1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20
21 #define DM_MSG_PREFIX "bufio"
22
23 /*
24 * Memory management policy:
25 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29 * dirty buffers.
30 */
31 #define DM_BUFIO_MIN_BUFFERS 8
32
33 #define DM_BUFIO_MEMORY_PERCENT 2
34 #define DM_BUFIO_VMALLOC_PERCENT 25
35 #define DM_BUFIO_WRITEBACK_PERCENT 75
36
37 /*
38 * Check buffer ages in this interval (seconds)
39 */
40 #define DM_BUFIO_WORK_TIMER_SECS 30
41
42 /*
43 * Free buffers when they are older than this (seconds)
44 */
45 #define DM_BUFIO_DEFAULT_AGE_SECS 300
46
47 /*
48 * The nr of bytes of cached data to keep around.
49 */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
51
52 /*
53 * The number of bvec entries that are embedded directly in the buffer.
54 * If the chunk size is larger, dm-io is used to do the io.
55 */
56 #define DM_BUFIO_INLINE_VECS 16
57
58 /*
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
61 */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66 * dm_buffer->list_mode
67 */
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
71
72 /*
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
75 *
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
78 *
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
86 */
87 struct dm_bufio_client {
88 struct mutex lock;
89
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
92
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
101
102 struct dm_io_client *dm_io;
103
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
106
107 unsigned minimum_buffers;
108
109 struct rb_root buffer_tree;
110 wait_queue_head_t free_buffer_wait;
111
112 int async_write_error;
113
114 struct list_head client_list;
115 struct shrinker shrinker;
116 };
117
118 /*
119 * Buffer state bits.
120 */
121 #define B_READING 0
122 #define B_WRITING 1
123 #define B_DIRTY 2
124
125 /*
126 * Describes how the block was allocated:
127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128 * See the comment at alloc_buffer_data.
129 */
130 enum data_mode {
131 DATA_MODE_SLAB = 0,
132 DATA_MODE_GET_FREE_PAGES = 1,
133 DATA_MODE_VMALLOC = 2,
134 DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138 struct rb_node node;
139 struct list_head lru_list;
140 sector_t block;
141 void *data;
142 enum data_mode data_mode;
143 unsigned char list_mode; /* LIST_* */
144 unsigned hold_count;
145 int read_error;
146 int write_error;
147 unsigned long state;
148 unsigned long last_accessed;
149 struct dm_bufio_client *c;
150 struct list_head write_list;
151 struct bio bio;
152 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 struct stack_trace stack_trace;
156 unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159
160 /*----------------------------------------------------------------*/
161
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164
dm_bufio_cache_index(struct dm_bufio_client * c)165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 unsigned ret = c->blocks_per_page_bits - 1;
168
169 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170
171 return ret;
172 }
173
174 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
176
177 #define dm_bufio_in_request() (!!current->bio_list)
178
dm_bufio_lock(struct dm_bufio_client * c)179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183
dm_bufio_trylock(struct dm_bufio_client * c)184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 return mutex_trylock(&c->lock);
187 }
188
dm_bufio_unlock(struct dm_bufio_client * c)189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 mutex_unlock(&c->lock);
192 }
193
194 /*----------------------------------------------------------------*/
195
196 /*
197 * Default cache size: available memory divided by the ratio.
198 */
199 static unsigned long dm_bufio_default_cache_size;
200
201 /*
202 * Total cache size set by the user.
203 */
204 static unsigned long dm_bufio_cache_size;
205
206 /*
207 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208 * at any time. If it disagrees, the user has changed cache size.
209 */
210 static unsigned long dm_bufio_cache_size_latch;
211
212 static DEFINE_SPINLOCK(param_spinlock);
213
214 /*
215 * Buffers are freed after this timeout
216 */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225
226 /*----------------------------------------------------------------*/
227
228 /*
229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230 */
231 static unsigned long dm_bufio_cache_size_per_client;
232
233 /*
234 * The current number of clients.
235 */
236 static int dm_bufio_client_count;
237
238 /*
239 * The list of all clients.
240 */
241 static LIST_HEAD(dm_bufio_all_clients);
242
243 /*
244 * This mutex protects dm_bufio_cache_size_latch,
245 * dm_bufio_cache_size_per_client and dm_bufio_client_count
246 */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 b->stack_trace.nr_entries = 0;
253 b->stack_trace.max_entries = MAX_STACK;
254 b->stack_trace.entries = b->stack_entries;
255 b->stack_trace.skip = 2;
256 save_stack_trace(&b->stack_trace);
257 }
258 #endif
259
260 /*----------------------------------------------------------------
261 * A red/black tree acts as an index for all the buffers.
262 *--------------------------------------------------------------*/
__find(struct dm_bufio_client * c,sector_t block)263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 struct rb_node *n = c->buffer_tree.rb_node;
266 struct dm_buffer *b;
267
268 while (n) {
269 b = container_of(n, struct dm_buffer, node);
270
271 if (b->block == block)
272 return b;
273
274 n = (b->block < block) ? n->rb_left : n->rb_right;
275 }
276
277 return NULL;
278 }
279
__insert(struct dm_bufio_client * c,struct dm_buffer * b)280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 struct dm_buffer *found;
284
285 while (*new) {
286 found = container_of(*new, struct dm_buffer, node);
287
288 if (found->block == b->block) {
289 BUG_ON(found != b);
290 return;
291 }
292
293 parent = *new;
294 new = (found->block < b->block) ?
295 &((*new)->rb_left) : &((*new)->rb_right);
296 }
297
298 rb_link_node(&b->node, parent, new);
299 rb_insert_color(&b->node, &c->buffer_tree);
300 }
301
__remove(struct dm_bufio_client * c,struct dm_buffer * b)302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 rb_erase(&b->node, &c->buffer_tree);
305 }
306
307 /*----------------------------------------------------------------*/
308
adjust_total_allocated(enum data_mode data_mode,long diff)309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 &dm_bufio_allocated_kmem_cache,
313 &dm_bufio_allocated_get_free_pages,
314 &dm_bufio_allocated_vmalloc,
315 };
316
317 spin_lock(¶m_spinlock);
318
319 *class_ptr[data_mode] += diff;
320
321 dm_bufio_current_allocated += diff;
322
323 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 dm_bufio_peak_allocated = dm_bufio_current_allocated;
325
326 spin_unlock(¶m_spinlock);
327 }
328
329 /*
330 * Change the number of clients and recalculate per-client limit.
331 */
__cache_size_refresh(void)332 static void __cache_size_refresh(void)
333 {
334 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 BUG_ON(dm_bufio_client_count < 0);
336
337 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338
339 /*
340 * Use default if set to 0 and report the actual cache size used.
