1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <asm/page.h>
48
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52
53 struct tid_group {
54 struct list_head list;
55 unsigned base;
56 u8 size;
57 u8 used;
58 u8 map;
59 };
60
61 struct tid_rb_node {
62 struct mmu_rb_node mmu;
63 unsigned long phys;
64 struct tid_group *grp;
65 u32 rcventry;
66 dma_addr_t dma_addr;
67 bool freed;
68 unsigned npages;
69 struct page *pages[0];
70 };
71
72 struct tid_pageset {
73 u16 idx;
74 u16 count;
75 };
76
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78
79 #define num_user_pages(vaddr, len) \
80 (1 + (((((unsigned long)(vaddr) + \
81 (unsigned long)(len) - 1) & PAGE_MASK) - \
82 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 struct hfi1_filedata *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 struct tid_group *, struct page **, unsigned);
89 static int tid_rb_insert(void *, struct mmu_rb_node *);
90 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
91 struct tid_rb_node *tnode);
92 static void tid_rb_remove(void *, struct mmu_rb_node *);
93 static int tid_rb_invalidate(void *, struct mmu_rb_node *);
94 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
95 struct tid_pageset *, unsigned, u16, struct page **,
96 u32 *, unsigned *, unsigned *);
97 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
98 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
99
100 static struct mmu_rb_ops tid_rb_ops = {
101 .insert = tid_rb_insert,
102 .remove = tid_rb_remove,
103 .invalidate = tid_rb_invalidate
104 };
105
rcventry2tidinfo(u32 rcventry)106 static inline u32 rcventry2tidinfo(u32 rcventry)
107 {
108 u32 pair = rcventry & ~0x1;
109
110 return EXP_TID_SET(IDX, pair >> 1) |
111 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
112 }
113
exp_tid_group_init(struct exp_tid_set * set)114 static inline void exp_tid_group_init(struct exp_tid_set *set)
115 {
116 INIT_LIST_HEAD(&set->list);
117 set->count = 0;
118 }
119
tid_group_remove(struct tid_group * grp,struct exp_tid_set * set)120 static inline void tid_group_remove(struct tid_group *grp,
121 struct exp_tid_set *set)
122 {
123 list_del_init(&grp->list);
124 set->count--;
125 }
126
tid_group_add_tail(struct tid_group * grp,struct exp_tid_set * set)127 static inline void tid_group_add_tail(struct tid_group *grp,
128 struct exp_tid_set *set)
129 {
130 list_add_tail(&grp->list, &set->list);
131 set->count++;
132 }
133
tid_group_pop(struct exp_tid_set * set)134 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
135 {
136 struct tid_group *grp =
137 list_first_entry(&set->list, struct tid_group, list);
138 list_del_init(&grp->list);
139 set->count--;
140 return grp;
141 }
142
tid_group_move(struct tid_group * group,struct exp_tid_set * s1,struct exp_tid_set * s2)143 static inline void tid_group_move(struct tid_group *group,
144 struct exp_tid_set *s1,
145 struct exp_tid_set *s2)
146 {
147 tid_group_remove(group, s1);
148 tid_group_add_tail(group, s2);
149 }
150
151 /*
152 * Initialize context and file private data needed for Expected
153 * receive caching. This needs to be done after the context has
154 * been configured with the eager/expected RcvEntry counts.
155 */
hfi1_user_exp_rcv_init(struct file * fp)156 int hfi1_user_exp_rcv_init(struct file *fp)
157 {
158 struct hfi1_filedata *fd = fp->private_data;
159 struct hfi1_ctxtdata *uctxt = fd->uctxt;
160 struct hfi1_devdata *dd = uctxt->dd;
161 unsigned tidbase;
162 int i, ret = 0;
163
164 spin_lock_init(&fd->tid_lock);
165 spin_lock_init(&fd->invalid_lock);
166
167 if (!uctxt->subctxt_cnt || !fd->subctxt) {
168 exp_tid_group_init(&uctxt->tid_group_list);
169 exp_tid_group_init(&uctxt->tid_used_list);
170 exp_tid_group_init(&uctxt->tid_full_list);
171
172 tidbase = uctxt->expected_base;
173 for (i = 0; i < uctxt->expected_count /
174 dd->rcv_entries.group_size; i++) {
175 struct tid_group *grp;
176
177 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178 if (!grp) {
179 /*
180 * If we fail here, the groups already
181 * allocated will be freed by the close
182 * call.
