• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_iommu.h>
34 #include <linux/of_platform.h>
35 #include <linux/pci.h>
36 #include <linux/platform_device.h>
37 
38 #include <linux/amba/bus.h>
39 
40 #include "io-pgtable.h"
41 
42 /* MMIO registers */
43 #define ARM_SMMU_IDR0			0x0
44 #define IDR0_ST_LVL_SHIFT		27
45 #define IDR0_ST_LVL_MASK		0x3
46 #define IDR0_ST_LVL_2LVL		(1 << IDR0_ST_LVL_SHIFT)
47 #define IDR0_STALL_MODEL_SHIFT		24
48 #define IDR0_STALL_MODEL_MASK		0x3
49 #define IDR0_STALL_MODEL_STALL		(0 << IDR0_STALL_MODEL_SHIFT)
50 #define IDR0_STALL_MODEL_FORCE		(2 << IDR0_STALL_MODEL_SHIFT)
51 #define IDR0_TTENDIAN_SHIFT		21
52 #define IDR0_TTENDIAN_MASK		0x3
53 #define IDR0_TTENDIAN_LE		(2 << IDR0_TTENDIAN_SHIFT)
54 #define IDR0_TTENDIAN_BE		(3 << IDR0_TTENDIAN_SHIFT)
55 #define IDR0_TTENDIAN_MIXED		(0 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_CD2L			(1 << 19)
57 #define IDR0_VMID16			(1 << 18)
58 #define IDR0_PRI			(1 << 16)
59 #define IDR0_SEV			(1 << 14)
60 #define IDR0_MSI			(1 << 13)
61 #define IDR0_ASID16			(1 << 12)
62 #define IDR0_ATS			(1 << 10)
63 #define IDR0_HYP			(1 << 9)
64 #define IDR0_COHACC			(1 << 4)
65 #define IDR0_TTF_SHIFT			2
66 #define IDR0_TTF_MASK			0x3
67 #define IDR0_TTF_AARCH64		(2 << IDR0_TTF_SHIFT)
68 #define IDR0_TTF_AARCH32_64		(3 << IDR0_TTF_SHIFT)
69 #define IDR0_S1P			(1 << 1)
70 #define IDR0_S2P			(1 << 0)
71 
72 #define ARM_SMMU_IDR1			0x4
73 #define IDR1_TABLES_PRESET		(1 << 30)
74 #define IDR1_QUEUES_PRESET		(1 << 29)
75 #define IDR1_REL			(1 << 28)
76 #define IDR1_CMDQ_SHIFT			21
77 #define IDR1_CMDQ_MASK			0x1f
78 #define IDR1_EVTQ_SHIFT			16
79 #define IDR1_EVTQ_MASK			0x1f
80 #define IDR1_PRIQ_SHIFT			11
81 #define IDR1_PRIQ_MASK			0x1f
82 #define IDR1_SSID_SHIFT			6
83 #define IDR1_SSID_MASK			0x1f
84 #define IDR1_SID_SHIFT			0
85 #define IDR1_SID_MASK			0x3f
86 
87 #define ARM_SMMU_IDR5			0x14
88 #define IDR5_STALL_MAX_SHIFT		16
89 #define IDR5_STALL_MAX_MASK		0xffff
90 #define IDR5_GRAN64K			(1 << 6)
91 #define IDR5_GRAN16K			(1 << 5)
92 #define IDR5_GRAN4K			(1 << 4)
93 #define IDR5_OAS_SHIFT			0
94 #define IDR5_OAS_MASK			0x7
95 #define IDR5_OAS_32_BIT			(0 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_36_BIT			(1 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_40_BIT			(2 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_42_BIT			(3 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_44_BIT			(4 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_48_BIT			(5 << IDR5_OAS_SHIFT)
101 
102 #define ARM_SMMU_CR0			0x20
103 #define CR0_CMDQEN			(1 << 3)
104 #define CR0_EVTQEN			(1 << 2)
105 #define CR0_PRIQEN			(1 << 1)
106 #define CR0_SMMUEN			(1 << 0)
107 
108 #define ARM_SMMU_CR0ACK			0x24
109 
110 #define ARM_SMMU_CR1			0x28
111 #define CR1_SH_NSH			0
112 #define CR1_SH_OSH			2
113 #define CR1_SH_ISH			3
114 #define CR1_CACHE_NC			0
115 #define CR1_CACHE_WB			1
116 #define CR1_CACHE_WT			2
117 #define CR1_TABLE_SH_SHIFT		10
118 #define CR1_TABLE_OC_SHIFT		8
119 #define CR1_TABLE_IC_SHIFT		6
120 #define CR1_QUEUE_SH_SHIFT		4
121 #define CR1_QUEUE_OC_SHIFT		2
122 #define CR1_QUEUE_IC_SHIFT		0
123 
124 #define ARM_SMMU_CR2			0x2c
125 #define CR2_PTM				(1 << 2)
126 #define CR2_RECINVSID			(1 << 1)
127 #define CR2_E2H				(1 << 0)
128 
129 #define ARM_SMMU_GBPA			0x44
130 #define GBPA_ABORT			(1 << 20)
131 #define GBPA_UPDATE			(1 << 31)
132 
133 #define ARM_SMMU_IRQ_CTRL		0x50
134 #define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
135 #define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
136 #define IRQ_CTRL_GERROR_IRQEN		(1 << 0)
137 
138 #define ARM_SMMU_IRQ_CTRLACK		0x54
139 
140 #define ARM_SMMU_GERROR			0x60
141 #define GERROR_SFM_ERR			(1 << 8)
142 #define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
143 #define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
144 #define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
145 #define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
146 #define GERROR_PRIQ_ABT_ERR		(1 << 3)
147 #define GERROR_EVTQ_ABT_ERR		(1 << 2)
148 #define GERROR_CMDQ_ERR			(1 << 0)
149 #define GERROR_ERR_MASK			0xfd
150 
151 #define ARM_SMMU_GERRORN		0x64
152 
153 #define ARM_SMMU_GERROR_IRQ_CFG0	0x68
154 #define ARM_SMMU_GERROR_IRQ_CFG1	0x70
155 #define ARM_SMMU_GERROR_IRQ_CFG2	0x74
156 
157 #define ARM_SMMU_STRTAB_BASE		0x80
158 #define STRTAB_BASE_RA			(1UL << 62)
159 #define STRTAB_BASE_ADDR_SHIFT		6
160 #define STRTAB_BASE_ADDR_MASK		0x3ffffffffffUL
161 
162 #define ARM_SMMU_STRTAB_BASE_CFG	0x88
163 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT	0
164 #define STRTAB_BASE_CFG_LOG2SIZE_MASK	0x3f
165 #define STRTAB_BASE_CFG_SPLIT_SHIFT	6
166 #define STRTAB_BASE_CFG_SPLIT_MASK	0x1f
167 #define STRTAB_BASE_CFG_FMT_SHIFT	16
168 #define STRTAB_BASE_CFG_FMT_MASK	0x3
169 #define STRTAB_BASE_CFG_FMT_LINEAR	(0 << STRTAB_BASE_CFG_FMT_SHIFT)
170 #define STRTAB_BASE_CFG_FMT_2LVL	(1 << STRTAB_BASE_CFG_FMT_SHIFT)
171 
172 #define ARM_SMMU_CMDQ_BASE		0x90
173 #define ARM_SMMU_CMDQ_PROD		0x98
174 #define ARM_SMMU_CMDQ_CONS		0x9c
175 
176 #define ARM_SMMU_EVTQ_BASE		0xa0
177 #define ARM_SMMU_EVTQ_PROD		0x100a8
178 #define ARM_SMMU_EVTQ_CONS		0x100ac
179 #define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
180 #define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
181 #define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc
182 
183 #define ARM_SMMU_PRIQ_BASE		0xc0
184 #define ARM_SMMU_PRIQ_PROD		0x100c8
185 #define ARM_SMMU_PRIQ_CONS		0x100cc
186 #define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
187 #define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
188 #define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc
189 
190 /* Common MSI config fields */
191 #define MSI_CFG0_ADDR_SHIFT		2
192 #define MSI_CFG0_ADDR_MASK		0x3fffffffffffUL
193 #define MSI_CFG2_SH_SHIFT		4
194 #define MSI_CFG2_SH_NSH			(0UL << MSI_CFG2_SH_SHIFT)
195 #define MSI_CFG2_SH_OSH			(2UL << MSI_CFG2_SH_SHIFT)
196 #define MSI_CFG2_SH_ISH			(3UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_MEMATTR_SHIFT		0
198 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE	(0x1 << MSI_CFG2_MEMATTR_SHIFT)
199 
200 #define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
201 #define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
202 #define Q_OVERFLOW_FLAG			(1 << 31)
203 #define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
204 #define Q_ENT(q, p)			((q)->base +			\
205 					 Q_IDX(q, p) * (q)->ent_dwords)
206 
207 #define Q_BASE_RWA			(1UL << 62)
208 #define Q_BASE_ADDR_SHIFT		5
209 #define Q_BASE_ADDR_MASK		0xfffffffffffUL
210 #define Q_BASE_LOG2SIZE_SHIFT		0
211 #define Q_BASE_LOG2SIZE_MASK		0x1fUL
212 
213 /*
214  * Stream table.