341 */
342 if (!dm_bufio_cache_size_latch) {
343 (void)cmpxchg(&dm_bufio_cache_size, 0,
344 dm_bufio_default_cache_size);
345 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 }
347
348 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 (dm_bufio_client_count ? : 1);
350 }
351
352 /*
353 * Allocating buffer data.
354 *
355 * Small buffers are allocated with kmem_cache, to use space optimally.
356 *
357 * For large buffers, we choose between get_free_pages and vmalloc.
358 * Each has advantages and disadvantages.
359 *
360 * __get_free_pages can randomly fail if the memory is fragmented.
361 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362 * as low as 128M) so using it for caching is not appropriate.
363 *
364 * If the allocation may fail we use __get_free_pages. Memory fragmentation
365 * won't have a fatal effect here, but it just causes flushes of some other
366 * buffers and more I/O will be performed. Don't use __get_free_pages if it
367 * always fails (i.e. order >= MAX_ORDER).
368 *
369 * If the allocation shouldn't fail we use __vmalloc. This is only for the
370 * initial reserve allocation, so there's no risk of wasting all vmalloc
371 * space.
372 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,enum data_mode * data_mode)373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 enum data_mode *data_mode)
375 {
376 unsigned noio_flag;
377 void *ptr;
378
379 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 *data_mode = DATA_MODE_SLAB;
381 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 }
383
384 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 gfp_mask & __GFP_NORETRY) {
386 *data_mode = DATA_MODE_GET_FREE_PAGES;
387 return (void *)__get_free_pages(gfp_mask,
388 c->pages_per_block_bits);
389 }
390
391 *data_mode = DATA_MODE_VMALLOC;
392
393 /*
394 * __vmalloc allocates the data pages and auxiliary structures with
395 * gfp_flags that were specified, but pagetables are always allocated
396 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 *
398 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 * all allocations done by this process (including pagetables) are done
400 * as if GFP_NOIO was specified.
401 */
402
403 if (gfp_mask & __GFP_NORETRY)
404 noio_flag = memalloc_noio_save();
405
406 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407
408 if (gfp_mask & __GFP_NORETRY)
409 memalloc_noio_restore(noio_flag);
410
411 return ptr;
412 }
413
414 /*
415 * Free buffer's data.
416 */
free_buffer_data(struct dm_bufio_client * c,void * data,enum data_mode data_mode)417 static void free_buffer_data(struct dm_bufio_client *c,
418 void *data, enum data_mode data_mode)
419 {
420 switch (data_mode) {
421 case DATA_MODE_SLAB:
422 kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 break;
424
425 case DATA_MODE_GET_FREE_PAGES:
426 free_pages((unsigned long)data, c->pages_per_block_bits);
427 break;
428
429 case DATA_MODE_VMALLOC:
430 vfree(data);
431 break;
432
433 default:
434 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 data_mode);
436 BUG();
437 }
438 }
439
440 /*
441 * Allocate buffer and its data.
442 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 gfp_mask);
447
448 if (!b)
449 return NULL;
450
451 b->c = c;
452
453 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 if (!b->data) {
455 kfree(b);
456 return NULL;
457 }
458
459 adjust_total_allocated(b->data_mode, (long)c->block_size);
460
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 return b;
465 }
466
467 /*
468 * Free buffer and its data.
469 */
free_buffer(struct dm_buffer * b)470 static void free_buffer(struct dm_buffer *b)
471 {
472 struct dm_bufio_client *c = b->c;
473
474 adjust_total_allocated(b->data_mode, -(long)c->block_size);
475
476 free_buffer_data(c, b->data, b->data_mode);
477 kfree(b);
478 }
479
480 /*
481 * Link buffer to the hash list and clean or dirty queue.
482 */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 struct dm_bufio_client *c = b->c;
486
487 c->n_buffers[dirty]++;
488 b->block = block;
489 b->list_mode = dirty;
490 list_add(&b->lru_list, &c->lru[dirty]);
491 __insert(b->c, b);
492 b->last_accessed = jiffies;
493 }
494
495 /*
496 * Unlink buffer from the hash list and dirty or clean queue.
497 */
__unlink_buffer(struct dm_buffer * b)498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 struct dm_bufio_client *c = b->c;
501
502 BUG_ON(!c->n_buffers[b->list_mode]);
503
504 c->n_buffers[b->list_mode]--;
505 __remove(b->c, b);
506 list_del(&b->lru_list);
507 }
508
509 /*
510 * Place the buffer to the head of dirty or clean LRU queue.
511 */
__relink_lru(struct dm_buffer * b,int dirty)512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 struct dm_bufio_client *c = b->c;
515
516 BUG_ON(!c->n_buffers[b->list_mode]);
517
518 c->n_buffers[b->list_mode]--;
519 c->n_buffers[dirty]++;
520 b->list_mode = dirty;
521 list_move(&b->lru_list, &c->lru[dirty]);
522 b->last_accessed = jiffies;
523 }
524
525 /*----------------------------------------------------------------
526 * Submit I/O on the buffer.
527 *
528 * Bio interface is faster but it has some problems:
529 * the vector list is limited (increasing this limit increases
530 * memory-consumption per buffer, so it is not viable);
531 *
532 * the memory must be direct-mapped, not vmalloced;
533 *
534 * the I/O driver can reject requests spuriously if it thinks that
535 * the requests are too big for the device or if they cross a
536 * controller-defined memory boundary.
537 *
538 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539 * it is not vmalloced, try using the bio interface.
540 *
541 * If the buffer is big, if it is vmalloced or if the underlying device
542 * rejects the bio because it is too large, use dm-io layer to do the I/O.
543 * The dm-io layer splits the I/O into multiple requests, avoiding the above
544 * shortcomings.
545 *--------------------------------------------------------------*/
546
547 /*
548 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549 * that the request was handled directly with bio interface.
550 */
dmio_complete(unsigned long error,void * context)551 static void dmio_complete(unsigned long error, void *context)
552 {
553 struct dm_buffer *b = context;
554
555 b->bio.bi_error = error ? -EIO : 0;
556 b->bio.bi_end_io(&b->bio);
557 }
558
use_dmio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 bio_end_io_t *end_io)
561 {
562 int r;
563 struct dm_io_request io_req = {
564 .bi_op = rw,
565 .bi_op_flags = 0,
566 .notify.fn = dmio_complete,
567 .notify.context = b,
568 .client = b->c->dm_io,
569 };
570 struct dm_io_region region = {
571 .bdev = b->c->bdev,
572 .sector = block << b->c->sectors_per_block_bits,
573 .count = b->c->block_size >> SECTOR_SHIFT,
574 };
575
576 if (b->data_mode != DATA_MODE_VMALLOC) {
577 io_req.mem.type = DM_IO_KMEM;
578 io_req.mem.ptr.addr = b->data;
579 } else {
580 io_req.mem.type = DM_IO_VMA;
581 io_req.mem.ptr.vma = b->data;
582 }
583
584 b->bio.bi_end_io = end_io;
585
586 r = dm_io(&io_req, 1, ®ion, NULL);
587 if (r) {
588 b->bio.bi_error = r;
589 end_io(&b->bio);
590 }
591 }
592
inline_endio(struct bio * bio)593 static void inline_endio(struct bio *bio)
594 {
595 bio_end_io_t *end_fn = bio->bi_private;
596 int error = bio->bi_error;
597
598 /*
599 * Reset the bio to free any attached resources
600 * (e.g. bio integrity profiles).
