1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/iommu.h>
28 #include <linux/iopoll.h>
29 #include <linux/module.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_iommu.h>
34 #include <linux/of_platform.h>
35 #include <linux/pci.h>
36 #include <linux/platform_device.h>
37
38 #include <linux/amba/bus.h>
39
40 #include "io-pgtable.h"
41
42 /* MMIO registers */
43 #define ARM_SMMU_IDR0 0x0
44 #define IDR0_ST_LVL_SHIFT 27
45 #define IDR0_ST_LVL_MASK 0x3
46 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
47 #define IDR0_STALL_MODEL_SHIFT 24
48 #define IDR0_STALL_MODEL_MASK 0x3
49 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
50 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
51 #define IDR0_TTENDIAN_SHIFT 21
52 #define IDR0_TTENDIAN_MASK 0x3
53 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
54 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
55 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_CD2L (1 << 19)
57 #define IDR0_VMID16 (1 << 18)
58 #define IDR0_PRI (1 << 16)
59 #define IDR0_SEV (1 << 14)
60 #define IDR0_MSI (1 << 13)
61 #define IDR0_ASID16 (1 << 12)
62 #define IDR0_ATS (1 << 10)
63 #define IDR0_HYP (1 << 9)
64 #define IDR0_COHACC (1 << 4)
65 #define IDR0_TTF_SHIFT 2
66 #define IDR0_TTF_MASK 0x3
67 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
68 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
69 #define IDR0_S1P (1 << 1)
70 #define IDR0_S2P (1 << 0)
71
72 #define ARM_SMMU_IDR1 0x4
73 #define IDR1_TABLES_PRESET (1 << 30)
74 #define IDR1_QUEUES_PRESET (1 << 29)
75 #define IDR1_REL (1 << 28)
76 #define IDR1_CMDQ_SHIFT 21
77 #define IDR1_CMDQ_MASK 0x1f
78 #define IDR1_EVTQ_SHIFT 16
79 #define IDR1_EVTQ_MASK 0x1f
80 #define IDR1_PRIQ_SHIFT 11
81 #define IDR1_PRIQ_MASK 0x1f
82 #define IDR1_SSID_SHIFT 6
83 #define IDR1_SSID_MASK 0x1f
84 #define IDR1_SID_SHIFT 0
85 #define IDR1_SID_MASK 0x3f
86
87 #define ARM_SMMU_IDR5 0x14
88 #define IDR5_STALL_MAX_SHIFT 16
89 #define IDR5_STALL_MAX_MASK 0xffff
90 #define IDR5_GRAN64K (1 << 6)
91 #define IDR5_GRAN16K (1 << 5)
92 #define IDR5_GRAN4K (1 << 4)
93 #define IDR5_OAS_SHIFT 0
94 #define IDR5_OAS_MASK 0x7
95 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
96 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
97 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
101
102 #define ARM_SMMU_CR0 0x20
103 #define CR0_CMDQEN (1 << 3)
104 #define CR0_EVTQEN (1 << 2)
105 #define CR0_PRIQEN (1 << 1)
106 #define CR0_SMMUEN (1 << 0)
107
108 #define ARM_SMMU_CR0ACK 0x24
109
110 #define ARM_SMMU_CR1 0x28
111 #define CR1_SH_NSH 0
112 #define CR1_SH_OSH 2
113 #define CR1_SH_ISH 3
114 #define CR1_CACHE_NC 0
115 #define CR1_CACHE_WB 1
116 #define CR1_CACHE_WT 2
117 #define CR1_TABLE_SH_SHIFT 10
118 #define CR1_TABLE_OC_SHIFT 8
119 #define CR1_TABLE_IC_SHIFT 6
120 #define CR1_QUEUE_SH_SHIFT 4
121 #define CR1_QUEUE_OC_SHIFT 2
122 #define CR1_QUEUE_IC_SHIFT 0
123
124 #define ARM_SMMU_CR2 0x2c
125 #define CR2_PTM (1 << 2)
126 #define CR2_RECINVSID (1 << 1)
127 #define CR2_E2H (1 << 0)
128
129 #define ARM_SMMU_GBPA 0x44
130 #define GBPA_ABORT (1 << 20)
131 #define GBPA_UPDATE (1 << 31)
132
133 #define ARM_SMMU_IRQ_CTRL 0x50
134 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
135 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
136 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
137
138 #define ARM_SMMU_IRQ_CTRLACK 0x54
139
140 #define ARM_SMMU_GERROR 0x60
141 #define GERROR_SFM_ERR (1 << 8)
142 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
143 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
144 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
145 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
146 #define GERROR_PRIQ_ABT_ERR (1 << 3)
147 #define GERROR_EVTQ_ABT_ERR (1 << 2)
148 #define GERROR_CMDQ_ERR (1 << 0)
149 #define GERROR_ERR_MASK 0xfd
150
151 #define ARM_SMMU_GERRORN 0x64
152
153 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
154 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
155 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
156
157 #define ARM_SMMU_STRTAB_BASE 0x80
158 #define STRTAB_BASE_RA (1UL << 62)
159 #define STRTAB_BASE_ADDR_SHIFT 6
160 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
161
162 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
163 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
164 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
165 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
166 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
167 #define STRTAB_BASE_CFG_FMT_SHIFT 16
168 #define STRTAB_BASE_CFG_FMT_MASK 0x3
169 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
170 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
171
172 #define ARM_SMMU_CMDQ_BASE 0x90
173 #define ARM_SMMU_CMDQ_PROD 0x98
174 #define ARM_SMMU_CMDQ_CONS 0x9c
175
176 #define ARM_SMMU_EVTQ_BASE 0xa0
177 #define ARM_SMMU_EVTQ_PROD 0x100a8
178 #define ARM_SMMU_EVTQ_CONS 0x100ac
179 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
180 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
181 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
182
183 #define ARM_SMMU_PRIQ_BASE 0xc0
184 #define ARM_SMMU_PRIQ_PROD 0x100c8
185 #define ARM_SMMU_PRIQ_CONS 0x100cc
186 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
187 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
188 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
189
190 /* Common MSI config fields */
191 #define MSI_CFG0_ADDR_SHIFT 2
192 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
193 #define MSI_CFG2_SH_SHIFT 4
194 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
195 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
196 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_MEMATTR_SHIFT 0
198 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
199
200 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
201 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
202 #define Q_OVERFLOW_FLAG (1 << 31)
203 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
204 #define Q_ENT(q, p) ((q)->base + \
205 Q_IDX(q, p) * (q)->ent_dwords)
206
207 #define Q_BASE_RWA (1UL << 62)
208 #define Q_BASE_ADDR_SHIFT 5
209 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
210 #define Q_BASE_LOG2SIZE_SHIFT 0
211 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
212
213 /*
214 * Stream table.
215 *
216 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
217 * 2lvl: 128k L1 entries,
218 * 256 lazy entries per table (each table covers a PCI bus)
219 */
220 #define STRTAB_L1_SZ_SHIFT 20
221 #define STRTAB_SPLIT 8
222
223 #define STRTAB_L1_DESC_DWORDS 1
224 #define STRTAB_L1_DESC_SPAN_SHIFT 0
225 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
226 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
227 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
228
229 #define STRTAB_STE_DWORDS 8
230 #define STRTAB_STE_0_V (1UL << 0)
231 #define STRTAB_STE_0_CFG_SHIFT 1
232 #define STRTAB_STE_0_CFG_MASK 0x7UL
233 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
234 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
235 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
237
238 #define STRTAB_STE_0_S1FMT_SHIFT 4
239 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
240 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
241 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
242 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
243 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
244
245 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
246 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
247 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
248 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
249 #define STRTAB_STE_1_S1C_SH_NSH 0UL
250 #define STRTAB_STE_1_S1C_SH_OSH 2UL
251 #define STRTAB_STE_1_S1C_SH_ISH 3UL
252 #define STRTAB_STE_1_S1CIR_SHIFT 2
253 #define STRTAB_STE_1_S1COR_SHIFT 4
254 #define STRTAB_STE_1_S1CSH_SHIFT 6
255
256 #define STRTAB_STE_1_S1STALLD (1UL << 27)
257
258 #define STRTAB_STE_1_EATS_ABT 0UL
259 #define STRTAB_STE_1_EATS_TRANS 1UL
260 #define STRTAB_STE_1_EATS_S1CHK 2UL
261 #define STRTAB_STE_1_EATS_SHIFT 28
262
263 #define STRTAB_STE_1_STRW_NSEL1 0UL
264 #define STRTAB_STE_1_STRW_EL2 2UL
265 #define STRTAB_STE_1_STRW_SHIFT 30
266
267 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
268 #define STRTAB_STE_1_SHCFG_SHIFT 44
269
270 #define STRTAB_STE_1_PRIVCFG_UNPRIV 2UL
271 #define STRTAB_STE_1_PRIVCFG_SHIFT 48
272
273 #define STRTAB_STE_2_S2VMID_SHIFT 0
274 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
275 #define STRTAB_STE_2_VTCR_SHIFT 32
276 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
277 #define STRTAB_STE_2_S2AA64 (1UL << 51)
278 #define STRTAB_STE_2_S2ENDI (1UL << 52)
279 #define STRTAB_STE_2_S2PTW (1UL << 54)
280 #define STRTAB_STE_2_S2R (1UL << 58)
281
282 #define STRTAB_STE_3_S2TTB_SHIFT 4
283 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
284
285 /* Context descriptor (stage-1 only) */
286 #define CTXDESC_CD_DWORDS 8
287 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
288 #define ARM64_TCR_T0SZ_SHIFT 0
289 #define ARM64_TCR_T0SZ_MASK 0x1fUL
290 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
291 #define ARM64_TCR_TG0_SHIFT 14
292 #define ARM64_TCR_TG0_MASK 0x3UL