183 */
184 ret = -ENOMEM;
185 goto done;
186 }
187 grp->size = dd->rcv_entries.group_size;
188 grp->base = tidbase;
189 tid_group_add_tail(grp, &uctxt->tid_group_list);
190 tidbase += dd->rcv_entries.group_size;
191 }
192 }
193
194 fd->entry_to_rb = kcalloc(uctxt->expected_count,
195 sizeof(struct rb_node *),
196 GFP_KERNEL);
197 if (!fd->entry_to_rb)
198 return -ENOMEM;
199
200 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
201 fd->invalid_tid_idx = 0;
202 fd->invalid_tids = kzalloc(uctxt->expected_count *
203 sizeof(u32), GFP_KERNEL);
204 if (!fd->invalid_tids) {
205 ret = -ENOMEM;
206 goto done;
207 }
208
209 /*
210 * Register MMU notifier callbacks. If the registration
211 * fails, continue without TID caching for this context.
212 */
213 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
214 dd->pport->hfi1_wq,
215 &fd->handler);
216 if (ret) {
217 dd_dev_info(dd,
218 "Failed MMU notifier registration %d\n",
219 ret);
220 ret = 0;
221 }
222 }
223
224 /*
225 * PSM does not have a good way to separate, count, and
226 * effectively enforce a limit on RcvArray entries used by
227 * subctxts (when context sharing is used) when TID caching
228 * is enabled. To help with that, we calculate a per-process
229 * RcvArray entry share and enforce that.
230 * If TID caching is not in use, PSM deals with usage on its
231 * own. In that case, we allow any subctxt to take all of the
232 * entries.
233 *
234 * Make sure that we set the tid counts only after successful
235 * init.
236 */
237 spin_lock(&fd->tid_lock);
238 if (uctxt->subctxt_cnt && fd->handler) {
239 u16 remainder;
240
241 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243 if (remainder && fd->subctxt < remainder)
244 fd->tid_limit++;
245 } else {
246 fd->tid_limit = uctxt->expected_count;
247 }
248 spin_unlock(&fd->tid_lock);
249 done:
250 return ret;
251 }
252
hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata * uctxt)253 void hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata *uctxt)
254 {
255 struct tid_group *grp, *gptr;
256
257 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
258 list) {
259 list_del_init(&grp->list);
260 kfree(grp);
261 }
262 hfi1_clear_tids(uctxt);
263 }
264
hfi1_user_exp_rcv_free(struct hfi1_filedata * fd)265 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
266 {
267 struct hfi1_ctxtdata *uctxt = fd->uctxt;
268
269 /*
270 * The notifier would have been removed when the process'es mm
271 * was freed.
272 */
273 if (fd->handler) {
274 hfi1_mmu_rb_unregister(fd->handler);
275 } else {
276 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
277 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
278 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
279 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
280 }
281
282 kfree(fd->invalid_tids);
283 fd->invalid_tids = NULL;
284
285 kfree(fd->entry_to_rb);
286 fd->entry_to_rb = NULL;
287 return 0;
288 }
289
290 /*
291 * Write an "empty" RcvArray entry.
292 * This function exists so the TID registaration code can use it
293 * to write to unused/unneeded entries and still take advantage
294 * of the WC performance improvements. The HFI will ignore this
295 * write to the RcvArray entry.
296 */
rcv_array_wc_fill(struct hfi1_devdata * dd,u32 index)297 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
298 {
299 /*
300 * Doing the WC fill writes only makes sense if the device is
301 * present and the RcvArray has been mapped as WC memory.
302 */
303 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
304 writeq(0, dd->rcvarray_wc + (index * 8));
305 }
306
307 /*
308 * RcvArray entry allocation for Expected Receives is done by the
309 * following algorithm:
310 *
311 * The context keeps 3 lists of groups of RcvArray entries:
312 * 1. List of empty groups - tid_group_list
313 * This list is created during user context creation and
314 * contains elements which describe sets (of 8) of empty
315 * RcvArray entries.
