 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
1697 value |= SOR_DP_PADCTL_PAD_CAL_PD;
1698 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
1699
1700 err = drm_dp_link_probe(sor->aux, &link);
1701 if (err < 0)
1702 dev_err(sor->dev, "failed to probe eDP link: %d\n", err);
1703
1704 err = drm_dp_link_power_up(sor->aux, &link);
1705 if (err < 0)
1706 dev_err(sor->dev, "failed to power up eDP link: %d\n", err);
1707
1708 err = drm_dp_link_configure(sor->aux, &link);
1709 if (err < 0)
1710 dev_err(sor->dev, "failed to configure eDP link: %d\n", err);
1711
1712 rate = drm_dp_link_rate_to_bw_code(link.rate);
1713 lanes = link.num_lanes;
1714
1715 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
1716 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
1717 value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
1718 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
1719
1720 value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1721 value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
1722 value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
1723
1724 if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
1725 value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
1726
1727 tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1728
1729 /* disable training pattern generator */
1730
1731 for (i = 0; i < link.num_lanes; i++) {
1732 unsigned long lane = SOR_DP_TPG_CHANNEL_CODING |
1733 SOR_DP_TPG_SCRAMBLER_GALIOS |
1734 SOR_DP_TPG_PATTERN_NONE;
1735 value = (value << 8) | lane;
1736 }
1737
1738 tegra_sor_writel(sor, value, SOR_DP_TPG);
1739
1740 err = tegra_sor_dp_train_fast(sor, &link);
1741 if (err < 0)
1742 dev_err(sor->dev, "DP fast link training failed: %d\n", err);
1743
1744 dev_dbg(sor->dev, "fast link training succeeded\n");
1745
1746 err = tegra_sor_power_up(sor, 250);
1747 if (err < 0)
1748 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
1749
1750 /* CSTM (LVDS, link A/B, upper) */
1751 value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
1752 SOR_CSTM_UPPER;
1753 tegra_sor_writel(sor, value, SOR_CSTM);
1754
1755 /* use DP-A protocol */
1756 value = tegra_sor_readl(sor, SOR_STATE1);
1757 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
1758 value |= SOR_STATE_ASY_PROTOCOL_DP_A;
1759 tegra_sor_writel(sor, value, SOR_STATE1);
1760
1761 tegra_sor_mode_set(sor, mode, state);
1762
1763 /* PWM setup */
1764 err = tegra_sor_setup_pwm(sor, 250);
1765 if (err < 0)
1766 dev_err(sor->dev, "failed to setup PWM: %d\n", err);
1767
1768 tegra_sor_update(sor);
1769
1770 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1771 value |= SOR_ENABLE;
1772 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1773
1774 tegra_dc_commit(dc);
1775
1776 err = tegra_sor_attach(sor);
1777 if (err < 0)
1778 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
1779
1780 err = tegra_sor_wakeup(sor);
1781 if (err < 0)
1782 dev_err(sor->dev, "failed to enable DC: %d\n", err);
1783
1784 if (output->panel)
1785 drm_panel_enable(output->panel);
1786 }
1787
1788 static int
tegra_sor_encoder_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1789 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1790 struct drm_crtc_state *crtc_state,
1791 struct drm_connector_state *conn_state)
1792 {
1793 struct tegra_output *output = encoder_to_output(encoder);
1794 struct tegra_sor_state *state = to_sor_state(conn_state);
1795 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1796 unsigned long pclk = crtc_state->mode.clock * 1000;
1797 struct tegra_sor *sor = to_sor(output);
1798 struct drm_display_info *info;
1799 int err;
1800
1801 info = &output->connector.display_info;
1802
1803 err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1804 pclk, 0);
1805 if (err < 0) {
1806 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1807 return err;
1808 }
1809
1810 switch (info->bpc) {
1811 case 8:
1812 case 6:
1813 state->bpc = info->bpc;
1814 break;
1815
1816 default:
1817 DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1818 state->bpc = 8;
1819 break;
1820 }
1821
1822 return 0;
1823 }
1824
1825 static const struct drm_encoder_helper_funcs tegra_sor_edp_helpers = {
1826 .disable = tegra_sor_edp_disable,
1827 .enable = tegra_sor_edp_enable,
1828 .atomic_check = tegra_sor_encoder_atomic_check,
1829 };
1830
tegra_sor_hdmi_subpack(const u8 * ptr,size_t size)1831 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1832 {
1833 u32 value = 0;
1834 size_t i;