601 */
602 bio_reset(bio);
603
604 bio->bi_error = error;
605 end_fn(bio);
606 }
607
use_inline_bio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 bio_end_io_t *end_io)
610 {
611 char *ptr;
612 int len;
613
614 bio_init(&b->bio);
615 b->bio.bi_io_vec = b->bio_vec;
616 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
617 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
618 b->bio.bi_bdev = b->c->bdev;
619 b->bio.bi_end_io = inline_endio;
620 /*
621 * Use of .bi_private isn't a problem here because
622 * the dm_buffer's inline bio is local to bufio.
623 */
624 b->bio.bi_private = end_io;
625 bio_set_op_attrs(&b->bio, rw, 0);
626
627 /*
628 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
629 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
630 */
631 ptr = b->data;
632 len = b->c->block_size;
633
634 if (len >= PAGE_SIZE)
635 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
636 else
637 BUG_ON((unsigned long)ptr & (len - 1));
638
639 do {
640 if (!bio_add_page(&b->bio, virt_to_page(ptr),
641 len < PAGE_SIZE ? len : PAGE_SIZE,
642 offset_in_page(ptr))) {
643 BUG_ON(b->c->block_size <= PAGE_SIZE);
644 use_dmio(b, rw, block, end_io);
645 return;
646 }
647
648 len -= PAGE_SIZE;
649 ptr += PAGE_SIZE;
650 } while (len > 0);
651
652 submit_bio(&b->bio);
653 }
654
submit_io(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)655 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
656 bio_end_io_t *end_io)
657 {
658 if (rw == WRITE && b->c->write_callback)
659 b->c->write_callback(b);
660
661 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
662 b->data_mode != DATA_MODE_VMALLOC)
663 use_inline_bio(b, rw, block, end_io);
664 else
665 use_dmio(b, rw, block, end_io);
666 }
667
668 /*----------------------------------------------------------------
669 * Writing dirty buffers
670 *--------------------------------------------------------------*/
671
672 /*
673 * The endio routine for write.
674 *
675 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
676 * it.
677 */
write_endio(struct bio * bio)678 static void write_endio(struct bio *bio)
679 {
680 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
681
682 b->write_error = bio->bi_error;
683 if (unlikely(bio->bi_error)) {
684 struct dm_bufio_client *c = b->c;
685 int error = bio->bi_error;
686 (void)cmpxchg(&c->async_write_error, 0, error);
687 }
688
689 BUG_ON(!test_bit(B_WRITING, &b->state));
690
691 smp_mb__before_atomic();
692 clear_bit(B_WRITING, &b->state);
693 smp_mb__after_atomic();
694
695 wake_up_bit(&b->state, B_WRITING);
696 }
697
698 /*
699 * Initiate a write on a dirty buffer, but don't wait for it.
700 *
701 * - If the buffer is not dirty, exit.
702 * - If there some previous write going on, wait for it to finish (we can't
703 * have two writes on the same buffer simultaneously).
704 * - Submit our write and don't wait on it. We set B_WRITING indicating
705 * that there is a write in progress.
706 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)707 static void __write_dirty_buffer(struct dm_buffer *b,
708 struct list_head *write_list)
709 {
710 if (!test_bit(B_DIRTY, &b->state))
711 return;
712
713 clear_bit(B_DIRTY, &b->state);
714 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
715
716 if (!write_list)
717 submit_io(b, WRITE, b->block, write_endio);
718 else
719 list_add_tail(&b->write_list, write_list);
720 }
721
__flush_write_list(struct list_head * write_list)722 static void __flush_write_list(struct list_head *write_list)
723 {
724 struct blk_plug plug;
725 blk_start_plug(&plug);
726 while (!list_empty(write_list)) {
727 struct dm_buffer *b =
728 list_entry(write_list->next, struct dm_buffer, write_list);
729 list_del(&b->write_list);
730 submit_io(b, WRITE, b->block, write_endio);
731 cond_resched();
732 }
733 blk_finish_plug(&plug);
734 }
735
736 /*
737 * Wait until any activity on the buffer finishes. Possibly write the
738 * buffer if it is dirty. When this function finishes, there is no I/O
739 * running on the buffer and the buffer is not dirty.
740 */
__make_buffer_clean(struct dm_buffer * b)741 static void __make_buffer_clean(struct dm_buffer *b)
742 {
743 BUG_ON(b->hold_count);
744
745 if (!b->state) /* fast case */
746 return;
747
748 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
749 __write_dirty_buffer(b, NULL);
750 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
751 }
752
753 /*
754 * Find some buffer that is not held by anybody, clean it, unlink it and
755 * return it.
756 */
__get_unclaimed_buffer(struct dm_bufio_client * c)757 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
758 {
759 struct dm_buffer *b;
760
761 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
762 BUG_ON(test_bit(B_WRITING, &b->state));
763 BUG_ON(test_bit(B_DIRTY, &b->state));
764
765 if (!b->hold_count) {
766 __make_buffer_clean(b);
767 __unlink_buffer(b);
768 return b;
769 }
770 cond_resched();
771 }
772
773 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
774 BUG_ON(test_bit(B_READING, &b->state));
775
776 if (!b->hold_count) {
777 __make_buffer_clean(b);
778 __unlink_buffer(b);
779 return b;
780 }
781 cond_resched();
782 }
783
784 return NULL;
785 }
786
787 /*
788 * Wait until some other threads free some buffer or release hold count on
789 * some buffer.
790 *
791 * This function is entered with c->lock held, drops it and regains it
792 * before exiting.
793 */
__wait_for_free_buffer(struct dm_bufio_client * c)794 static void __wait_for_free_buffer(struct dm_bufio_client *c)
795 {
796 DECLARE_WAITQUEUE(wait, current);
797
798 add_wait_queue(&c->free_buffer_wait, &wait);
799 set_task_state(current, TASK_UNINTERRUPTIBLE);
800 dm_bufio_unlock(c);
801
802 io_schedule();
803
804 remove_wait_queue(&c->free_buffer_wait, &wait);
805
806 dm_bufio_lock(c);
807 }
808
809 enum new_flag {
810 NF_FRESH = 0,
811 NF_READ = 1,
812 NF_GET = 2,
813 NF_PREFETCH = 3
814 };
815
816 /*
817 * Allocate a new buffer. If the allocation is not possible, wait until
818 * some other thread frees a buffer.