316 * 2. List of partially used groups - tid_used_list
317 * This list contains sets of RcvArray entries which are
318 * not completely used up. Another mapping request could
319 * use some of all of the remaining entries.
320 * 3. List of full groups - tid_full_list
321 * This is the list where sets that are completely used
322 * up go.
323 *
324 * An attempt to optimize the usage of RcvArray entries is
325 * made by finding all sets of physically contiguous pages in a
326 * user's buffer.
327 * These physically contiguous sets are further split into
328 * sizes supported by the receive engine of the HFI. The
329 * resulting sets of pages are stored in struct tid_pageset,
330 * which describes the sets as:
331 * * .count - number of pages in this set
332 * * .idx - starting index into struct page ** array
333 * of this set
334 *
335 * From this point on, the algorithm deals with the page sets
336 * described above. The number of pagesets is divided by the
337 * RcvArray group size to produce the number of full groups
338 * needed.
339 *
340 * Groups from the 3 lists are manipulated using the following
341 * rules:
342 * 1. For each set of 8 pagesets, a complete group from
343 * tid_group_list is taken, programmed, and moved to
344 * the tid_full_list list.
345 * 2. For all remaining pagesets:
346 * 2.1 If the tid_used_list is empty and the tid_group_list
347 * is empty, stop processing pageset and return only
348 * what has been programmed up to this point.
349 * 2.2 If the tid_used_list is empty and the tid_group_list
350 * is not empty, move a group from tid_group_list to
351 * tid_used_list.
352 * 2.3 For each group is tid_used_group, program as much as
353 * can fit into the group. If the group becomes fully
354 * used, move it to tid_full_list.
355 */
hfi1_user_exp_rcv_setup(struct file * fp,struct hfi1_tid_info * tinfo)356 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
357 {
358 int ret = 0, need_group = 0, pinned;
359 struct hfi1_filedata *fd = fp->private_data;
360 struct hfi1_ctxtdata *uctxt = fd->uctxt;
361 struct hfi1_devdata *dd = uctxt->dd;
362 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
363 tididx = 0, mapped, mapped_pages = 0;
364 unsigned long vaddr = tinfo->vaddr;
365 struct page **pages = NULL;
366 u32 *tidlist = NULL;
367 struct tid_pageset *pagesets = NULL;
368
369 /* Get the number of pages the user buffer spans */
370 npages = num_user_pages(vaddr, tinfo->length);
371 if (!npages)
372 return -EINVAL;
373
374 if (npages > uctxt->expected_count) {
375 dd_dev_err(dd, "Expected buffer too big\n");
376 return -EINVAL;
377 }
378
379 /* Verify that access is OK for the user buffer */
380 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
381 npages * PAGE_SIZE)) {
382 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
383 (void *)vaddr, npages);
384 return -EFAULT;
385 }
386
387 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
388 GFP_KERNEL);
389 if (!pagesets)
390 return -ENOMEM;
391
392 /* Allocate the array of struct page pointers needed for pinning */
393 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
394 if (!pages) {
395 ret = -ENOMEM;
396 goto bail;
397 }
398
399 /*
400 * Pin all the pages of the user buffer. If we can't pin all the
401 * pages, accept the amount pinned so far and program only that.
402 * User space knows how to deal with partially programmed buffers.
403 */
404 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
405 ret = -ENOMEM;
406 goto bail;
407 }
408
409 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
410 if (pinned <= 0) {
411 ret = pinned;
412 goto bail;
413 }
414 fd->tid_n_pinned += npages;
415
416 /* Find sets of physically contiguous pages */
417 npagesets = find_phys_blocks(pages, pinned, pagesets);
418
419 /*
420 * We don't need to access this under a lock since tid_used is per
421 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
422 * and hfi1_user_exp_rcv_setup() at the same time.
423 */
424 spin_lock(&fd->tid_lock);
425 if (fd->tid_used + npagesets > fd->tid_limit)
426 pageset_count = fd->tid_limit - fd->tid_used;
427 else
428 pageset_count = npagesets;
429 spin_unlock(&fd->tid_lock);
430
431 if (!pageset_count)
432 goto bail;
433
434 ngroups = pageset_count / dd->rcv_entries.group_size;
435 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
436 if (!tidlist) {
437 ret = -ENOMEM;
438 goto nomem;
439 }
440
441 tididx = 0;
442
443 /*
444 * From this point on, we are going to be using shared (between master
445 * and subcontexts) context resources. We need to take the lock.
446 */
447 mutex_lock(&uctxt->exp_lock);
448 /*
449 * The first step is to program the RcvArray entries which are complete
450 * groups.
451 */
452 while (ngroups && uctxt->tid_group_list.count) {
453 struct tid_group *grp =
454 tid_group_pop(&uctxt->tid_group_list);
455
456 ret = program_rcvarray(fp, vaddr, grp, pagesets,
457 pageidx, dd->rcv_entries.group_size,
458 pages, tidlist, &tididx, &mapped);
459 /*
460 * If there was a failure to program the RcvArray
461 * entries for the entire group, reset the grp fields
462 * and add the grp back to the free group list.
463 */
464 if (ret <= 0) {
465 tid_group_add_tail(grp, &uctxt->tid_group_list);
466 hfi1_cdbg(TID,
467 "Failed to program RcvArray group %d", ret);
468 goto unlock;
469 }
470
471 tid_group_add_tail(grp, &uctxt->tid_full_list);
472 ngroups--;
473 pageidx += ret;
474 mapped_pages += mapped;
475 }
476
477 while (pageidx < pageset_count) {
478 struct tid_group *grp, *ptr;
479 /*
480 * If we don't have any partially used tid groups, check
481 * if we have empty groups. If so, take one from there and
482 * put in the partially used list.
483 */
484 if (!uctxt->tid_used_list.count || need_group) {
485 if (!uctxt->tid_group_list.count)
486 goto unlock;
487
488 grp = tid_group_pop(&uctxt->tid_group_list);
489 tid_group_add_tail(grp, &uctxt->tid_used_list);
490 need_group = 0;
491 }
492 /*
493 * There is an optimization opportunity here - instead of
494 * fitting as many page sets as we can, check for a group
495 * later on in the list that could fit all of them.
496 */
497 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
498 list) {
499 unsigned use = min_t(unsigned, pageset_count - pageidx,
500 grp->size - grp->used);
501
502 ret = program_rcvarray(fp, vaddr, grp, pagesets,
503 pageidx, use, pages, tidlist,
504 &tididx, &mapped);
505 if (ret < 0) {
506 hfi1_cdbg(TID,
507 "Failed to program RcvArray entries %d",
508 ret);
509 ret = -EFAULT;
510 goto unlock;
511 } else if (ret > 0) {
512 if (grp->used == grp->size)
513 tid_group_move(grp,
514 &uctxt->tid_used_list,
515 &uctxt->tid_full_list);
516 pageidx += ret;
517 mapped_pages += mapped;
518 need_group = 0;
519 /* Check if we are done so we break out early */
520 if (pageidx >= pageset_count)
521 break;
522 } else if (WARN_ON(ret == 0)) {
523 /*
524 * If ret is 0, we did not program any entries
525 * into this group, which can only happen if
526 * we've screwed up the accounting somewhere.
527 * Warn and try to continue.
528 */
529 need_group = 1;
530 }
531 }
532 }
533 unlock:
534 mutex_unlock(&uctxt->exp_lock);
535 nomem:
536 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
537 mapped_pages, ret);
538 if (tididx) {
539 spin_lock(&fd->tid_lock);
540 fd->tid_used += tididx;
541 spin_unlock(&fd->tid_lock);
542 tinfo->tidcnt = tididx;
543 tinfo->length = mapped_pages * PAGE_SIZE;
544
545 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
546 tidlist, sizeof(tidlist[0]) * tididx)) {
547 /*
548 * On failure to copy to the user level, we need to undo
549 * everything done so far so we don't leak resources.