293 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
294 #define ARM64_TCR_IRGN0_SHIFT 8
295 #define ARM64_TCR_IRGN0_MASK 0x3UL
296 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
297 #define ARM64_TCR_ORGN0_SHIFT 10
298 #define ARM64_TCR_ORGN0_MASK 0x3UL
299 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
300 #define ARM64_TCR_SH0_SHIFT 12
301 #define ARM64_TCR_SH0_MASK 0x3UL
302 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
303 #define ARM64_TCR_EPD0_SHIFT 7
304 #define ARM64_TCR_EPD0_MASK 0x1UL
305 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
306 #define ARM64_TCR_EPD1_SHIFT 23
307 #define ARM64_TCR_EPD1_MASK 0x1UL
308
309 #define CTXDESC_CD_0_ENDI (1UL << 15)
310 #define CTXDESC_CD_0_V (1UL << 31)
311
312 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
313 #define ARM64_TCR_IPS_SHIFT 32
314 #define ARM64_TCR_IPS_MASK 0x7UL
315 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
316 #define ARM64_TCR_TBI0_SHIFT 37
317 #define ARM64_TCR_TBI0_MASK 0x1UL
318
319 #define CTXDESC_CD_0_AA64 (1UL << 41)
320 #define CTXDESC_CD_0_R (1UL << 45)
321 #define CTXDESC_CD_0_A (1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT 47
323 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT 48
326 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
327
328 #define CTXDESC_CD_1_TTB0_SHIFT 4
329 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
330
331 #define CTXDESC_CD_3_MAIR_SHIFT 0
332
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld) \
335 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
336 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS 2
340 #define CMDQ_MAX_SZ_SHIFT 8
341
342 #define CMDQ_ERR_SHIFT 24
343 #define CMDQ_ERR_MASK 0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX 0
345 #define CMDQ_ERR_CERROR_ILL_IDX 1
346 #define CMDQ_ERR_CERROR_ABT_IDX 2
347
348 #define CMDQ_0_OP_SHIFT 0
349 #define CMDQ_0_OP_MASK 0xffUL
350 #define CMDQ_0_SSV (1UL << 11)
351
352 #define CMDQ_PREFETCH_0_SID_SHIFT 32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
354 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
355
356 #define CMDQ_CFGI_0_SID_SHIFT 32
357 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF (1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT 0
360 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
361
362 #define CMDQ_TLBI_0_VMID_SHIFT 32
363 #define CMDQ_TLBI_0_ASID_SHIFT 48
364 #define CMDQ_TLBI_1_LEAF (1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
367
368 #define CMDQ_PRI_0_SSID_SHIFT 12
369 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT 32
371 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT 0
373 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT 12
375 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379 #define CMDQ_SYNC_0_CS_SHIFT 12
380 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
382
383 /* Event queue */
384 #define EVTQ_ENT_DWORDS 4
385 #define EVTQ_MAX_SZ_SHIFT 7
386
387 #define EVTQ_0_ID_SHIFT 0
388 #define EVTQ_0_ID_MASK 0xffUL
389
390 /* PRI queue */
391 #define PRIQ_ENT_DWORDS 2
392 #define PRIQ_MAX_SZ_SHIFT 8
393
394 #define PRIQ_0_SID_SHIFT 0
395 #define PRIQ_0_SID_MASK 0xffffffffUL
396 #define PRIQ_0_SSID_SHIFT 32
397 #define PRIQ_0_SSID_MASK 0xfffffUL
398 #define PRIQ_0_PERM_PRIV (1UL << 58)
399 #define PRIQ_0_PERM_EXEC (1UL << 59)
400 #define PRIQ_0_PERM_READ (1UL << 60)
401 #define PRIQ_0_PERM_WRITE (1UL << 61)
402 #define PRIQ_0_PRG_LAST (1UL << 62)
403 #define PRIQ_0_SSID_V (1UL << 63)
404
405 #define PRIQ_1_PRG_IDX_SHIFT 0
406 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
407 #define PRIQ_1_ADDR_SHIFT 12
408 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
409
410 /* High-level queue structures */
411 #define ARM_SMMU_POLL_TIMEOUT_US 100
412
413 static bool disable_bypass;
414 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
415 MODULE_PARM_DESC(disable_bypass,
416 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
417
418 enum pri_resp {
419 PRI_RESP_DENY,
420 PRI_RESP_FAIL,
421 PRI_RESP_SUCC,
422 };
423
424 enum arm_smmu_msi_index {
425 EVTQ_MSI_INDEX,
426 GERROR_MSI_INDEX,
427 PRIQ_MSI_INDEX,
428 ARM_SMMU_MAX_MSIS,
429 };
430
431 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
432 [EVTQ_MSI_INDEX] = {
433 ARM_SMMU_EVTQ_IRQ_CFG0,
434 ARM_SMMU_EVTQ_IRQ_CFG1,
435 ARM_SMMU_EVTQ_IRQ_CFG2,
436 },
437 [GERROR_MSI_INDEX] = {
438 ARM_SMMU_GERROR_IRQ_CFG0,
439 ARM_SMMU_GERROR_IRQ_CFG1,
440 ARM_SMMU_GERROR_IRQ_CFG2,
441 },
442 [PRIQ_MSI_INDEX] = {
443 ARM_SMMU_PRIQ_IRQ_CFG0,
444 ARM_SMMU_PRIQ_IRQ_CFG1,
445 ARM_SMMU_PRIQ_IRQ_CFG2,
446 },
447 };
448
449 struct arm_smmu_cmdq_ent {
450 /* Common fields */
451 u8 opcode;
452 bool substream_valid;
453
454 /* Command-specific fields */
455 union {
456 #define CMDQ_OP_PREFETCH_CFG 0x1
457 struct {
458 u32 sid;
459 u8 size;
460 u64 addr;
461 } prefetch;
462
463 #define CMDQ_OP_CFGI_STE 0x3
464 #define CMDQ_OP_CFGI_ALL 0x4
465 struct {
466 u32 sid;
467 union {
468 bool leaf;
469 u8 span;
470 };
471 } cfgi;
472
473 #define CMDQ_OP_TLBI_NH_ASID 0x11
474 #define CMDQ_OP_TLBI_NH_VA 0x12
475 #define CMDQ_OP_TLBI_EL2_ALL 0x20
476 #define CMDQ_OP_TLBI_S12_VMALL 0x28
477 #define CMDQ_OP_TLBI_S2_IPA 0x2a
478 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
479 struct {
480 u16 asid;
481 u16 vmid;
482 bool leaf;
483 u64 addr;
484 } tlbi;
485
486 #define CMDQ_OP_PRI_RESP 0x41
487 struct {
488 u32 sid;
489 u32 ssid;
490 u16 grpid;
491 enum pri_resp resp;
492 } pri;
493
494 #define CMDQ_OP_CMD_SYNC 0x46
495 };
496 };
497
498 struct arm_smmu_queue {
499 int irq; /* Wired interrupt */
500
501 __le64 *base;
502 dma_addr_t base_dma;
503 u64 q_base;
504
505 size_t ent_dwords;
506 u32 max_n_shift;
507 u32 prod;
508 u32 cons;
509
510 u32 __iomem *prod_reg;
511 u32 __iomem *cons_reg;
512 };
513
514 struct arm_smmu_cmdq {
515 struct arm_smmu_queue q;
516 spinlock_t lock;
517 };
518
519 struct arm_smmu_evtq {
520 struct arm_smmu_queue q;
521 u32 max_stalls;
522 };
523
524 struct arm_smmu_priq {
525 struct arm_smmu_queue q;
526 };
527
528 /* High-level stream table and context descriptor structures */
529 struct arm_smmu_strtab_l1_desc {
530 u8 span;
531
532 __le64 *l2ptr;
533 dma_addr_t l2ptr_dma;
534 };
535
536 struct arm_smmu_s1_cfg {
537 __le64 *cdptr;
538 dma_addr_t cdptr_dma;
539
540 struct arm_smmu_ctx_desc {
541 u16 asid;
542 u64 ttbr;
543 u64 tcr;
544 u64 mair;
545 } cd;
546 };
547
548 struct arm_smmu_s2_cfg {
549 u16 vmid;
550 u64 vttbr;
551 u64 vtcr;
552 };
553
554 struct arm_smmu_strtab_ent {
555 bool valid;
556
557 bool bypass; /* Overrides s1/s2 config */
558 struct arm_smmu_s1_cfg *s1_cfg;
559 struct arm_smmu_s2_cfg *s2_cfg;
560 };
561
562 struct arm_smmu_strtab_cfg {
563 __le64 *strtab;
564 dma_addr_t strtab_dma;
565 struct arm_smmu_strtab_l1_desc *l1_desc;
566 unsigned int num_l1_ents;
567
568 u64 strtab_base;
569 u32 strtab_base_cfg;
570 };
571
572 /* An SMMUv3 instance */
573 struct arm_smmu_device {
574 struct device *dev;
575 void __iomem *base;
576
577 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
578 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
579 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
580 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
581 #define ARM_SMMU_FEAT_PRI (1 << 4)
582 #define ARM_SMMU_FEAT_ATS (1 << 5)
583 #define ARM_SMMU_FEAT_SEV (1 << 6)
584 #define ARM_SMMU_FEAT_MSI (1 << 7)
585 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
586 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
587 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
588 #define ARM_SMMU_FEAT_STALLS (1 << 11)
589 #define ARM_SMMU_FEAT_HYP (1 << 12)
590 u32 features;
591
592 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
593 u32 options;
594
595 struct arm_smmu_cmdq cmdq;
596 struct arm_smmu_evtq evtq;
597 struct arm_smmu_priq priq;
598
599 int gerr_irq;
600
601 unsigned long ias; /* IPA */
602 unsigned long oas; /* PA */
603 unsigned long pgsize_bitmap;
604
605 #define ARM_SMMU_MAX_ASIDS (1 << 16)
606 unsigned int asid_bits;
607 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
608
609 #define ARM_SMMU_MAX_VMIDS (1 << 16)
610 unsigned int vmid_bits;
611 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
612
613 unsigned int ssid_bits;
614 unsigned int sid_bits;
615
616 struct arm_smmu_strtab_cfg strtab_cfg;
617 };
618
619 /* SMMU private data for each master */
620 struct arm_smmu_master_data {
621 struct arm_smmu_device *smmu;
622 struct arm_smmu_strtab_ent ste;
623 };
624
625 /* SMMU private data for an IOMMU domain */
626 enum arm_smmu_domain_stage {
627 ARM_SMMU_DOMAIN_S1 = 0,
628 ARM_SMMU_DOMAIN_S2,
629 ARM_SMMU_DOMAIN_NESTED,
630 };
631
632 struct arm_smmu_domain {
633 struct arm_smmu_device *smmu;
634 struct mutex init_mutex; /* Protects smmu pointer */
635
636 struct io_pgtable_ops *pgtbl_ops;
637 spinlock_t pgtbl_lock;
638
639 enum arm_smmu_domain_stage stage;
640 union {
641 struct arm_smmu_s1_cfg s1_cfg;
642 struct arm_smmu_s2_cfg s2_cfg;
643 };
644
645 struct iommu_domain domain;
646 };
647
648 struct arm_smmu_option_prop {
649 u32 opt;
650 const char *prop;
651 };
652
653 static struct arm_smmu_option_prop arm_smmu_options[] = {
654 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
655 { 0, NULL},
656 };
657
to_smmu_domain(struct iommu_domain * dom)658 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