1835
1836 for (i = size; i > 0; i--)
1837 value = (value << 8) | ptr[i - 1];
1838
1839 return value;
1840 }
1841
tegra_sor_hdmi_write_infopack(struct tegra_sor * sor,const void * data,size_t size)1842 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1843 const void *data, size_t size)
1844 {
1845 const u8 *ptr = data;
1846 unsigned long offset;
1847 size_t i, j;
1848 u32 value;
1849
1850 switch (ptr[0]) {
1851 case HDMI_INFOFRAME_TYPE_AVI:
1852 offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1853 break;
1854
1855 case HDMI_INFOFRAME_TYPE_AUDIO:
1856 offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1857 break;
1858
1859 case HDMI_INFOFRAME_TYPE_VENDOR:
1860 offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1861 break;
1862
1863 default:
1864 dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1865 ptr[0]);
1866 return;
1867 }
1868
1869 value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1870 INFOFRAME_HEADER_VERSION(ptr[1]) |
1871 INFOFRAME_HEADER_LEN(ptr[2]);
1872 tegra_sor_writel(sor, value, offset);
1873 offset++;
1874
1875 /*
1876 * Each subpack contains 7 bytes, divided into:
1877 * - subpack_low: bytes 0 - 3
1878 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1879 */
1880 for (i = 3, j = 0; i < size; i += 7, j += 8) {
1881 size_t rem = size - i, num = min_t(size_t, rem, 4);
1882
1883 value = tegra_sor_hdmi_subpack(&ptr[i], num);
1884 tegra_sor_writel(sor, value, offset++);
1885
1886 num = min_t(size_t, rem - num, 3);
1887
1888 value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1889 tegra_sor_writel(sor, value, offset++);
1890 }
1891 }
1892
1893 static int
tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor * sor,const struct drm_display_mode * mode)1894 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1895 const struct drm_display_mode *mode)
1896 {
1897 u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1898 struct hdmi_avi_infoframe frame;
1899 u32 value;
1900 int err;
1901
1902 /* disable AVI infoframe */
1903 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1904 value &= ~INFOFRAME_CTRL_SINGLE;
1905 value &= ~INFOFRAME_CTRL_OTHER;
1906 value &= ~INFOFRAME_CTRL_ENABLE;
1907 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1908
1909 err = drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
1910 if (err < 0) {
1911 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1912 return err;
1913 }
1914
1915 err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1916 if (err < 0) {
1917 dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1918 return err;
1919 }
1920
1921 tegra_sor_hdmi_write_infopack(sor, buffer, err);
1922
1923 /* enable AVI infoframe */
1924 value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1925 value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1926 value |= INFOFRAME_CTRL_ENABLE;
1927 tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1928
1929 return 0;
1930 }
1931
tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor * sor)1932 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
1933 {
1934 u32 value;
1935
1936 value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
1937 value &= ~INFOFRAME_CTRL_ENABLE;
1938 tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
1939 }
1940
1941 static struct tegra_sor_hdmi_settings *
tegra_sor_hdmi_find_settings(struct tegra_sor * sor,unsigned long frequency)1942 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
1943 {
1944 unsigned int i;
1945
1946 for (i = 0; i < sor->num_settings; i++)
1947 if (frequency <= sor->settings[i].frequency)
1948 return &sor->settings[i];
1949
1950 return NULL;
1951 }
1952
tegra_sor_hdmi_disable(struct drm_encoder * encoder)1953 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
1954 {
1955 struct tegra_output *output = encoder_to_output(encoder);
1956 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1957 struct tegra_sor *sor = to_sor(output);
1958 u32 value;
1959 int err;
1960
1961 err = tegra_sor_detach(sor);
1962 if (err < 0)
1963 dev_err(sor->dev, "failed to detach SOR: %d\n", err);
1964
1965 tegra_sor_writel(sor, 0, SOR_STATE1);
1966 tegra_sor_update(sor);
1967
1968 /* disable display to SOR clock */
1969 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1970 value &= ~SOR1_TIMING_CYA;
1971 value &= ~SOR1_ENABLE;
1972 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1973
1974 tegra_dc_commit(dc);
1975
1976 err = tegra_sor_power_down(sor);
1977 if (err < 0)