550 */
551 tinfo->tidlist = (unsigned long)&tidlist;
552 hfi1_user_exp_rcv_clear(fp, tinfo);
553 tinfo->tidlist = 0;
554 ret = -EFAULT;
555 goto bail;
556 }
557 }
558
559 /*
560 * If not everything was mapped (due to insufficient RcvArray entries,
561 * for example), unpin all unmapped pages so we can pin them nex time.
562 */
563 if (mapped_pages != pinned) {
564 hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
565 pinned - mapped_pages,
566 false);
567 fd->tid_n_pinned -= pinned - mapped_pages;
568 }
569 bail:
570 kfree(pagesets);
571 kfree(pages);
572 kfree(tidlist);
573 return ret > 0 ? 0 : ret;
574 }
575
hfi1_user_exp_rcv_clear(struct file * fp,struct hfi1_tid_info * tinfo)576 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
577 {
578 int ret = 0;
579 struct hfi1_filedata *fd = fp->private_data;
580 struct hfi1_ctxtdata *uctxt = fd->uctxt;
581 u32 *tidinfo;
582 unsigned tididx;
583
584 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
585 if (!tidinfo)
586 return -ENOMEM;
587
588 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
589 tinfo->tidlist, sizeof(tidinfo[0]) *
590 tinfo->tidcnt)) {
591 ret = -EFAULT;
592 goto done;
593 }
594
595 mutex_lock(&uctxt->exp_lock);
596 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
597 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
598 if (ret) {
599 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
600 ret);
601 break;
602 }
603 }
604 spin_lock(&fd->tid_lock);
605 fd->tid_used -= tididx;
606 spin_unlock(&fd->tid_lock);
607 tinfo->tidcnt = tididx;
608 mutex_unlock(&uctxt->exp_lock);
609 done:
610 kfree(tidinfo);
611 return ret;
612 }
613
hfi1_user_exp_rcv_invalid(struct file * fp,struct hfi1_tid_info * tinfo)614 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
615 {
616 struct hfi1_filedata *fd = fp->private_data;
617 struct hfi1_ctxtdata *uctxt = fd->uctxt;
618 unsigned long *ev = uctxt->dd->events +
619 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
620 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
621 u32 *array;
622 int ret = 0;
623
624 if (!fd->invalid_tids)
625 return -EINVAL;
626
627 /*
628 * copy_to_user() can sleep, which will leave the invalid_lock
629 * locked and cause the MMU notifier to be blocked on the lock
630 * for a long time.
631 * Copy the data to a local buffer so we can release the lock.
632 */
633 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
634 if (!array)
635 return -EFAULT;
636
637 spin_lock(&fd->invalid_lock);
638 if (fd->invalid_tid_idx) {
639 memcpy(array, fd->invalid_tids, sizeof(*array) *
640 fd->invalid_tid_idx);
641 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
642 fd->invalid_tid_idx);
643 tinfo->tidcnt = fd->invalid_tid_idx;
644 fd->invalid_tid_idx = 0;
645 /*
646 * Reset the user flag while still holding the lock.
647 * Otherwise, PSM can miss events.
648 */
649 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
650 } else {
651 tinfo->tidcnt = 0;
652 }
653 spin_unlock(&fd->invalid_lock);
654
655 if (tinfo->tidcnt) {
656 if (copy_to_user((void __user *)tinfo->tidlist,
657 array, sizeof(*array) * tinfo->tidcnt))
658 ret = -EFAULT;
659 }
660 kfree(array);
661
662 return ret;
663 }
664
find_phys_blocks(struct page ** pages,unsigned npages,struct tid_pageset * list)665 static u32 find_phys_blocks(struct page **pages, unsigned npages,
666 struct tid_pageset *list)
667 {
668 unsigned pagecount, pageidx, setcount = 0, i;
669 unsigned long pfn, this_pfn;
670
671 if (!npages)
672 return 0;
673
674 /*
675 * Look for sets of physically contiguous pages in the user buffer.
676 * This will allow us to optimize Expected RcvArray entry usage by
677 * using the bigger supported sizes.
678 */
679 pfn = page_to_pfn(pages[0]);
680 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
681 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
682
683 /*
684 * If the pfn's are not sequential, pages are not physically
685 * contiguous.