215  *
216  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
217  * 2lvl: 128k L1 entries,
218  *       256 lazy entries per table (each table covers a PCI bus)
219  */
220 #define STRTAB_L1_SZ_SHIFT		20
221 #define STRTAB_SPLIT			8
222 
223 #define STRTAB_L1_DESC_DWORDS		1
224 #define STRTAB_L1_DESC_SPAN_SHIFT	0
225 #define STRTAB_L1_DESC_SPAN_MASK	0x1fUL
226 #define STRTAB_L1_DESC_L2PTR_SHIFT	6
227 #define STRTAB_L1_DESC_L2PTR_MASK	0x3ffffffffffUL
228 
229 #define STRTAB_STE_DWORDS		8
230 #define STRTAB_STE_0_V			(1UL << 0)
231 #define STRTAB_STE_0_CFG_SHIFT		1
232 #define STRTAB_STE_0_CFG_MASK		0x7UL
233 #define STRTAB_STE_0_CFG_ABORT		(0UL << STRTAB_STE_0_CFG_SHIFT)
234 #define STRTAB_STE_0_CFG_BYPASS		(4UL << STRTAB_STE_0_CFG_SHIFT)
235 #define STRTAB_STE_0_CFG_S1_TRANS	(5UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_S2_TRANS	(6UL << STRTAB_STE_0_CFG_SHIFT)
237 
238 #define STRTAB_STE_0_S1FMT_SHIFT	4
239 #define STRTAB_STE_0_S1FMT_LINEAR	(0UL << STRTAB_STE_0_S1FMT_SHIFT)
240 #define STRTAB_STE_0_S1CTXPTR_SHIFT	6
241 #define STRTAB_STE_0_S1CTXPTR_MASK	0x3ffffffffffUL
242 #define STRTAB_STE_0_S1CDMAX_SHIFT	59
243 #define STRTAB_STE_0_S1CDMAX_MASK	0x1fUL
244 
245 #define STRTAB_STE_1_S1C_CACHE_NC	0UL
246 #define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
247 #define STRTAB_STE_1_S1C_CACHE_WT	2UL
248 #define STRTAB_STE_1_S1C_CACHE_WB	3UL
249 #define STRTAB_STE_1_S1C_SH_NSH		0UL
250 #define STRTAB_STE_1_S1C_SH_OSH		2UL
251 #define STRTAB_STE_1_S1C_SH_ISH		3UL
252 #define STRTAB_STE_1_S1CIR_SHIFT	2
253 #define STRTAB_STE_1_S1COR_SHIFT	4
254 #define STRTAB_STE_1_S1CSH_SHIFT	6
255 
256 #define STRTAB_STE_1_S1STALLD		(1UL << 27)
257 
258 #define STRTAB_STE_1_EATS_ABT		0UL
259 #define STRTAB_STE_1_EATS_TRANS		1UL
260 #define STRTAB_STE_1_EATS_S1CHK		2UL
261 #define STRTAB_STE_1_EATS_SHIFT		28
262 
263 #define STRTAB_STE_1_STRW_NSEL1		0UL
264 #define STRTAB_STE_1_STRW_EL2		2UL
265 #define STRTAB_STE_1_STRW_SHIFT		30
266 
267 #define STRTAB_STE_1_SHCFG_INCOMING	1UL
268 #define STRTAB_STE_1_SHCFG_SHIFT	44
269 
270 #define STRTAB_STE_1_PRIVCFG_UNPRIV	2UL
271 #define STRTAB_STE_1_PRIVCFG_SHIFT	48
272 
273 #define STRTAB_STE_2_S2VMID_SHIFT	0
274 #define STRTAB_STE_2_S2VMID_MASK	0xffffUL
275 #define STRTAB_STE_2_VTCR_SHIFT		32
276 #define STRTAB_STE_2_VTCR_MASK		0x7ffffUL
277 #define STRTAB_STE_2_S2AA64		(1UL << 51)
278 #define STRTAB_STE_2_S2ENDI		(1UL << 52)
279 #define STRTAB_STE_2_S2PTW		(1UL << 54)
280 #define STRTAB_STE_2_S2R		(1UL << 58)
281 
282 #define STRTAB_STE_3_S2TTB_SHIFT	4
283 #define STRTAB_STE_3_S2TTB_MASK		0xfffffffffffUL
284 
285 /* Context descriptor (stage-1 only) */
286 #define CTXDESC_CD_DWORDS		8
287 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT	0
288 #define ARM64_TCR_T0SZ_SHIFT		0
289 #define ARM64_TCR_T0SZ_MASK		0x1fUL
290 #define CTXDESC_CD_0_TCR_TG0_SHIFT	6
291 #define ARM64_TCR_TG0_SHIFT		14
292 #define ARM64_TCR_TG0_MASK		0x3UL
293 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT	8
294 #define ARM64_TCR_IRGN0_SHIFT		8
295 #define ARM64_TCR_IRGN0_MASK		0x3UL
296 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT	10
297 #define ARM64_TCR_ORGN0_SHIFT		10
298 #define ARM64_TCR_ORGN0_MASK		0x3UL
299 #define CTXDESC_CD_0_TCR_SH0_SHIFT	12
300 #define ARM64_TCR_SH0_SHIFT		12
301 #define ARM64_TCR_SH0_MASK		0x3UL
302 #define CTXDESC_CD_0_TCR_EPD0_SHIFT	14
303 #define ARM64_TCR_EPD0_SHIFT		7
304 #define ARM64_TCR_EPD0_MASK		0x1UL
305 #define CTXDESC_CD_0_TCR_EPD1_SHIFT	30
306 #define ARM64_TCR_EPD1_SHIFT		23
307 #define ARM64_TCR_EPD1_MASK		0x1UL
308 
309 #define CTXDESC_CD_0_ENDI		(1UL << 15)
310 #define CTXDESC_CD_0_V			(1UL << 31)
311 
312 #define CTXDESC_CD_0_TCR_IPS_SHIFT	32
313 #define ARM64_TCR_IPS_SHIFT		32
314 #define ARM64_TCR_IPS_MASK		0x7UL
315 #define CTXDESC_CD_0_TCR_TBI0_SHIFT	38
316 #define ARM64_TCR_TBI0_SHIFT		37
317 #define ARM64_TCR_TBI0_MASK		0x1UL
318 
319 #define CTXDESC_CD_0_AA64		(1UL << 41)
320 #define CTXDESC_CD_0_R			(1UL << 45)
321 #define CTXDESC_CD_0_A			(1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT		47
323 #define CTXDESC_CD_0_ASET_SHARED	(0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE	(1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT		48
326 #define CTXDESC_CD_0_ASID_MASK		0xffffUL
327 
328 #define CTXDESC_CD_1_TTB0_SHIFT		4
329 #define CTXDESC_CD_1_TTB0_MASK		0xfffffffffffUL
330 
331 #define CTXDESC_CD_3_MAIR_SHIFT		0
332 
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld)					\
335 	(((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)	\
336 	 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337 
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS			2
340 #define CMDQ_MAX_SZ_SHIFT		8
341 
342 #define CMDQ_ERR_SHIFT			24
343 #define CMDQ_ERR_MASK			0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX	0
345 #define CMDQ_ERR_CERROR_ILL_IDX		1
346 #define CMDQ_ERR_CERROR_ABT_IDX		2
347 
348 #define CMDQ_0_OP_SHIFT			0
349 #define CMDQ_0_OP_MASK			0xffUL
350 #define CMDQ_0_SSV			(1UL << 11)
351 
352 #define CMDQ_PREFETCH_0_SID_SHIFT	32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT	0
354 #define CMDQ_PREFETCH_1_ADDR_MASK	~0xfffUL
355 
356 #define CMDQ_CFGI_0_SID_SHIFT		32
357 #define CMDQ_CFGI_0_SID_MASK		0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF		(1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT		0
360 #define CMDQ_CFGI_1_RANGE_MASK		0x1fUL
361 
362 #define CMDQ_TLBI_0_VMID_SHIFT		32
363 #define CMDQ_TLBI_0_ASID_SHIFT		48
364 #define CMDQ_TLBI_1_LEAF		(1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK		~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK		0xfffffffff000UL
367 
368 #define CMDQ_PRI_0_SSID_SHIFT		12
369 #define CMDQ_PRI_0_SSID_MASK		0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT		32
371 #define CMDQ_PRI_0_SID_MASK		0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT		0
373 #define CMDQ_PRI_1_GRPID_MASK		0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT		12
375 #define CMDQ_PRI_1_RESP_DENY		(0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL		(1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC		(2UL << CMDQ_PRI_1_RESP_SHIFT)
378 
379 #define CMDQ_SYNC_0_CS_SHIFT		12
380 #define CMDQ_SYNC_0_CS_NONE		(0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_SEV		(2UL << CMDQ_SYNC_0_CS_SHIFT)
382 
383 /* Event queue */
384 #define EVTQ_ENT_DWORDS			4
385 #define EVTQ_MAX_SZ_SHIFT		7
386 
387 #define EVTQ_0_ID_SHIFT			0
388 #define EVTQ_0_ID_MASK			0xffUL
389 
390 /* PRI queue */
391 #define PRIQ_ENT_DWORDS			2
392 #define PRIQ_MAX_SZ_SHIFT		8
393 
394 #define PRIQ_0_SID_SHIFT		0
395 #define PRIQ_0_SID_MASK			0xffffffffUL
396 #define PRIQ_0_SSID_SHIFT		32
397 #define PRIQ_0_SSID_MASK		0xfffffUL
398 #define PRIQ_0_PERM_PRIV		(1UL << 58)
399 #define PRIQ_0_PERM_EXEC		(1UL << 59)
400 #define PRIQ_0_PERM_READ		(1UL << 60)
401 #define PRIQ_0_PERM_WRITE		(1UL << 61)
402 #define PRIQ_0_PRG_LAST			(1UL << 62)
403 #define PRIQ_0_SSID_V			(1UL << 63)
404 
405 #define PRIQ_1_PRG_IDX_SHIFT		0
406 #define PRIQ_1_PRG_IDX_MASK		0x1ffUL
407 #define PRIQ_1_ADDR_SHIFT		12
408 #define PRIQ_1_ADDR_MASK		0xfffffffffffffUL
409 
410 /* High-level queue structures */
411 #define ARM_SMMU_POLL_TIMEOUT_US	100
412 
413 static bool disable_bypass;
414 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
415 MODULE_PARM_DESC(disable_bypass,
416 	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
417 
418 enum pri_resp {
419 	PRI_RESP_DENY,
420 	PRI_RESP_FAIL,
421 	PRI_RESP_SUCC,
422 };
423 
424 enum arm_smmu_msi_index {
425 	EVTQ_MSI_INDEX,
426 	GERROR_MSI_INDEX,
427 	PRIQ_MSI_INDEX,
428 	ARM_SMMU_MAX_MSIS,
429 };
430 
431 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
432 	[EVTQ_MSI_INDEX] = {
433 		ARM_SMMU_EVTQ_IRQ_CFG0,
434 		ARM_SMMU_EVTQ_IRQ_CFG1,
435 		ARM_SMMU_EVTQ_IRQ_CFG2,
436 	},
437 	[GERROR_MSI_INDEX] = {
438 		ARM_SMMU_GERROR_IRQ_CFG0,
439 		ARM_SMMU_GERROR_IRQ_CFG1,
440 		ARM_SMMU_GERROR_IRQ_CFG2,
441 	},
442 	[PRIQ_MSI_INDEX] = {
443 		ARM_SMMU_PRIQ_IRQ_CFG0,
444 		ARM_SMMU_PRIQ_IRQ_CFG1,
445 		ARM_SMMU_PRIQ_IRQ_CFG2,
446 	},
447 };
448 
449 struct arm_smmu_cmdq_ent {
450 	/* Common fields */
451 	u8				opcode;
452 	bool				substream_valid;
453 
454 	/* Command-specific fields */
455 	union {
456 		#define CMDQ_OP_PREFETCH_CFG	0x1
457 		struct {
458 			u32			sid;
459 			u8			size;
460 			u64			addr;
461 		} prefetch;
462 
463 		#define CMDQ_OP_CFGI_STE	0x3
464 		#define CMDQ_OP_CFGI_ALL	0x4
465 		struct {
466 			u32			sid;
467 			union {
468 				bool		leaf;
469 				u8		span;
470 			};
471 		} cfgi;
472 
473 		#define CMDQ_OP_TLBI_NH_ASID	0x11
474 		#define CMDQ_OP_TLBI_NH_VA	0x12
475 		#define CMDQ_OP_TLBI_EL2_ALL	0x20
476 		#define CMDQ_OP_TLBI_S12_VMALL	0x28
477 		#define CMDQ_OP_TLBI_S2_IPA	0x2a
478 		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
479 		struct {
480 			u16			asid;
481 			u16			vmid;
482 			bool			leaf;
483 			u64			addr;
484 		} tlbi;
485 
486 		#define CMDQ_OP_PRI_RESP	0x41
487 		struct {
488 			u32			sid;
489 			u32			ssid;
490 			u16			grpid;
491 			enum pri_resp		resp;
492 		} pri;
493 
494 		#define CMDQ_OP_CMD_SYNC	0x46
495 	};
496 };
497 
498 struct arm_smmu_queue {
499 	int				irq; /* Wired interrupt */
500 
501 	__le64				*base;
502 	dma_addr_t			base_dma;
503 	u64				q_base;
504 
505 	size_t				ent_dwords;
506 	u32				max_n_shift;
507 	u32				prod;
508 	u32				cons;
509 
510 	u32 __iomem			*prod_reg;
511 	u32 __iomem			*cons_reg;
512 };
513 
514 struct arm_smmu_cmdq {
515 	struct arm_smmu_queue		q;
516 	spinlock_t			lock;
517 };
518 
519 struct arm_smmu_evtq {
520 	struct arm_smmu_queue		q;
521 	u32				max_stalls;
522 };
523 
524 struct arm_smmu_priq {
525 	struct arm_smmu_queue		q;
526 };
527 
528 /* High-level stream table and context descriptor structures */
529 struct arm_smmu_strtab_l1_desc {
530 	u8				span;
531 
532 	__le64				*l2ptr;
533 	dma_addr_t			l2ptr_dma;
534 };
535 
536 struct arm_smmu_s1_cfg {
537 	__le64				*cdptr;
538 	dma_addr_t			cdptr_dma;
539 
540 	struct arm_smmu_ctx_desc {
541 		u16	asid;
542 		u64	ttbr;
543 		u64	tcr;
544 		u64	mair;
545 	}				cd;
546 };
547 
548 struct arm_smmu_s2_cfg {
549 	u16				vmid;
550 	u64				vttbr;
551 	u64				vtcr;
552 };
553 