1978 dev_err(sor->dev, "failed to power down SOR: %d\n", err);
1979
1980 err = tegra_io_rail_power_off(TEGRA_IO_RAIL_HDMI);
1981 if (err < 0)
1982 dev_err(sor->dev, "failed to power off HDMI rail: %d\n", err);
1983
1984 pm_runtime_put(sor->dev);
1985 }
1986
tegra_sor_hdmi_enable(struct drm_encoder * encoder)1987 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
1988 {
1989 struct tegra_output *output = encoder_to_output(encoder);
1990 unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
1991 struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
1992 struct tegra_sor_hdmi_settings *settings;
1993 struct tegra_sor *sor = to_sor(output);
1994 struct tegra_sor_state *state;
1995 struct drm_display_mode *mode;
1996 unsigned int div, i;
1997 u32 value;
1998 int err;
1999
2000 state = to_sor_state(output->connector.state);
2001 mode = &encoder->crtc->state->adjusted_mode;
2002
2003 pm_runtime_get_sync(sor->dev);
2004
2005 /* switch to safe parent clock */
2006 err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2007 if (err < 0)
2008 dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2009
2010 div = clk_get_rate(sor->clk) / 1000000 * 4;
2011
2012 err = tegra_io_rail_power_on(TEGRA_IO_RAIL_HDMI);
2013 if (err < 0)
2014 dev_err(sor->dev, "failed to power on HDMI rail: %d\n", err);
2015
2016 usleep_range(20, 100);
2017
2018 value = tegra_sor_readl(sor, SOR_PLL2);
2019 value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2020 tegra_sor_writel(sor, value, SOR_PLL2);
2021
2022 usleep_range(20, 100);
2023
2024 value = tegra_sor_readl(sor, SOR_PLL3);
2025 value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2026 tegra_sor_writel(sor, value, SOR_PLL3);
2027
2028 value = tegra_sor_readl(sor, SOR_PLL0);
2029 value &= ~SOR_PLL0_VCOPD;
2030 value &= ~SOR_PLL0_PWR;
2031 tegra_sor_writel(sor, value, SOR_PLL0);
2032
2033 value = tegra_sor_readl(sor, SOR_PLL2);
2034 value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2035 tegra_sor_writel(sor, value, SOR_PLL2);
2036
2037 usleep_range(200, 400);
2038
2039 value = tegra_sor_readl(sor, SOR_PLL2);
2040 value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2041 value &= ~SOR_PLL2_PORT_POWERDOWN;
2042 tegra_sor_writel(sor, value, SOR_PLL2);
2043
2044 usleep_range(20, 100);
2045
2046 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
2047 value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2048 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2049 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
2050
2051 while (true) {
2052 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2053 if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2054 break;
2055
2056 usleep_range(250, 1000);
2057 }
2058
2059 value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2060 SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2061 tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2062
2063 while (true) {
2064 value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2065 if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2066 break;
2067
2068 usleep_range(250, 1000);
2069 }
2070
2071 value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2072 value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2073 value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2074
2075 if (mode->clock < 340000)
2076 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2077 else
2078 value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2079
2080 value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2081 tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2082
2083 value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2084 value |= SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2085 value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2086 value |= SOR_DP_SPARE_SEQ_ENABLE;
2087 tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2088
2089 value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2090 SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2091 tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2092
2093 value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2094 SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2095 tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2096 tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2097
2098 /* program the reference clock */
2099 value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2100 tegra_sor_writel(sor, value, SOR_REFCLK);
2101