819 *
820 * May drop the lock and regain it.
821 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)822 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
823 {
824 struct dm_buffer *b;
825
826 /*
827 * dm-bufio is resistant to allocation failures (it just keeps
828 * one buffer reserved in cases all the allocations fail).
829 * So set flags to not try too hard:
830 * GFP_NOIO: don't recurse into the I/O layer
831 * __GFP_NORETRY: don't retry and rather return failure
832 * __GFP_NOMEMALLOC: don't use emergency reserves
833 * __GFP_NOWARN: don't print a warning in case of failure
834 *
835 * For debugging, if we set the cache size to 1, no new buffers will
836 * be allocated.
837 */
838 while (1) {
839 if (dm_bufio_cache_size_latch != 1) {
840 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
841 if (b)
842 return b;
843 }
844
845 if (nf == NF_PREFETCH)
846 return NULL;
847
848 if (!list_empty(&c->reserved_buffers)) {
849 b = list_entry(c->reserved_buffers.next,
850 struct dm_buffer, lru_list);
851 list_del(&b->lru_list);
852 c->need_reserved_buffers++;
853
854 return b;
855 }
856
857 b = __get_unclaimed_buffer(c);
858 if (b)
859 return b;
860
861 __wait_for_free_buffer(c);
862 }
863 }
864
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)865 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
866 {
867 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
868
869 if (!b)
870 return NULL;
871
872 if (c->alloc_callback)
873 c->alloc_callback(b);
874
875 return b;
876 }
877
878 /*
879 * Free a buffer and wake other threads waiting for free buffers.
880 */
__free_buffer_wake(struct dm_buffer * b)881 static void __free_buffer_wake(struct dm_buffer *b)
882 {
883 struct dm_bufio_client *c = b->c;
884
885 if (!c->need_reserved_buffers)
886 free_buffer(b);
887 else {
888 list_add(&b->lru_list, &c->reserved_buffers);
889 c->need_reserved_buffers--;
890 }
891
892 wake_up(&c->free_buffer_wait);
893 }
894
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)895 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
896 struct list_head *write_list)
897 {
898 struct dm_buffer *b, *tmp;
899
900 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
901 BUG_ON(test_bit(B_READING, &b->state));
902
903 if (!test_bit(B_DIRTY, &b->state) &&
904 !test_bit(B_WRITING, &b->state)) {
905 __relink_lru(b, LIST_CLEAN);
906 continue;
907 }
908
909 if (no_wait && test_bit(B_WRITING, &b->state))
910 return;
911
912 __write_dirty_buffer(b, write_list);
913 cond_resched();
914 }
915 }
916
917 /*
918 * Get writeback threshold and buffer limit for a given client.
919 */
__get_memory_limit(struct dm_bufio_client * c,unsigned long * threshold_buffers,unsigned long * limit_buffers)920 static void __get_memory_limit(struct dm_bufio_client *c,
921 unsigned long *threshold_buffers,
922 unsigned long *limit_buffers)
923 {
924 unsigned long buffers;
925
926 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
927 if (mutex_trylock(&dm_bufio_clients_lock)) {
928 __cache_size_refresh();
929 mutex_unlock(&dm_bufio_clients_lock);
930 }
931 }
932
933 buffers = dm_bufio_cache_size_per_client >>
934 (c->sectors_per_block_bits + SECTOR_SHIFT);
935
936 if (buffers < c->minimum_buffers)
937 buffers = c->minimum_buffers;
938
939 *limit_buffers = buffers;
940 *threshold_buffers = mult_frac(buffers,
941 DM_BUFIO_WRITEBACK_PERCENT, 100);
942 }
943
944 /*
945 * Check if we're over watermark.
946 * If we are over threshold_buffers, start freeing buffers.
947 * If we're over "limit_buffers", block until we get under the limit.
948 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)949 static void __check_watermark(struct dm_bufio_client *c,
950 struct list_head *write_list)
951 {
952 unsigned long threshold_buffers, limit_buffers;
953
954 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
955
956 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
957 limit_buffers) {
958
959 struct dm_buffer *b = __get_unclaimed_buffer(c);
960
961 if (!b)
962 return;
963
964 __free_buffer_wake(b);
965 cond_resched();
966 }
967
968 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
969 __write_dirty_buffers_async(c, 1, write_list);
970 }
971
972 /*----------------------------------------------------------------
973 * Getting a buffer
974 *--------------------------------------------------------------*/
975
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)976 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
977 enum new_flag nf, int *need_submit,
978 struct list_head *write_list)
979 {
980 struct dm_buffer *b, *new_b = NULL;
981
982 *need_submit = 0;
983
984 b = __find(c, block);
985 if (b)
986 goto found_buffer;
987
988 if (nf == NF_GET)
989 return NULL;
990
991 new_b = __alloc_buffer_wait(c, nf);
992 if (!new_b)
993 return NULL;
994
995 /*
996 * We've had a period where the mutex was unlocked, so need to
997 * recheck the hash table.
998 */
999 b = __find(c, block);
1000 if (b) {
1001 __free_buffer_wake(new_b);
1002 goto found_buffer;
1003 }
1004
1005 __check_watermark(c, write_list);
1006
1007 b = new_b;
1008 b->hold_count = 1;
1009 b->read_error = 0;
1010 b->write_error = 0;
1011 __link_buffer(b, block, LIST_CLEAN);
1012
1013 if (nf == NF_FRESH) {
1014 b->state = 0;
1015 return b;
1016 }
1017
1018 b->state = 1 << B_READING;
1019 *need_submit = 1;
1020
1021 return b;
1022
1023 found_buffer:
1024 if (nf == NF_PREFETCH)
1025 return NULL;
1026 /*
1027 * Note: it is essential that we don't wait for the buffer to be
1028 * read if dm_bufio_get function is used. Both dm_bufio_get and
1029 * dm_bufio_prefetch can be used in the driver request routine.
1030 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1031 * the same buffer, it would deadlock if we waited.
1032 */
1033 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1034 return NULL;
1035
1036 b->hold_count++;
1037 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1038 test_bit(B_WRITING, &b->state));
1039 return b;
1040 }
1041
1042 /*
1043 * The endio routine for reading: set the error, clear the bit and wake up
1044 * anyone waiting on the buffer.
1045 */
read_endio(struct bio * bio)1046 static void read_endio(struct bio *bio)
1047 {
1048 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1049
1050 b->read_error = bio->bi_error;
1051
1052 BUG_ON(!test_bit(B_READING, &b->state));
1053
1054 smp_mb__before_atomic();
1055 clear_bit(B_READING, &b->state);
1056 smp_mb__after_atomic();
1057
1058 wake_up_bit(&b->state, B_READING);
1059 }
1060
1061 /*
1062 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1063 * functions is similar except that dm_bufio_new doesn't read the
1064 * buffer from the disk (assuming that the caller overwrites all the data
1065 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1066 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)1067 static void *new_read(struct dm_bufio_client *c, sector_t block,
1068 enum new_flag nf, struct dm_buffer **bp)
1069 {
1070 int need_submit;
1071 struct dm_buffer *b;
1072
1073 LIST_HEAD(write_list);
1074
1075 dm_bufio_lock(c);
1076 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1077 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1078 if (b && b->hold_count == 1)
1079 buffer_record_stack(b);
1080 #endif
1081 dm_bufio_unlock(c);
1082
1083 __flush_write_list(&write_list);
1084
1085 if (!b)
1086 return NULL;
1087
1088 if (need_submit)
1089 submit_io(b, READ, b->block, read_endio);
1090
1091 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1092
1093 if (b->read_error) {
1094 int error = b->read_error;
1095
1096 dm_bufio_release(b);
1097
1098 return ERR_PTR(error);
1099 }
1100
1101 *bp = b;
1102
1103 return b->data;
1104 }
1105
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1106 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1107 struct dm_buffer **bp)
1108 {
1109 return new_read(c, block, NF_GET, bp);
1110 }
1111 EXPORT_SYMBOL_GPL(dm_bufio_get);
1112
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1113 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1114 struct dm_buffer **bp)
1115 {
1116 BUG_ON(dm_bufio_in_request());
1117
1118 return new_read(c, block, NF_READ, bp);
1119 }
1120 EXPORT_SYMBOL_GPL(dm_bufio_read);
1121
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1122 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1123 struct dm_buffer **bp)
1124 {
1125 BUG_ON(dm_bufio_in_request());
1126
1127 return new_read(c, block, NF_FRESH, bp);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_bufio_new);
1130
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1131 void dm_bufio_prefetch(struct dm_bufio_client *c,
1132 sector_t block, unsigned n_blocks)
1133 {
1134 struct blk_plug plug;
1135
1136 LIST_HEAD(write_list);
1137
1138 BUG_ON(dm_bufio_in_request());
1139
1140 blk_start_plug(&plug);
1141 dm_bufio_lock(c);
1142
1143 for (; n_blocks--; block++) {
1144 int need_submit;
1145 struct dm_buffer *b;
1146 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1147 &write_list);
1148 if (unlikely(!list_empty(&write_list))) {
1149 dm_bufio_unlock(c);
1150 blk_finish_plug(&plug);
1151 __flush_write_list(&write_list);
1152 blk_start_plug(&plug);
1153 dm_bufio_lock(c);
1154 }
1155 if (unlikely(b != NULL)) {
1156 dm_bufio_unlock(c);
1157
1158 if (need_submit)
1159 submit_io(b, READ, b->block, read_endio);
1160 dm_bufio_release(b);
1161
1162 cond_resched();
1163
1164 if (!n_blocks)
1165 goto flush_plug;
1166 dm_bufio_lock(c);
1167 }
1168 }
1169
1170 dm_bufio_unlock(c);
1171
1172 flush_plug:
1173 blk_finish_plug(&plug);
1174 }
1175 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1176
dm_bufio_release(struct dm_buffer * b)1177 void dm_bufio_release(struct dm_buffer *b)
1178 {
1179 struct dm_bufio_client *c = b->c;
1180
1181 dm_bufio_lock(c);
1182
1183 BUG_ON(!b->hold_count);
1184
1185 b->hold_count--;
1186 if (!b->hold_count) {
1187 wake_up(&c->free_buffer_wait);
1188
1189 /*
1190 * If there were errors on the buffer, and the buffer is not
1191 * to be written, free the buffer. There is no point in caching
1192 * invalid buffer.
1193 */
1194 if ((b->read_error || b->write_error) &&
1195 !test_bit(B_READING, &b->state) &&
1196 !test_bit(B_WRITING, &b->state) &&
1197 !test_bit(B_DIRTY, &b->state)) {
1198 __unlink_buffer(b);
1199 __free_buffer_wake(b);
1200 }
1201 }
1202
1203 dm_bufio_unlock(c);
1204 }
1205 EXPORT_SYMBOL_GPL(dm_bufio_release);
1206
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1207 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1208 {
1209 struct dm_bufio_client *c = b->c;
1210
1211 dm_bufio_lock(c);
1212
1213 BUG_ON(test_bit(B_READING, &b->state));
1214
1215 if (!test_and_set_bit(B_DIRTY, &b->state))
1216 __relink_lru(b, LIST_DIRTY);
1217
1218 dm_bufio_unlock(c);
1219 }
1220 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1221
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1222 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1223 {
1224 LIST_HEAD(write_list);
1225
1226 BUG_ON(dm_bufio_in_request());
1227
1228 dm_bufio_lock(c);
1229 __write_dirty_buffers_async(c, 0, &write_list);
1230 dm_bufio_unlock(c);
1231 __flush_write_list(&write_list);
1232 }
1233 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1234
1235 /*
1236 * For performance, it is essential that the buffers are written asynchronously
1237 * and simultaneously (so that the block layer can merge the writes) and then
1238 * waited upon.
1239 *
1240 * Finally, we flush hardware disk cache.
1241 */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1242 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1243 {
1244 int a, f;
1245 unsigned long buffers_processed = 0;
1246 struct dm_buffer *b, *tmp;
1247
1248 LIST_HEAD(write_list);
1249
1250 dm_bufio_lock(c);
1251 __write_dirty_buffers_async(c, 0, &write_list);
1252 dm_bufio_unlock(c);
1253 __flush_write_list(&write_list);
1254 dm_bufio_lock(c);
1255
1256 again:
1257 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1258 int dropped_lock = 0;
1259
1260 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1261 buffers_processed++;
1262
1263 BUG_ON(test_bit(B_READING, &b->state));
1264
1265 if (test_bit(B_WRITING, &b->state)) {
1266 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1267 dropped_lock = 1;
1268 b->hold_count++;
1269 dm_bufio_unlock(c);
1270 wait_on_bit_io(&b->state, B_WRITING,
1271 TASK_UNINTERRUPTIBLE);
1272 dm_bufio_lock(c);
1273 b->hold_count--;
1274 } else
1275 wait_on_bit_io(&b->state, B_WRITING,
1276 TASK_UNINTERRUPTIBLE);
1277 }
1278
1279 if (!test_bit(B_DIRTY, &b->state) &&
1280 !test_bit(B_WRITING, &b->state))
1281 __relink_lru(b, LIST_CLEAN);
1282
1283 cond_resched();
1284
1285 /*
1286 * If we dropped the lock, the list is no longer consistent,
1287 * so we must restart the search.