554 struct arm_smmu_strtab_ent {
555 	bool				valid;
556 
557 	bool				bypass;	/* Overrides s1/s2 config */
558 	struct arm_smmu_s1_cfg		*s1_cfg;
559 	struct arm_smmu_s2_cfg		*s2_cfg;
560 };
561 
562 struct arm_smmu_strtab_cfg {
563 	__le64				*strtab;
564 	dma_addr_t			strtab_dma;
565 	struct arm_smmu_strtab_l1_desc	*l1_desc;
566 	unsigned int			num_l1_ents;
567 
568 	u64				strtab_base;
569 	u32				strtab_base_cfg;
570 };
571 
572 /* An SMMUv3 instance */
573 struct arm_smmu_device {
574 	struct device			*dev;
575 	void __iomem			*base;
576 
577 #define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
578 #define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
579 #define ARM_SMMU_FEAT_TT_LE		(1 << 2)
580 #define ARM_SMMU_FEAT_TT_BE		(1 << 3)
581 #define ARM_SMMU_FEAT_PRI		(1 << 4)
582 #define ARM_SMMU_FEAT_ATS		(1 << 5)
583 #define ARM_SMMU_FEAT_SEV		(1 << 6)
584 #define ARM_SMMU_FEAT_MSI		(1 << 7)
585 #define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
586 #define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
587 #define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
588 #define ARM_SMMU_FEAT_STALLS		(1 << 11)
589 #define ARM_SMMU_FEAT_HYP		(1 << 12)
590 	u32				features;
591 
592 #define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
593 	u32				options;
594 
595 	struct arm_smmu_cmdq		cmdq;
596 	struct arm_smmu_evtq		evtq;
597 	struct arm_smmu_priq		priq;
598 
599 	int				gerr_irq;
600 
601 	unsigned long			ias; /* IPA */
602 	unsigned long			oas; /* PA */
603 	unsigned long			pgsize_bitmap;
604 
605 #define ARM_SMMU_MAX_ASIDS		(1 << 16)
606 	unsigned int			asid_bits;
607 	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
608 
609 #define ARM_SMMU_MAX_VMIDS		(1 << 16)
610 	unsigned int			vmid_bits;
611 	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
612 
613 	unsigned int			ssid_bits;
614 	unsigned int			sid_bits;
615 
616 	struct arm_smmu_strtab_cfg	strtab_cfg;
617 };
618 
619 /* SMMU private data for each master */
620 struct arm_smmu_master_data {
621 	struct arm_smmu_device		*smmu;
622 	struct arm_smmu_strtab_ent	ste;
623 };
624 
625 /* SMMU private data for an IOMMU domain */
626 enum arm_smmu_domain_stage {
627 	ARM_SMMU_DOMAIN_S1 = 0,
628 	ARM_SMMU_DOMAIN_S2,
629 	ARM_SMMU_DOMAIN_NESTED,
630 };
631 
632 struct arm_smmu_domain {
633 	struct arm_smmu_device		*smmu;
634 	struct mutex			init_mutex; /* Protects smmu pointer */
635 
636 	struct io_pgtable_ops		*pgtbl_ops;
637 	spinlock_t			pgtbl_lock;
638 
639 	enum arm_smmu_domain_stage	stage;
640 	union {
641 		struct arm_smmu_s1_cfg	s1_cfg;
642 		struct arm_smmu_s2_cfg	s2_cfg;
643 	};
644 
645 	struct iommu_domain		domain;
646 };
647 
648 struct arm_smmu_option_prop {
649 	u32 opt;
650 	const char *prop;
651 };
652 
653 static struct arm_smmu_option_prop arm_smmu_options[] = {
654 	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
655 	{ 0, NULL},
656 };
657 
to_smmu_domain(struct iommu_domain * dom)658 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
659 {
660 	return container_of(dom, struct arm_smmu_domain, domain);
661 }
662 
parse_driver_options(struct arm_smmu_device * smmu)663 static void parse_driver_options(struct arm_smmu_device *smmu)
664 {
665 	int i = 0;
666 
667 	do {
668 		if (of_property_read_bool(smmu->dev->of_node,
669 						arm_smmu_options[i].prop)) {
670 			smmu->options |= arm_smmu_options[i].opt;
671 			dev_notice(smmu->dev, "option %s\n",
672 				arm_smmu_options[i].prop);
673 		}
674 	} while (arm_smmu_options[++i].opt);
675 }
676 
677 /* Low-level queue manipulation functions */
queue_full(struct arm_smmu_queue * q)678 static bool queue_full(struct arm_smmu_queue *q)
679 {
680 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
681 	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
682 }
683 
queue_empty(struct arm_smmu_queue * q)684 static bool queue_empty(struct arm_smmu_queue *q)
685 {
686 	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
687 	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
688 }
689 
queue_sync_cons(struct arm_smmu_queue * q)690 static void queue_sync_cons(struct arm_smmu_queue *q)
691 {
692 	q->cons = readl_relaxed(q->cons_reg);
693 }
694 
queue_inc_cons(struct arm_smmu_queue * q)695 static void queue_inc_cons(struct arm_smmu_queue *q)
696 {
697 	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
698 
699 	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
700 	writel(q->cons, q->cons_reg);
701 }
702 
queue_sync_prod(struct arm_smmu_queue * q)703 static int queue_sync_prod(struct arm_smmu_queue *q)
704 {
705 	int ret = 0;
706 	u32 prod = readl_relaxed(q->prod_reg);
707 
708 	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
709 		ret = -EOVERFLOW;
710 
711 	q->prod = prod;
712 	return ret;
713 }
714 
queue_inc_prod(struct arm_smmu_queue * q)715 static void queue_inc_prod(struct arm_smmu_queue *q)
716 {
717 	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
718 
719 	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
720 	writel(q->prod, q->prod_reg);
721 }
722 
723 /*
724  * Wait for the SMMU to consume items. If drain is true, wait until the queue
725  * is empty. Otherwise, wait until there is at least one free slot.
726  */
queue_poll_cons(struct arm_smmu_queue * q,bool drain,bool wfe)727 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
728 {
729 	ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
730 
731 	while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
732 		if (ktime_compare(ktime_get(), timeout) > 0)
733 			return -ETIMEDOUT;
734 
735 		if (wfe) {
736 			wfe();
737 		} else {
738 			cpu_relax();
739 			udelay(1);
740 		}
741 	}
742 
743 	return 0;
744 }
745 
queue_write(__le64 * dst,u64 * src,size_t n_dwords)746 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
747 {
748 	int i;
749 
750 	for (i = 0; i < n_dwords; ++i)
751 		*dst++ = cpu_to_le64(*src++);
752 }
753 
queue_insert_raw(struct arm_smmu_queue * q,u64 * ent)754 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
755 {
756 	if (queue_full(q))
757 		return -ENOSPC;
758 
759 	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
760 	queue_inc_prod(q);
761 	return 0;
762 }
763 
queue_read(__le64 * dst,u64 * src,size_t n_dwords)764 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
765 {
766 	int i;
767 
768 	for (i = 0; i < n_dwords; ++i)
769 		*dst++ = le64_to_cpu(*src++);
770 }
771 
queue_remove_raw(struct arm_smmu_queue * q,u64 * ent)772 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
773 {
774 	if (queue_empty(q))
775 		return -EAGAIN;
776 
777 	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
778 	queue_inc_cons(q);
779 	return 0;
780 }
781 
782 /* High-level queue accessors */
arm_smmu_cmdq_build_cmd(u64 * cmd,struct arm_smmu_cmdq_ent * ent)783 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
784 {
785 	memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
786 	cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
787 
788 	switch (ent->opcode) {
789 	case CMDQ_OP_TLBI_EL2_ALL:
790 	case CMDQ_OP_TLBI_NSNH_ALL:
791 		break;
792 	case CMDQ_OP_PREFETCH_CFG:
793 		cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
794 		cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
795 		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
796 		break;
797 	case CMDQ_OP_CFGI_STE:
798 		cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
799 		cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
800 		break;
801 	case CMDQ_OP_CFGI_ALL:
802 		/* Cover the entire SID range */
803 		cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
804 		break;
805 	case CMDQ_OP_TLBI_NH_VA:
806 		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807 		cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
808 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
809 		break;
810 	case CMDQ_OP_TLBI_S2_IPA:
811 		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812 		cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813 		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
814 		break;
815 	case CMDQ_OP_TLBI_NH_ASID:
816 		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
817 		/* Fallthrough */
818 	case CMDQ_OP_TLBI_S12_VMALL:
819 		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
820 		break;
821 	case CMDQ_OP_PRI_RESP:
822 		cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
823 		cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
824 		cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
825 		cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
826 		switch (ent->pri.resp) {
827 		case PRI_RESP_DENY:
828 			cmd[1] |= CMDQ_PRI_1_RESP_DENY;
829 			break;
830 		case PRI_RESP_FAIL:
831 			cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
832 			break;
833 		case PRI_RESP_SUCC:
834 			cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
835 			break;
836 		default:
837 			return -EINVAL;
838 		}
839 		break;
840 	case CMDQ_OP_CMD_SYNC:
841 		cmd[0] |= CMDQ_SYNC_0_CS_SEV;
842 		break;
843 	default:
844 		return -ENOENT;
845 	}
846 
847 	return 0;
848 }
849 
arm_smmu_cmdq_skip_err(struct arm_smmu_device * smmu)850 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
851 {
852 	static const char *cerror_str[] = {
853 		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
854 		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
855 		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
856 	};
857 
858 	int i;
859 	u64 cmd[CMDQ_ENT_DWORDS];
860 	struct arm_smmu_queue *q = &smmu->cmdq.q;
861 	u32 cons = readl_relaxed(q->cons_reg);
862 	u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
863 	struct arm_smmu_cmdq_ent cmd_sync = {
864 		.opcode = CMDQ_OP_CMD_SYNC,
865 	};
866 
867 	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
868 		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
869 
870 	switch (idx) {
871 	case CMDQ_ERR_CERROR_ABT_IDX:
872 		dev_err(smmu->dev, "retrying command fetch\n");
873 	case CMDQ_ERR_CERROR_NONE_IDX:
874 		return;
875 	case CMDQ_ERR_CERROR_ILL_IDX:
876 		/* Fallthrough */
877 	default:
878 		break;
879 	}
880 
881 	/*
882 	 * We may have concurrent producers, so we need to be careful
883 	 * not to touch any of the shadow cmdq state.