2102 /* XXX not in TRM */
2103 for (value = 0, i = 0; i < 5; i++)
2104 value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2105 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2106
2107 tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2108 tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2109
2110 /* switch to parent clock */
2111 err = clk_set_parent(sor->clk_src, sor->clk_parent);
2112 if (err < 0)
2113 dev_err(sor->dev, "failed to set source clock: %d\n", err);
2114
2115 err = tegra_sor_set_parent_clock(sor, sor->clk_src);
2116 if (err < 0)
2117 dev_err(sor->dev, "failed to set parent clock: %d\n", err);
2118
2119 value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2120
2121 /* XXX is this the proper check? */
2122 if (mode->clock < 75000)
2123 value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2124
2125 tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2126
2127 max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2128
2129 value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2130 SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2131 tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2132
2133 /* H_PULSE2 setup */
2134 pulse_start = h_ref_to_sync + (mode->hsync_end - mode->hsync_start) +
2135 (mode->htotal - mode->hsync_end) - 10;
2136
2137 value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2138 PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2139 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2140
2141 value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2142 tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2143
2144 value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2145 value |= H_PULSE2_ENABLE;
2146 tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2147
2148 /* infoframe setup */
2149 err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2150 if (err < 0)
2151 dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2152
2153 /* XXX HDMI audio support not implemented yet */
2154 tegra_sor_hdmi_disable_audio_infoframe(sor);
2155
2156 /* use single TMDS protocol */
2157 value = tegra_sor_readl(sor, SOR_STATE1);
2158 value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2159 value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2160 tegra_sor_writel(sor, value, SOR_STATE1);
2161
2162 /* power up pad calibration */
2163 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
2164 value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2165 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
2166
2167 /* production settings */
2168 settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2169 if (!settings) {
2170 dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2171 mode->clock * 1000);
2172 return;
2173 }
2174
2175 value = tegra_sor_readl(sor, SOR_PLL0);
2176 value &= ~SOR_PLL0_ICHPMP_MASK;
2177 value &= ~SOR_PLL0_VCOCAP_MASK;
2178 value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2179 value |= SOR_PLL0_VCOCAP(settings->vcocap);
2180 tegra_sor_writel(sor, value, SOR_PLL0);
2181
2182 tegra_sor_dp_term_calibrate(sor);
2183
2184 value = tegra_sor_readl(sor, SOR_PLL1);
2185 value &= ~SOR_PLL1_LOADADJ_MASK;
2186 value |= SOR_PLL1_LOADADJ(settings->loadadj);
2187 tegra_sor_writel(sor, value, SOR_PLL1);
2188
2189 value = tegra_sor_readl(sor, SOR_PLL3);
2190 value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2191 value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref);
2192 tegra_sor_writel(sor, value, SOR_PLL3);
2193
2194 value = settings->drive_current[0] << 24 |
2195 settings->drive_current[1] << 16 |
2196 settings->drive_current[2] << 8 |
2197 settings->drive_current[3] << 0;
2198 tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2199
2200 value = settings->preemphasis[0] << 24 |
2201 settings->preemphasis[1] << 16 |
2202 settings->preemphasis[2] << 8 |
2203 settings->preemphasis[3] << 0;
2204 tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2205
2206 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
2207 value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2208 value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2209 value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu);
2210 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
2211
2212 /* power down pad calibration */
2213 value = tegra_sor_readl(sor, SOR_DP_PADCTL0);
2214 value |= SOR_DP_PADCTL_PAD_CAL_PD;
2215 tegra_sor_writel(sor, value, SOR_DP_PADCTL0);
2216
2217 /* miscellaneous display controller settings */
2218 value = VSYNC_H_POSITION(1);
2219 tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2220
2221 value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2222 value &= ~DITHER_CONTROL_MASK;
2223 value &= ~BASE_COLOR_SIZE_MASK;
2224
2225 switch (state->bpc) {
2226 case 6:
2227 value |= BASE_COLOR_SIZE_666;
2228 break;
2229
2230 case 8:
2231 value |= BASE_COLOR_SIZE_888;
2232 break;
2233
2234 default:
2235 WARN(1, "%u bits-per-color not supported\n", state->bpc);
2236 value |= BASE_COLOR_SIZE_888;
2237 break;
2238 }
2239
2240 tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2241
2242 err = tegra_sor_power_up(sor, 250);
2243 if (err < 0)
2244 dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2245
2246 /* configure dynamic range of output */
2247 value = tegra_sor_readl(sor, SOR_HEAD_STATE0(dc->pipe));
2248 value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2249 value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2250 tegra_sor_writel(sor, value, SOR_HEAD_STATE0(dc->pipe));
2251
2252 /* configure colorspace */
2253 value = tegra_sor_readl(sor, SOR_HEAD_STATE0(dc->pipe));
2254 value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2255 value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2256 tegra_sor_writel(sor, value, SOR_HEAD_STATE0(dc->pipe));
2257
2258 tegra_sor_mode_set(sor, mode, state);
2259
2260 tegra_sor_update(sor);
2261
2262 err = tegra_sor_attach(sor);
2263 if (err < 0)
2264 dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2265
2266 /* enable display to SOR clock and generate HDMI preamble */
2267 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2268 value |= SOR1_ENABLE | SOR1_TIMING_CYA;
2269 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2270
2271 tegra_dc_commit(dc);
2272
2273 err = tegra_sor_wakeup(sor);
2274 if (err < 0)
2275 dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2276 }
2277
2278 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2279 .disable = tegra_sor_hdmi_disable,
2280 .enable = tegra_sor_hdmi_enable,
2281 .atomic_check = tegra_sor_encoder_atomic_check,
2282 };
2283
tegra_sor_init(struct host1x_client * client)2284 static int tegra_sor_init(struct host1x_client *client)
2285 {
2286 struct drm_device *drm = dev_get_drvdata(client->parent);
2287 const struct drm_encoder_helper_funcs *helpers = NULL;
2288 struct tegra_sor *sor = host1x_client_to_sor(client);
2289 int connector = DRM_MODE_CONNECTOR_Unknown;
2290 int encoder = DRM_MODE_ENCODER_NONE;
2291 int err;
2292
2293 if (!sor->aux) {
2294 if (sor->soc->supports_hdmi) {
2295 connector = DRM_MODE_CONNECTOR_HDMIA;
2296 encoder = DRM_MODE_ENCODER_TMDS;
2297 helpers = &tegra_sor_hdmi_helpers;
2298 } else if (sor->soc->supports_lvds) {
2299 connector = DRM_MODE_CONNECTOR_LVDS;
2300 encoder = DRM_MODE_ENCODER_LVDS;
2301 }
2302 } else {
2303 if (sor->soc->supports_edp) {
2304 connector = DRM_MODE_CONNECTOR_eDP;
2305 encoder = DRM_MODE_ENCODER_TMDS;
2306 helpers = &tegra_sor_edp_helpers;
2307 } else if (sor->soc->supports_dp) {
2308 connector = DRM_MODE_CONNECTOR_DisplayPort;
2309 encoder = DRM_MODE_ENCODER_TMDS;
2310 }
2311 }
2312
2313 sor->output.dev = sor->dev;
2314
2315 drm_connector_init(drm, &sor->output.connector,
2316 &tegra_sor_connector_funcs,
2317 connector);
2318 drm_connector_helper_add(&sor->output.connector,
2319 &tegra_sor_connector_helper_funcs);
2320 sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
2321
2322 drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs,
2323 encoder, NULL);
2324 drm_encoder_helper_add(&sor->output.encoder, helpers);
2325
2326 drm_mode_connector_attach_encoder(&sor->output.connector,
2327 &sor->output.encoder);
2328 drm_connector_register(&sor->output.connector);
2329
2330 err = tegra_output_init(drm, &sor->output);
2331 if (err < 0) {
2332 dev_err(client->dev, "failed to initialize output: %d\n", err);
2333 return err;
2334 }
2335
2336 sor->output.encoder.possible_crtcs = 0x3;
2337
2338 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
2339 err = tegra_sor_debugfs_init(sor, drm->primary);
2340 if (err < 0)
2341 dev_err(sor->dev, "debugfs setup failed: %d\n", err);
2342 }
2343
2344 if (sor->aux) {
2345 err = drm_dp_aux_attach(sor->aux, &sor->output);
2346 if (err < 0) {
2347 dev_err(sor->dev, "failed to attach DP: %d\n", err);
2348 return err;
2349 }
2350 }
2351
2352 /*
2353 * XXX: Remove this reset once proper hand-over from firmware to
2354 * kernel is possible.
