• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
dm_bufio_cache_index(struct dm_bufio_client * c)165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
dm_bufio_lock(struct dm_bufio_client * c)179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
dm_bufio_trylock(struct dm_bufio_client * c)184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
dm_bufio_unlock(struct dm_bufio_client * c)189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*----------------------------------------------------------------*/
195 
196 /*
197  * Default cache size: available memory divided by the ratio.
198  */
199 static unsigned long dm_bufio_default_cache_size;
200 
201 /*
202  * Total cache size set by the user.
203  */
204 static unsigned long dm_bufio_cache_size;
205 
206 /*
207  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208  * at any time.  If it disagrees, the user has changed cache size.
209  */
210 static unsigned long dm_bufio_cache_size_latch;
211 
212 static DEFINE_SPINLOCK(param_spinlock);
213 
214 /*
215  * Buffers are freed after this timeout
216  */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219 
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225 
226 /*----------------------------------------------------------------*/
227 
228 /*
229  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230  */
231 static unsigned long dm_bufio_cache_size_per_client;
232 
233 /*
234  * The current number of clients.
235  */
236 static int dm_bufio_client_count;
237 
238 /*
239  * The list of all clients.
240  */
241 static LIST_HEAD(dm_bufio_all_clients);
242 
243 /*
244  * This mutex protects dm_bufio_cache_size_latch,
245  * dm_bufio_cache_size_per_client and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248 
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
buffer_record_stack(struct dm_buffer * b)250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 	b->stack_trace.nr_entries = 0;
253 	b->stack_trace.max_entries = MAX_STACK;
254 	b->stack_trace.entries = b->stack_entries;
255 	b->stack_trace.skip = 2;
256 	save_stack_trace(&b->stack_trace);
257 }
258 #endif
259 
260 /*----------------------------------------------------------------
261  * A red/black tree acts as an index for all the buffers.
262  *--------------------------------------------------------------*/
__find(struct dm_bufio_client * c,sector_t block)263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 	struct rb_node *n = c->buffer_tree.rb_node;
266 	struct dm_buffer *b;
267 
268 	while (n) {
269 		b = container_of(n, struct dm_buffer, node);
270 
271 		if (b->block == block)
272 			return b;
273 
274 		n = (b->block < block) ? n->rb_left : n->rb_right;
275 	}
276 
277 	return NULL;
278 }
279 
__insert(struct dm_bufio_client * c,struct dm_buffer * b)280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 	struct dm_buffer *found;
284 
285 	while (*new) {
286 		found = container_of(*new, struct dm_buffer, node);
287 
288 		if (found->block == b->block) {
289 			BUG_ON(found != b);
290 			return;
291 		}
292 
293 		parent = *new;
294 		new = (found->block < b->block) ?
295 			&((*new)->rb_left) : &((*new)->rb_right);
296 	}
297 
298 	rb_link_node(&b->node, parent, new);
299 	rb_insert_color(&b->node, &c->buffer_tree);
300 }
301 
__remove(struct dm_bufio_client * c,struct dm_buffer * b)302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 	rb_erase(&b->node, &c->buffer_tree);
305 }
306 
307 /*----------------------------------------------------------------*/
308 
adjust_total_allocated(enum data_mode data_mode,long diff)309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 		&dm_bufio_allocated_kmem_cache,
313 		&dm_bufio_allocated_get_free_pages,
314 		&dm_bufio_allocated_vmalloc,
315 	};
316 
317 	spin_lock(&param_spinlock);
318 
319 	*class_ptr[data_mode] += diff;
320 
321 	dm_bufio_current_allocated += diff;
322 
323 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
325 
326 	spin_unlock(&param_spinlock);
327 }
328 
329 /*
330  * Change the number of clients and recalculate per-client limit.
331  */
__cache_size_refresh(void)332 static void __cache_size_refresh(void)
333 {
334 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 	BUG_ON(dm_bufio_client_count < 0);
336 
337 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338 
339 	/*
340 	 * Use default if set to 0 and report the actual cache size used.
341 	 */
342 	if (!dm_bufio_cache_size_latch) {
343 		(void)cmpxchg(&dm_bufio_cache_size, 0,
344 			      dm_bufio_default_cache_size);
345 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 	}
347 
348 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 					 (dm_bufio_client_count ? : 1);
350 }
351 
352 /*
353  * Allocating buffer data.
354  *
355  * Small buffers are allocated with kmem_cache, to use space optimally.
356  *
357  * For large buffers, we choose between get_free_pages and vmalloc.
358  * Each has advantages and disadvantages.
359  *
360  * __get_free_pages can randomly fail if the memory is fragmented.
361  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362  * as low as 128M) so using it for caching is not appropriate.
363  *
364  * If the allocation may fail we use __get_free_pages. Memory fragmentation
365  * won't have a fatal effect here, but it just causes flushes of some other
366  * buffers and more I/O will be performed. Don't use __get_free_pages if it
367  * always fails (i.e. order >= MAX_ORDER).
368  *
369  * If the allocation shouldn't fail we use __vmalloc. This is only for the
370  * initial reserve allocation, so there's no risk of wasting all vmalloc
371  * space.
372  */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,enum data_mode * data_mode)373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 			       enum data_mode *data_mode)
375 {
376 	unsigned noio_flag;
377 	void *ptr;
378 
379 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 		*data_mode = DATA_MODE_SLAB;
381 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 	}
383 
384 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 	    gfp_mask & __GFP_NORETRY) {
386 		*data_mode = DATA_MODE_GET_FREE_PAGES;
387 		return (void *)__get_free_pages(gfp_mask,
388 						c->pages_per_block_bits);
389 	}
390 
391 	*data_mode = DATA_MODE_VMALLOC;
392 
393 	/*
394 	 * __vmalloc allocates the data pages and auxiliary structures with
395 	 * gfp_flags that were specified, but pagetables are always allocated
396 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 	 *
398 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 	 * all allocations done by this process (including pagetables) are done
400 	 * as if GFP_NOIO was specified.
401 	 */
402 
403 	if (gfp_mask & __GFP_NORETRY)
404 		noio_flag = memalloc_noio_save();
405 
406 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407 
408 	if (gfp_mask & __GFP_NORETRY)
409 		memalloc_noio_restore(noio_flag);
410 
411 	return ptr;
412 }
413 
414 /*
415  * Free buffer's data.
416  */
free_buffer_data(struct dm_bufio_client * c,void * data,enum data_mode data_mode)417 static void free_buffer_data(struct dm_bufio_client *c,
418 			     void *data, enum data_mode data_mode)
419 {
420 	switch (data_mode) {
421 	case DATA_MODE_SLAB:
422 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 		break;
424 
425 	case DATA_MODE_GET_FREE_PAGES:
426 		free_pages((unsigned long)data, c->pages_per_block_bits);
427 		break;
428 
429 	case DATA_MODE_VMALLOC:
430 		vfree(data);
431 		break;
432 
433 	default:
434 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 		       data_mode);
436 		BUG();
437 	}
438 }
439 
440 /*
441  * Allocate buffer and its data.
442  */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 				      gfp_mask);
447 
448 	if (!b)
449 		return NULL;
450 
451 	b->c = c;
452 
453 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 	if (!b->data) {
455 		kfree(b);
456 		return NULL;
457 	}
458 
459 	adjust_total_allocated(b->data_mode, (long)c->block_size);
460 
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 	return b;
465 }
466 
467 /*
468  * Free buffer and its data.
469  */
free_buffer(struct dm_buffer * b)470 static void free_buffer(struct dm_buffer *b)
471 {
472 	struct dm_bufio_client *c = b->c;
473 
474 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
475 
476 	free_buffer_data(c, b->data, b->data_mode);
477 	kfree(b);
478 }
479 
480 /*
481  * Link buffer to the hash list and clean or dirty queue.
482  */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	c->n_buffers[dirty]++;
488 	b->block = block;
489 	b->list_mode = dirty;
490 	list_add(&b->lru_list, &c->lru[dirty]);
491 	__insert(b->c, b);
492 	b->last_accessed = jiffies;
493 }
494 
495 /*
496  * Unlink buffer from the hash list and dirty or clean queue.
497  */
__unlink_buffer(struct dm_buffer * b)498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 	struct dm_bufio_client *c = b->c;
501 
502 	BUG_ON(!c->n_buffers[b->list_mode]);
503 
504 	c->n_buffers[b->list_mode]--;
505 	__remove(b->c, b);
506 	list_del(&b->lru_list);
507 }
508 
509 /*
510  * Place the buffer to the head of dirty or clean LRU queue.
511  */
__relink_lru(struct dm_buffer * b,int dirty)512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 	struct dm_bufio_client *c = b->c;
515 
516 	BUG_ON(!c->n_buffers[b->list_mode]);
517 
518 	c->n_buffers[b->list_mode]--;
519 	c->n_buffers[dirty]++;
520 	b->list_mode = dirty;
521 	list_move(&b->lru_list, &c->lru[dirty]);
522 	b->last_accessed = jiffies;
523 }
524 
525 /*----------------------------------------------------------------
526  * Submit I/O on the buffer.
527  *
528  * Bio interface is faster but it has some problems:
529  *	the vector list is limited (increasing this limit increases
530  *	memory-consumption per buffer, so it is not viable);
531  *
532  *	the memory must be direct-mapped, not vmalloced;
533  *
534  *	the I/O driver can reject requests spuriously if it thinks that
535  *	the requests are too big for the device or if they cross a
536  *	controller-defined memory boundary.
537  *
538  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539  * it is not vmalloced, try using the bio interface.
540  *
541  * If the buffer is big, if it is vmalloced or if the underlying device
542  * rejects the bio because it is too large, use dm-io layer to do the I/O.
543  * The dm-io layer splits the I/O into multiple requests, avoiding the above
544  * shortcomings.
545  *--------------------------------------------------------------*/
546 
547 /*
548  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549  * that the request was handled directly with bio interface.
550  */
dmio_complete(unsigned long error,void * context)551 static void dmio_complete(unsigned long error, void *context)
552 {
553 	struct dm_buffer *b = context;
554 
555 	b->bio.bi_error = error ? -EIO : 0;
556 	b->bio.bi_end_io(&b->bio);
557 }
558 
use_dmio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 		     bio_end_io_t *end_io)
561 {
562 	int r;
563 	struct dm_io_request io_req = {
564 		.bi_op = rw,
565 		.bi_op_flags = 0,
566 		.notify.fn = dmio_complete,
567 		.notify.context = b,
568 		.client = b->c->dm_io,
569 	};
570 	struct dm_io_region region = {
571 		.bdev = b->c->bdev,
572 		.sector = block << b->c->sectors_per_block_bits,
573 		.count = b->c->block_size >> SECTOR_SHIFT,
574 	};
575 
576 	if (b->data_mode != DATA_MODE_VMALLOC) {
577 		io_req.mem.type = DM_IO_KMEM;
578 		io_req.mem.ptr.addr = b->data;
579 	} else {
580 		io_req.mem.type = DM_IO_VMA;
581 		io_req.mem.ptr.vma = b->data;
582 	}
583 
584 	b->bio.bi_end_io = end_io;
585 
586 	r = dm_io(&io_req, 1, &region, NULL);
587 	if (r) {
588 		b->bio.bi_error = r;
589 		end_io(&b->bio);
590 	}
591 }
592 
inline_endio(struct bio * bio)593 static void inline_endio(struct bio *bio)
594 {
595 	bio_end_io_t *end_fn = bio->bi_private;
596 	int error = bio->bi_error;
597 
598 	/*
599 	 * Reset the bio to free any attached resources
600 	 * (e.g. bio integrity profiles).
601 	 */
602 	bio_reset(bio);
603 
604 	bio->bi_error = error;
605 	end_fn(bio);
606 }
607 
use_inline_bio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 			   bio_end_io_t *end_io)
610 {
611 	char *ptr;
612 	int len;
613 
614 	bio_init(&b->bio);
615 	b->bio.bi_io_vec = b->bio_vec;
616 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
617 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
618 	b->bio.bi_bdev = b->c->bdev;
619 	b->bio.bi_end_io = inline_endio;
620 	/*
621 	 * Use of .bi_private isn't a problem here because
622 	 * the dm_buffer's inline bio is local to bufio.
623 	 */
624 	b->bio.bi_private = end_io;
625 	bio_set_op_attrs(&b->bio, rw, 0);
626 
627 	/*
628 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
629 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
630 	 */
631 	ptr = b->data;
632 	len = b->c->block_size;
633 
634 	if (len >= PAGE_SIZE)
635 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
636 	else
637 		BUG_ON((unsigned long)ptr & (len - 1));
638 
639 	do {
640 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
641 				  len < PAGE_SIZE ? len : PAGE_SIZE,
642 				  offset_in_page(ptr))) {
643 			BUG_ON(b->c->block_size <= PAGE_SIZE);
644 			use_dmio(b, rw, block, end_io);
645 			return;
646 		}
647 
648 		len -= PAGE_SIZE;
649 		ptr += PAGE_SIZE;
650 	} while (len > 0);
651 
652 	submit_bio(&b->bio);
653 }
654 
submit_io(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)655 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
656 		      bio_end_io_t *end_io)
657 {
658 	if (rw == WRITE && b->c->write_callback)
659 		b->c->write_callback(b);
660 
661 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
662 	    b->data_mode != DATA_MODE_VMALLOC)
663 		use_inline_bio(b, rw, block, end_io);
664 	else
665 		use_dmio(b, rw, block, end_io);
666 }
667 
668 /*----------------------------------------------------------------
669  * Writing dirty buffers
670  *--------------------------------------------------------------*/
671 
672 /*
673  * The endio routine for write.
674  *
675  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
676  * it.
677  */
write_endio(struct bio * bio)678 static void write_endio(struct bio *bio)
679 {
680 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
681 
682 	b->write_error = bio->bi_error;
683 	if (unlikely(bio->bi_error)) {
684 		struct dm_bufio_client *c = b->c;
685 		int error = bio->bi_error;
686 		(void)cmpxchg(&c->async_write_error, 0, error);
687 	}
688 
689 	BUG_ON(!test_bit(B_WRITING, &b->state));
690 
691 	smp_mb__before_atomic();
692 	clear_bit(B_WRITING, &b->state);
693 	smp_mb__after_atomic();
694 
695 	wake_up_bit(&b->state, B_WRITING);
696 }
697 
698 /*
699  * Initiate a write on a dirty buffer, but don't wait for it.
700  *
701  * - If the buffer is not dirty, exit.
702  * - If there some previous write going on, wait for it to finish (we can't
703  *   have two writes on the same buffer simultaneously).
704  * - Submit our write and don't wait on it. We set B_WRITING indicating
705  *   that there is a write in progress.
706  */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)707 static void __write_dirty_buffer(struct dm_buffer *b,
708 				 struct list_head *write_list)
709 {
710 	if (!test_bit(B_DIRTY, &b->state))
711 		return;
712 
713 	clear_bit(B_DIRTY, &b->state);
714 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
715 
716 	if (!write_list)
717 		submit_io(b, WRITE, b->block, write_endio);
718 	else
719 		list_add_tail(&b->write_list, write_list);
720 }
721 
__flush_write_list(struct list_head * write_list)722 static void __flush_write_list(struct list_head *write_list)
723 {
724 	struct blk_plug plug;
725 	blk_start_plug(&plug);
726 	while (!list_empty(write_list)) {
727 		struct dm_buffer *b =
728 			list_entry(write_list->next, struct dm_buffer, write_list);
729 		list_del(&b->write_list);
730 		submit_io(b, WRITE, b->block, write_endio);
731 		cond_resched();
732 	}
733 	blk_finish_plug(&plug);
734 }
735 
736 /*
737  * Wait until any activity on the buffer finishes.  Possibly write the
738  * buffer if it is dirty.  When this function finishes, there is no I/O
739  * running on the buffer and the buffer is not dirty.
740  */
__make_buffer_clean(struct dm_buffer * b)741 static void __make_buffer_clean(struct dm_buffer *b)
742 {
743 	BUG_ON(b->hold_count);
744 
745 	if (!b->state)	/* fast case */
746 		return;
747 
748 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
749 	__write_dirty_buffer(b, NULL);
750 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
751 }
752 
753 /*
754  * Find some buffer that is not held by anybody, clean it, unlink it and
755  * return it.
756  */
__get_unclaimed_buffer(struct dm_bufio_client * c)757 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
758 {
759 	struct dm_buffer *b;
760 
761 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
762 		BUG_ON(test_bit(B_WRITING, &b->state));
763 		BUG_ON(test_bit(B_DIRTY, &b->state));
764 
765 		if (!b->hold_count) {
766 			__make_buffer_clean(b);
767 			__unlink_buffer(b);
768 			return b;
769 		}
770 		cond_resched();
771 	}
772 
773 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
774 		BUG_ON(test_bit(B_READING, &b->state));
775 
776 		if (!b->hold_count) {
777 			__make_buffer_clean(b);
778 			__unlink_buffer(b);
779 			return b;
780 		}
781 		cond_resched();
782 	}
783 
784 	return NULL;
785 }
786 
787 /*
788  * Wait until some other threads free some buffer or release hold count on
789  * some buffer.
790  *
791  * This function is entered with c->lock held, drops it and regains it
792  * before exiting.
793  */
__wait_for_free_buffer(struct dm_bufio_client * c)794 static void __wait_for_free_buffer(struct dm_bufio_client *c)
795 {
796 	DECLARE_WAITQUEUE(wait, current);
797 
798 	add_wait_queue(&c->free_buffer_wait, &wait);
799 	set_task_state(current, TASK_UNINTERRUPTIBLE);
800 	dm_bufio_unlock(c);
801 
802 	io_schedule();
803 
804 	remove_wait_queue(&c->free_buffer_wait, &wait);
805 
806 	dm_bufio_lock(c);
807 }
808 
809 enum new_flag {
810 	NF_FRESH = 0,
811 	NF_READ = 1,
812 	NF_GET = 2,
813 	NF_PREFETCH = 3
814 };
815 
816 /*
817  * Allocate a new buffer. If the allocation is not possible, wait until
818  * some other thread frees a buffer.
819  *
820  * May drop the lock and regain it.
821  */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)822 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
823 {
824 	struct dm_buffer *b;
825 
826 	/*
827 	 * dm-bufio is resistant to allocation failures (it just keeps
828 	 * one buffer reserved in cases all the allocations fail).
829 	 * So set flags to not try too hard:
830 	 *	GFP_NOIO: don't recurse into the I/O layer
831 	 *	__GFP_NORETRY: don't retry and rather return failure
832 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
833 	 *	__GFP_NOWARN: don't print a warning in case of failure
834 	 *
835 	 * For debugging, if we set the cache size to 1, no new buffers will
836 	 * be allocated.
837 	 */
838 	while (1) {
839 		if (dm_bufio_cache_size_latch != 1) {
840 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
841 			if (b)
842 				return b;
843 		}
844 
845 		if (nf == NF_PREFETCH)
846 			return NULL;
847 
848 		if (!list_empty(&c->reserved_buffers)) {
849 			b = list_entry(c->reserved_buffers.next,
850 				       struct dm_buffer, lru_list);
851 			list_del(&b->lru_list);
852 			c->need_reserved_buffers++;
853 
854 			return b;
855 		}
856 
857 		b = __get_unclaimed_buffer(c);
858 		if (b)
859 			return b;
860 
861 		__wait_for_free_buffer(c);
862 	}
863 }
864 
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)865 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
866 {
867 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
868 
869 	if (!b)
870 		return NULL;
871 
872 	if (c->alloc_callback)
873 		c->alloc_callback(b);
874 
875 	return b;
876 }
877 
878 /*
879  * Free a buffer and wake other threads waiting for free buffers.
880  */
__free_buffer_wake(struct dm_buffer * b)881 static void __free_buffer_wake(struct dm_buffer *b)
882 {
883 	struct dm_bufio_client *c = b->c;
884 
885 	if (!c->need_reserved_buffers)
886 		free_buffer(b);
887 	else {
888 		list_add(&b->lru_list, &c->reserved_buffers);
889 		c->need_reserved_buffers--;
890 	}
891 
892 	wake_up(&c->free_buffer_wait);
893 }
894 
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)895 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
896 					struct list_head *write_list)
897 {
898 	struct dm_buffer *b, *tmp;
899 
900 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
901 		BUG_ON(test_bit(B_READING, &b->state));
902 
903 		if (!test_bit(B_DIRTY, &b->state) &&
904 		    !test_bit(B_WRITING, &b->state)) {
905 			__relink_lru(b, LIST_CLEAN);
906 			continue;
907 		}
908 
909 		if (no_wait && test_bit(B_WRITING, &b->state))
910 			return;
911 
912 		__write_dirty_buffer(b, write_list);
913 		cond_resched();
914 	}
915 }
916 
917 /*
918  * Get writeback threshold and buffer limit for a given client.
919  */
__get_memory_limit(struct dm_bufio_client * c,unsigned long * threshold_buffers,unsigned long * limit_buffers)920 static void __get_memory_limit(struct dm_bufio_client *c,
921 			       unsigned long *threshold_buffers,
922 			       unsigned long *limit_buffers)
923 {
924 	unsigned long buffers;
925 
926 	if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
927 		if (mutex_trylock(&dm_bufio_clients_lock)) {
928 			__cache_size_refresh();
929 			mutex_unlock(&dm_bufio_clients_lock);
930 		}
931 	}
932 
933 	buffers = dm_bufio_cache_size_per_client >>
934 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
935 
936 	if (buffers < c->minimum_buffers)
937 		buffers = c->minimum_buffers;
938 
939 	*limit_buffers = buffers;
940 	*threshold_buffers = mult_frac(buffers,
941 				       DM_BUFIO_WRITEBACK_PERCENT, 100);
942 }
943 
944 /*
945  * