• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52 
53 struct tid_group {
54 	struct list_head list;
55 	unsigned base;
56 	u8 size;
57 	u8 used;
58 	u8 map;
59 };
60 
61 struct tid_rb_node {
62 	struct mmu_rb_node mmu;
63 	unsigned long phys;
64 	struct tid_group *grp;
65 	u32 rcventry;
66 	dma_addr_t dma_addr;
67 	bool freed;
68 	unsigned npages;
69 	struct page *pages[0];
70 };
71 
72 struct tid_pageset {
73 	u16 idx;
74 	u16 count;
75 };
76 
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78 
79 #define num_user_pages(vaddr, len)				       \
80 	(1 + (((((unsigned long)(vaddr) +			       \
81 		 (unsigned long)(len) - 1) & PAGE_MASK) -	       \
82 	       ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83 
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 			    struct hfi1_filedata *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 			      struct tid_group *, struct page **, unsigned);
89 static int tid_rb_insert(void *, struct mmu_rb_node *);
90 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
91 				    struct tid_rb_node *tnode);
92 static void tid_rb_remove(void *, struct mmu_rb_node *);
93 static int tid_rb_invalidate(void *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95 			    struct tid_pageset *, unsigned, u16, struct page **,
96 			    u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
99 
100 static struct mmu_rb_ops tid_rb_ops = {
101 	.insert = tid_rb_insert,
102 	.remove = tid_rb_remove,
103 	.invalidate = tid_rb_invalidate
104 };
105 
rcventry2tidinfo(u32 rcventry)106 static inline u32 rcventry2tidinfo(u32 rcventry)
107 {
108 	u32 pair = rcventry & ~0x1;
109 
110 	return EXP_TID_SET(IDX, pair >> 1) |
111 		EXP_TID_SET(CTRL, 1 << (rcventry - pair));
112 }
113 
exp_tid_group_init(struct exp_tid_set * set)114 static inline void exp_tid_group_init(struct exp_tid_set *set)
115 {
116 	INIT_LIST_HEAD(&set->list);
117 	set->count = 0;
118 }
119 
tid_group_remove(struct tid_group * grp,struct exp_tid_set * set)120 static inline void tid_group_remove(struct tid_group *grp,
121 				    struct exp_tid_set *set)
122 {
123 	list_del_init(&grp->list);
124 	set->count--;
125 }
126 
tid_group_add_tail(struct tid_group * grp,struct exp_tid_set * set)127 static inline void tid_group_add_tail(struct tid_group *grp,
128 				      struct exp_tid_set *set)
129 {
130 	list_add_tail(&grp->list, &set->list);
131 	set->count++;
132 }
133 
tid_group_pop(struct exp_tid_set * set)134 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
135 {
136 	struct tid_group *grp =
137 		list_first_entry(&set->list, struct tid_group, list);
138 	list_del_init(&grp->list);
139 	set->count--;
140 	return grp;
141 }
142 
tid_group_move(struct tid_group * group,struct exp_tid_set * s1,struct exp_tid_set * s2)143 static inline void tid_group_move(struct tid_group *group,
144 				  struct exp_tid_set *s1,
145 				  struct exp_tid_set *s2)
146 {
147 	tid_group_remove(group, s1);
148 	tid_group_add_tail(group, s2);
149 }
150 
151 /*
152  * Initialize context and file private data needed for Expected
153  * receive caching. This needs to be done after the context has
154  * been configured with the eager/expected RcvEntry counts.
155  */
hfi1_user_exp_rcv_init(struct file * fp)156 int hfi1_user_exp_rcv_init(struct file *fp)
157 {
158 	struct hfi1_filedata *fd = fp->private_data;
159 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
160 	struct hfi1_devdata *dd = uctxt->dd;
161 	unsigned tidbase;
162 	int i, ret = 0;
163 
164 	spin_lock_init(&fd->tid_lock);
165 	spin_lock_init(&fd->invalid_lock);
166 
167 	if (!uctxt->subctxt_cnt || !fd->subctxt) {
168 		exp_tid_group_init(&uctxt->tid_group_list);
169 		exp_tid_group_init(&uctxt->tid_used_list);
170 		exp_tid_group_init(&uctxt->tid_full_list);
171 
172 		tidbase = uctxt->expected_base;
173 		for (i = 0; i < uctxt->expected_count /
174 			     dd->rcv_entries.group_size; i++) {
175 			struct tid_group *grp;
176 
177 			grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178 			if (!grp) {
179 				/*
180 				 * If we fail here, the groups already
181 				 * allocated will be freed by the close
182 				 * call.
183 				 */
184 				ret = -ENOMEM;
185 				goto done;
186 			}
187 			grp->size = dd->rcv_entries.group_size;
188 			grp->base = tidbase;
189 			tid_group_add_tail(grp, &uctxt->tid_group_list);
190 			tidbase += dd->rcv_entries.group_size;
191 		}
192 	}
193 
194 	fd->entry_to_rb = kcalloc(uctxt->expected_count,
195 				     sizeof(struct rb_node *),
196 				     GFP_KERNEL);
197 	if (!fd->entry_to_rb)
198 		return -ENOMEM;
199 
200 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
201 		fd->invalid_tid_idx = 0;
202 		fd->invalid_tids = kzalloc(uctxt->expected_count *
203 					   sizeof(u32), GFP_KERNEL);
204 		if (!fd->invalid_tids) {
205 			ret = -ENOMEM;
206 			goto done;
207 		}
208 
209 		/*
210 		 * Register MMU notifier callbacks. If the registration
211 		 * fails, continue without TID caching for this context.
212 		 */
213 		ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
214 					   dd->pport->hfi1_wq,
215 					   &fd->handler);
216 		if (ret) {
217 			dd_dev_info(dd,
218 				    "Failed MMU notifier registration %d\n",
219 				    ret);
220 			ret = 0;
221 		}
222 	}
223 
224 	/*
225 	 * PSM does not have a good way to separate, count, and
226 	 * effectively enforce a limit on RcvArray entries used by
227 	 * subctxts (when context sharing is used) when TID caching
228 	 * is enabled. To help with that, we calculate a per-process
229 	 * RcvArray entry share and enforce that.
230 	 * If TID caching is not in use, PSM deals with usage on its
231 	 * own. In that case, we allow any subctxt to take all of the
232 	 * entries.
233 	 *
234 	 * Make sure that we set the tid counts only after successful
235 	 * init.
236 	 */
237 	spin_lock(&fd->tid_lock);
238 	if (uctxt->subctxt_cnt && fd->handler) {
239 		u16 remainder;
240 
241 		fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242 		remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243 		if (remainder && fd->subctxt < remainder)
244 			fd->tid_limit++;
245 	} else {
246 		fd->tid_limit = uctxt->expected_count;
247 	}
248 	spin_unlock(&fd->tid_lock);
249 done:
250 	return ret;
251 }
252 
hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata * uctxt)253 void hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata *uctxt)
254 {
255 	struct tid_group *grp, *gptr;
256 
257 	list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
258 				 list) {
259 		list_del_init(&grp->list);
260 		kfree(grp);
261 	}
262 	hfi1_clear_tids(uctxt);
263 }
264 
hfi1_user_exp_rcv_free(struct hfi1_filedata * fd)265 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
266 {
267 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
268 
269 	/*
270 	 * The notifier would have been removed when the process'es mm
271 	 * was freed.
272 	 */
273 	if (fd->handler) {
274 		hfi1_mmu_rb_unregister(fd->handler);
275 	} else {
276 		if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
277 			unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
278 		if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
279 			unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
280 	}
281 
282 	kfree(fd->invalid_tids);
283 	fd->invalid_tids = NULL;
284 
285 	kfree(fd->entry_to_rb);
286 	fd->entry_to_rb = NULL;
287 	return 0;
288 }
289 
290 /*
291  * Write an "empty" RcvArray entry.
292  * This function exists so the TID registaration code can use it
293  * to write to unused/unneeded entries and still take advantage
294  * of the WC performance improvements. The HFI will ignore this
295  * write to the RcvArray entry.
296  */
rcv_array_wc_fill(struct hfi1_devdata * dd,u32 index)297 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
298 {
299 	/*
300 	 * Doing the WC fill writes only makes sense if the device is
301 	 * present and the RcvArray has been mapped as WC memory.
302 	 */
303 	if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
304 		writeq(0, dd->rcvarray_wc + (index * 8));
305 }
306 
307 /*
308  * RcvArray entry allocation for Expected Receives is done by the
309  * following algorithm:
310  *
311  * The context keeps 3 lists of groups of RcvArray entries:
312  *   1. List of empty groups - tid_group_list
313  *      This list is created during user context creation and
314  *      contains elements which describe sets (of 8) of empty
315  *      RcvArray entries.