2355 */
2356 if (sor->rst) {
2357 err = reset_control_assert(sor->rst);
2358 if (err < 0) {
2359 dev_err(sor->dev, "failed to assert SOR reset: %d\n",
2360 err);
2361 return err;
2362 }
2363 }
2364
2365 err = clk_prepare_enable(sor->clk);
2366 if (err < 0) {
2367 dev_err(sor->dev, "failed to enable clock: %d\n", err);
2368 return err;
2369 }
2370
2371 usleep_range(1000, 3000);
2372
2373 if (sor->rst) {
2374 err = reset_control_deassert(sor->rst);
2375 if (err < 0) {
2376 dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
2377 err);
2378 return err;
2379 }
2380 }
2381
2382 err = clk_prepare_enable(sor->clk_safe);
2383 if (err < 0)
2384 return err;
2385
2386 err = clk_prepare_enable(sor->clk_dp);
2387 if (err < 0)
2388 return err;
2389
2390 return 0;
2391 }
2392
tegra_sor_exit(struct host1x_client * client)2393 static int tegra_sor_exit(struct host1x_client *client)
2394 {
2395 struct tegra_sor *sor = host1x_client_to_sor(client);
2396 int err;
2397
2398 tegra_output_exit(&sor->output);
2399
2400 if (sor->aux) {
2401 err = drm_dp_aux_detach(sor->aux);
2402 if (err < 0) {
2403 dev_err(sor->dev, "failed to detach DP: %d\n", err);
2404 return err;
2405 }
2406 }
2407
2408 clk_disable_unprepare(sor->clk_safe);
2409 clk_disable_unprepare(sor->clk_dp);
2410 clk_disable_unprepare(sor->clk);
2411
2412 if (IS_ENABLED(CONFIG_DEBUG_FS))
2413 tegra_sor_debugfs_exit(sor);
2414
2415 return 0;
2416 }
2417
2418 static const struct host1x_client_ops sor_client_ops = {
2419 .init = tegra_sor_init,
2420 .exit = tegra_sor_exit,
2421 };
2422
2423 static const struct tegra_sor_ops tegra_sor_edp_ops = {
2424 .name = "eDP",
2425 };
2426
tegra_sor_hdmi_probe(struct tegra_sor * sor)2427 static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2428 {
2429 int err;
2430
2431 sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io");
2432 if (IS_ERR(sor->avdd_io_supply)) {
2433 dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2434 PTR_ERR(sor->avdd_io_supply));
2435 return PTR_ERR(sor->avdd_io_supply);
2436 }
2437
2438 err = regulator_enable(sor->avdd_io_supply);
2439 if (err < 0) {
2440 dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2441 err);
2442 return err;
2443 }
2444
2445 sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll");
2446 if (IS_ERR(sor->vdd_pll_supply)) {
2447 dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2448 PTR_ERR(sor->vdd_pll_supply));
2449 return PTR_ERR(sor->vdd_pll_supply);
2450 }
2451
2452 err = regulator_enable(sor->vdd_pll_supply);
2453 if (err < 0) {
2454 dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2455 err);
2456 return err;
2457 }
2458
2459 sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2460 if (IS_ERR(sor->hdmi_supply)) {
2461 dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2462 PTR_ERR(sor->hdmi_supply));
2463 return PTR_ERR(sor->hdmi_supply);
2464 }
2465
2466 err = regulator_enable(sor->hdmi_supply);
2467 if (err < 0) {
2468 dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2469 return err;
2470 }
2471
2472 return 0;
2473 }
2474
tegra_sor_hdmi_remove(struct tegra_sor * sor)2475 static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
2476 {
2477 regulator_disable(sor->hdmi_supply);
2478 regulator_disable(sor->vdd_pll_supply);
2479 regulator_disable(sor->avdd_io_supply);
2480
2481 return 0;
2482 }
2483
2484 static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
2485 .name = "HDMI",
2486 .probe = tegra_sor_hdmi_probe,
2487 .remove = tegra_sor_hdmi_remove,
2488 };
2489
2490 static const u8 tegra124_sor_xbar_cfg[5] = {
2491 0, 1, 2, 3, 4
2492 };
2493
2494 static const struct tegra_sor_soc tegra124_sor = {
2495 .supports_edp = true,
2496 .supports_lvds = true,
2497 .supports_hdmi = false,
2498 .supports_dp = false,
2499 .xbar_cfg = tegra124_sor_xbar_cfg,