659 {
660 return container_of(dom, struct arm_smmu_domain, domain);
661 }
662
parse_driver_options(struct arm_smmu_device * smmu)663 static void parse_driver_options(struct arm_smmu_device *smmu)
664 {
665 int i = 0;
666
667 do {
668 if (of_property_read_bool(smmu->dev->of_node,
669 arm_smmu_options[i].prop)) {
670 smmu->options |= arm_smmu_options[i].opt;
671 dev_notice(smmu->dev, "option %s\n",
672 arm_smmu_options[i].prop);
673 }
674 } while (arm_smmu_options[++i].opt);
675 }
676
677 /* Low-level queue manipulation functions */
queue_full(struct arm_smmu_queue * q)678 static bool queue_full(struct arm_smmu_queue *q)
679 {
680 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
681 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
682 }
683
queue_empty(struct arm_smmu_queue * q)684 static bool queue_empty(struct arm_smmu_queue *q)
685 {
686 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
687 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
688 }
689
queue_sync_cons(struct arm_smmu_queue * q)690 static void queue_sync_cons(struct arm_smmu_queue *q)
691 {
692 q->cons = readl_relaxed(q->cons_reg);
693 }
694
queue_inc_cons(struct arm_smmu_queue * q)695 static void queue_inc_cons(struct arm_smmu_queue *q)
696 {
697 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
698
699 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
700 writel(q->cons, q->cons_reg);
701 }
702
queue_sync_prod(struct arm_smmu_queue * q)703 static int queue_sync_prod(struct arm_smmu_queue *q)
704 {
705 int ret = 0;
706 u32 prod = readl_relaxed(q->prod_reg);
707
708 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
709 ret = -EOVERFLOW;
710
711 q->prod = prod;
712 return ret;
713 }
714
queue_inc_prod(struct arm_smmu_queue * q)715 static void queue_inc_prod(struct arm_smmu_queue *q)
716 {
717 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
718
719 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
720 writel(q->prod, q->prod_reg);
721 }
722
723 /*
724 * Wait for the SMMU to consume items. If drain is true, wait until the queue
725 * is empty. Otherwise, wait until there is at least one free slot.
726 */
queue_poll_cons(struct arm_smmu_queue * q,bool drain,bool wfe)727 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
728 {
729 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
730
731 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
732 if (ktime_compare(ktime_get(), timeout) > 0)
733 return -ETIMEDOUT;
734
735 if (wfe) {
736 wfe();
737 } else {
738 cpu_relax();
739 udelay(1);
740 }
741 }
742
743 return 0;
744 }
745
queue_write(__le64 * dst,u64 * src,size_t n_dwords)746 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
747 {
748 int i;
749
750 for (i = 0; i < n_dwords; ++i)
751 *dst++ = cpu_to_le64(*src++);
752 }
753
queue_insert_raw(struct arm_smmu_queue * q,u64 * ent)754 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
755 {
756 if (queue_full(q))
757 return -ENOSPC;
758
759 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
760 queue_inc_prod(q);
761 return 0;
762 }
763
queue_read(__le64 * dst,u64 * src,size_t n_dwords)764 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
765 {
766 int i;
767
768 for (i = 0; i < n_dwords; ++i)
769 *dst++ = le64_to_cpu(*src++);
770 }
771
queue_remove_raw(struct arm_smmu_queue * q,u64 * ent)772 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
773 {
774 if (queue_empty(q))
775 return -EAGAIN;
776
777 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
778 queue_inc_cons(q);
779 return 0;
780 }
781
782 /* High-level queue accessors */
arm_smmu_cmdq_build_cmd(u64 * cmd,struct arm_smmu_cmdq_ent * ent)783 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
784 {
785 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
786 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
787
788 switch (ent->opcode) {
789 case CMDQ_OP_TLBI_EL2_ALL:
790 case CMDQ_OP_TLBI_NSNH_ALL:
791 break;
792 case CMDQ_OP_PREFETCH_CFG:
793 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
794 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
795 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
796 break;
797 case CMDQ_OP_CFGI_STE:
798 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
799 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
800 break;
801 case CMDQ_OP_CFGI_ALL:
802 /* Cover the entire SID range */
803 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
804 break;
805 case CMDQ_OP_TLBI_NH_VA:
806 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
808 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
809 break;
810 case CMDQ_OP_TLBI_S2_IPA:
811 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
812 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
814 break;
815 case CMDQ_OP_TLBI_NH_ASID:
816 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
817 /* Fallthrough */
818 case CMDQ_OP_TLBI_S12_VMALL:
819 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
820 break;
821 case CMDQ_OP_PRI_RESP:
822 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
823 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
824 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
825 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
826 switch (ent->pri.resp) {
827 case PRI_RESP_DENY:
828 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
829 break;
830 case PRI_RESP_FAIL:
831 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
832 break;
833 case PRI_RESP_SUCC:
834 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
835 break;
836 default:
837 return -EINVAL;
838 }
839 break;
840 case CMDQ_OP_CMD_SYNC:
841 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
842 break;
843 default:
844 return -ENOENT;
845 }
846
847 return 0;
848 }
849
arm_smmu_cmdq_skip_err(struct arm_smmu_device * smmu)850 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
851 {
852 static const char *cerror_str[] = {
853 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
854 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
855 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
856 };
857
858 int i;
859 u64 cmd[CMDQ_ENT_DWORDS];
860 struct arm_smmu_queue *q = &smmu->cmdq.q;
861 u32 cons = readl_relaxed(q->cons_reg);
862 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
863 struct arm_smmu_cmdq_ent cmd_sync = {
864 .opcode = CMDQ_OP_CMD_SYNC,
865 };
866
867 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
868 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
869
870 switch (idx) {
871 case CMDQ_ERR_CERROR_ABT_IDX:
872 dev_err(smmu->dev, "retrying command fetch\n");
873 case CMDQ_ERR_CERROR_NONE_IDX:
874 return;
875 case CMDQ_ERR_CERROR_ILL_IDX:
876 /* Fallthrough */
877 default:
878 break;
879 }
880
881 /*
882 * We may have concurrent producers, so we need to be careful
883 * not to touch any of the shadow cmdq state.
884 */
885 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
886 dev_err(smmu->dev, "skipping command in error state:\n");
887 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
888 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
889
890 /* Convert the erroneous command into a CMD_SYNC */
891 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
892 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
893 return;
894 }
895
896 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
897 }
898
arm_smmu_cmdq_issue_cmd(struct arm_smmu_device * smmu,struct arm_smmu_cmdq_ent * ent)899 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
900 struct arm_smmu_cmdq_ent *ent)
901 {
902 u64 cmd[CMDQ_ENT_DWORDS];
903 unsigned long flags;
904 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
905 struct arm_smmu_queue *q = &smmu->cmdq.q;
906
907 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
908 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
909 ent->opcode);
910 return;
911 }
912
913 spin_lock_irqsave(&smmu->cmdq.lock, flags);
914 while (queue_insert_raw(q, cmd) == -ENOSPC) {
915 if (queue_poll_cons(q, false, wfe))
916 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
917 }
918
919 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
920 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
921 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
922 }
923
924 /* Context descriptor manipulation functions */
arm_smmu_cpu_tcr_to_cd(u64 tcr)925 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
926 {
927 u64 val = 0;
928
929 /* Repack the TCR. Just care about TTBR0 for now */
930 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
931 val |= ARM_SMMU_TCR2CD(tcr, TG0);
932 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
933 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
934 val |= ARM_SMMU_TCR2CD(tcr, SH0);
935 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
936 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
937 val |= ARM_SMMU_TCR2CD(tcr, IPS);
938 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
939
940 return val;
941 }
942
arm_smmu_write_ctx_desc(struct arm_smmu_device * smmu,struct arm_smmu_s1_cfg * cfg)943 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
944 struct arm_smmu_s1_cfg *cfg)
945 {
946 u64 val;
947
948 /*
949 * We don't need to issue any invalidation here, as we'll invalidate
950 * the STE when installing the new entry anyway.
951 */
952 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
953 #ifdef __BIG_ENDIAN
954 CTXDESC_CD_0_ENDI |
955 #endif
956 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
957 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
958 CTXDESC_CD_0_V;
959 cfg->cdptr[0] = cpu_to_le64(val);
960
961 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
962 cfg->cdptr[1] = cpu_to_le64(val);
963
964 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
965 }
966
967 /* Stream table manipulation functions */
968 static void
arm_smmu_write_strtab_l1_desc(__le64 * dst,struct arm_smmu_strtab_l1_desc * desc)969 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
970 {
971 u64 val = 0;
972
973 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
974 << STRTAB_L1_DESC_SPAN_SHIFT;
975 val |= desc->l2ptr_dma &
976 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
977
978 *dst = cpu_to_le64(val);
979 }
980
arm_smmu_sync_ste_for_sid(struct arm_smmu_device * smmu,u32 sid)981 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
982 {
983 struct arm_smmu_cmdq_ent cmd = {
984 .opcode = CMDQ_OP_CFGI_STE,
985 .cfgi = {
986 .sid = sid,
987 .leaf = true,
988 },
989 };
990
991 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
992 cmd.opcode = CMDQ_OP_CMD_SYNC;
993 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
994 }
995
arm_smmu_write_strtab_ent(struct arm_smmu_device * smmu,u32 sid,__le64 * dst,struct arm_smmu_strtab_ent * ste)996 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
997 __le64 *dst, struct arm_smmu_strtab_ent *ste)
998 {
999 /*
1000 * This is hideously complicated, but we only really care about
1001 * three cases at the moment:
1002 *
1003 * 1. Invalid (all zero) -> bypass (init)
1004 * 2. Bypass -> translation (attach)
1005 * 3. Translation -> bypass (detach)
1006 *
1007 * Given that we can't update the STE atomically and the SMMU
1008 * doesn't read the thing in a defined order, that leaves us
1009 * with the following maintenance requirements:
1010 *
1011 * 1. Update Config, return (init time STEs aren't live)
1012 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1013 * 3. Update Config, sync
1014 */
1015 u64 val = le64_to_cpu(dst[0]);
1016 bool ste_live = false;
1017 struct arm_smmu_cmdq_ent prefetch_cmd = {
1018 .opcode = CMDQ_OP_PREFETCH_CFG,
1019 .prefetch = {
1020 .sid = sid,
1021 },
1022 };
1023
1024 if (val & STRTAB_STE_0_V) {
1025 u64 cfg;
1026
1027 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1028 switch (cfg) {
1029 case STRTAB_STE_0_CFG_BYPASS:
1030 break;
1031 case STRTAB_STE_0_CFG_S1_TRANS:
1032 case STRTAB_STE_0_CFG_S2_TRANS:
1033 ste_live = true;
1034 break;
1035 case STRTAB_STE_0_CFG_ABORT:
1036 if (disable_bypass)
1037 break;
1038 default:
1039 BUG(); /* STE corruption */
1040 }
1041 }
1042
1043 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1044 val = ste->valid ? STRTAB_STE_0_V : 0;
1045
1046 if (ste->bypass) {
1047 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1048 : STRTAB_STE_0_CFG_BYPASS;
1049 dst[0] = cpu_to_le64(val);
1050 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1051 << STRTAB_STE_1_SHCFG_SHIFT);
1052 dst[2] = 0; /* Nuke the VMID */
1053 if (ste_live)
1054 arm_smmu_sync_ste_for_sid(smmu, sid);
1055 return;
1056 }
1057
1058 if (ste->s1_cfg) {
1059 BUG_ON(ste_live);
1060 dst[1] = cpu_to_le64(
1061 STRTAB_STE_1_S1C_CACHE_WBRA
1062 << STRTAB_STE_1_S1CIR_SHIFT |
1063 STRTAB_STE_1_S1C_CACHE_WBRA
1064 << STRTAB_STE_1_S1COR_SHIFT |
1065 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1066 #ifdef CONFIG_PCI_ATS
1067 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1068 #endif
1069 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1070 STRTAB_STE_1_PRIVCFG_UNPRIV <<
1071 STRTAB_STE_1_PRIVCFG_SHIFT);
1072
1073 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1074 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1075
1076 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1077 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1078 STRTAB_STE_0_CFG_S1_TRANS;
1079 }
1080
1081 if (ste->s2_cfg) {
1082 BUG_ON(ste_live);
1083 dst[2] = cpu_to_le64(
1084 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1085 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1086 << STRTAB_STE_2_VTCR_SHIFT |
1087 #ifdef __BIG_ENDIAN
1088 STRTAB_STE_2_S2ENDI |
1089 #endif
1090 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1091 STRTAB_STE_2_S2R);
1092
1093 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1094 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1095
1096 val |= STRTAB_STE_0_CFG_S2_TRANS;
1097 }
1098
1099 arm_smmu_sync_ste_for_sid(smmu, sid);
1100 dst[0] = cpu_to_le64(val);
1101 arm_smmu_sync_ste_for_sid(smmu, sid);
1102
1103 /* It's likely that we'll want to use the new STE soon */
1104 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1105 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1106 }
1107
arm_smmu_init_bypass_stes(u64 * strtab,unsigned int nent)1108 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1109 {
1110 unsigned int i;
1111 struct arm_smmu_strtab_ent ste = {
1112 .valid = true,
1113 .bypass = true,
1114 };
1115
1116 for (i = 0; i < nent; ++i) {
1117 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1118 strtab += STRTAB_STE_DWORDS;
1119 }
1120 }
1121
arm_smmu_init_l2_strtab(struct arm_smmu_device * smmu,u32 sid)1122 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1123 {
1124 size_t size;
1125 void *strtab;
1126 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1127 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1128
1129 if (desc->l2ptr)
1130 return 0;
1131
1132 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1133 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1134
1135 desc->span = STRTAB_SPLIT + 1;
1136 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1137 GFP_KERNEL | __GFP_ZERO);
1138 if (!desc->l2ptr) {
1139 dev_err(smmu->dev,
1140 "failed to allocate l2 stream table for SID %u\n",
1141 sid);
1142 return -ENOMEM;
1143 }
1144
1145 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1146 arm_smmu_write_strtab_l1_desc(strtab, desc);
1147 return 0;
1148 }
1149
1150 /* IRQ and event handlers */
arm_smmu_evtq_thread(int irq,void * dev)1151 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1152 {
1153 int i;
1154 struct arm_smmu_device *smmu = dev;
1155 struct arm_smmu_queue *q = &smmu->evtq.q;
1156 u64 evt[EVTQ_ENT_DWORDS];
1157
1158 do {
1159 while (!queue_remove_raw(q, evt)) {
1160 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1161
1162 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1163 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1164 dev_info(smmu->dev, "\t0x%016llx\n",
1165 (unsigned long long)evt[i]);
1166
1167 }
1168
1169 /*
1170 * Not much we can do on overflow, so scream and pretend we're
1171 * trying harder.
1172 */
1173 if (queue_sync_prod(q) == -EOVERFLOW)
1174 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1175 } while (!queue_empty(q));
1176
1177 /* Sync our overflow flag, as we believe we're up to speed */
1178 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1179 return IRQ_HANDLED;
1180 }
1181
arm_smmu_handle_ppr(struct arm_smmu_device * smmu,u64 * evt)1182 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1183 {
1184 u32 sid, ssid;
1185 u16 grpid;
1186 bool ssv, last;
1187
1188 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1189 ssv = evt[0] & PRIQ_0_SSID_V;
1190 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1191 last = evt[0] & PRIQ_0_PRG_LAST;
1192 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1193
1194 dev_info(smmu->dev, "unexpected PRI request received:\n");
1195 dev_info(smmu->dev,
1196 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1197 sid, ssid, grpid, last ? "L" : "",
1198 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1199 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1200 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1201 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1202 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1203
1204 if (last) {
1205 struct arm_smmu_cmdq_ent cmd = {
1206 .opcode = CMDQ_OP_PRI_RESP,
1207 .substream_valid = ssv,
1208 .pri = {
1209 .sid = sid,
1210 .ssid = ssid,
1211 .grpid = grpid,
1212 .resp = PRI_RESP_DENY,
1213 },
1214 };
1215
1216 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1217 }
1218 }
1219
arm_smmu_priq_thread(int irq,void * dev)1220 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1221 {
1222 struct arm_smmu_device *smmu = dev;
1223 struct arm_smmu_queue *q = &smmu->priq.q;
1224 u64 evt[PRIQ_ENT_DWORDS];
1225
1226 do {
1227 while (!queue_remove_raw(q, evt))
1228 arm_smmu_handle_ppr(smmu, evt);
1229
1230 if (queue_sync_prod(q) == -EOVERFLOW)
1231 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1232 } while (!queue_empty(q));
1233
1234 /* Sync our overflow flag, as we believe we're up to speed */
1235 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1236 return IRQ_HANDLED;
1237 }
1238
arm_smmu_cmdq_sync_handler(int irq,void * dev)1239 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1240 {
1241 /* We don't actually use CMD_SYNC interrupts for anything */
1242 return IRQ_HANDLED;
1243 }
1244
1245 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1246
arm_smmu_gerror_handler(int irq,void * dev)1247 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1248 {
1249 u32 gerror, gerrorn, active;
1250 struct arm_smmu_device *smmu = dev;
1251
1252 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1253 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1254
1255 active = gerror ^ gerrorn;
1256 if (!(active & GERROR_ERR_MASK))
1257 return IRQ_NONE; /* No errors pending */
1258
1259 dev_warn(smmu->dev,
1260 "unexpected global error reported (0x%08x), this could be serious\n",
1261 active);
1262
1263 if (active & GERROR_SFM_ERR) {
1264 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1265 arm_smmu_device_disable(smmu);
1266 }
1267
1268 if (active & GERROR_MSI_GERROR_ABT_ERR)
1269 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1270
1271 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1272 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1273
1274 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1275 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1276
1277 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1278 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1279 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1280 }
1281
1282 if (active & GERROR_PRIQ_ABT_ERR)
1283 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1284
1285 if (active & GERROR_EVTQ_ABT_ERR)
1286 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1287
1288 if (active & GERROR_CMDQ_ERR)
1289 arm_smmu_cmdq_skip_err(smmu);
1290
1291 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1292 return IRQ_HANDLED;
1293 }
1294
1295 /* IO_PGTABLE API */
__arm_smmu_tlb_sync(struct arm_smmu_device * smmu)1296 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1297 {
1298 struct arm_smmu_cmdq_ent cmd;
1299
1300 cmd.opcode = CMDQ_OP_CMD_SYNC;
1301 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1302 }
1303
arm_smmu_tlb_sync(void * cookie)1304 static void arm_smmu_tlb_sync(void *cookie)
1305 {
1306 struct arm_smmu_domain *smmu_domain = cookie;
1307 __arm_smmu_tlb_sync(smmu_domain->smmu);
1308 }
1309
arm_smmu_tlb_inv_context(void * cookie)1310 static void arm_smmu_tlb_inv_context(void *cookie)
1311 {
1312 struct arm_smmu_domain *smmu_domain = cookie;
1313 struct arm_smmu_device *smmu = smmu_domain->smmu;
1314 struct arm_smmu_cmdq_ent cmd;
1315
1316 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1317 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1318 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1319 cmd.tlbi.vmid = 0;
1320 } else {
1321 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1322 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1323 }
1324
1325 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1326 __arm_smmu_tlb_sync(smmu);
1327 }
1328
arm_smmu_tlb_inv_range_nosync(unsigned long iova,size_t size,size_t granule,bool leaf,void * cookie)1329 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1330 size_t granule, bool leaf, void *cookie)
1331 {
1332 struct arm_smmu_domain *smmu_domain = cookie;
1333 struct arm_smmu_device *smmu = smmu_domain->smmu;
1334 struct arm_smmu_cmdq_ent cmd = {
1335 .tlbi = {
1336 .leaf = leaf,
1337 .addr = iova,
1338 },
1339 };
1340
1341 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1342 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1343 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1344 } else {
1345 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1346 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1347 }
1348
1349 do {
1350 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1351 cmd.tlbi.addr += granule;
1352 } while (size -= granule);
1353 }
1354
1355 static struct iommu_gather_ops arm_smmu_gather_ops = {
1356 .tlb_flush_all = arm_smmu_tlb_inv_context,
1357 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1358 .tlb_sync = arm_smmu_tlb_sync,
1359 };
1360
1361 /* IOMMU API */
arm_smmu_capable(enum iommu_cap cap)1362 static bool arm_smmu_capable(enum iommu_cap cap)
1363 {
1364 switch (cap) {
1365 case IOMMU_CAP_CACHE_COHERENCY:
1366 return true;
1367 case IOMMU_CAP_INTR_REMAP:
1368 return true; /* MSIs are just memory writes */
1369 case IOMMU_CAP_NOEXEC:
1370 return true;
1371 default:
1372 return false;
1373 }
1374 }
1375
arm_smmu_domain_alloc(unsigned type)1376 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1377 {
1378 struct arm_smmu_domain *smmu_domain;
1379
1380 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1381 return NULL;
1382
1383 /*
1384 * Allocate the domain and initialise some of its data structures.