884 	 */
885 	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
886 	dev_err(smmu->dev, "skipping command in error state:\n");
887 	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
888 		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
889 
890 	/* Convert the erroneous command into a CMD_SYNC */
891 	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
892 		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
893 		return;
894 	}
895 
896 	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
897 }
898 
arm_smmu_cmdq_issue_cmd(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent)899 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
900 				    struct arm_smmu_cmdq_ent *ent)
901 {
902 	u64 cmd[CMDQ_ENT_DWORDS];
903 	unsigned long flags;
904 	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
905 	struct arm_smmu_queue *q = &smmu->cmdq.q;
906 
907 	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
908 		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
909 			 ent->opcode);
910 		return;
911 	}
912 
913 	spin_lock_irqsave(&smmu->cmdq.lock, flags);
914 	while (queue_insert_raw(q, cmd) == -ENOSPC) {
915 		if (queue_poll_cons(q, false, wfe))
916 			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
917 	}
918 
919 	if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
920 		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
921 	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
922 }
923 
924 /* Context descriptor manipulation functions */
arm_smmu_cpu_tcr_to_cd(u64 tcr)925 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
926 {
927 	u64 val = 0;
928 
929 	/* Repack the TCR. Just care about TTBR0 for now */
930 	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
931 	val |= ARM_SMMU_TCR2CD(tcr, TG0);
932 	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
933 	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
934 	val |= ARM_SMMU_TCR2CD(tcr, SH0);
935 	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
936 	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
937 	val |= ARM_SMMU_TCR2CD(tcr, IPS);
938 	val |= ARM_SMMU_TCR2CD(tcr, TBI0);
939 
940 	return val;
941 }
942 
arm_smmu_write_ctx_desc(struct arm_smmu_device * smmu,struct arm_smmu_s1_cfg * cfg)943 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
944 				    struct arm_smmu_s1_cfg *cfg)
945 {
946 	u64 val;
947 
948 	/*
949 	 * We don't need to issue any invalidation here, as we'll invalidate
950 	 * the STE when installing the new entry anyway.
951 	 */
952 	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
953 #ifdef __BIG_ENDIAN
954 	      CTXDESC_CD_0_ENDI |
955 #endif
956 	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
957 	      CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
958 	      CTXDESC_CD_0_V;
959 	cfg->cdptr[0] = cpu_to_le64(val);
960 
961 	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
962 	cfg->cdptr[1] = cpu_to_le64(val);
963 
964 	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
965 }
966 
967 /* Stream table manipulation functions */
968 static void
arm_smmu_write_strtab_l1_desc(__le64 * dst,struct arm_smmu_strtab_l1_desc * desc)969 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
970 {
971 	u64 val = 0;
972 
973 	val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
974 		<< STRTAB_L1_DESC_SPAN_SHIFT;
975 	val |= desc->l2ptr_dma &
976 	       STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
977 
978 	*dst = cpu_to_le64(val);
979 }
980 
arm_smmu_sync_ste_for_sid(struct arm_smmu_device * smmu,u32 sid)981 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
982 {
983 	struct arm_smmu_cmdq_ent cmd = {
984 		.opcode	= CMDQ_OP_CFGI_STE,
985 		.cfgi	= {
986 			.sid	= sid,
987 			.leaf	= true,
988 		},
989 	};
990 
991 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
992 	cmd.opcode = CMDQ_OP_CMD_SYNC;
993 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 }
995 
arm_smmu_write_strtab_ent(struct arm_smmu_device * smmu,u32 sid,__le64 * dst,struct arm_smmu_strtab_ent * ste)996 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
997 				      __le64 *dst, struct arm_smmu_strtab_ent *ste)
998 {
999 	/*
1000 	 * This is hideously complicated, but we only really care about
1001 	 * three cases at the moment:
1002 	 *
1003 	 * 1. Invalid (all zero) -> bypass  (init)
1004 	 * 2. Bypass -> translation (attach)
1005 	 * 3. Translation -> bypass (detach)
1006 	 *
1007 	 * Given that we can't update the STE atomically and the SMMU
1008 	 * doesn't read the thing in a defined order, that leaves us
1009 	 * with the following maintenance requirements:
1010 	 *
1011 	 * 1. Update Config, return (init time STEs aren't live)
1012 	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1013 	 * 3. Update Config, sync
1014 	 */
1015 	u64 val = le64_to_cpu(dst[0]);
1016 	bool ste_live = false;
1017 	struct arm_smmu_cmdq_ent prefetch_cmd = {
1018 		.opcode		= CMDQ_OP_PREFETCH_CFG,
1019 		.prefetch	= {
1020 			.sid	= sid,
1021 		},
1022 	};
1023 
1024 	if (val & STRTAB_STE_0_V) {
1025 		u64 cfg;
1026 
1027 		cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1028 		switch (cfg) {
1029 		case STRTAB_STE_0_CFG_BYPASS:
1030 			break;
1031 		case STRTAB_STE_0_CFG_S1_TRANS:
1032 		case STRTAB_STE_0_CFG_S2_TRANS:
1033 			ste_live = true;
1034 			break;
1035 		case STRTAB_STE_0_CFG_ABORT:
1036 			if (disable_bypass)
1037 				break;
1038 		default:
1039 			BUG(); /* STE corruption */
1040 		}
1041 	}
1042 
1043 	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1044 	val = ste->valid ? STRTAB_STE_0_V : 0;
1045 
1046 	if (ste->bypass) {
1047 		val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1048 				      : STRTAB_STE_0_CFG_BYPASS;
1049 		dst[0] = cpu_to_le64(val);
1050 		dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1051 			 << STRTAB_STE_1_SHCFG_SHIFT);
1052 		dst[2] = 0; /* Nuke the VMID */
1053 		if (ste_live)
1054 			arm_smmu_sync_ste_for_sid(smmu, sid);
1055 		return;
1056 	}
1057 
1058 	if (ste->s1_cfg) {
1059 		BUG_ON(ste_live);
1060 		dst[1] = cpu_to_le64(
1061 			 STRTAB_STE_1_S1C_CACHE_WBRA
1062 			 << STRTAB_STE_1_S1CIR_SHIFT |
1063 			 STRTAB_STE_1_S1C_CACHE_WBRA
1064 			 << STRTAB_STE_1_S1COR_SHIFT |
1065 			 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1066 #ifdef CONFIG_PCI_ATS
1067 			 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1068 #endif
1069 			 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1070 			 STRTAB_STE_1_PRIVCFG_UNPRIV <<
1071 			 STRTAB_STE_1_PRIVCFG_SHIFT);
1072 
1073 		if (smmu->features & ARM_SMMU_FEAT_STALLS)
1074 			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1075 
1076 		val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1077 		        << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1078 			STRTAB_STE_0_CFG_S1_TRANS;
1079 	}
1080 
1081 	if (ste->s2_cfg) {
1082 		BUG_ON(ste_live);
1083 		dst[2] = cpu_to_le64(
1084 			 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1085 			 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1086 			  << STRTAB_STE_2_VTCR_SHIFT |
1087 #ifdef __BIG_ENDIAN
1088 			 STRTAB_STE_2_S2ENDI |
1089 #endif
1090 			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1091 			 STRTAB_STE_2_S2R);
1092 
1093 		dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1094 			 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1095 
1096 		val |= STRTAB_STE_0_CFG_S2_TRANS;
1097 	}
1098 
1099 	arm_smmu_sync_ste_for_sid(smmu, sid);
1100 	dst[0] = cpu_to_le64(val);
1101 	arm_smmu_sync_ste_for_sid(smmu, sid);
1102 
1103 	/* It's likely that we'll want to use the new STE soon */
1104 	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1105 		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1106 }
1107 
arm_smmu_init_bypass_stes(u64 * strtab,unsigned int nent)1108 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1109 {
1110 	unsigned int i;
1111 	struct arm_smmu_strtab_ent ste = {
1112 		.valid	= true,
1113 		.bypass	= true,
1114 	};
1115 
1116 	for (i = 0; i < nent; ++i) {
1117 		arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1118 		strtab += STRTAB_STE_DWORDS;
1119 	}
1120 }
1121 
arm_smmu_init_l2_strtab(struct arm_smmu_device * smmu,u32 sid)1122 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1123 {
1124 	size_t size;
1125 	void *strtab;
1126 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1127 	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1128 
1129 	if (desc->l2ptr)
1130 		return 0;
1131 
1132 	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1133 	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1134 
1135 	desc->span = STRTAB_SPLIT + 1;
1136 	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1137 					  GFP_KERNEL | __GFP_ZERO);
1138 	if (!desc->l2ptr) {
1139 		dev_err(smmu->dev,
1140 			"failed to allocate l2 stream table for SID %u\n",
1141 			sid);
1142 		return -ENOMEM;
1143 	}
1144 
1145 	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1146 	arm_smmu_write_strtab_l1_desc(strtab, desc);
1147 	return 0;
1148 }
1149 
1150 /* IRQ and event handlers */
arm_smmu_evtq_thread(int irq,void * dev)1151 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1152 {
1153 	int i;
1154 	struct arm_smmu_device *smmu = dev;
1155 	struct arm_smmu_queue *q = &smmu->evtq.q;
1156 	u64 evt[EVTQ_ENT_DWORDS];
1157 
1158 	do {
1159 		while (!queue_remove_raw(q, evt)) {
1160 			u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1161 
1162 			dev_info(smmu->dev, "event 0x%02x received:\n", id);
1163 			for (i = 0; i < ARRAY_SIZE(evt); ++i)
1164 				dev_info(smmu->dev, "\t0x%016llx\n",
1165 					 (unsigned long long)evt[i]);
1166 
1167 		}
1168 
1169 		/*
1170 		 * Not much we can do on overflow, so scream and pretend we're
1171 		 * trying harder.