1288 *
1289 * In the most common case, the buffer just processed is
1290 * relinked to the clean list, so we won't loop scanning the
1291 * same buffer again and again.
1292 *
1293 * This may livelock if there is another thread simultaneously
1294 * dirtying buffers, so we count the number of buffers walked
1295 * and if it exceeds the total number of buffers, it means that
1296 * someone is doing some writes simultaneously with us. In
1297 * this case, stop, dropping the lock.
1298 */
1299 if (dropped_lock)
1300 goto again;
1301 }
1302 wake_up(&c->free_buffer_wait);
1303 dm_bufio_unlock(c);
1304
1305 a = xchg(&c->async_write_error, 0);
1306 f = dm_bufio_issue_flush(c);
1307 if (a)
1308 return a;
1309
1310 return f;
1311 }
1312 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1313
1314 /*
1315 * Use dm-io to send and empty barrier flush the device.
1316 */
dm_bufio_issue_flush(struct dm_bufio_client * c)1317 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1318 {
1319 struct dm_io_request io_req = {
1320 .bi_op = REQ_OP_WRITE,
1321 .bi_op_flags = WRITE_FLUSH,
1322 .mem.type = DM_IO_KMEM,
1323 .mem.ptr.addr = NULL,
1324 .client = c->dm_io,
1325 };
1326 struct dm_io_region io_reg = {
1327 .bdev = c->bdev,
1328 .sector = 0,
1329 .count = 0,
1330 };
1331
1332 BUG_ON(dm_bufio_in_request());
1333
1334 return dm_io(&io_req, 1, &io_reg, NULL);
1335 }
1336 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1337
1338 /*
1339 * We first delete any other buffer that may be at that new location.
1340 *
1341 * Then, we write the buffer to the original location if it was dirty.
1342 *
1343 * Then, if we are the only one who is holding the buffer, relink the buffer
1344 * in the hash queue for the new location.
1345 *
1346 * If there was someone else holding the buffer, we write it to the new
1347 * location but not relink it, because that other user needs to have the buffer
1348 * at the same place.
1349 */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1350 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1351 {
1352 struct dm_bufio_client *c = b->c;
1353 struct dm_buffer *new;
1354
1355 BUG_ON(dm_bufio_in_request());
1356
1357 dm_bufio_lock(c);
1358
1359 retry:
1360 new = __find(c, new_block);
1361 if (new) {
1362 if (new->hold_count) {
1363 __wait_for_free_buffer(c);
1364 goto retry;
1365 }
1366
1367 /*
1368 * FIXME: Is there any point waiting for a write that's going
1369 * to be overwritten in a bit?
1370 */
1371 __make_buffer_clean(new);
1372 __unlink_buffer(new);
1373 __free_buffer_wake(new);
1374 }
1375
1376 BUG_ON(!b->hold_count);
1377 BUG_ON(test_bit(B_READING, &b->state));
1378
1379 __write_dirty_buffer(b, NULL);
1380 if (b->hold_count == 1) {
1381 wait_on_bit_io(&b->state, B_WRITING,
1382 TASK_UNINTERRUPTIBLE);
1383 set_bit(B_DIRTY, &b->state);
1384 __unlink_buffer(b);
1385 __link_buffer(b, new_block, LIST_DIRTY);
1386 } else {
1387 sector_t old_block;
1388 wait_on_bit_lock_io(&b->state, B_WRITING,
1389 TASK_UNINTERRUPTIBLE);
1390 /*
1391 * Relink buffer to "new_block" so that write_callback
1392 * sees "new_block" as a block number.
1393 * After the write, link the buffer back to old_block.
1394 * All this must be done in bufio lock, so that block number
1395 * change isn't visible to other threads.
1396 */
1397 old_block = b->block;
1398 __unlink_buffer(b);
1399 __link_buffer(b, new_block, b->list_mode);
1400 submit_io(b, WRITE, new_block, write_endio);
1401 wait_on_bit_io(&b->state, B_WRITING,
1402 TASK_UNINTERRUPTIBLE);
1403 __unlink_buffer(b);
1404 __link_buffer(b, old_block, b->list_mode);
1405 }
1406
1407 dm_bufio_unlock(c);
1408 dm_bufio_release(b);
1409 }
1410 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1411
1412 /*
1413 * Free the given buffer.
1414 *
1415 * This is just a hint, if the buffer is in use or dirty, this function
1416 * does nothing.
1417 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)1418 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1419 {
1420 struct dm_buffer *b;
1421
1422 dm_bufio_lock(c);
1423
1424 b = __find(c, block);
1425 if (b && likely(!b->hold_count) && likely(!b->state)) {
1426 __unlink_buffer(b);
1427 __free_buffer_wake(b);
1428 }
1429
1430 dm_bufio_unlock(c);
1431 }
1432 EXPORT_SYMBOL(dm_bufio_forget);
1433
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned n)1434 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1435 {
1436 c->minimum_buffers = n;
1437 }
1438 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1439
dm_bufio_get_block_size(struct dm_bufio_client * c)1440 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1441 {
1442 return c->block_size;
1443 }
1444 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1445
dm_bufio_get_device_size(struct dm_bufio_client * c)1446 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1447 {
1448 return i_size_read(c->bdev->bd_inode) >>
1449 (SECTOR_SHIFT + c->sectors_per_block_bits);
1450 }
1451 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1452
dm_bufio_get_block_number(struct dm_buffer * b)1453 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1454 {
1455 return b->block;
1456 }
1457 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1458
dm_bufio_get_block_data(struct dm_buffer * b)1459 void *dm_bufio_get_block_data(struct dm_buffer *b)
1460 {
1461 return b->data;
1462 }
1463 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1464
dm_bufio_get_aux_data(struct dm_buffer * b)1465 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1466 {
1467 return b + 1;
1468 }
1469 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1470
dm_bufio_get_client(struct dm_buffer * b)1471 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1472 {
1473 return b->c;
1474 }
1475 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1476
drop_buffers(struct dm_bufio_client * c)1477 static void drop_buffers(struct dm_bufio_client *c)
1478 {
1479 struct dm_buffer *b;
1480 int i;
1481 bool warned = false;
1482
1483 BUG_ON(dm_bufio_in_request());
1484
1485 /*
1486 * An optimization so that the buffers are not written one-by-one.
1487 */
1488 dm_bufio_write_dirty_buffers_async(c);
1489
1490 dm_bufio_lock(c);
1491
1492 while ((b = __get_unclaimed_buffer(c)))
1493 __free_buffer_wake(b);
1494
1495 for (i = 0; i < LIST_SIZE; i++)
1496 list_for_each_entry(b, &c->lru[i], lru_list) {
1497 WARN_ON(!warned);
1498 warned = true;
1499 DMERR("leaked buffer %llx, hold count %u, list %d",
1500 (unsigned long long)b->block, b->hold_count, i);
1501 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1502 print_stack_trace(&b->stack_trace, 1);
1503 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1504 #endif
1505 }
1506
1507 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1508 while ((b = __get_unclaimed_buffer(c)))
1509 __free_buffer_wake(b);
1510 #endif
1511
1512 for (i = 0; i < LIST_SIZE; i++)
1513 BUG_ON(!list_empty(&c->lru[i]));
1514
1515 dm_bufio_unlock(c);
1516 }
1517
1518 /*
1519 * We may not be able to evict this buffer if IO pending or the client
1520 * is still using it. Caller is expected to know buffer is too old.
1521 *
1522 * And if GFP_NOFS is used, we must not do any I/O because we hold
1523 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1524 * rerouted to different bufio client.
1525 */
__try_evict_buffer(struct dm_buffer * b,gfp_t gfp)1526 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1527 {
1528 if (!(gfp & __GFP_FS)) {
1529 if (test_bit(B_READING, &b->state) ||
1530 test_bit(B_WRITING, &b->state) ||
1531 test_bit(B_DIRTY, &b->state))
1532 return false;
1533 }
1534
1535 if (b->hold_count)
1536 return false;
1537
1538 __make_buffer_clean(b);
1539 __unlink_buffer(b);
1540 __free_buffer_wake(b);
1541
1542 return true;
1543 }
1544
get_retain_buffers(struct dm_bufio_client * c)1545 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1546 {
1547 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1548 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1549 }
1550
__scan(struct dm_bufio_client * c,unsigned long nr_to_scan,gfp_t gfp_mask)1551 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1552 gfp_t gfp_mask)
1553 {
1554 int l;
1555 struct dm_buffer *b, *tmp;
1556 unsigned long freed = 0;
1557 unsigned long count = c->n_buffers[LIST_CLEAN] +
1558 c->n_buffers[LIST_DIRTY];
1559 unsigned long retain_target = get_retain_buffers(c);
1560
1561 for (l = 0; l < LIST_SIZE; l++) {
1562 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1563 if (__try_evict_buffer(b, gfp_mask))
1564 freed++;
1565 if (!--nr_to_scan || ((count - freed) <= retain_target))
1566 return freed;
1567 cond_resched();
1568 }
1569 }
1570 return freed;
1571 }
1572
1573 static unsigned long
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1574 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1575 {
1576 struct dm_bufio_client *c;
1577 unsigned long freed;
1578
1579 c = container_of(shrink, struct dm_bufio_client, shrinker);
1580 if (sc->gfp_mask & __GFP_FS)
1581 dm_bufio_lock(c);
1582 else if (!dm_bufio_trylock(c))
1583 return SHRINK_STOP;
1584
1585 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1586 dm_bufio_unlock(c);
1587 return freed;
1588 }
1589
1590 static unsigned long
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1591 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1592 {
1593 struct dm_bufio_client *c;
1594 unsigned long count;
1595 unsigned long retain_target;
1596
1597 c = container_of(shrink, struct dm_bufio_client, shrinker);
1598 if (sc->gfp_mask & __GFP_FS)
1599 dm_bufio_lock(c);
1600 else if (!dm_bufio_trylock(c))
1601 return 0;
1602
1603 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1604 retain_target = get_retain_buffers(c);
1605 dm_bufio_unlock(c);
1606 return (count < retain_target) ? 0 : (count - retain_target);
1607 }
1608
1609 /*
1610 * Create the buffering interface
1611 */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1612 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1613 unsigned reserved_buffers, unsigned aux_size,
1614 void (*alloc_callback)(struct dm_buffer *),
1615 void (*write_callback)(struct dm_buffer *))
1616 {
1617 int r;
1618 struct dm_bufio_client *c;
1619 unsigned i;
1620
1621 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1622 (block_size & (block_size - 1)));
1623
1624 c = kzalloc(sizeof(*c), GFP_KERNEL);
1625 if (!c) {
1626 r = -ENOMEM;
1627 goto bad_client;
1628 }
1629 c->buffer_tree = RB_ROOT;
1630
1631 c->bdev = bdev;
1632 c->block_size = block_size;
1633 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1634 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1635 __ffs(block_size) - PAGE_SHIFT : 0;
1636 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1637 PAGE_SHIFT - __ffs(block_size) : 0);
1638
1639 c->aux_size = aux_size;
1640 c->alloc_callback = alloc_callback;
1641 c->write_callback = write_callback;
1642
1643 for (i = 0; i < LIST_SIZE; i++) {
1644 INIT_LIST_HEAD(&c->lru[i]);
1645 c->n_buffers[i] = 0;
1646 }
1647
1648 mutex_init(&c->lock);
1649 INIT_LIST_HEAD(&c->reserved_buffers);
1650 c->need_reserved_buffers = reserved_buffers;
1651
1652 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1653
1654 init_waitqueue_head(&c->free_buffer_wait);
1655 c->async_write_error = 0;
1656
1657 c->dm_io = dm_io_client_create();
1658 if (IS_ERR(c->dm_io)) {
1659 r = PTR_ERR(c->dm_io);
1660 goto bad_dm_io;
1661 }
1662
1663 mutex_lock(&dm_bufio_clients_lock);
1664 if (c->blocks_per_page_bits) {
1665 if (!DM_BUFIO_CACHE_NAME(c)) {
1666 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1667 if (!DM_BUFIO_CACHE_NAME(c)) {
1668 r = -ENOMEM;
1669 mutex_unlock(&dm_bufio_clients_lock);
1670 goto bad_cache;
1671 }
1672 }
1673
1674 if (!DM_BUFIO_CACHE(c)) {
1675 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1676 c->block_size,
1677 c->block_size, 0, NULL);
1678 if (!DM_BUFIO_CACHE(c)) {
1679 r = -ENOMEM;
1680 mutex_unlock(&dm_bufio_clients_lock);
1681 goto bad_cache;
1682 }
1683 }
1684 }
1685 mutex_unlock(&dm_bufio_clients_lock);
1686
1687 while (c->need_reserved_buffers) {
1688 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1689
1690 if (!b) {
1691 r = -ENOMEM;
1692 goto bad_buffer;
1693 }
1694 __free_buffer_wake(b);
1695 }
1696
1697 mutex_lock(&dm_bufio_clients_lock);
1698 dm_bufio_client_count++;
1699 list_add(&c->client_list, &dm_bufio_all_clients);
1700 __cache_size_refresh();
1701 mutex_unlock(&dm_bufio_clients_lock);
1702
1703 c->shrinker.count_objects = dm_bufio_shrink_count;
1704 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1705 c->shrinker.seeks = 1;
1706 c->shrinker.batch = 0;
1707 register_shrinker(&c->shrinker);
1708
1709 return c;
1710
1711 bad_buffer:
1712 bad_cache:
1713 while (!list_empty(&c->reserved_buffers)) {
1714 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1715 struct dm_buffer, lru_list);
1716 list_del(&b->lru_list);
1717 free_buffer(b);
1718 }
1719 dm_io_client_destroy(c->dm_io);
1720 bad_dm_io:
1721 kfree(c);
1722 bad_client:
1723 return ERR_PTR(r);
1724 }
1725 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1726
1727 /*
1728 * Free the buffering interface.