1385 * We can't really do anything meaningful until we've added a
1386 * master.
1387 */
1388 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1389 if (!smmu_domain)
1390 return NULL;
1391
1392 if (type == IOMMU_DOMAIN_DMA &&
1393 iommu_get_dma_cookie(&smmu_domain->domain)) {
1394 kfree(smmu_domain);
1395 return NULL;
1396 }
1397
1398 mutex_init(&smmu_domain->init_mutex);
1399 spin_lock_init(&smmu_domain->pgtbl_lock);
1400 return &smmu_domain->domain;
1401 }
1402
arm_smmu_bitmap_alloc(unsigned long * map,int span)1403 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1404 {
1405 int idx, size = 1 << span;
1406
1407 do {
1408 idx = find_first_zero_bit(map, size);
1409 if (idx == size)
1410 return -ENOSPC;
1411 } while (test_and_set_bit(idx, map));
1412
1413 return idx;
1414 }
1415
arm_smmu_bitmap_free(unsigned long * map,int idx)1416 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1417 {
1418 clear_bit(idx, map);
1419 }
1420
arm_smmu_domain_free(struct iommu_domain * domain)1421 static void arm_smmu_domain_free(struct iommu_domain *domain)
1422 {
1423 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1424 struct arm_smmu_device *smmu = smmu_domain->smmu;
1425
1426 iommu_put_dma_cookie(domain);
1427 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1428
1429 /* Free the CD and ASID, if we allocated them */
1430 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1431 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1432
1433 if (cfg->cdptr) {
1434 dmam_free_coherent(smmu_domain->smmu->dev,
1435 CTXDESC_CD_DWORDS << 3,
1436 cfg->cdptr,
1437 cfg->cdptr_dma);
1438
1439 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1440 }
1441 } else {
1442 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1443 if (cfg->vmid)
1444 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1445 }
1446
1447 kfree(smmu_domain);
1448 }
1449
arm_smmu_domain_finalise_s1(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)1450 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1451 struct io_pgtable_cfg *pgtbl_cfg)
1452 {
1453 int ret;
1454 int asid;
1455 struct arm_smmu_device *smmu = smmu_domain->smmu;
1456 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1457
1458 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1459 if (asid < 0)
1460 return asid;
1461
1462 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1463 &cfg->cdptr_dma,
1464 GFP_KERNEL | __GFP_ZERO);
1465 if (!cfg->cdptr) {
1466 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1467 ret = -ENOMEM;
1468 goto out_free_asid;
1469 }
1470
1471 cfg->cd.asid = (u16)asid;
1472 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1473 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1474 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1475 return 0;
1476
1477 out_free_asid:
1478 arm_smmu_bitmap_free(smmu->asid_map, asid);
1479 return ret;
1480 }
1481
arm_smmu_domain_finalise_s2(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)1482 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1483 struct io_pgtable_cfg *pgtbl_cfg)
1484 {
1485 int vmid;
1486 struct arm_smmu_device *smmu = smmu_domain->smmu;
1487 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1488
1489 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1490 if (vmid < 0)
1491 return vmid;
1492
1493 cfg->vmid = (u16)vmid;
1494 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1495 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1496 return 0;
1497 }
1498
arm_smmu_domain_finalise(struct iommu_domain * domain)1499 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1500 {
1501 int ret;
1502 unsigned long ias, oas;
1503 enum io_pgtable_fmt fmt;
1504 struct io_pgtable_cfg pgtbl_cfg;
1505 struct io_pgtable_ops *pgtbl_ops;
1506 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1507 struct io_pgtable_cfg *);
1508 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1509 struct arm_smmu_device *smmu = smmu_domain->smmu;
1510
1511 /* Restrict the stage to what we can actually support */
1512 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1513 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1514 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1515 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1516
1517 switch (smmu_domain->stage) {
1518 case ARM_SMMU_DOMAIN_S1:
1519 ias = VA_BITS;
1520 oas = smmu->ias;
1521 fmt = ARM_64_LPAE_S1;
1522 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1523 break;
1524 case ARM_SMMU_DOMAIN_NESTED:
1525 case ARM_SMMU_DOMAIN_S2:
1526 ias = smmu->ias;
1527 oas = smmu->oas;
1528 fmt = ARM_64_LPAE_S2;
1529 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1530 break;
1531 default:
1532 return -EINVAL;
1533 }
1534
1535 pgtbl_cfg = (struct io_pgtable_cfg) {
1536 .pgsize_bitmap = smmu->pgsize_bitmap,
1537 .ias = ias,
1538 .oas = oas,
1539 .tlb = &arm_smmu_gather_ops,
1540 .iommu_dev = smmu->dev,
1541 };
1542
1543 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1544 if (!pgtbl_ops)
1545 return -ENOMEM;
1546
1547 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1548 domain->geometry.aperture_end = (1UL << ias) - 1;
1549 domain->geometry.force_aperture = true;
1550
1551 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1552 if (ret < 0) {
1553 free_io_pgtable_ops(pgtbl_ops);
1554 return ret;
1555 }
1556
1557 smmu_domain->pgtbl_ops = pgtbl_ops;
1558 return 0;
1559 }
1560
arm_smmu_get_step_for_sid(struct arm_smmu_device * smmu,u32 sid)1561 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1562 {
1563 __le64 *step;
1564 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1565
1566 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1567 struct arm_smmu_strtab_l1_desc *l1_desc;
1568 int idx;
1569
1570 /* Two-level walk */
1571 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1572 l1_desc = &cfg->l1_desc[idx];
1573 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1574 step = &l1_desc->l2ptr[idx];
1575 } else {
1576 /* Simple linear lookup */
1577 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1578 }
1579
1580 return step;
1581 }
1582
arm_smmu_install_ste_for_dev(struct iommu_fwspec * fwspec)1583 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1584 {
1585 int i, j;
1586 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1587 struct arm_smmu_device *smmu = master->smmu;
1588
1589 for (i = 0; i < fwspec->num_ids; ++i) {
1590 u32 sid = fwspec->ids[i];
1591 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1592
1593 /* Bridged PCI devices may end up with duplicated IDs */
1594 for (j = 0; j < i; j++)
1595 if (fwspec->ids[j] == sid)
1596 break;
1597 if (j < i)
1598 continue;
1599
1600 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1601 }
1602
1603 return 0;
1604 }
1605
arm_smmu_detach_dev(struct device * dev)1606 static void arm_smmu_detach_dev(struct device *dev)
1607 {
1608 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1609
1610 master->ste.bypass = true;
1611 if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1612 dev_warn(dev, "failed to install bypass STE\n");
1613 }
1614
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)1615 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1616 {
1617 int ret = 0;
1618 struct arm_smmu_device *smmu;
1619 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1620 struct arm_smmu_master_data *master;
1621 struct arm_smmu_strtab_ent *ste;
1622
1623 if (!dev->iommu_fwspec)
1624 return -ENOENT;
1625
1626 master = dev->iommu_fwspec->iommu_priv;
1627 smmu = master->smmu;
1628 ste = &master->ste;
1629
1630 /* Already attached to a different domain? */
1631 if (!ste->bypass)
1632 arm_smmu_detach_dev(dev);
1633
1634 mutex_lock(&smmu_domain->init_mutex);
1635
1636 if (!smmu_domain->smmu) {
1637 smmu_domain->smmu = smmu;
1638 ret = arm_smmu_domain_finalise(domain);
1639 if (ret) {
1640 smmu_domain->smmu = NULL;
1641 goto out_unlock;
1642 }
1643 } else if (smmu_domain->smmu != smmu) {
1644 dev_err(dev,
1645 "cannot attach to SMMU %s (upstream of %s)\n",
1646 dev_name(smmu_domain->smmu->dev),
1647 dev_name(smmu->dev));
1648 ret = -ENXIO;
1649 goto out_unlock;
1650 }
1651
1652 ste->bypass = false;
1653 ste->valid = true;
1654
1655 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1656 ste->s1_cfg = &smmu_domain->s1_cfg;
1657 ste->s2_cfg = NULL;
1658 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1659 } else {
1660 ste->s1_cfg = NULL;
1661 ste->s2_cfg = &smmu_domain->s2_cfg;
1662 }
1663
1664 ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1665 if (ret < 0)
1666 ste->valid = false;
1667
1668 out_unlock:
1669 mutex_unlock(&smmu_domain->init_mutex);
1670 return ret;
1671 }
1672
arm_smmu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1673 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1674 phys_addr_t paddr, size_t size, int prot)
1675 {
1676 int ret;
1677 unsigned long flags;
1678 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1679 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1680
1681 if (!ops)
1682 return -ENODEV;
1683
1684 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1685 ret = ops->map(ops, iova, paddr, size, prot);
1686 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1687 return ret;
1688 }
1689
1690 static size_t