1172 		 */
1173 		if (queue_sync_prod(q) == -EOVERFLOW)
1174 			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1175 	} while (!queue_empty(q));
1176 
1177 	/* Sync our overflow flag, as we believe we're up to speed */
1178 	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1179 	return IRQ_HANDLED;
1180 }
1181 
arm_smmu_handle_ppr(struct arm_smmu_device * smmu,u64 * evt)1182 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1183 {
1184 	u32 sid, ssid;
1185 	u16 grpid;
1186 	bool ssv, last;
1187 
1188 	sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1189 	ssv = evt[0] & PRIQ_0_SSID_V;
1190 	ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1191 	last = evt[0] & PRIQ_0_PRG_LAST;
1192 	grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1193 
1194 	dev_info(smmu->dev, "unexpected PRI request received:\n");
1195 	dev_info(smmu->dev,
1196 		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1197 		 sid, ssid, grpid, last ? "L" : "",
1198 		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1199 		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1200 		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1201 		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1202 		 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1203 
1204 	if (last) {
1205 		struct arm_smmu_cmdq_ent cmd = {
1206 			.opcode			= CMDQ_OP_PRI_RESP,
1207 			.substream_valid	= ssv,
1208 			.pri			= {
1209 				.sid	= sid,
1210 				.ssid	= ssid,
1211 				.grpid	= grpid,
1212 				.resp	= PRI_RESP_DENY,
1213 			},
1214 		};
1215 
1216 		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1217 	}
1218 }
1219 
arm_smmu_priq_thread(int irq,void * dev)1220 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1221 {
1222 	struct arm_smmu_device *smmu = dev;
1223 	struct arm_smmu_queue *q = &smmu->priq.q;
1224 	u64 evt[PRIQ_ENT_DWORDS];
1225 
1226 	do {
1227 		while (!queue_remove_raw(q, evt))
1228 			arm_smmu_handle_ppr(smmu, evt);
1229 
1230 		if (queue_sync_prod(q) == -EOVERFLOW)
1231 			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1232 	} while (!queue_empty(q));
1233 
1234 	/* Sync our overflow flag, as we believe we're up to speed */
1235 	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1236 	return IRQ_HANDLED;
1237 }
1238 
arm_smmu_cmdq_sync_handler(int irq,void * dev)1239 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1240 {
1241 	/* We don't actually use CMD_SYNC interrupts for anything */
1242 	return IRQ_HANDLED;
1243 }
1244 
1245 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1246 
arm_smmu_gerror_handler(int irq,void * dev)1247 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1248 {
1249 	u32 gerror, gerrorn, active;
1250 	struct arm_smmu_device *smmu = dev;
1251 
1252 	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1253 	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1254 
1255 	active = gerror ^ gerrorn;
1256 	if (!(active & GERROR_ERR_MASK))
1257 		return IRQ_NONE; /* No errors pending */
1258 
1259 	dev_warn(smmu->dev,
1260 		 "unexpected global error reported (0x%08x), this could be serious\n",
1261 		 active);
1262 
1263 	if (active & GERROR_SFM_ERR) {
1264 		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1265 		arm_smmu_device_disable(smmu);
1266 	}
1267 
1268 	if (active & GERROR_MSI_GERROR_ABT_ERR)
1269 		dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1270 
1271 	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1272 		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1273 
1274 	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1275 		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1276 
1277 	if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1278 		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1279 		arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1280 	}
1281 
1282 	if (active & GERROR_PRIQ_ABT_ERR)
1283 		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1284 
1285 	if (active & GERROR_EVTQ_ABT_ERR)
1286 		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1287 
1288 	if (active & GERROR_CMDQ_ERR)
1289 		arm_smmu_cmdq_skip_err(smmu);
1290 
1291 	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 /* IO_PGTABLE API */
__arm_smmu_tlb_sync(struct arm_smmu_device * smmu)1296 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1297 {
1298 	struct arm_smmu_cmdq_ent cmd;
1299 
1300 	cmd.opcode = CMDQ_OP_CMD_SYNC;
1301 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1302 }
1303 
arm_smmu_tlb_sync(void * cookie)1304 static void arm_smmu_tlb_sync(void *cookie)
1305 {
1306 	struct arm_smmu_domain *smmu_domain = cookie;
1307 	__arm_smmu_tlb_sync(smmu_domain->smmu);
1308 }
1309 
arm_smmu_tlb_inv_context(void * cookie)1310 static void arm_smmu_tlb_inv_context(void *cookie)
1311 {
1312 	struct arm_smmu_domain *smmu_domain = cookie;
1313 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1314 	struct arm_smmu_cmdq_ent cmd;
1315 
1316 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1317 		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
1318 		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
1319 		cmd.tlbi.vmid	= 0;
1320 	} else {
1321 		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
1322 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1323 	}
1324 
1325 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1326 	__arm_smmu_tlb_sync(smmu);
1327 }
1328 
arm_smmu_tlb_inv_range_nosync(unsigned long iova,size_t size,size_t granule,bool leaf,void * cookie)1329 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1330 					  size_t granule, bool leaf, void *cookie)
1331 {
1332 	struct arm_smmu_domain *smmu_domain = cookie;
1333 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 	struct arm_smmu_cmdq_ent cmd = {
1335 		.tlbi = {
1336 			.leaf	= leaf,
1337 			.addr	= iova,
1338 		},
1339 	};
1340 
1341 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1342 		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
1343 		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
1344 	} else {
1345 		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
1346 		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
1347 	}
1348 
1349 	do {
1350 		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1351 		cmd.tlbi.addr += granule;
1352 	} while (size -= granule);
1353 }
1354 
1355 static struct iommu_gather_ops arm_smmu_gather_ops = {
1356 	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1357 	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
1358 	.tlb_sync	= arm_smmu_tlb_sync,
1359 };
1360 
1361 /* IOMMU API */
arm_smmu_capable(enum iommu_cap cap)1362 static bool arm_smmu_capable(enum iommu_cap cap)
1363 {
1364 	switch (cap) {
1365 	case IOMMU_CAP_CACHE_COHERENCY:
1366 		return true;
1367 	case IOMMU_CAP_INTR_REMAP:
1368 		return true; /* MSIs are just memory writes */
1369 	case IOMMU_CAP_NOEXEC:
1370 		return true;
1371 	default:
1372 		return false;
1373 	}
1374 }
1375 
arm_smmu_domain_alloc(unsigned type)1376 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1377 {
1378 	struct arm_smmu_domain *smmu_domain;
1379 
1380 	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1381 		return NULL;
1382 
1383 	/*
1384 	 * Allocate the domain and initialise some of its data structures.
1385 	 * We can't really do anything meaningful until we've added a
1386 	 * master.
1387 	 */
1388 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1389 	if (!smmu_domain)
1390 		return NULL;
1391 
1392 	if (type == IOMMU_DOMAIN_DMA &&
1393 	    iommu_get_dma_cookie(&smmu_domain->domain)) {
1394 		kfree(smmu_domain);
1395 		return NULL;
1396 	}
1397 
1398 	mutex_init(&smmu_domain->init_mutex);
1399 	spin_lock_init(&smmu_domain->pgtbl_lock);
1400 	return &smmu_domain->domain;
1401 }
1402 
arm_smmu_bitmap_alloc(unsigned long * map,int span)1403 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1404 {
1405 	int idx, size = 1 << span;
1406 
1407 	do {
1408 		idx = find_first_zero_bit(map, size);
1409 		if (idx == size)
1410 			return -ENOSPC;
1411 	} while (test_and_set_bit(idx, map));
1412 
1413 	return idx;
1414 }
1415 
arm_smmu_bitmap_free(unsigned long * map,int idx)1416 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1417 {
1418 	clear_bit(idx, map);
1419 }
1420 
arm_smmu_domain_free(struct iommu_domain * domain)1421 static void arm_smmu_domain_free(struct iommu_domain *domain)
1422 {
1423 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1424 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1425 
1426 	iommu_put_dma_cookie(domain);
1427 	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1428 
1429 	/* Free the CD and ASID, if we allocated them */
1430 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1431 		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1432 
1433 		if (cfg->cdptr) {
1434 			dmam_free_coherent(smmu_domain->smmu->dev,
1435 					   CTXDESC_CD_DWORDS << 3,
1436 					   cfg->cdptr,
1437 					   cfg->cdptr_dma);
1438 
1439 			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1440 		}
1441 	} else {
1442 		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1443 		if (cfg->vmid)
1444 			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1445 	}
1446 
1447 	kfree(smmu_domain);
1448 }
1449 
arm_smmu_domain_finalise_s1(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)1450 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1451 				       struct io_pgtable_cfg *pgtbl_cfg)
1452 {
1453 	int ret;
1454 	int asid;
1455 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1456 	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1457 
1458 	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1459 	if (asid < 0)
1460 		return asid;
1461 
1462 	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1463 					 &cfg->cdptr_dma,
1464 					 GFP_KERNEL | __GFP_ZERO);
1465 	if (!cfg->cdptr) {
1466 		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1467 		ret = -ENOMEM;
1468 		goto out_free_asid;
1469 	}
1470 
1471 	cfg->cd.asid	= (u16)asid;
1472 	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1473 	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1474 	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1475 	return 0;
1476 
1477 out_free_asid:
1478 	arm_smmu_bitmap_free(smmu->asid_map, asid);
1479 	return ret;
1480 }
1481 
arm_smmu_domain_finalise_s2(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)1482 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1483 				       struct io_pgtable_cfg *pgtbl_cfg)
1484 {
1485 	int vmid;
1486 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1487 	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1488 
1489 	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1490 	if (vmid < 0)
1491 		return vmid;
1492 
1493 	cfg->vmid	= (u16)vmid;
1494 	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1495 	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1496 	return 0;
1497 }
1498 
arm_smmu_domain_finalise(struct iommu_domain * domain)1499 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1500 {
1501 	int ret;
1502 	unsigned long ias, oas;
1503 	enum io_pgtable_fmt fmt;
1504 	struct io_pgtable_cfg pgtbl_cfg;
1505 	struct io_pgtable_ops *pgtbl_ops;
1506 	int (*finalise_stage_fn)(struct arm_smmu_domain *,
1507 				 struct io_pgtable_cfg *);
1508 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1509 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1510 
1511 	/* Restrict the stage to what we can actually support */
1512 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1513 		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1514 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1515 		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1516 
1517 	switch (smmu_domain->stage) {
1518 	case ARM_SMMU_DOMAIN_S1:
1519 		ias = VA_BITS;
1520 		oas = smmu->ias;
1521 		fmt = ARM_64_LPAE_S1;
1522 		finalise_stage_fn = arm_smmu_domain_finalise_s1;
1523 		break;
1524 	case ARM_SMMU_DOMAIN_NESTED:
1525 	case ARM_SMMU_DOMAIN_S2:
1526 		ias = smmu->ias;
1527 		oas = smmu->oas;
1528 		fmt = ARM_64_LPAE_S2;
1529 		finalise_stage_fn = arm_smmu_domain_finalise_s2;
1530 		break;
1531 	default:
1532 		return -EINVAL;
1533 	}
1534 
1535 	pgtbl_cfg = (struct io_pgtable_cfg) {
1536 		.pgsize_bitmap	= smmu->pgsize_bitmap,
1537 		.ias		= ias,
1538 		.oas		= oas,
1539 		.tlb		= &arm_smmu_gather_ops,
1540 		.iommu_dev	= smmu->dev,
1541 	};
1542 
1543 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1544 	if (!pgtbl_ops)
1545 		return -ENOMEM;
1546 
1547 	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1548 	domain->geometry.aperture_end = (1UL << ias) - 1;
1549 	domain->geometry.force_aperture = true;
1550 
1551 	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1552 	if (ret < 0) {
1553 		free_io_pgtable_ops(pgtbl_ops);
1554 		return ret;
1555 	}
1556 
1557 	smmu_domain->pgtbl_ops = pgtbl_ops;
1558 	return 0;
1559 }
1560 
arm_smmu_get_step_for_sid(struct arm_smmu_device * smmu,u32 sid)1561 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1562 {
1563 	__le64 *step;
1564 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1565 
1566 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1567 		struct arm_smmu_strtab_l1_desc *l1_desc;
1568 		int idx;
1569 
1570 		/* Two-level walk */