1729 * It is required that there are no references on any buffers.
1730 */
dm_bufio_client_destroy(struct dm_bufio_client * c)1731 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1732 {
1733 unsigned i;
1734
1735 drop_buffers(c);
1736
1737 unregister_shrinker(&c->shrinker);
1738
1739 mutex_lock(&dm_bufio_clients_lock);
1740
1741 list_del(&c->client_list);
1742 dm_bufio_client_count--;
1743 __cache_size_refresh();
1744
1745 mutex_unlock(&dm_bufio_clients_lock);
1746
1747 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1748 BUG_ON(c->need_reserved_buffers);
1749
1750 while (!list_empty(&c->reserved_buffers)) {
1751 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1752 struct dm_buffer, lru_list);
1753 list_del(&b->lru_list);
1754 free_buffer(b);
1755 }
1756
1757 for (i = 0; i < LIST_SIZE; i++)
1758 if (c->n_buffers[i])
1759 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1760
1761 for (i = 0; i < LIST_SIZE; i++)
1762 BUG_ON(c->n_buffers[i]);
1763
1764 dm_io_client_destroy(c->dm_io);
1765 kfree(c);
1766 }
1767 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1768
get_max_age_hz(void)1769 static unsigned get_max_age_hz(void)
1770 {
1771 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1772
1773 if (max_age > UINT_MAX / HZ)
1774 max_age = UINT_MAX / HZ;
1775
1776 return max_age * HZ;
1777 }
1778
older_than(struct dm_buffer * b,unsigned long age_hz)1779 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1780 {
1781 return time_after_eq(jiffies, b->last_accessed + age_hz);
1782 }
1783
__evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)1784 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1785 {
1786 struct dm_buffer *b, *tmp;
1787 unsigned long retain_target = get_retain_buffers(c);
1788 unsigned long count;
1789 LIST_HEAD(write_list);
1790
1791 dm_bufio_lock(c);
1792
1793 __check_watermark(c, &write_list);
1794 if (unlikely(!list_empty(&write_list))) {
1795 dm_bufio_unlock(c);
1796 __flush_write_list(&write_list);
1797 dm_bufio_lock(c);
1798 }
1799
1800 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1801 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1802 if (count <= retain_target)
1803 break;
1804
1805 if (!older_than(b, age_hz))
1806 break;
1807
1808 if (__try_evict_buffer(b, 0))
1809 count--;
1810
1811 cond_resched();
1812 }
1813
1814 dm_bufio_unlock(c);
1815 }
1816
cleanup_old_buffers(void)1817 static void cleanup_old_buffers(void)
1818 {
1819 unsigned long max_age_hz = get_max_age_hz();
1820 struct dm_bufio_client *c;
1821
1822 mutex_lock(&dm_bufio_clients_lock);
1823
1824 __cache_size_refresh();
1825
1826 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1827 __evict_old_buffers(c, max_age_hz);
1828
1829 mutex_unlock(&dm_bufio_clients_lock);
1830 }
1831
1832 static struct workqueue_struct *dm_bufio_wq;
1833 static struct delayed_work dm_bufio_work;
1834
work_fn(struct work_struct * w)1835 static void work_fn(struct work_struct *w)
1836 {
1837 cleanup_old_buffers();
1838
1839 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1840 DM_BUFIO_WORK_TIMER_SECS * HZ);
1841 }
1842
1843 /*----------------------------------------------------------------
1844 * Module setup
1845 *--------------------------------------------------------------*/
1846
1847 /*
1848 * This is called only once for the whole dm_bufio module.
1849 * It initializes memory limit.
1850 */
dm_bufio_init(void)1851 static int __init dm_bufio_init(void)
1852 {
1853 __u64 mem;
1854
1855 dm_bufio_allocated_kmem_cache = 0;
1856 dm_bufio_allocated_get_free_pages = 0;
1857 dm_bufio_allocated_vmalloc = 0;
1858 dm_bufio_current_allocated = 0;
1859
1860 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1861 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1862
1863 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1864 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1865
1866 if (mem > ULONG_MAX)
1867 mem = ULONG_MAX;
1868
1869 #ifdef CONFIG_MMU
1870 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1871 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1872 #endif
1873
1874 dm_bufio_default_cache_size = mem;
1875
1876 mutex_lock(&dm_bufio_clients_lock);
1877 __cache_size_refresh();
1878 mutex_unlock(&dm_bufio_clients_lock);
1879
1880 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1881 if (!dm_bufio_wq)
1882 return -ENOMEM;
1883
1884 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1885 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1886 DM_BUFIO_WORK_TIMER_SECS * HZ);
1887
1888 return 0;
1889 }
1890
1891 /*
1892 * This is called once when unloading the dm_bufio module.
1893 */
dm_bufio_exit(void)1894 static void __exit dm_bufio_exit(void)
1895 {
1896 int bug = 0;
1897 int i;
1898
1899 cancel_delayed_work_sync(&dm_bufio_work);
1900 destroy_workqueue(dm_bufio_wq);
1901
1902 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1903 kmem_cache_destroy(dm_bufio_caches[i]);
1904
1905 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1906 kfree(dm_bufio_cache_names[i]);
1907
1908 if (dm_bufio_client_count) {
1909 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1910 __func__, dm_bufio_client_count);
1911 bug = 1;
1912 }
1913
1914 if (dm_bufio_current_allocated) {
1915 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1916 __func__, dm_bufio_current_allocated);
1917 bug = 1;
1918 }
1919
1920 if (dm_bufio_allocated_get_free_pages) {
1921 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1922 __func__, dm_bufio_allocated_get_free_pages);
1923 bug = 1;
1924 }
1925
1926 if (dm_bufio_allocated_vmalloc) {
1927 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1928 __func__, dm_bufio_allocated_vmalloc);
1929 bug = 1;
1930 }
1931
1932 BUG_ON(bug);
1933 }
1934
1935 module_init(dm_bufio_init)
1936 module_exit(dm_bufio_exit)
1937
1938 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1939 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1940
1941 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1942 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1943
1944 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1945 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1946
1947 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1948 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1949
1950 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1951 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1952
1953 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1954 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1955
1956 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1957 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1958
1959 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1960 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1961
1962 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1963 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1964 MODULE_LICENSE("GPL");
1965