316  *   2. List of partially used groups - tid_used_list
317  *      This list contains sets of RcvArray entries which are
318  *      not completely used up. Another mapping request could
319  *      use some of all of the remaining entries.
320  *   3. List of full groups - tid_full_list
321  *      This is the list where sets that are completely used
322  *      up go.
323  *
324  * An attempt to optimize the usage of RcvArray entries is
325  * made by finding all sets of physically contiguous pages in a
326  * user's buffer.
327  * These physically contiguous sets are further split into
328  * sizes supported by the receive engine of the HFI. The
329  * resulting sets of pages are stored in struct tid_pageset,
330  * which describes the sets as:
331  *    * .count - number of pages in this set
332  *    * .idx - starting index into struct page ** array
333  *                    of this set
334  *
335  * From this point on, the algorithm deals with the page sets
336  * described above. The number of pagesets is divided by the
337  * RcvArray group size to produce the number of full groups
338  * needed.
339  *
340  * Groups from the 3 lists are manipulated using the following
341  * rules:
342  *   1. For each set of 8 pagesets, a complete group from
343  *      tid_group_list is taken, programmed, and moved to
344  *      the tid_full_list list.
345  *   2. For all remaining pagesets:
346  *      2.1 If the tid_used_list is empty and the tid_group_list
347  *          is empty, stop processing pageset and return only
348  *          what has been programmed up to this point.
349  *      2.2 If the tid_used_list is empty and the tid_group_list
350  *          is not empty, move a group from tid_group_list to
351  *          tid_used_list.
352  *      2.3 For each group is tid_used_group, program as much as
353  *          can fit into the group. If the group becomes fully
354  *          used, move it to tid_full_list.
355  */
hfi1_user_exp_rcv_setup(struct file * fp,struct hfi1_tid_info * tinfo)356 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
357 {
358 	int ret = 0, need_group = 0, pinned;
359 	struct hfi1_filedata *fd = fp->private_data;
360 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
361 	struct hfi1_devdata *dd = uctxt->dd;
362 	unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
363 		tididx = 0, mapped, mapped_pages = 0;
364 	unsigned long vaddr = tinfo->vaddr;
365 	struct page **pages = NULL;
366 	u32 *tidlist = NULL;
367 	struct tid_pageset *pagesets = NULL;
368 
369 	/* Get the number of pages the user buffer spans */
370 	npages = num_user_pages(vaddr, tinfo->length);
371 	if (!npages)
372 		return -EINVAL;
373 
374 	if (npages > uctxt->expected_count) {
375 		dd_dev_err(dd, "Expected buffer too big\n");
376 		return -EINVAL;
377 	}
378 
379 	/* Verify that access is OK for the user buffer */
380 	if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
381 		       npages * PAGE_SIZE)) {
382 		dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
383 			   (void *)vaddr, npages);
384 		return -EFAULT;
385 	}
386 
387 	pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
388 			   GFP_KERNEL);
389 	if (!pagesets)
390 		return -ENOMEM;
391 
392 	/* Allocate the array of struct page pointers needed for pinning */
393 	pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
394 	if (!pages) {
395 		ret = -ENOMEM;
396 		goto bail;
397 	}
398 
399 	/*
400 	 * Pin all the pages of the user buffer. If we can't pin all the
401 	 * pages, accept the amount pinned so far and program only that.
402 	 * User space knows how to deal with partially programmed buffers.
403 	 */
404 	if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
405 		ret = -ENOMEM;
406 		goto bail;
407 	}
408 
409 	pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
410 	if (pinned <= 0) {
411 		ret = pinned;
412 		goto bail;
413 	}
414 	fd->tid_n_pinned += npages;
415 
416 	/* Find sets of physically contiguous pages */
417 	npagesets = find_phys_blocks(pages, pinned, pagesets);
418 
419 	/*
420 	 * We don't need to access this under a lock since tid_used is per
421 	 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
422 	 * and hfi1_user_exp_rcv_setup() at the same time.
423 	 */
424 	spin_lock(&fd->tid_lock);
425 	if (fd->tid_used + npagesets > fd->tid_limit)
426 		pageset_count = fd->tid_limit - fd->tid_used;
427 	else
428 		pageset_count = npagesets;
429 	spin_unlock(&fd->tid_lock);
430 
431 	if (!pageset_count)
432 		goto bail;
433 
434 	ngroups = pageset_count / dd->rcv_entries.group_size;
435 	tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
436 	if (!tidlist) {
437 		ret = -ENOMEM;
438 		goto nomem;
439 	}
440 
441 	tididx = 0;
442 
443 	/*
444 	 * From this point on, we are going to be using shared (between master
445 	 * and subcontexts) context resources. We need to take the lock.
446 	 */
447 	mutex_lock(&uctxt->exp_lock);
448 	/*
449 	 * The first step is to program the RcvArray entries which are complete
450 	 * groups.
451 	 */
452 	while (ngroups && uctxt->tid_group_list.count) {
453 		struct tid_group *grp =
454 			tid_group_pop(&uctxt->tid_group_list);
455 
456 		ret = program_rcvarray(fp, vaddr, grp, pagesets,
457 				       pageidx, dd->rcv_entries.group_size,
458 				       pages, tidlist, &tididx, &mapped);
459 		/*
460 		 * If there was a failure to program the RcvArray
461 		 * entries for the entire group, reset the grp fields
462 		 * and add the grp back to the free group list.
463 		 */
464 		if (ret <= 0) {
465 			tid_group_add_tail(grp, &uctxt->tid_group_list);
466 			hfi1_cdbg(TID,
467 				  "Failed to program RcvArray group %d", ret);
468 			goto unlock;
469 		}
470 
471 		tid_group_add_tail(grp, &uctxt->tid_full_list);
472 		ngroups--;
473 		pageidx += ret;
474 		mapped_pages += mapped;
475 	}
476 
477 	while (pageidx < pageset_count) {
478 		struct tid_group *grp, *ptr;
479 		/*
480 		 * If we don't have any partially used tid groups, check
481 		 * if we have empty groups. If so, take one from there and
482 		 * put in the partially used list.
483 		 */
484 		if (!uctxt->tid_used_list.count || need_group) {
485 			if (!uctxt->tid_group_list.count)
486 				goto unlock;
487 
488 			grp = tid_group_pop(&uctxt->tid_group_list);
489 			tid_group_add_tail(grp, &uctxt->tid_used_list);
490 			need_group = 0;
491 		}
492 		/*
493 		 * There is an optimization opportunity here - instead of
494 		 * fitting as many page sets as we can, check for a group
495 		 * later on in the list that could fit all of them.
496 		 */
497 		list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
498 					 list) {
499 			unsigned use = min_t(unsigned, pageset_count - pageidx,
500 					     grp->size - grp->used);
501 
502 			ret = program_rcvarray(fp, vaddr, grp, pagesets,
503 					       pageidx, use, pages, tidlist,
504 					       &tididx, &mapped);
505 			if (ret < 0) {
506 				hfi1_cdbg(TID,
507 					  "Failed to program RcvArray entries %d",
508 					  ret);
509 				ret = -EFAULT;
510 				goto unlock;
511 			} else if (ret > 0) {
512 				if (grp->used == grp->size)
513 					tid_group_move(grp,
514 						       &uctxt->tid_used_list,
515 						       &uctxt->tid_full_list);
516 				pageidx += ret;
517 				mapped_pages += mapped;
518 				need_group = 0;
519 				/* Check if we are done so we break out early */
520 				if (pageidx >= pageset_count)
521 					break;
522 			} else if (WARN_ON(ret == 0)) {
523 				/*
524 				 * If ret is 0, we did not program any entries
525 				 * into this group, which can only happen if
526 				 * we've screwed up the accounting somewhere.
527 				 * Warn and try to continue.
528 				 */
529 				need_group = 1;
530 			}
531 		}
532 	}
533 unlock:
534 	mutex_unlock(&uctxt->exp_lock);
535 nomem:
536 	hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
537 		  mapped_pages, ret);
538 	if (tididx) {
539 		spin_lock(&fd->tid_lock);
540 		fd->tid_used += tididx;
541 		spin_unlock(&fd->tid_lock);
542 		tinfo->tidcnt = tididx;
543 		tinfo->length = mapped_pages * PAGE_SIZE;
544 
545 		if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
546 				 tidlist, sizeof(tidlist[0]) * tididx)) {
547 			/*
548 			 * On failure to copy to the user level, we need to undo
549 			 * everything done so far so we don't leak resources.
550 			 */
551 			tinfo->tidlist = (unsigned long)&tidlist;
552 			hfi1_user_exp_rcv_clear(fp, tinfo);
553 			tinfo->tidlist = 0;
554 			ret = -EFAULT;
555 			goto bail;
556 		}
557 	}
558 
559 	/*
560 	 * If not everything was mapped (due to insufficient RcvArray entries,
561 	 * for example), unpin all unmapped pages so we can pin them nex time.
562 	 */
563 	if (mapped_pages != pinned) {
564 		hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
565 					pinned - mapped_pages,
566 					false);
567 		fd->tid_n_pinned -= pinned - mapped_pages;
568 	}
569 bail:
570 	kfree(pagesets);
571 	kfree(pages);
572 	kfree(tidlist);
573 	return ret > 0 ? 0 : ret;
574 }
575 
hfi1_user_exp_rcv_clear(struct file * fp,struct hfi1_tid_info * tinfo)576 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
577 {
578 	int ret = 0;
579 	struct hfi1_filedata *fd = fp->private_data;
580 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
581 	u32 *tidinfo;
582 	unsigned tididx;
583 
584 	tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
585 	if (!tidinfo)
586 		return -ENOMEM;
587 
588 	if (copy_from_user(tidinfo, (void __user *)(unsigned long)
589 			   tinfo->tidlist, sizeof(tidinfo[0]) *
590 			   tinfo->tidcnt)) {
591 		ret = -EFAULT;
592 		goto done;
593 	}
594 
595 	mutex_lock(&uctxt->exp_lock);
596 	for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
597 		ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
598 		if (ret) {
599 			hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
600 				  ret);
601 			break;
602 		}
603 	}
604 	spin_lock(&fd->tid_lock);
605 	fd->tid_used -= tididx;
606 	spin_unlock(&fd->tid_lock);
607 	tinfo->tidcnt = tididx;
608 	mutex_unlock(&uctxt->exp_lock);
609 done:
610 	kfree(tidinfo);
611 	return ret;
612 }
613 
hfi1_user_exp_rcv_invalid(struct file * fp,struct hfi1_tid_info * tinfo)614 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
615 {
616 	struct hfi1_filedata *fd = fp->private_data;
617 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
618 	unsigned long *ev = uctxt->dd->events +
619 		(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
620 		  HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
621 	u32 *array;
622 	int ret = 0;
623 
624 	if (!fd->invalid_tids)
625 		return -EINVAL;
626 
627 	/*
628 	 * copy_to_user() can sleep, which will leave the invalid_lock
629 	 * locked and cause the MMU notifier to be blocked on the lock
630 	 * for a long time.
631 	 * Copy the data to a local buffer so we can release the lock.
632 	 */
633 	array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
634 	if (!array)
635 		return -EFAULT;
636 
637 	spin_lock(&fd->invalid_lock);
638 	if (fd->invalid_tid_idx) {
639 		memcpy(array, fd->invalid_tids, sizeof(*array) *
640 		       fd->invalid_tid_idx);
641 		memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
642 		       fd->invalid_tid_idx);
643 		tinfo->tidcnt = fd->invalid_tid_idx;
644 		fd->invalid_tid_idx = 0;
645 		/*
646 		 * Reset the user flag while still holding the lock.
647 		 * Otherwise, PSM can miss events.
648 		 */
649 		clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
650 	} else {
651 		tinfo->tidcnt = 0;
652 	}
653 	spin_unlock(&fd->invalid_lock);
654 
655 	if (tinfo->tidcnt) {
656 		if (copy_to_user((void __user *)tinfo->tidlist,
657 				 array, sizeof(*array) * tinfo->tidcnt))
658 			ret = -EFAULT;
659 	}
660 	kfree(array);
661 
662 	return ret;
663 }
664 
find_phys_blocks(struct page ** pages,unsigned npages,struct tid_pageset * list)665 static u32 find_phys_blocks(struct page **pages, unsigned npages,
666 			    struct tid_pageset *list)
667 {
668 	unsigned pagecount, pageidx, setcount = 0, i;
669 	unsigned long pfn, this_pfn;
670 
671 	if (!npages)
672 		return 0;
673 
674 	/*
675 	 * Look for sets of physically contiguous pages in the user buffer.
676 	 * This will allow us to optimize Expected RcvArray entry usage by
677 	 * using the bigger supported sizes.
678 	 */
679 	pfn = page_to_pfn(pages[0]);
680 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
681 		this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
682 
683 		/*
684 		 * If the pfn's are not sequential, pages are not physically
685 		 * contiguous.
686 		 */
687 		if (this_pfn != ++pfn) {
688 			/*
689 			 * At this point we have to loop over the set of
690 			 * physically contiguous pages and break them down it
691 			 * sizes supported by the HW.
692 			 * There are two main constraints:
693 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
694 			 *        If the total set size is bigger than that
695 			 *        program only a MAX_EXPECTED_BUFFER chunk.
696 			 *     2. The buffer size has to be a power of two. If
697 			 *        it is not, round down to the closes power of
698 			 *        2 and program that size.
699 			 */
700 			while (pagecount) {
701 				int maxpages = pagecount;
702 				u32 bufsize = pagecount * PAGE_SIZE;
703 
704 				if (bufsize > MAX_EXPECTED_BUFFER)
705 					maxpages =
706 						MAX_EXPECTED_BUFFER >>
707 						PAGE_SHIFT;
708 				else if (!is_power_of_2(bufsize))
709 					maxpages =
710 						rounddown_pow_of_two(bufsize) >>
711 						PAGE_SHIFT;
712 
713 				list[setcount].idx = pageidx;
714 				list[setcount].count = maxpages;
715 				pagecount -= maxpages;
716 				pageidx += maxpages;
717 				setcount++;
718 			}
719 			pageidx = i;
720 			pagecount = 1;
721 			pfn = this_pfn;
722 		} else {
723 			pagecount++;
724 		}
725 	}
726 	return setcount;
727 }
728 
729 /**
730  * program_rcvarray() - program an RcvArray group with receive buffers
731  * @fp: file pointer
732  * @vaddr: starting user virtual address
733  * @grp: RcvArray group
734  * @sets: array of struct tid_pageset holding information on physically
735  *        contiguous chunks from the user buffer
736  * @start: starting index into sets array
737  * @count: number of struct tid_pageset's to program
738  * @pages: an array of struct page * for the user buffer
739  * @tidlist: the array of u32 elements when the information about the
740  *           programmed RcvArray entries is to be encoded.
741  * @tididx: starting offset into tidlist
742  * @pmapped: (output parameter) number of pages programmed into the RcvArray
743  *           entries.
744  *
745  * This function will program up to 'count' number of RcvArray entries from the
746  * group 'grp'. To make best use of write-combining writes, the function will
747  * perform writes to the unused RcvArray entries which will be ignored by the
748  * HW. Each RcvArray entry will be programmed with a physically contiguous
749  * buffer chunk from the user's virtual buffer.
750  *
751  * Return:
752  * -EINVAL if the requested count is larger than the size of the group,
753  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
754  * number of RcvArray entries programmed.
755  */
program_rcvarray(struct file * fp,unsigned long vaddr,struct tid_group * grp,struct tid_pageset * sets,unsigned start,u16 count,struct page ** pages,u32 * tidlist,unsigned * tididx,unsigned * pmapped)756 static int program_rcvarray(struct file *fp, unsigned long vaddr,
757 			    struct tid_group *grp,
758 			    struct tid_pageset *sets,
759 			    unsigned start, u16 count, struct page **pages,
760 			    u32 *tidlist, unsigned *tididx, unsigned *pmapped)
761 {
762 	struct hfi1_filedata *fd = fp->private_data;
763 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
764 	struct hfi1_devdata *dd = uctxt->dd;
765 	u16 idx;
766 	u32 tidinfo = 0, rcventry, useidx = 0;
767 	int mapped = 0;
768 
769 	/* Count should never be larger than the group size */
770 	if (count > grp->size)
771 		return -EINVAL;
772 
773 	/* Find the first unused entry in the group */
774 	for (idx = 0; idx < grp->size; idx++) {
775 		if (!(grp->map & (1 << idx))) {
776 			useidx = idx;
777 			break;
778 		}
779 		rcv_array_wc_fill(dd, grp->base + idx);
780 	}
781 
782 	idx = 0;
783 	while (idx < count) {
784 		u16 npages, pageidx, setidx = start + idx;
785 		int ret = 0;
786 
787 		/*
788 		 * If this entry in the group is used, move to the next one.
789 		 * If we go past the end of the group, exit the loop.
790 		 */
791 		if (useidx >= grp->size) {
792 			break;
793 		} else if (grp->map & (1 << useidx)) {
794 			rcv_array_wc_fill(dd, grp->base + useidx);
795 			useidx++;
796 			continue;
797 		}
798 
799 		rcventry = grp->base + useidx;
800 		npages = sets[setidx].count;
801 		pageidx = sets[setidx].idx;
802 
803 		ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
804 					 rcventry, grp, pages + pageidx,
805 					 npages);
806 		if (ret)
807 			return ret;
808 		mapped += npages;
809 
810 		tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
811 			EXP_TID_SET(LEN, npages);
812 		tidlist[(*tididx)++] = tidinfo;
813 		grp->used++;
814 		grp->map |= 1 << useidx++;
815 		idx++;
816 	}
817 
818 	/* Fill the rest of the group with "blank" writes */
819 	for (; useidx < grp->size; useidx++)
820 		rcv_array_wc_fill(dd, grp->base + useidx);
821 	*pmapped = mapped;
822 	return idx;
823 }
824 
set_rcvarray_entry(struct file * fp,unsigned long vaddr,u32 rcventry,struct tid_group * grp,struct page ** pages,unsigned npages)825 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
826 			      u32 rcventry, struct tid_group *grp,
827 			      struct page **pages, unsigned npages)
828 {
829 	int ret;
830 	struct hfi1_filedata *fd = fp->private_data;
831 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
832 	struct tid_rb_node *node;
833 	struct hfi1_devdata *dd = uctxt->dd;
834 	dma_addr_t phys;
835 
836 	/*
837 	 * Allocate the node first so we can handle a potential
838 	 * failure before we've programmed anything.
839 	 */
840 	node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
841 		       GFP_KERNEL);
842 	if (!node)
843 		return -ENOMEM;
844 
845 	phys = pci_map_single(dd->pcidev,
846 			      __va(page_to_phys(pages[0])),
847 			      npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
848 	if (dma_mapping_error(&dd->pcidev->dev, phys)) {
849 		dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
850 			   phys);
851 		kfree(node);
852 		return -EFAULT;
853 	}
854 
855 	node->mmu.addr = vaddr;
856 	node->mmu.len = npages * PAGE_SIZE;
857 	node->phys = page_to_phys(pages[0]);
858 	node->npages = npages;
859 	node->rcventry = rcventry;
860 	node->dma_addr = phys;
861 	node->grp = grp;
862 	node->freed = false;
863 	memcpy(node->pages, pages, sizeof(struct page *) * npages);
864 
865 	if (!fd->handler)
866 		ret = tid_rb_insert(fd, &node->mmu);
867 	else
868 		ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
869 
870 	if (ret) {
871 		hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
872 			  node->rcventry, node->mmu.addr, node->phys, ret);
873 		pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
874 				 PCI_DMA_FROMDEVICE);
875 		kfree(node);
876 		return -EFAULT;
877 	}
878 	hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
879 	trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
880 			       node->mmu.addr, node->phys, phys);
881 	return 0;
882 }
883 
unprogram_rcvarray(struct file * fp,u32 tidinfo,struct tid_group ** grp)884 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
885 			      struct tid_group **grp)
886 {
887 	struct hfi1_filedata *fd = fp->private_data;
888 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
889 	struct hfi1_devdata *dd = uctxt->dd;
890 	struct tid_rb_node *node;
891 	u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
892 	u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
893 
894 	if (tididx >= uctxt->expected_count) {
895 		dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
896 			   tididx, uctxt->ctxt);
897 		return -EINVAL;
898 	}
899 
900 	if (tidctrl == 0x3)
901 		return -EINVAL;
902 
903 	rcventry = tididx + (tidctrl - 1);
904 
905 	node = fd->entry_to_rb[rcventry];
906 	if (!node || node->rcventry != (uctxt->expected_base + rcventry))
907 		return -EBADF;
908 
909 	if (grp)
910 		*grp = node->grp;
911 
912 	if (!fd->handler)
913 		cacheless_tid_rb_remove(fd, node);
914 	else
915 		hfi1_mmu_rb_remove(fd->handler, &node->mmu);
916 
917 	return 0;
918 }
919 
clear_tid_node(struct hfi1_filedata * fd,struct tid_rb_node * node)920 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
921 {
922 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
923 	struct hfi1_devdata *dd = uctxt->dd;
924 
925 	trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
926 				 node->npages, node->mmu.addr, node->phys,
927 				 node->dma_addr);
928 
929 	hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
930 	/*
931 	 * Make sure device has seen the write before we unpin the
932 	 * pages.
933 	 */
934 	flush_wc();
935 
936 	pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
937 			 PCI_DMA_FROMDEVICE);
938 	hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
939 	fd->tid_n_pinned -= node->npages;
940 
941 	node->grp->used--;
942 	node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
943 
944 	if (node->grp->used == node->grp->size - 1)
945 		tid_group_move(node->grp, &uctxt->tid_full_list,
946 			       &uctxt->tid_used_list);
947 	else if (!node->grp->used)
948 		tid_group_move(node->grp, &uctxt->tid_used_list,
949 			       &uctxt->tid_group_list);
950 	kfree(node);
951 }
952 
953 /*
954  * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
955  * clearing nodes in the non-cached case.
956  */
unlock_exp_tids(struct hfi1_ctxtdata * uctxt,struct exp_tid_set * set,struct hfi1_filedata * fd)957 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
958 			    struct exp_tid_set *set,
959 			    struct hfi1_filedata *fd)
960 {
961 	struct tid_group *grp, *ptr;
962 	int i;
963 
964 	list_for_each_entry_safe(grp, ptr, &set->list, list) {
965 		list_del_init(&grp->list);
966 
967 		for (i = 0; i < grp->size; i++) {
968 			if (grp->map & (1 << i)) {
969 				u16 rcventry = grp->base + i;
970 				struct tid_rb_node *node;
971 
972 				node = fd->entry_to_rb[rcventry -
973 							  uctxt->expected_base];
974 				if (!node || node->rcventry != rcventry)
975 					continue;
976 
977 				cacheless_tid_rb_remove(fd, node);
978 			}
979 		}
980 	}
981 }
982 
983 /*
984  * Always return 0 from this function.  A non-zero return indicates that the
985  * remove operation will be called and that memory should be unpinned.
986  * However, the driver cannot unpin out from under PSM.  Instead, retain the
987  * memory (by returning 0) and inform PSM that the memory is going away.  PSM
988  * will call back later when it has removed the memory from its list.
989  */
tid_rb_invalidate(void * arg,struct mmu_rb_node * mnode)990 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
991 {
992 	struct hfi1_filedata *fdata = arg;
993 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
994 	struct tid_rb_node *node =
995 		container_of(mnode, struct tid_rb_node, mmu);
996 
997 	if (node->freed)
998 		return 0;
999 
1000 	trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
1001 				 node->rcventry, node->npages, node->dma_addr);
1002 	node->freed = true;
1003 
1004 	spin_lock(&fdata->invalid_lock);
1005 	if (fdata->invalid_tid_idx < uctxt->expected_count) {
1006 		fdata->invalid_tids[fdata->invalid_tid_idx] =
1007 			rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1008 		fdata->invalid_tids[fdata->invalid_tid_idx] |=
1009 			EXP_TID_SET(LEN, node->npages);
1010 		if (!fdata->invalid_tid_idx) {
1011 			unsigned long *ev;
1012 
1013 			/*
1014 			 * hfi1_set_uevent_bits() sets a user event flag
1015 			 * for all processes. Because calling into the
1016 			 * driver to process TID cache invalidations is
1017 			 * expensive and TID cache invalidations are
1018 			 * handled on a per-process basis, we can
1019 			 * optimize this to set the flag only for the
1020 			 * process in question.
1021 			 */
1022 			ev = uctxt->dd->events +
1023 				(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1024 				  HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1025 			set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1026 		}
1027 		fdata->invalid_tid_idx++;
1028 	}
1029 	spin_unlock(&fdata->invalid_lock);
1030 	return 0;
1031 }
1032 
tid_rb_insert(void * arg,struct mmu_rb_node * node)1033 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
1034 {
1035 	struct hfi1_filedata *fdata = arg;
1036 	struct tid_rb_node *tnode =
1037 		container_of(node, struct tid_rb_node, mmu);
1038 	u32 base = fdata->uctxt->expected_base;
1039 
1040 	fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1041 	return 0;
1042 }
1043 
cacheless_tid_rb_remove(struct hfi1_filedata * fdata,struct tid_rb_node * tnode)1044 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
1045 				    struct tid_rb_node *tnode)
1046 {
1047 	u32 base = fdata->uctxt->expected_base;
1048 
1049 	fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1050 	clear_tid_node(fdata, tnode);
1051 }
1052 
tid_rb_remove(void * arg,struct mmu_rb_node * node)1053 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
1054 {
1055 	struct hfi1_filedata *fdata = arg;
1056 	struct tid_rb_node *tnode =
1057 		container_of(node, struct tid_rb_node, mmu);
1058 
1059 	cacheless_tid_rb_remove(fdata, tnode);
1060 }
1061