686 */
687 if (this_pfn != ++pfn) {
688 /*
689 * At this point we have to loop over the set of
690 * physically contiguous pages and break them down it
691 * sizes supported by the HW.
692 * There are two main constraints:
693 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
694 * If the total set size is bigger than that
695 * program only a MAX_EXPECTED_BUFFER chunk.
696 * 2. The buffer size has to be a power of two. If
697 * it is not, round down to the closes power of
698 * 2 and program that size.
699 */
700 while (pagecount) {
701 int maxpages = pagecount;
702 u32 bufsize = pagecount * PAGE_SIZE;
703
704 if (bufsize > MAX_EXPECTED_BUFFER)
705 maxpages =
706 MAX_EXPECTED_BUFFER >>
707 PAGE_SHIFT;
708 else if (!is_power_of_2(bufsize))
709 maxpages =
710 rounddown_pow_of_two(bufsize) >>
711 PAGE_SHIFT;
712
713 list[setcount].idx = pageidx;
714 list[setcount].count = maxpages;
715 pagecount -= maxpages;
716 pageidx += maxpages;
717 setcount++;
718 }
719 pageidx = i;
720 pagecount = 1;
721 pfn = this_pfn;
722 } else {
723 pagecount++;
724 }
725 }
726 return setcount;
727 }
728
729 /**
730 * program_rcvarray() - program an RcvArray group with receive buffers
731 * @fp: file pointer
732 * @vaddr: starting user virtual address
733 * @grp: RcvArray group
734 * @sets: array of struct tid_pageset holding information on physically
735 * contiguous chunks from the user buffer
736 * @start: starting index into sets array
737 * @count: number of struct tid_pageset's to program
738 * @pages: an array of struct page * for the user buffer
739 * @tidlist: the array of u32 elements when the information about the
740 * programmed RcvArray entries is to be encoded.
741 * @tididx: starting offset into tidlist
742 * @pmapped: (output parameter) number of pages programmed into the RcvArray
743 * entries.
744 *
745 * This function will program up to 'count' number of RcvArray entries from the
746 * group 'grp'. To make best use of write-combining writes, the function will
747 * perform writes to the unused RcvArray entries which will be ignored by the
748 * HW. Each RcvArray entry will be programmed with a physically contiguous
749 * buffer chunk from the user's virtual buffer.
750 *
751 * Return:
752 * -EINVAL if the requested count is larger than the size of the group,
753 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
754 * number of RcvArray entries programmed.
755 */
program_rcvarray(struct file * fp,unsigned long vaddr,struct tid_group * grp,struct tid_pageset * sets,unsigned start,u16 count,struct page ** pages,u32 * tidlist,unsigned * tididx,unsigned * pmapped)756 static int program_rcvarray(struct file *fp, unsigned long vaddr,
757 struct tid_group *grp,
758 struct tid_pageset *sets,
759 unsigned start, u16 count, struct page **pages,
760 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
761 {
762 struct hfi1_filedata *fd = fp->private_data;
763 struct hfi1_ctxtdata *uctxt = fd->uctxt;
764 struct hfi1_devdata *dd = uctxt->dd;
765 u16 idx;
766 u32 tidinfo = 0, rcventry, useidx = 0;
767 int mapped = 0;
768
769 /* Count should never be larger than the group size */
770 if (count > grp->size)
771 return -EINVAL;
772
773 /* Find the first unused entry in the group */
774 for (idx = 0; idx < grp->size; idx++) {
775 if (!(grp->map & (1 << idx))) {
776 useidx = idx;
777 break;
778 }
779 rcv_array_wc_fill(dd, grp->base + idx);
780 }
781
782 idx = 0;
783 while (idx < count) {
784 u16 npages, pageidx, setidx = start + idx;
785 int ret = 0;
786
787 /*
788 * If this entry in the group is used, move to the next one.
789 * If we go past the end of the group, exit the loop.