arm_smmu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)1691 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1692 {
1693 size_t ret;
1694 unsigned long flags;
1695 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1696 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1697
1698 if (!ops)
1699 return 0;
1700
1701 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1702 ret = ops->unmap(ops, iova, size);
1703 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1704 return ret;
1705 }
1706
1707 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)1708 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1709 {
1710 phys_addr_t ret;
1711 unsigned long flags;
1712 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1713 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1714
1715 if (!ops)
1716 return 0;
1717
1718 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1719 ret = ops->iova_to_phys(ops, iova);
1720 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1721
1722 return ret;
1723 }
1724
1725 static struct platform_driver arm_smmu_driver;
1726
arm_smmu_match_node(struct device * dev,void * data)1727 static int arm_smmu_match_node(struct device *dev, void *data)
1728 {
1729 return dev->of_node == data;
1730 }
1731
arm_smmu_get_by_node(struct device_node * np)1732 static struct arm_smmu_device *arm_smmu_get_by_node(struct device_node *np)
1733 {
1734 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1735 np, arm_smmu_match_node);
1736 put_device(dev);
1737 return dev ? dev_get_drvdata(dev) : NULL;
1738 }
1739
arm_smmu_sid_in_range(struct arm_smmu_device * smmu,u32 sid)1740 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1741 {
1742 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1743
1744 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1745 limit *= 1UL << STRTAB_SPLIT;
1746
1747 return sid < limit;
1748 }
1749
1750 static struct iommu_ops arm_smmu_ops;
1751
arm_smmu_add_device(struct device * dev)1752 static int arm_smmu_add_device(struct device *dev)
1753 {
1754 int i, ret;
1755 struct arm_smmu_device *smmu;
1756 struct arm_smmu_master_data *master;
1757 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1758 struct iommu_group *group;
1759
1760 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1761 return -ENODEV;
1762 /*
1763 * We _can_ actually withstand dodgy bus code re-calling add_device()
1764 * without an intervening remove_device()/of_xlate() sequence, but
1765 * we're not going to do so quietly...
1766 */
1767 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1768 master = fwspec->iommu_priv;
1769 smmu = master->smmu;
1770 } else {
1771 smmu = arm_smmu_get_by_node(to_of_node(fwspec->iommu_fwnode));
1772 if (!smmu)
1773 return -ENODEV;
1774 master = kzalloc(sizeof(*master), GFP_KERNEL);
1775 if (!master)
1776 return -ENOMEM;
1777
1778 master->smmu = smmu;
1779 fwspec->iommu_priv = master;
1780 }
1781
1782 /* Check the SIDs are in range of the SMMU and our stream table */
1783 for (i = 0; i < fwspec->num_ids; i++) {
1784 u32 sid = fwspec->ids[i];
1785
1786 if (!arm_smmu_sid_in_range(smmu, sid))
1787 return -ERANGE;
1788
1789 /* Ensure l2 strtab is initialised */
1790 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1791 ret = arm_smmu_init_l2_strtab(smmu, sid);
1792 if (ret)
1793 return ret;
1794 }
1795 }
1796
1797 group = iommu_group_get_for_dev(dev);
1798 if (!IS_ERR(group))
1799 iommu_group_put(group);
1800
1801 return PTR_ERR_OR_ZERO(group);
1802 }
1803
arm_smmu_remove_device(struct device * dev)1804 static void arm_smmu_remove_device(struct device *dev)
1805 {
1806 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1807 struct arm_smmu_master_data *master;
1808
1809 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1810 return;
1811
1812 master = fwspec->iommu_priv;
1813 if (master && master->ste.valid)
1814 arm_smmu_detach_dev(dev);
1815 iommu_group_remove_device(dev);
1816 kfree(master);
1817 iommu_fwspec_free(dev);
1818 }
1819
arm_smmu_device_group(struct device * dev)1820 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1821 {
1822 struct iommu_group *group;
1823
1824 /*
1825 * We don't support devices sharing stream IDs other than PCI RID
1826 * aliases, since the necessary ID-to-device lookup becomes rather
1827 * impractical given a potential sparse 32-bit stream ID space.
1828 */
1829 if (dev_is_pci(dev))
1830 group = pci_device_group(dev);
1831 else
1832 group = generic_device_group(dev);
1833
1834 return group;
1835 }
1836
arm_smmu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1837 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1838 enum iommu_attr attr, void *data)
1839 {
1840 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1841
1842 switch (attr) {
1843 case DOMAIN_ATTR_NESTING:
1844 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1845 return 0;
1846 default:
1847 return -ENODEV;
1848 }
1849 }
1850
arm_smmu_domain_set_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1851 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1852 enum iommu_attr attr, void *data)
1853 {
1854 int ret = 0;
1855 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1856
1857 mutex_lock(&smmu_domain->init_mutex);
1858
1859 switch (attr) {
1860 case DOMAIN_ATTR_NESTING:
1861 if (smmu_domain->smmu) {
1862 ret = -EPERM;
1863 goto out_unlock;
1864 }
1865
1866 if (*(int *)data)
1867 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1868 else
1869 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1870
1871 break;
1872 default:
1873 ret = -ENODEV;
1874 }
1875
1876 out_unlock:
1877 mutex_unlock(&smmu_domain->init_mutex);
1878 return ret;
1879 }
1880
arm_smmu_of_xlate(struct device * dev,struct of_phandle_args * args)1881 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1882 {
1883 return iommu_fwspec_add_ids(dev, args->args, 1);
1884 }
1885
1886 static struct iommu_ops arm_smmu_ops = {
1887 .capable = arm_smmu_capable,
1888 .domain_alloc = arm_smmu_domain_alloc,
1889 .domain_free = arm_smmu_domain_free,
1890 .attach_dev = arm_smmu_attach_dev,
1891 .map = arm_smmu_map,
1892 .unmap = arm_smmu_unmap,
1893 .map_sg = default_iommu_map_sg,
1894 .iova_to_phys = arm_smmu_iova_to_phys,
1895 .add_device = arm_smmu_add_device,
1896 .remove_device = arm_smmu_remove_device,
1897 .device_group = arm_smmu_device_group,
1898 .domain_get_attr = arm_smmu_domain_get_attr,
1899 .domain_set_attr = arm_smmu_domain_set_attr,
1900 .of_xlate = arm_smmu_of_xlate,
1901 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1902 };
1903
1904 /* Probing and initialisation functions */
arm_smmu_init_one_queue(struct arm_smmu_device * smmu,struct arm_smmu_queue * q,unsigned long prod_off,unsigned long cons_off,size_t dwords)1905 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1906 struct arm_smmu_queue *q,
1907 unsigned long prod_off,
1908 unsigned long cons_off,
1909 size_t dwords)
1910 {
1911 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1912
1913 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1914 if (!q->base) {
1915 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1916 qsz);
1917 return -ENOMEM;
1918 }
1919
1920 q->prod_reg = smmu->base + prod_off;
1921 q->cons_reg = smmu->base + cons_off;
1922 q->ent_dwords = dwords;
1923
1924 q->q_base = Q_BASE_RWA;
1925 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1926 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1927 << Q_BASE_LOG2SIZE_SHIFT;
1928
1929 q->prod = q->cons = 0;
1930 return 0;
1931 }
1932
arm_smmu_init_queues(struct arm_smmu_device * smmu)1933 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1934 {
1935 int ret;
1936
1937 /* cmdq */
1938 spin_lock_init(&smmu->cmdq.lock);
1939 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1940 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1941 if (ret)
1942 return ret;
1943
1944 /* evtq */
1945 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1946 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1947 if (ret)
1948 return ret;
1949
1950 /* priq */
1951 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1952 return 0;
1953
1954 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1955 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1956 }
1957
arm_smmu_init_l1_strtab(struct arm_smmu_device * smmu)1958 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1959 {
1960 unsigned int i;
1961 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1962 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1963 void *strtab = smmu->strtab_cfg.strtab;
1964
1965 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1966 if (!cfg->l1_desc) {
1967 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1968 return -ENOMEM;
1969 }
1970
1971 for (i = 0; i < cfg->num_l1_ents; ++i) {
1972 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1973 strtab += STRTAB_L1_DESC_DWORDS << 3;
1974 }
1975
1976 return 0;
1977 }
1978
arm_smmu_init_strtab_2lvl(struct arm_smmu_device * smmu)1979 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1980 {
1981 void *strtab;
1982 u64 reg;
1983 u32 size, l1size;
1984 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985
1986 /*
1987 * If we can resolve everything with a single L2 table, then we
1988 * just need a single L1 descriptor. Otherwise, calculate the L1
1989 * size, capped to the SIDSIZE.