2500 };
2501
2502 static const struct tegra_sor_soc tegra210_sor = {
2503 .supports_edp = true,
2504 .supports_lvds = false,
2505 .supports_hdmi = false,
2506 .supports_dp = false,
2507 .xbar_cfg = tegra124_sor_xbar_cfg,
2508 };
2509
2510 static const u8 tegra210_sor_xbar_cfg[5] = {
2511 2, 1, 0, 3, 4
2512 };
2513
2514 static const struct tegra_sor_soc tegra210_sor1 = {
2515 .supports_edp = false,
2516 .supports_lvds = false,
2517 .supports_hdmi = true,
2518 .supports_dp = true,
2519
2520 .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
2521 .settings = tegra210_sor_hdmi_defaults,
2522
2523 .xbar_cfg = tegra210_sor_xbar_cfg,
2524 };
2525
2526 static const struct of_device_id tegra_sor_of_match[] = {
2527 { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
2528 { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
2529 { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
2530 { },
2531 };
2532 MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
2533
tegra_sor_probe(struct platform_device * pdev)2534 static int tegra_sor_probe(struct platform_device *pdev)
2535 {
2536 const struct of_device_id *match;
2537 struct device_node *np;
2538 struct tegra_sor *sor;
2539 struct resource *regs;
2540 int err;
2541
2542 match = of_match_device(tegra_sor_of_match, &pdev->dev);
2543
2544 sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
2545 if (!sor)
2546 return -ENOMEM;
2547
2548 sor->output.dev = sor->dev = &pdev->dev;
2549 sor->soc = match->data;
2550
2551 sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
2552 sor->soc->num_settings *
2553 sizeof(*sor->settings),
2554 GFP_KERNEL);
2555 if (!sor->settings)
2556 return -ENOMEM;
2557
2558 sor->num_settings = sor->soc->num_settings;
2559
2560 np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
2561 if (np) {
2562 sor->aux = drm_dp_aux_find_by_of_node(np);
2563 of_node_put(np);
2564
2565 if (!sor->aux)
2566 return -EPROBE_DEFER;
2567 }
2568
2569 if (!sor->aux) {
2570 if (sor->soc->supports_hdmi) {
2571 sor->ops = &tegra_sor_hdmi_ops;
2572 } else if (sor->soc->supports_lvds) {
2573 dev_err(&pdev->dev, "LVDS not supported yet\n");
2574 return -ENODEV;
2575 } else {
2576 dev_err(&pdev->dev, "unknown (non-DP) support\n");
2577 return -ENODEV;
2578 }
2579 } else {
2580 if (sor->soc->supports_edp) {
2581 sor->ops = &tegra_sor_edp_ops;
2582 } else if (sor->soc->supports_dp) {
2583 dev_err(&pdev->dev, "DisplayPort not supported yet\n");
2584 return -ENODEV;
2585 } else {
2586 dev_err(&pdev->dev, "unknown (DP) support\n");
2587 return -ENODEV;
2588 }
2589 }
2590
2591 err = tegra_output_probe(&sor->output);
2592 if (err < 0) {
2593 dev_err(&pdev->dev, "failed to probe output: %d\n", err);
2594 return err;
2595 }
2596
2597 if (sor->ops && sor->ops->probe) {
2598 err = sor->ops->probe(sor);
2599 if (err < 0) {
2600 dev_err(&pdev->dev, "failed to probe %s: %d\n",
2601 sor->ops->name, err);
2602 goto output;
2603 }
2604 }
2605
2606 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2607 sor->regs = devm_ioremap_resource(&pdev->dev, regs);
2608 if (IS_ERR(sor->regs)) {
2609 err = PTR_ERR(sor->regs);
2610 goto remove;
2611 }
2612
2613 if (!pdev->dev.pm_domain) {
2614 sor->rst = devm_reset_control_get(&pdev->dev, "sor");
2615 if (IS_ERR(sor->rst)) {
2616 err = PTR_ERR(sor->rst);
2617 dev_err(&pdev->dev, "failed to get reset control: %d\n",
2618 err);
2619 goto remove;
2620 }
2621 }
2622
2623 sor->clk = devm_clk_get(&pdev->dev, NULL);
2624 if (IS_ERR(sor->clk)) {
2625 err = PTR_ERR(sor->clk);
2626 dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
2627 goto remove;
2628 }
2629
2630 if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
2631 sor->clk_src = devm_clk_get(&pdev->dev, "source");
2632 if (IS_ERR(sor->clk_src)) {