1571 		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1572 		l1_desc = &cfg->l1_desc[idx];
1573 		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1574 		step = &l1_desc->l2ptr[idx];
1575 	} else {
1576 		/* Simple linear lookup */
1577 		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1578 	}
1579 
1580 	return step;
1581 }
1582 
arm_smmu_install_ste_for_dev(struct iommu_fwspec * fwspec)1583 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1584 {
1585 	int i, j;
1586 	struct arm_smmu_master_data *master = fwspec->iommu_priv;
1587 	struct arm_smmu_device *smmu = master->smmu;
1588 
1589 	for (i = 0; i < fwspec->num_ids; ++i) {
1590 		u32 sid = fwspec->ids[i];
1591 		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1592 
1593 		/* Bridged PCI devices may end up with duplicated IDs */
1594 		for (j = 0; j < i; j++)
1595 			if (fwspec->ids[j] == sid)
1596 				break;
1597 		if (j < i)
1598 			continue;
1599 
1600 		arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1601 	}
1602 
1603 	return 0;
1604 }
1605 
arm_smmu_detach_dev(struct device * dev)1606 static void arm_smmu_detach_dev(struct device *dev)
1607 {
1608 	struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1609 
1610 	master->ste.bypass = true;
1611 	if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1612 		dev_warn(dev, "failed to install bypass STE\n");
1613 }
1614 
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)1615 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1616 {
1617 	int ret = 0;
1618 	struct arm_smmu_device *smmu;
1619 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1620 	struct arm_smmu_master_data *master;
1621 	struct arm_smmu_strtab_ent *ste;
1622 
1623 	if (!dev->iommu_fwspec)
1624 		return -ENOENT;
1625 
1626 	master = dev->iommu_fwspec->iommu_priv;
1627 	smmu = master->smmu;
1628 	ste = &master->ste;
1629 
1630 	/* Already attached to a different domain? */
1631 	if (!ste->bypass)
1632 		arm_smmu_detach_dev(dev);
1633 
1634 	mutex_lock(&smmu_domain->init_mutex);
1635 
1636 	if (!smmu_domain->smmu) {
1637 		smmu_domain->smmu = smmu;
1638 		ret = arm_smmu_domain_finalise(domain);
1639 		if (ret) {
1640 			smmu_domain->smmu = NULL;
1641 			goto out_unlock;
1642 		}
1643 	} else if (smmu_domain->smmu != smmu) {
1644 		dev_err(dev,
1645 			"cannot attach to SMMU %s (upstream of %s)\n",
1646 			dev_name(smmu_domain->smmu->dev),
1647 			dev_name(smmu->dev));
1648 		ret = -ENXIO;
1649 		goto out_unlock;
1650 	}
1651 
1652 	ste->bypass = false;
1653 	ste->valid = true;
1654 
1655 	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1656 		ste->s1_cfg = &smmu_domain->s1_cfg;
1657 		ste->s2_cfg = NULL;
1658 		arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1659 	} else {
1660 		ste->s1_cfg = NULL;
1661 		ste->s2_cfg = &smmu_domain->s2_cfg;
1662 	}
1663 
1664 	ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1665 	if (ret < 0)
1666 		ste->valid = false;
1667 
1668 out_unlock:
1669 	mutex_unlock(&smmu_domain->init_mutex);
1670 	return ret;
1671 }
1672 
arm_smmu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1673 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1674 			phys_addr_t paddr, size_t size, int prot)
1675 {
1676 	int ret;
1677 	unsigned long flags;
1678 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1679 	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1680 
1681 	if (!ops)
1682 		return -ENODEV;
1683 
1684 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1685 	ret = ops->map(ops, iova, paddr, size, prot);
1686 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1687 	return ret;
1688 }
1689 
1690 static size_t
arm_smmu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)1691 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1692 {
1693 	size_t ret;
1694 	unsigned long flags;
1695 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1696 	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1697 
1698 	if (!ops)
1699 		return 0;
1700 
1701 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1702 	ret = ops->unmap(ops, iova, size);
1703 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1704 	return ret;
1705 }
1706 
1707 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)1708 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1709 {
1710 	phys_addr_t ret;
1711 	unsigned long flags;
1712 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1713 	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1714 
1715 	if (!ops)
1716 		return 0;
1717 
1718 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1719 	ret = ops->iova_to_phys(ops, iova);
1720 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1721 
1722 	return ret;
1723 }
1724 
1725 static struct platform_driver arm_smmu_driver;
1726 
arm_smmu_match_node(struct device * dev,void * data)1727 static int arm_smmu_match_node(struct device *dev, void *data)
1728 {
1729 	return dev->of_node == data;
1730 }
1731 
arm_smmu_get_by_node(struct device_node * np)1732 static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
1733 {
1734 	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1735 						np, arm_smmu_match_node);
1736 	put_device(dev);
1737 	return dev ? dev_get_drvdata(dev) : NULL;
1738 }
1739 
arm_smmu_sid_in_range(struct arm_smmu_device * smmu,u32 sid)1740 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1741 {
1742 	unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1743 
1744 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1745 		limit *= 1UL << STRTAB_SPLIT;
1746 
1747 	return sid < limit;
1748 }
1749 
1750 static struct iommu_ops arm_smmu_ops;
1751 
arm_smmu_add_device(struct device * dev)1752 static int arm_smmu_add_device(struct device *dev)
1753 {
1754 	int i, ret;
1755 	struct arm_smmu_device *smmu;
1756 	struct arm_smmu_master_data *master;
1757 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1758 	struct iommu_group *group;
1759 
1760 	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1761 		return -ENODEV;
1762 	/*
1763 	 * We _can_ actually withstand dodgy bus code re-calling add_device()
1764 	 * without an intervening remove_device()/of_xlate() sequence, but
1765 	 * we're not going to do so quietly...
1766 	 */
1767 	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1768 		master = fwspec->iommu_priv;
1769 		smmu = master->smmu;
1770 	} else {
1771 		smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
1772 		if (!smmu)
1773 			return -ENODEV;
1774 		master = kzalloc(sizeof(*master), GFP_KERNEL);
1775 		if (!master)
1776 			return -ENOMEM;
1777 
1778 		master->smmu = smmu;
1779 		fwspec->iommu_priv = master;
1780 	}
1781 
1782 	/* Check the SIDs are in range of the SMMU and our stream table */
1783 	for (i = 0; i < fwspec->num_ids; i++) {
1784 		u32 sid = fwspec->ids[i];
1785 
1786 		if (!arm_smmu_sid_in_range(smmu, sid))
1787 			return -ERANGE;
1788 
1789 		/* Ensure l2 strtab is initialised */
1790 		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1791 			ret = arm_smmu_init_l2_strtab(smmu, sid);
1792 			if (ret)
1793 				return ret;
1794 		}
1795 	}
1796 
1797 	group = iommu_group_get_for_dev(dev);
1798 	if (!IS_ERR(group))
1799 		iommu_group_put(group);
1800 
1801 	return PTR_ERR_OR_ZERO(group);
1802 }
1803 
arm_smmu_remove_device(struct device * dev)1804 static void arm_smmu_remove_device(struct device *dev)
1805 {
1806 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1807 	struct arm_smmu_master_data *master;
1808 
1809 	if (!fwspec || fwspec->ops != &arm_smmu_ops)
1810 		return;
1811 
1812 	master = fwspec->iommu_priv;
1813 	if (master && master->ste.valid)
1814 		arm_smmu_detach_dev(dev);
1815 	iommu_group_remove_device(dev);
1816 	kfree(master);
1817 	iommu_fwspec_free(dev);
1818 }
1819 
arm_smmu_device_group(struct device * dev)1820 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1821 {
1822 	struct iommu_group *group;
1823 
1824 	/*
1825 	 * We don't support devices sharing stream IDs other than PCI RID
1826 	 * aliases, since the necessary ID-to-device lookup becomes rather
1827 	 * impractical given a potential sparse 32-bit stream ID space.
1828 	 */
1829 	if (dev_is_pci(dev))
1830 		group = pci_device_group(dev);
1831 	else
1832 		group = generic_device_group(dev);
1833 
1834 	return group;
1835 }
1836 
arm_smmu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1837 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1838 				    enum iommu_attr attr, void *data)
1839 {
1840 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1841 
1842 	switch (attr) {
1843 	case DOMAIN_ATTR_NESTING:
1844 		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1845 		return 0;
1846 	default:
1847 		return -ENODEV;
1848 	}
1849 }
1850 
arm_smmu_domain_set_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1851 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1852 				    enum iommu_attr attr, void *data)
1853 {
1854 	int ret = 0;
1855 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1856 
1857 	mutex_lock(&smmu_domain->init_mutex);
1858 
1859 	switch (attr) {
1860 	case DOMAIN_ATTR_NESTING:
1861 		if (smmu_domain->smmu) {
1862 			ret = -EPERM;
1863 			goto out_unlock;
1864 		}
1865 
1866 		if (*(int *)data)
1867 			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1868 		else
1869 			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1870 
1871 		break;
1872 	default:
1873 		ret = -ENODEV;
1874 	}
1875 
1876 out_unlock:
1877 	mutex_unlock(&smmu_domain->init_mutex);
1878 	return ret;
1879 }
1880 
arm_smmu_of_xlate(struct device * dev,struct of_phandle_args * args)1881 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1882 {
1883 	return iommu_fwspec_add_ids(dev, args->args, 1);
1884 }
1885 
1886 static struct iommu_ops arm_smmu_ops = {
1887 	.capable		= arm_smmu_capable,
1888 	.domain_alloc		= arm_smmu_domain_alloc,
1889 	.domain_free		= arm_smmu_domain_free,
1890 	.attach_dev		= arm_smmu_attach_dev,
1891 	.map			= arm_smmu_map,
1892 	.unmap			= arm_smmu_unmap,
1893 	.map_sg			= default_iommu_map_sg,
1894 	.iova_to_phys		= arm_smmu_iova_to_phys,
1895 	.add_device		= arm_smmu_add_device,
1896 	.remove_device		= arm_smmu_remove_device,
1897 	.device_group		= arm_smmu_device_group,
1898 	.domain_get_attr	= arm_smmu_domain_get_attr,
1899 	.domain_set_attr	= arm_smmu_domain_set_attr,
1900 	.of_xlate		= arm_smmu_of_xlate,
1901 	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1902 };
1903 
1904 /* Probing and initialisation functions */
arm_smmu_init_one_queue(struct arm_smmu_device * smmu,struct arm_smmu_queue * q,unsigned long prod_off,unsigned long cons_off,size_t dwords)1905 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1906 				   struct arm_smmu_queue *q,
1907 				   unsigned long prod_off,
1908 				   unsigned long cons_off,
1909 				   size_t dwords)
1910 {
1911 	size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1912 
1913 	q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1914 	if (!q->base) {
1915 		dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1916 			qsz);
1917 		return -ENOMEM;
1918 	}
1919 
1920 	q->prod_reg	= smmu->base + prod_off;
1921 	q->cons_reg	= smmu->base + cons_off;
1922 	q->ent_dwords	= dwords;
1923 
1924 	q->q_base  = Q_BASE_RWA;
1925 	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1926 	q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1927 		     << Q_BASE_LOG2SIZE_SHIFT;
1928 
1929 	q->prod = q->cons = 0;
1930 	return 0;
1931 }
1932 
arm_smmu_init_queues(struct arm_smmu_device * smmu)1933 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1934 {
1935 	int ret;
1936 
1937 	/* cmdq */
1938 	spin_lock_init(&smmu->cmdq.lock);
1939 	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1940 				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1941 	if (ret)
1942 		return ret;
1943 
1944 	/* evtq */
1945 	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1946 				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1947 	if (ret)
1948 		return ret;
1949 
1950 	/* priq */
1951 	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1952 		return 0;
1953 
1954 	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1955 				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1956 }
1957 
arm_smmu_init_l1_strtab(struct arm_smmu_device * smmu)1958 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1959 {
1960 	unsigned int i;
1961 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1962 	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1963 	void *strtab = smmu->strtab_cfg.strtab;
1964 
1965 	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1966 	if (!cfg->l1_desc) {
1967 		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1968 		return -ENOMEM;
1969 	}
1970 
1971 	for (i = 0; i < cfg->num_l1_ents; ++i) {
1972 		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1973 		strtab += STRTAB_L1_DESC_DWORDS << 3;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
arm_smmu_init_strtab_2lvl(struct arm_smmu_device * smmu)1979 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1980 {
1981 	void *strtab;
1982 	u64 reg;
1983 	u32 size, l1size;
1984 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985 
1986 	/*
1987 	 * If we can resolve everything with a single L2 table, then we
1988 	 * just need a single L1 descriptor. Otherwise, calculate the L1
1989 	 * size, capped to the SIDSIZE.