790 */
791 if (useidx >= grp->size) {
792 break;
793 } else if (grp->map & (1 << useidx)) {
794 rcv_array_wc_fill(dd, grp->base + useidx);
795 useidx++;
796 continue;
797 }
798
799 rcventry = grp->base + useidx;
800 npages = sets[setidx].count;
801 pageidx = sets[setidx].idx;
802
803 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
804 rcventry, grp, pages + pageidx,
805 npages);
806 if (ret)
807 return ret;
808 mapped += npages;
809
810 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
811 EXP_TID_SET(LEN, npages);
812 tidlist[(*tididx)++] = tidinfo;
813 grp->used++;
814 grp->map |= 1 << useidx++;
815 idx++;
816 }
817
818 /* Fill the rest of the group with "blank" writes */
819 for (; useidx < grp->size; useidx++)
820 rcv_array_wc_fill(dd, grp->base + useidx);
821 *pmapped = mapped;
822 return idx;
823 }
824
set_rcvarray_entry(struct file * fp,unsigned long vaddr,u32 rcventry,struct tid_group * grp,struct page ** pages,unsigned npages)825 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
826 u32 rcventry, struct tid_group *grp,
827 struct page **pages, unsigned npages)
828 {
829 int ret;
830 struct hfi1_filedata *fd = fp->private_data;
831 struct hfi1_ctxtdata *uctxt = fd->uctxt;
832 struct tid_rb_node *node;
833 struct hfi1_devdata *dd = uctxt->dd;
834 dma_addr_t phys;
835
836 /*
837 * Allocate the node first so we can handle a potential
838 * failure before we've programmed anything.
839 */
840 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
841 GFP_KERNEL);
842 if (!node)
843 return -ENOMEM;
844
845 phys = pci_map_single(dd->pcidev,
846 __va(page_to_phys(pages[0])),
847 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
848 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
849 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
850 phys);
851 kfree(node);
852 return -EFAULT;
853 }
854
855 node->mmu.addr = vaddr;
856 node->mmu.len = npages * PAGE_SIZE;
857 node->phys = page_to_phys(pages[0]);
858 node->npages = npages;
859 node->rcventry = rcventry;
860 node->dma_addr = phys;
861 node->grp = grp;
862 node->freed = false;
863 memcpy(node->pages, pages, sizeof(struct page *) * npages);
864
865 if (!fd->handler)
866 ret = tid_rb_insert(fd, &node->mmu);
867 else
868 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
869
870 if (ret) {
871 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
872 node->rcventry, node->mmu.addr, node->phys, ret);
873 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
874 PCI_DMA_FROMDEVICE);
875 kfree(node);
876 return -EFAULT;
877 }
878 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
879 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
880 node->mmu.addr, node->phys, phys);
881 return 0;
882 }
883
unprogram_rcvarray(struct file * fp,u32 tidinfo,struct tid_group ** grp)884 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
885 struct tid_group **grp)
886 {
887 struct hfi1_filedata *fd = fp->private_data;
888 struct hfi1_ctxtdata *uctxt = fd->uctxt;
889 struct hfi1_devdata *dd = uctxt->dd;
890 struct tid_rb_node *node;
891 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
892 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
893
894 if (tididx >= uctxt->expected_count) {
895 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
896 tididx, uctxt->ctxt);
897 return -EINVAL;
898 }
899
900 if (tidctrl == 0x3)
901 return -EINVAL;
902
903 rcventry = tididx + (tidctrl - 1);
904
905 node = fd->entry_to_rb[rcventry];
906 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
907 return -EBADF;
908
909 if (grp)
910 *grp = node->grp;
911
912 if (!fd->handler)
913 cacheless_tid_rb_remove(fd, node);
914 else
915 hfi1_mmu_rb_remove(fd->handler, &node->mmu);
916
917 return 0;
918 }
919
clear_tid_node(struct hfi1_filedata * fd,struct tid_rb_node * node)920 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
921 {
922 struct hfi1_ctxtdata *uctxt = fd->uctxt;
923 struct hfi1_devdata *dd = uctxt->dd;
924
925 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
926 node->npages, node->mmu.addr, node->phys,
927 node->dma_addr);
928
929 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
930 /*
931 * Make sure device has seen the write before we unpin the
932 * pages.