1990 */
1991 if (smmu->sid_bits < STRTAB_SPLIT) {
1992 size = 0;
1993 } else {
1994 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
1995 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
1996 }
1997 cfg->num_l1_ents = 1 << size;
1998
1999 size += STRTAB_SPLIT;
2000 if (size < smmu->sid_bits)
2001 dev_warn(smmu->dev,
2002 "2-level strtab only covers %u/%u bits of SID\n",
2003 size, smmu->sid_bits);
2004
2005 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2006 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2007 GFP_KERNEL | __GFP_ZERO);
2008 if (!strtab) {
2009 dev_err(smmu->dev,
2010 "failed to allocate l1 stream table (%u bytes)\n",
2011 size);
2012 return -ENOMEM;
2013 }
2014 cfg->strtab = strtab;
2015
2016 /* Configure strtab_base_cfg for 2 levels */
2017 reg = STRTAB_BASE_CFG_FMT_2LVL;
2018 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2019 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2020 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2021 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2022 cfg->strtab_base_cfg = reg;
2023
2024 return arm_smmu_init_l1_strtab(smmu);
2025 }
2026
arm_smmu_init_strtab_linear(struct arm_smmu_device * smmu)2027 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2028 {
2029 void *strtab;
2030 u64 reg;
2031 u32 size;
2032 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2033
2034 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2035 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2036 GFP_KERNEL | __GFP_ZERO);
2037 if (!strtab) {
2038 dev_err(smmu->dev,
2039 "failed to allocate linear stream table (%u bytes)\n",
2040 size);
2041 return -ENOMEM;
2042 }
2043 cfg->strtab = strtab;
2044 cfg->num_l1_ents = 1 << smmu->sid_bits;
2045
2046 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2047 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2048 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2049 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2050 cfg->strtab_base_cfg = reg;
2051
2052 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2053 return 0;
2054 }
2055
arm_smmu_init_strtab(struct arm_smmu_device * smmu)2056 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2057 {
2058 u64 reg;
2059 int ret;
2060
2061 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2062 ret = arm_smmu_init_strtab_2lvl(smmu);
2063 else
2064 ret = arm_smmu_init_strtab_linear(smmu);
2065
2066 if (ret)
2067 return ret;
2068
2069 /* Set the strtab base address */
2070 reg = smmu->strtab_cfg.strtab_dma &
2071 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2072 reg |= STRTAB_BASE_RA;
2073 smmu->strtab_cfg.strtab_base = reg;
2074
2075 /* Allocate the first VMID for stage-2 bypass STEs */
2076 set_bit(0, smmu->vmid_map);
2077 return 0;
2078 }
2079
arm_smmu_init_structures(struct arm_smmu_device * smmu)2080 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2081 {
2082 int ret;
2083
2084 ret = arm_smmu_init_queues(smmu);
2085 if (ret)
2086 return ret;
2087
2088 return arm_smmu_init_strtab(smmu);
2089 }
2090
arm_smmu_write_reg_sync(struct arm_smmu_device * smmu,u32 val,unsigned int reg_off,unsigned int ack_off)2091 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2092 unsigned int reg_off, unsigned int ack_off)
2093 {
2094 u32 reg;
2095
2096 writel_relaxed(val, smmu->base + reg_off);
2097 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2098 1, ARM_SMMU_POLL_TIMEOUT_US);
2099 }
2100
2101 /* GBPA is "special" */
arm_smmu_update_gbpa(struct arm_smmu_device * smmu,u32 set,u32 clr)2102 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2103 {
2104 int ret;
2105 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2106
2107 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2108 1, ARM_SMMU_POLL_TIMEOUT_US);
2109 if (ret)
2110 return ret;
2111
2112 reg &= ~clr;
2113 reg |= set;
2114 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2115 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2116 1, ARM_SMMU_POLL_TIMEOUT_US);
2117 }
2118
arm_smmu_free_msis(void * data)2119 static void arm_smmu_free_msis(void *data)
2120 {
2121 struct device *dev = data;
2122 platform_msi_domain_free_irqs(dev);
2123 }
2124
arm_smmu_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)2125 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2126 {
2127 phys_addr_t doorbell;
2128 struct device *dev = msi_desc_to_dev(desc);
2129 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2130 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2131
2132 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2133 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2134
2135 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2136 writel_relaxed(msg->data, smmu->base + cfg[1]);
2137 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2138 }
2139
arm_smmu_setup_msis(struct arm_smmu_device * smmu)2140 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2141 {
2142 struct msi_desc *desc;
2143 int ret, nvec = ARM_SMMU_MAX_MSIS;
2144 struct device *dev = smmu->dev;
2145
2146 /* Clear the MSI address regs */
2147 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2148 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2149
2150 if (smmu->features & ARM_SMMU_FEAT_PRI)
2151 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2152 else
2153 nvec--;
2154
2155 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2156 return;
2157
2158 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2159 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2160 if (ret) {
2161 dev_warn(dev, "failed to allocate MSIs\n");
2162 return;
2163 }
2164
2165 for_each_msi_entry(desc, dev) {
2166 switch (desc->platform.msi_index) {
2167 case EVTQ_MSI_INDEX:
2168 smmu->evtq.q.irq = desc->irq;
2169 break;
2170 case GERROR_MSI_INDEX:
2171 smmu->gerr_irq = desc->irq;
2172 break;
2173 case PRIQ_MSI_INDEX:
2174 smmu->priq.q.irq = desc->irq;
2175 break;
2176 default: /* Unknown */
2177 continue;
2178 }
2179 }
2180
2181 /* Add callback to free MSIs on teardown */
2182 devm_add_action(dev, arm_smmu_free_msis, dev);
2183 }
2184
arm_smmu_setup_irqs(struct arm_smmu_device * smmu)2185 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2186 {
2187 int ret, irq;
2188 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2189
2190 /* Disable IRQs first */
2191 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2192 ARM_SMMU_IRQ_CTRLACK);
2193 if (ret) {
2194 dev_err(smmu->dev, "failed to disable irqs\n");
2195 return ret;
2196 }
2197
2198 arm_smmu_setup_msis(smmu);
2199
2200 /* Request interrupt lines */
2201 irq = smmu->evtq.q.irq;
2202 if (irq) {
2203 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2204 arm_smmu_evtq_thread,
2205 IRQF_ONESHOT,
2206 "arm-smmu-v3-evtq", smmu);
2207 if (ret < 0)
2208 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2209 }
2210
2211 irq = smmu->cmdq.q.irq;
2212 if (irq) {
2213 ret = devm_request_irq(smmu->dev, irq,
2214 arm_smmu_cmdq_sync_handler, 0,
2215 "arm-smmu-v3-cmdq-sync", smmu);
2216 if (ret < 0)
2217 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2218 }
2219
2220 irq = smmu->gerr_irq;
2221 if (irq) {
2222 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2223 0, "arm-smmu-v3-gerror", smmu);
2224 if (ret < 0)
2225 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2226 }
2227
2228 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2229 irq = smmu->priq.q.irq;
2230 if (irq) {
2231 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2232 arm_smmu_priq_thread,
2233 IRQF_ONESHOT,
2234 "arm-smmu-v3-priq",
2235 smmu);
2236 if (ret < 0)
2237 dev_warn(smmu->dev,
2238 "failed to enable priq irq\n");
2239 else
2240 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2241 }
2242 }
2243
2244 /* Enable interrupt generation on the SMMU */
2245 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2246 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2247 if (ret)
2248 dev_warn(smmu->dev, "failed to enable irqs\n");
2249
2250 return 0;
2251 }
2252
arm_smmu_device_disable(struct arm_smmu_device * smmu)2253 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2254 {
2255 int ret;
2256
2257 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2258 if (ret)
2259 dev_err(smmu->dev, "failed to clear cr0\n");
2260
2261 return ret;
2262 }
2263
arm_smmu_device_reset(struct arm_smmu_device * smmu,bool bypass)2264 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2265 {
2266 int ret;
2267 u32 reg, enables;
2268 struct arm_smmu_cmdq_ent cmd;
2269
2270 /* Clear CR0 and sync (disables SMMU and queue processing) */
2271 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2272 if (reg & CR0_SMMUEN)
2273 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2274
2275 ret = arm_smmu_device_disable(smmu);
2276 if (ret)
2277 return ret;
2278
2279 /* CR1 (table and queue memory attributes) */
2280 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2281 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2282 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2283 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2284 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2285 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2286 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2287
2288 /* CR2 (random crap) */
2289 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2290 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2291
2292 /* Stream table */
2293 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2294 smmu->base + ARM_SMMU_STRTAB_BASE);
2295 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2296 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2297
2298 /* Command queue */
2299 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2300 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2301 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2302
2303 enables = CR0_CMDQEN;
2304 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2305 ARM_SMMU_CR0ACK);
2306 if (ret) {
2307 dev_err(smmu->dev, "failed to enable command queue\n");
2308 return ret;
2309 }
2310
2311 /* Invalidate any cached configuration */
2312 cmd.opcode = CMDQ_OP_CFGI_ALL;
2313 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2314 cmd.opcode = CMDQ_OP_CMD_SYNC;
2315 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2316
2317 /* Invalidate any stale TLB entries */
2318 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2319 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2320 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2321 }
2322
2323 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2324 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2325 cmd.opcode = CMDQ_OP_CMD_SYNC;
2326 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2327
2328 /* Event queue */
2329 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2330 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2331 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2332
2333 enables |= CR0_EVTQEN;
2334 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2335 ARM_SMMU_CR0ACK);
2336 if (ret) {
2337 dev_err(smmu->dev, "failed to enable event queue\n");
2338 return ret;
2339 }
2340
2341 /* PRI queue */
2342 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2343 writeq_relaxed(smmu->priq.q.q_base,
2344 smmu->base + ARM_SMMU_PRIQ_BASE);
2345 writel_relaxed(smmu->priq.q.prod,
2346 smmu->base + ARM_SMMU_PRIQ_PROD);
2347 writel_relaxed(smmu->priq.q.cons,
2348 smmu->base + ARM_SMMU_PRIQ_CONS);
2349
2350 enables |= CR0_PRIQEN;
2351 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2352 ARM_SMMU_CR0ACK);
2353 if (ret) {
2354 dev_err(smmu->dev, "failed to enable PRI queue\n");
2355 return ret;
2356 }
2357 }
2358
2359 ret = arm_smmu_setup_irqs(smmu);
2360 if (ret) {
2361 dev_err(smmu->dev, "failed to setup irqs\n");
2362 return ret;
2363 }
2364
2365
2366 /* Enable the SMMU interface, or ensure bypass */
2367 if (!bypass || disable_bypass) {
2368 enables |= CR0_SMMUEN;
2369 } else {
2370 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2371 if (ret) {
2372 dev_err(smmu->dev, "GBPA not responding to update\n");
2373 return ret;
2374 }
2375 }
2376 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2377 ARM_SMMU_CR0ACK);
2378 if (ret) {
2379 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2380 return ret;
2381 }
2382
2383 return 0;
2384 }
2385
arm_smmu_device_probe(struct arm_smmu_device * smmu)2386 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2387 {
2388 u32 reg;
2389 bool coherent;
2390
2391 /* IDR0 */
2392 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2393
2394 /* 2-level structures */
2395 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2396 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2397
2398 if (reg & IDR0_CD2L)
2399 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2400
2401 /*
2402 * Translation table endianness.