1990 	 */
1991 	if (smmu->sid_bits < STRTAB_SPLIT) {
1992 		size = 0;
1993 	} else {
1994 		size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1995 		size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1996 	}
1997 	cfg->num_l1_ents = 1 << size;
1998 
1999 	size += STRTAB_SPLIT;
2000 	if (size < smmu->sid_bits)
2001 		dev_warn(smmu->dev,
2002 			 "2-level strtab only covers %u/%u bits of SID\n",
2003 			 size, smmu->sid_bits);
2004 
2005 	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2006 	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2007 				     GFP_KERNEL | __GFP_ZERO);
2008 	if (!strtab) {
2009 		dev_err(smmu->dev,
2010 			"failed to allocate l1 stream table (%u bytes)\n",
2011 			size);
2012 		return -ENOMEM;
2013 	}
2014 	cfg->strtab = strtab;
2015 
2016 	/* Configure strtab_base_cfg for 2 levels */
2017 	reg  = STRTAB_BASE_CFG_FMT_2LVL;
2018 	reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2019 		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2020 	reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2021 		<< STRTAB_BASE_CFG_SPLIT_SHIFT;
2022 	cfg->strtab_base_cfg = reg;
2023 
2024 	return arm_smmu_init_l1_strtab(smmu);
2025 }
2026 
arm_smmu_init_strtab_linear(struct arm_smmu_device * smmu)2027 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2028 {
2029 	void *strtab;
2030 	u64 reg;
2031 	u32 size;
2032 	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2033 
2034 	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2035 	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2036 				     GFP_KERNEL | __GFP_ZERO);
2037 	if (!strtab) {
2038 		dev_err(smmu->dev,
2039 			"failed to allocate linear stream table (%u bytes)\n",
2040 			size);
2041 		return -ENOMEM;
2042 	}
2043 	cfg->strtab = strtab;
2044 	cfg->num_l1_ents = 1 << smmu->sid_bits;
2045 
2046 	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2047 	reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2048 	reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2049 		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2050 	cfg->strtab_base_cfg = reg;
2051 
2052 	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2053 	return 0;
2054 }
2055 
arm_smmu_init_strtab(struct arm_smmu_device * smmu)2056 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2057 {
2058 	u64 reg;
2059 	int ret;
2060 
2061 	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2062 		ret = arm_smmu_init_strtab_2lvl(smmu);
2063 	else
2064 		ret = arm_smmu_init_strtab_linear(smmu);
2065 
2066 	if (ret)
2067 		return ret;
2068 
2069 	/* Set the strtab base address */
2070 	reg  = smmu->strtab_cfg.strtab_dma &
2071 	       STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2072 	reg |= STRTAB_BASE_RA;
2073 	smmu->strtab_cfg.strtab_base = reg;
2074 
2075 	/* Allocate the first VMID for stage-2 bypass STEs */
2076 	set_bit(0, smmu->vmid_map);
2077 	return 0;
2078 }
2079 
arm_smmu_init_structures(struct arm_smmu_device * smmu)2080 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2081 {
2082 	int ret;
2083 
2084 	ret = arm_smmu_init_queues(smmu);
2085 	if (ret)
2086 		return ret;
2087 
2088 	return arm_smmu_init_strtab(smmu);
2089 }
2090 
arm_smmu_write_reg_sync(struct arm_smmu_device * smmu,u32 val,unsigned int reg_off,unsigned int ack_off)2091 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2092 				   unsigned int reg_off, unsigned int ack_off)
2093 {
2094 	u32 reg;
2095 
2096 	writel_relaxed(val, smmu->base + reg_off);
2097 	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2098 					  1, ARM_SMMU_POLL_TIMEOUT_US);
2099 }
2100 
2101 /* GBPA is "special" */
arm_smmu_update_gbpa(struct arm_smmu_device * smmu,u32 set,u32 clr)2102 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2103 {
2104 	int ret;
2105 	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2106 
2107 	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2108 					 1, ARM_SMMU_POLL_TIMEOUT_US);
2109 	if (ret)
2110 		return ret;
2111 
2112 	reg &= ~clr;
2113 	reg |= set;
2114 	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2115 	return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2116 					  1, ARM_SMMU_POLL_TIMEOUT_US);
2117 }
2118 
arm_smmu_free_msis(void * data)2119 static void arm_smmu_free_msis(void *data)
2120 {
2121 	struct device *dev = data;
2122 	platform_msi_domain_free_irqs(dev);
2123 }
2124 
arm_smmu_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)2125 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2126 {
2127 	phys_addr_t doorbell;
2128 	struct device *dev = msi_desc_to_dev(desc);
2129 	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2130 	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2131 
2132 	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2133 	doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2134 
2135 	writeq_relaxed(doorbell, smmu->base + cfg[0]);
2136 	writel_relaxed(msg->data, smmu->base + cfg[1]);
2137 	writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2138 }
2139 
arm_smmu_setup_msis(struct arm_smmu_device * smmu)2140 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2141 {
2142 	struct msi_desc *desc;
2143 	int ret, nvec = ARM_SMMU_MAX_MSIS;
2144 	struct device *dev = smmu->dev;
2145 
2146 	/* Clear the MSI address regs */
2147 	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2148 	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2149 
2150 	if (smmu->features & ARM_SMMU_FEAT_PRI)
2151 		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2152 	else
2153 		nvec--;
2154 
2155 	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2156 		return;
2157 
2158 	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2159 	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2160 	if (ret) {
2161 		dev_warn(dev, "failed to allocate MSIs\n");
2162 		return;
2163 	}
2164 
2165 	for_each_msi_entry(desc, dev) {
2166 		switch (desc->platform.msi_index) {
2167 		case EVTQ_MSI_INDEX:
2168 			smmu->evtq.q.irq = desc->irq;
2169 			break;
2170 		case GERROR_MSI_INDEX:
2171 			smmu->gerr_irq = desc->irq;
2172 			break;
2173 		case PRIQ_MSI_INDEX:
2174 			smmu->priq.q.irq = desc->irq;
2175 			break;
2176 		default:	/* Unknown */
2177 			continue;
2178 		}
2179 	}
2180 
2181 	/* Add callback to free MSIs on teardown */
2182 	devm_add_action(dev, arm_smmu_free_msis, dev);
2183 }
2184 
arm_smmu_setup_irqs(struct arm_smmu_device * smmu)2185 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2186 {
2187 	int ret, irq;
2188 	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2189 
2190 	/* Disable IRQs first */
2191 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2192 				      ARM_SMMU_IRQ_CTRLACK);
2193 	if (ret) {
2194 		dev_err(smmu->dev, "failed to disable irqs\n");
2195 		return ret;
2196 	}
2197 
2198 	arm_smmu_setup_msis(smmu);
2199 
2200 	/* Request interrupt lines */
2201 	irq = smmu->evtq.q.irq;
2202 	if (irq) {
2203 		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2204 						arm_smmu_evtq_thread,
2205 						IRQF_ONESHOT,
2206 						"arm-smmu-v3-evtq", smmu);
2207 		if (ret < 0)
2208 			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2209 	}
2210 
2211 	irq = smmu->cmdq.q.irq;
2212 	if (irq) {
2213 		ret = devm_request_irq(smmu->dev, irq,
2214 				       arm_smmu_cmdq_sync_handler, 0,
2215 				       "arm-smmu-v3-cmdq-sync", smmu);
2216 		if (ret < 0)
2217 			dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2218 	}
2219 
2220 	irq = smmu->gerr_irq;
2221 	if (irq) {
2222 		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2223 				       0, "arm-smmu-v3-gerror", smmu);
2224 		if (ret < 0)
2225 			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2226 	}
2227 
2228 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
2229 		irq = smmu->priq.q.irq;
2230 		if (irq) {
2231 			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2232 							arm_smmu_priq_thread,
2233 							IRQF_ONESHOT,
2234 							"arm-smmu-v3-priq",
2235 							smmu);
2236 			if (ret < 0)
2237 				dev_warn(smmu->dev,
2238 					 "failed to enable priq irq\n");
2239 			else
2240 				irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2241 		}
2242 	}
2243 
2244 	/* Enable interrupt generation on the SMMU */
2245 	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2246 				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2247 	if (ret)
2248 		dev_warn(smmu->dev, "failed to enable irqs\n");
2249 
2250 	return 0;
2251 }
2252 
arm_smmu_device_disable(struct arm_smmu_device * smmu)2253 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2254 {
2255 	int ret;
2256 
2257 	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2258 	if (ret)
2259 		dev_err(smmu->dev, "failed to clear cr0\n");
2260 
2261 	return ret;
2262 }
2263 
arm_smmu_device_reset(struct arm_smmu_device * smmu,bool bypass)2264 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2265 {
2266 	int ret;
2267 	u32 reg, enables;
2268 	struct arm_smmu_cmdq_ent cmd;
2269 
2270 	/* Clear CR0 and sync (disables SMMU and queue processing) */
2271 	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2272 	if (reg & CR0_SMMUEN)
2273 		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2274 
2275 	ret = arm_smmu_device_disable(smmu);
2276 	if (ret)
2277 		return ret;
2278 
2279 	/* CR1 (table and queue memory attributes) */
2280 	reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2281 	      (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2282 	      (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2283 	      (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2284 	      (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2285 	      (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2286 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2287 
2288 	/* CR2 (random crap) */
2289 	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2290 	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2291 
2292 	/* Stream table */
2293 	writeq_relaxed(smmu->strtab_cfg.strtab_base,
2294 		       smmu->base + ARM_SMMU_STRTAB_BASE);
2295 	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2296 		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2297 
2298 	/* Command queue */
2299 	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2300 	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2301 	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2302 
2303 	enables = CR0_CMDQEN;
2304 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2305 				      ARM_SMMU_CR0ACK);
2306 	if (ret) {
2307 		dev_err(smmu->dev, "failed to enable command queue\n");
2308 		return ret;
2309 	}
2310 
2311 	/* Invalidate any cached configuration */
2312 	cmd.opcode = CMDQ_OP_CFGI_ALL;
2313 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2314 	cmd.opcode = CMDQ_OP_CMD_SYNC;
2315 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2316 
2317 	/* Invalidate any stale TLB entries */
2318 	if (smmu->features & ARM_SMMU_FEAT_HYP) {
2319 		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2320 		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321 	}
2322 
2323 	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2324 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325 	cmd.opcode = CMDQ_OP_CMD_SYNC;
2326 	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2327 
2328 	/* Event queue */
2329 	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2330 	writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2331 	writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2332 
2333 	enables |= CR0_EVTQEN;
2334 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2335 				      ARM_SMMU_CR0ACK);
2336 	if (ret) {
2337 		dev_err(smmu->dev, "failed to enable event queue\n");
2338 		return ret;
2339 	}
2340 
2341 	/* PRI queue */
2342 	if (smmu->features & ARM_SMMU_FEAT_PRI) {
2343 		writeq_relaxed(smmu->priq.q.q_base,
2344 			       smmu->base + ARM_SMMU_PRIQ_BASE);
2345 		writel_relaxed(smmu->priq.q.prod,
2346 			       smmu->base + ARM_SMMU_PRIQ_PROD);
2347 		writel_relaxed(smmu->priq.q.cons,
2348 			       smmu->base + ARM_SMMU_PRIQ_CONS);
2349 
2350 		enables |= CR0_PRIQEN;
2351 		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2352 					      ARM_SMMU_CR0ACK);
2353 		if (ret) {
2354 			dev_err(smmu->dev, "failed to enable PRI queue\n");
2355 			return ret;
2356 		}
2357 	}
2358 
2359 	ret = arm_smmu_setup_irqs(smmu);
2360 	if (ret) {
2361 		dev_err(smmu->dev, "failed to setup irqs\n");
2362 		return ret;
2363 	}
2364 
2365 
2366 	/* Enable the SMMU interface, or ensure bypass */
2367 	if (!bypass || disable_bypass) {
2368 		enables |= CR0_SMMUEN;
2369 	} else {
2370 		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2371 		if (ret) {
2372 			dev_err(smmu->dev, "GBPA not responding to update\n");
2373 			return ret;
2374 		}
2375 	}
2376 	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2377 				      ARM_SMMU_CR0ACK);
2378 	if (ret) {
2379 		dev_err(smmu->dev, "failed to enable SMMU interface\n");
2380 		return ret;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
arm_smmu_device_probe(struct arm_smmu_device * smmu)2386 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2387 {
2388 	u32 reg;
2389 	bool coherent;
2390 
2391 	/* IDR0 */
2392 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2393 
2394 	/* 2-level structures */
2395 	if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2396 		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2397 
2398 	if (reg & IDR0_CD2L)
2399 		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2400 
2401 	/*
2402 	 * Translation table endianness.