2633 err = PTR_ERR(sor->clk_src);
2634 dev_err(sor->dev, "failed to get source clock: %d\n",
2635 err);
2636 goto remove;
2637 }
2638 }
2639
2640 sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
2641 if (IS_ERR(sor->clk_parent)) {
2642 err = PTR_ERR(sor->clk_parent);
2643 dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
2644 goto remove;
2645 }
2646
2647 sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
2648 if (IS_ERR(sor->clk_safe)) {
2649 err = PTR_ERR(sor->clk_safe);
2650 dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
2651 goto remove;
2652 }
2653
2654 sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
2655 if (IS_ERR(sor->clk_dp)) {
2656 err = PTR_ERR(sor->clk_dp);
2657 dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
2658 goto remove;
2659 }
2660
2661 platform_set_drvdata(pdev, sor);
2662 pm_runtime_enable(&pdev->dev);
2663
2664 pm_runtime_get_sync(&pdev->dev);
2665 sor->clk_brick = tegra_clk_sor_brick_register(sor, "sor1_brick");
2666 pm_runtime_put(&pdev->dev);
2667
2668 if (IS_ERR(sor->clk_brick)) {
2669 err = PTR_ERR(sor->clk_brick);
2670 dev_err(&pdev->dev, "failed to register SOR clock: %d\n", err);
2671 goto remove;
2672 }
2673
2674 INIT_LIST_HEAD(&sor->client.list);
2675 sor->client.ops = &sor_client_ops;
2676 sor->client.dev = &pdev->dev;
2677
2678 err = host1x_client_register(&sor->client);
2679 if (err < 0) {
2680 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2681 err);
2682 goto remove;
2683 }
2684
2685 return 0;
2686
2687 remove:
2688 if (sor->ops && sor->ops->remove)
2689 sor->ops->remove(sor);
2690 output:
2691 tegra_output_remove(&sor->output);
2692 return err;
2693 }
2694
tegra_sor_remove(struct platform_device * pdev)2695 static int tegra_sor_remove(struct platform_device *pdev)
2696 {
2697 struct tegra_sor *sor = platform_get_drvdata(pdev);
2698 int err;
2699
2700 pm_runtime_disable(&pdev->dev);
2701
2702 err = host1x_client_unregister(&sor->client);
2703 if (err < 0) {
2704 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2705 err);
2706 return err;
2707 }
2708
2709 if (sor->ops && sor->ops->remove) {
2710 err = sor->ops->remove(sor);
2711 if (err < 0)
2712 dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
2713 }
2714
2715 tegra_output_remove(&sor->output);
2716
2717 return 0;
2718 }
2719
2720 #ifdef CONFIG_PM
tegra_sor_suspend(struct device * dev)2721 static int tegra_sor_suspend(struct device *dev)
2722 {
2723 struct tegra_sor *sor = dev_get_drvdata(dev);
2724 int err;
2725
2726 if (sor->rst) {
2727 err = reset_control_assert(sor->rst);
2728 if (err < 0) {
2729 dev_err(dev, "failed to assert reset: %d\n", err);
2730 return err;
2731 }
2732 }
2733
2734 usleep_range(1000, 2000);
2735
2736 clk_disable_unprepare(sor->clk);
2737
2738 return 0;
2739 }
2740
tegra_sor_resume(struct device * dev)2741 static int tegra_sor_resume(struct device *dev)
2742 {
2743 struct tegra_sor *sor = dev_get_drvdata(dev);
2744 int err;
2745
2746 err = clk_prepare_enable(sor->clk);
2747 if (err < 0) {
2748 dev_err(dev, "failed to enable clock: %d\n", err);
2749 return err;
2750 }
2751
2752 usleep_range(1000, 2000);
2753
2754 if (sor->rst) {
2755 err = reset_control_deassert(sor->rst);
2756 if (err < 0) {
2757 dev_err(dev, "failed to deassert reset: %d\n", err);
2758 clk_disable_unprepare(sor->clk);
2759 return err;
2760 }
2761 }
2762
2763 return 0;
2764 }
2765 #endif
2766
2767 static const struct dev_pm_ops tegra_sor_pm_ops = {
2768 SET_RUNTIME_PM_OPS(tegra_sor_suspend, tegra_sor_resume, NULL)
2769 };
2770
2771 struct platform_driver tegra_sor_driver = {
2772 .driver = {
2773 .name = "tegra-sor",
2774 .of_match_table = tegra_sor_of_match,
2775 .pm = &tegra_sor_pm_ops,
2776 },
2777 .probe = tegra_sor_probe,
2778 .remove = tegra_sor_remove,
2779 };
2780