2403 * We currently require the same endianness as the CPU, but this
2404 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2405 */
2406 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2407 case IDR0_TTENDIAN_MIXED:
2408 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2409 break;
2410 #ifdef __BIG_ENDIAN
2411 case IDR0_TTENDIAN_BE:
2412 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2413 break;
2414 #else
2415 case IDR0_TTENDIAN_LE:
2416 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2417 break;
2418 #endif
2419 default:
2420 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2421 return -ENXIO;
2422 }
2423
2424 /* Boolean feature flags */
2425 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2426 smmu->features |= ARM_SMMU_FEAT_PRI;
2427
2428 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2429 smmu->features |= ARM_SMMU_FEAT_ATS;
2430
2431 if (reg & IDR0_SEV)
2432 smmu->features |= ARM_SMMU_FEAT_SEV;
2433
2434 if (reg & IDR0_MSI)
2435 smmu->features |= ARM_SMMU_FEAT_MSI;
2436
2437 if (reg & IDR0_HYP)
2438 smmu->features |= ARM_SMMU_FEAT_HYP;
2439
2440 /*
2441 * The dma-coherent property is used in preference to the ID
2442 * register, but warn on mismatch.
2443 */
2444 coherent = of_dma_is_coherent(smmu->dev->of_node);
2445 if (coherent)
2446 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2447
2448 if (!!(reg & IDR0_COHACC) != coherent)
2449 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2450 coherent ? "true" : "false");
2451
2452 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2453 case IDR0_STALL_MODEL_STALL:
2454 /* Fallthrough */
2455 case IDR0_STALL_MODEL_FORCE:
2456 smmu->features |= ARM_SMMU_FEAT_STALLS;
2457 }
2458
2459 if (reg & IDR0_S1P)
2460 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2461
2462 if (reg & IDR0_S2P)
2463 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2464
2465 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2466 dev_err(smmu->dev, "no translation support!\n");
2467 return -ENXIO;
2468 }
2469
2470 /* We only support the AArch64 table format at present */
2471 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2472 case IDR0_TTF_AARCH32_64:
2473 smmu->ias = 40;
2474 /* Fallthrough */
2475 case IDR0_TTF_AARCH64:
2476 break;
2477 default:
2478 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2479 return -ENXIO;
2480 }
2481
2482 /* ASID/VMID sizes */
2483 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2484 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2485
2486 /* IDR1 */
2487 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2488 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2489 dev_err(smmu->dev, "embedded implementation not supported\n");
2490 return -ENXIO;
2491 }
2492
2493 /* Queue sizes, capped at 4k */
2494 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2495 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2496 if (!smmu->cmdq.q.max_n_shift) {
2497 /* Odd alignment restrictions on the base, so ignore for now */
2498 dev_err(smmu->dev, "unit-length command queue not supported\n");
2499 return -ENXIO;
2500 }
2501
2502 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2503 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2504 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2505 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2506
2507 /* SID/SSID sizes */
2508 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2509 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2510
2511 /* IDR5 */
2512 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2513
2514 /* Maximum number of outstanding stalls */
2515 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2516 & IDR5_STALL_MAX_MASK;
2517
2518 /* Page sizes */
2519 if (reg & IDR5_GRAN64K)
2520 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2521 if (reg & IDR5_GRAN16K)
2522 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2523 if (reg & IDR5_GRAN4K)
2524 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2525
2526 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2527 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2528 else
2529 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2530
2531 /* Output address size */
2532 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2533 case IDR5_OAS_32_BIT:
2534 smmu->oas = 32;
2535 break;
2536 case IDR5_OAS_36_BIT:
2537 smmu->oas = 36;
2538 break;
2539 case IDR5_OAS_40_BIT:
2540 smmu->oas = 40;
2541 break;
2542 case IDR5_OAS_42_BIT:
2543 smmu->oas = 42;
2544 break;
2545 case IDR5_OAS_44_BIT:
2546 smmu->oas = 44;
2547 break;
2548 default:
2549 dev_info(smmu->dev,
2550 "unknown output address size. Truncating to 48-bit\n");
2551 /* Fallthrough */
2552 case IDR5_OAS_48_BIT:
2553 smmu->oas = 48;
2554 }
2555
2556 /* Set the DMA mask for our table walker */
2557 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2558 dev_warn(smmu->dev,
2559 "failed to set DMA mask for table walker\n");
2560
2561 smmu->ias = max(smmu->ias, smmu->oas);
2562
2563 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2564 smmu->ias, smmu->oas, smmu->features);
2565 return 0;
2566 }
2567
arm_smmu_device_dt_probe(struct platform_device * pdev)2568 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2569 {
2570 int irq, ret;
2571 struct resource *res;
2572 struct arm_smmu_device *smmu;
2573 struct device *dev = &pdev->dev;
2574 bool bypass = true;
2575 u32 cells;
2576
2577 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2578 dev_err(dev, "missing #iommu-cells property\n");
2579 else if (cells != 1)
2580 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2581 else
2582 bypass = false;
2583
2584 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2585 if (!smmu) {
2586 dev_err(dev, "failed to allocate arm_smmu_device\n");
2587 return -ENOMEM;
2588 }
2589 smmu->dev = dev;
2590
2591 /* Base address */
2592 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2593 if (resource_size(res) + 1 < SZ_128K) {
2594 dev_err(dev, "MMIO region too small (%pr)\n", res);
2595 return -EINVAL;
2596 }
2597
2598 smmu->base = devm_ioremap_resource(dev, res);
2599 if (IS_ERR(smmu->base))
2600 return PTR_ERR(smmu->base);
2601
2602 /* Interrupt lines */
2603 irq = platform_get_irq_byname(pdev, "eventq");
2604 if (irq > 0)
2605 smmu->evtq.q.irq = irq;
2606
2607 irq = platform_get_irq_byname(pdev, "priq");
2608 if (irq > 0)
2609 smmu->priq.q.irq = irq;
2610
2611 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2612 if (irq > 0)
2613 smmu->cmdq.q.irq = irq;
2614
2615 irq = platform_get_irq_byname(pdev, "gerror");
2616 if (irq > 0)
2617 smmu->gerr_irq = irq;
2618
2619 parse_driver_options(smmu);
2620
2621 /* Probe the h/w */
2622 ret = arm_smmu_device_probe(smmu);
2623 if (ret)
2624 return ret;
2625
2626 /* Initialise in-memory data structures */
2627 ret = arm_smmu_init_structures(smmu);
2628 if (ret)
2629 return ret;
2630
2631 /* Record our private device structure */
2632 platform_set_drvdata(pdev, smmu);
2633
2634 /* Reset the device */
2635 ret = arm_smmu_device_reset(smmu, bypass);
2636 if (ret)
2637 return ret;
2638
2639 /* And we're up. Go go go! */
2640 of_iommu_set_ops(dev->of_node, &arm_smmu_ops);
2641 #ifdef CONFIG_PCI
2642 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2643 pci_request_acs();
2644 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2645 if (ret)
2646 return ret;
2647 }
2648 #endif
2649 #ifdef CONFIG_ARM_AMBA
2650 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2651 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2652 if (ret)
2653 return ret;
2654 }
2655 #endif
2656 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2657 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2658 if (ret)
2659 return ret;
2660 }
2661 return 0;
2662 }
2663
arm_smmu_device_remove(struct platform_device * pdev)2664 static int arm_smmu_device_remove(struct platform_device *pdev)
2665 {
2666 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2667
2668 arm_smmu_device_disable(smmu);
2669 return 0;
2670 }
2671
2672 static struct of_device_id arm_smmu_of_match[] = {
2673 { .compatible = "arm,smmu-v3", },
2674 { },
2675 };
2676 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2677
2678 static struct platform_driver arm_smmu_driver = {
2679 .driver = {
2680 .name = "arm-smmu-v3",
2681 .of_match_table = of_match_ptr(arm_smmu_of_match),
2682 },
2683 .probe = arm_smmu_device_dt_probe,
2684 .remove = arm_smmu_device_remove,
2685 };
2686
arm_smmu_init(void)2687 static int __init arm_smmu_init(void)
2688 {
2689 static bool registered;
2690 int ret = 0;
2691
2692 if (!registered) {
2693 ret = platform_driver_register(&arm_smmu_driver);
2694 registered = !ret;
2695 }
2696 return ret;
2697 }
2698
arm_smmu_exit(void)2699 static void __exit arm_smmu_exit(void)
2700 {
2701 return platform_driver_unregister(&arm_smmu_driver);
2702 }
2703
2704 subsys_initcall(arm_smmu_init);
2705 module_exit(arm_smmu_exit);
2706
arm_smmu_of_init(struct device_node * np)2707 static int __init arm_smmu_of_init(struct device_node *np)
2708 {
2709 int ret = arm_smmu_init();
2710
2711 if (ret)
2712 return ret;
2713
2714 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2715 return -ENODEV;
2716
2717 return 0;
2718 }
2719 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2720
2721 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2722 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2723 MODULE_LICENSE("GPL v2");
2724