2403 	 * We currently require the same endianness as the CPU, but this
2404 	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2405 	 */
2406 	switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2407 	case IDR0_TTENDIAN_MIXED:
2408 		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2409 		break;
2410 #ifdef __BIG_ENDIAN
2411 	case IDR0_TTENDIAN_BE:
2412 		smmu->features |= ARM_SMMU_FEAT_TT_BE;
2413 		break;
2414 #else
2415 	case IDR0_TTENDIAN_LE:
2416 		smmu->features |= ARM_SMMU_FEAT_TT_LE;
2417 		break;
2418 #endif
2419 	default:
2420 		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2421 		return -ENXIO;
2422 	}
2423 
2424 	/* Boolean feature flags */
2425 	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2426 		smmu->features |= ARM_SMMU_FEAT_PRI;
2427 
2428 	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2429 		smmu->features |= ARM_SMMU_FEAT_ATS;
2430 
2431 	if (reg & IDR0_SEV)
2432 		smmu->features |= ARM_SMMU_FEAT_SEV;
2433 
2434 	if (reg & IDR0_MSI)
2435 		smmu->features |= ARM_SMMU_FEAT_MSI;
2436 
2437 	if (reg & IDR0_HYP)
2438 		smmu->features |= ARM_SMMU_FEAT_HYP;
2439 
2440 	/*
2441 	 * The dma-coherent property is used in preference to the ID
2442 	 * register, but warn on mismatch.
2443 	 */
2444 	coherent = of_dma_is_coherent(smmu->dev->of_node);
2445 	if (coherent)
2446 		smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2447 
2448 	if (!!(reg & IDR0_COHACC) != coherent)
2449 		dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2450 			 coherent ? "true" : "false");
2451 
2452 	switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2453 	case IDR0_STALL_MODEL_STALL:
2454 		/* Fallthrough */
2455 	case IDR0_STALL_MODEL_FORCE:
2456 		smmu->features |= ARM_SMMU_FEAT_STALLS;
2457 	}
2458 
2459 	if (reg & IDR0_S1P)
2460 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2461 
2462 	if (reg & IDR0_S2P)
2463 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2464 
2465 	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2466 		dev_err(smmu->dev, "no translation support!\n");
2467 		return -ENXIO;
2468 	}
2469 
2470 	/* We only support the AArch64 table format at present */
2471 	switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2472 	case IDR0_TTF_AARCH32_64:
2473 		smmu->ias = 40;
2474 		/* Fallthrough */
2475 	case IDR0_TTF_AARCH64:
2476 		break;
2477 	default:
2478 		dev_err(smmu->dev, "AArch64 table format not supported!\n");
2479 		return -ENXIO;
2480 	}
2481 
2482 	/* ASID/VMID sizes */
2483 	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2484 	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2485 
2486 	/* IDR1 */
2487 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2488 	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2489 		dev_err(smmu->dev, "embedded implementation not supported\n");
2490 		return -ENXIO;
2491 	}
2492 
2493 	/* Queue sizes, capped at 4k */
2494 	smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2495 				       reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2496 	if (!smmu->cmdq.q.max_n_shift) {
2497 		/* Odd alignment restrictions on the base, so ignore for now */
2498 		dev_err(smmu->dev, "unit-length command queue not supported\n");
2499 		return -ENXIO;
2500 	}
2501 
2502 	smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2503 				       reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2504 	smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2505 				       reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2506 
2507 	/* SID/SSID sizes */
2508 	smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2509 	smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2510 
2511 	/* IDR5 */
2512 	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2513 
2514 	/* Maximum number of outstanding stalls */
2515 	smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2516 				& IDR5_STALL_MAX_MASK;
2517 
2518 	/* Page sizes */
2519 	if (reg & IDR5_GRAN64K)
2520 		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2521 	if (reg & IDR5_GRAN16K)
2522 		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2523 	if (reg & IDR5_GRAN4K)
2524 		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2525 
2526 	if (arm_smmu_ops.pgsize_bitmap == -1UL)
2527 		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2528 	else
2529 		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2530 
2531 	/* Output address size */
2532 	switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2533 	case IDR5_OAS_32_BIT:
2534 		smmu->oas = 32;
2535 		break;
2536 	case IDR5_OAS_36_BIT:
2537 		smmu->oas = 36;
2538 		break;
2539 	case IDR5_OAS_40_BIT:
2540 		smmu->oas = 40;
2541 		break;
2542 	case IDR5_OAS_42_BIT:
2543 		smmu->oas = 42;
2544 		break;
2545 	case IDR5_OAS_44_BIT:
2546 		smmu->oas = 44;
2547 		break;
2548 	default:
2549 		dev_info(smmu->dev,
2550 			"unknown output address size. Truncating to 48-bit\n");
2551 		/* Fallthrough */
2552 	case IDR5_OAS_48_BIT:
2553 		smmu->oas = 48;
2554 	}
2555 
2556 	/* Set the DMA mask for our table walker */
2557 	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2558 		dev_warn(smmu->dev,
2559 			 "failed to set DMA mask for table walker\n");
2560 
2561 	smmu->ias = max(smmu->ias, smmu->oas);
2562 
2563 	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2564 		 smmu->ias, smmu->oas, smmu->features);
2565 	return 0;
2566 }
2567 
arm_smmu_device_dt_probe(struct platform_device * pdev)2568 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2569 {
2570 	int irq, ret;
2571 	struct resource *res;
2572 	struct arm_smmu_device *smmu;
2573 	struct device *dev = &pdev->dev;
2574 	bool bypass = true;
2575 	u32 cells;
2576 
2577 	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2578 		dev_err(dev, "missing #iommu-cells property\n");
2579 	else if (cells != 1)
2580 		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2581 	else
2582 		bypass = false;
2583 
2584 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2585 	if (!smmu) {
2586 		dev_err(dev, "failed to allocate arm_smmu_device\n");
2587 		return -ENOMEM;
2588 	}
2589 	smmu->dev = dev;
2590 
2591 	/* Base address */
2592 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2593 	if (resource_size(res) + 1 < SZ_128K) {
2594 		dev_err(dev, "MMIO region too small (%pr)\n", res);
2595 		return -EINVAL;
2596 	}
2597 
2598 	smmu->base = devm_ioremap_resource(dev, res);
2599 	if (IS_ERR(smmu->base))
2600 		return PTR_ERR(smmu->base);
2601 
2602 	/* Interrupt lines */
2603 	irq = platform_get_irq_byname(pdev, "eventq");
2604 	if (irq > 0)
2605 		smmu->evtq.q.irq = irq;
2606 
2607 	irq = platform_get_irq_byname(pdev, "priq");
2608 	if (irq > 0)
2609 		smmu->priq.q.irq = irq;
2610 
2611 	irq = platform_get_irq_byname(pdev, "cmdq-sync");
2612 	if (irq > 0)
2613 		smmu->cmdq.q.irq = irq;
2614 
2615 	irq = platform_get_irq_byname(pdev, "gerror");
2616 	if (irq > 0)
2617 		smmu->gerr_irq = irq;
2618 
2619 	parse_driver_options(smmu);
2620 
2621 	/* Probe the h/w */
2622 	ret = arm_smmu_device_probe(smmu);
2623 	if (ret)
2624 		return ret;
2625 
2626 	/* Initialise in-memory data structures */
2627 	ret = arm_smmu_init_structures(smmu);
2628 	if (ret)
2629 		return ret;
2630 
2631 	/* Record our private device structure */
2632 	platform_set_drvdata(pdev, smmu);
2633 
2634 	/* Reset the device */
2635 	ret = arm_smmu_device_reset(smmu, bypass);
2636 	if (ret)
2637 		return ret;
2638 
2639 	/* And we're up. Go go go! */
2640 	of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2641 #ifdef CONFIG_PCI
2642 	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2643 		pci_request_acs();
2644 		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2645 		if (ret)
2646 			return ret;
2647 	}
2648 #endif
2649 #ifdef CONFIG_ARM_AMBA
2650 	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2651 		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2652 		if (ret)
2653 			return ret;
2654 	}
2655 #endif
2656 	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2657 		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 	return 0;
2662 }
2663 
arm_smmu_device_remove(struct platform_device * pdev)2664 static int arm_smmu_device_remove(struct platform_device *pdev)
2665 {
2666 	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2667 
2668 	arm_smmu_device_disable(smmu);
2669 	return 0;
2670 }
2671 
2672 static struct of_device_id arm_smmu_of_match[] = {
2673 	{ .compatible = "arm,smmu-v3", },
2674 	{ },
2675 };
2676 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2677 
2678 static struct platform_driver arm_smmu_driver = {
2679 	.driver	= {
2680 		.name		= "arm-smmu-v3",
2681 		.of_match_table	= of_match_ptr(arm_smmu_of_match),
2682 	},
2683 	.probe	= arm_smmu_device_dt_probe,
2684 	.remove	= arm_smmu_device_remove,
2685 };
2686 
arm_smmu_init(void)2687 static int __init arm_smmu_init(void)
2688 {
2689 	static bool registered;
2690 	int ret = 0;
2691 
2692 	if (!registered) {
2693 		ret = platform_driver_register(&arm_smmu_driver);
2694 		registered = !ret;
2695 	}
2696 	return ret;
2697 }
2698 
arm_smmu_exit(void)2699 static void __exit arm_smmu_exit(void)
2700 {
2701 	return platform_driver_unregister(&arm_smmu_driver);
2702 }
2703 
2704 subsys_initcall(arm_smmu_init);
2705 module_exit(arm_smmu_exit);
2706 
arm_smmu_of_init(struct device_node * np)2707 static int __init arm_smmu_of_init(struct device_node *np)
2708 {
2709 	int ret = arm_smmu_init();
2710 
2711 	if (ret)
2712 		return ret;
2713 
2714 	if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2715 		return -ENODEV;
2716 
2717 	return 0;
2718 }
2719 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2720 
2721 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2722 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2723 MODULE_LICENSE("GPL v2");
2724