933 */
934 flush_wc();
935
936 pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
937 PCI_DMA_FROMDEVICE);
938 hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
939 fd->tid_n_pinned -= node->npages;
940
941 node->grp->used--;
942 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
943
944 if (node->grp->used == node->grp->size - 1)
945 tid_group_move(node->grp, &uctxt->tid_full_list,
946 &uctxt->tid_used_list);
947 else if (!node->grp->used)
948 tid_group_move(node->grp, &uctxt->tid_used_list,
949 &uctxt->tid_group_list);
950 kfree(node);
951 }
952
953 /*
954 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
955 * clearing nodes in the non-cached case.
956 */
unlock_exp_tids(struct hfi1_ctxtdata * uctxt,struct exp_tid_set * set,struct hfi1_filedata * fd)957 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
958 struct exp_tid_set *set,
959 struct hfi1_filedata *fd)
960 {
961 struct tid_group *grp, *ptr;
962 int i;
963
964 list_for_each_entry_safe(grp, ptr, &set->list, list) {
965 list_del_init(&grp->list);
966
967 for (i = 0; i < grp->size; i++) {
968 if (grp->map & (1 << i)) {
969 u16 rcventry = grp->base + i;
970 struct tid_rb_node *node;
971
972 node = fd->entry_to_rb[rcventry -
973 uctxt->expected_base];
974 if (!node || node->rcventry != rcventry)
975 continue;
976
977 cacheless_tid_rb_remove(fd, node);
978 }
979 }
980 }
981 }
982
983 /*
984 * Always return 0 from this function. A non-zero return indicates that the
985 * remove operation will be called and that memory should be unpinned.
986 * However, the driver cannot unpin out from under PSM. Instead, retain the
987 * memory (by returning 0) and inform PSM that the memory is going away. PSM
988 * will call back later when it has removed the memory from its list.
989 */
tid_rb_invalidate(void * arg,struct mmu_rb_node * mnode)990 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
991 {
992 struct hfi1_filedata *fdata = arg;
993 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
994 struct tid_rb_node *node =
995 container_of(mnode, struct tid_rb_node, mmu);
996
997 if (node->freed)
998 return 0;
999
1000 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
1001 node->rcventry, node->npages, node->dma_addr);
1002 node->freed = true;
1003
1004 spin_lock(&fdata->invalid_lock);
1005 if (fdata->invalid_tid_idx < uctxt->expected_count) {
1006 fdata->invalid_tids[fdata->invalid_tid_idx] =
1007 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1008 fdata->invalid_tids[fdata->invalid_tid_idx] |=
1009 EXP_TID_SET(LEN, node->npages);
1010 if (!fdata->invalid_tid_idx) {
1011 unsigned long *ev;
1012
1013 /*
1014 * hfi1_set_uevent_bits() sets a user event flag
1015 * for all processes. Because calling into the
1016 * driver to process TID cache invalidations is
1017 * expensive and TID cache invalidations are
1018 * handled on a per-process basis, we can
1019 * optimize this to set the flag only for the
1020 * process in question.
1021 */
1022 ev = uctxt->dd->events +
1023 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1024 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1025 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1026 }
1027 fdata->invalid_tid_idx++;
1028 }
1029 spin_unlock(&fdata->invalid_lock);
1030 return 0;
1031 }
1032
tid_rb_insert(void * arg,struct mmu_rb_node * node)1033 static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
1034 {
1035 struct hfi1_filedata *fdata = arg;
1036 struct tid_rb_node *tnode =
1037 container_of(node, struct tid_rb_node, mmu);
1038 u32 base = fdata->uctxt->expected_base;
1039
1040 fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1041 return 0;
1042 }
1043
cacheless_tid_rb_remove(struct hfi1_filedata * fdata,struct tid_rb_node * tnode)1044 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
1045 struct tid_rb_node *tnode)
1046 {
1047 u32 base = fdata->uctxt->expected_base;
1048
1049 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1050 clear_tid_node(fdata, tnode);
1051 }
1052
tid_rb_remove(void * arg,struct mmu_rb_node * node)1053 static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
1054 {
1055 struct hfi1_filedata *fdata = arg;
1056 struct tid_rb_node *tnode =
1057 container_of(node, struct tid_rb_node, mmu);
1058
1059 cacheless_tid_rb_remove(fdata, tnode);
1060 }
1061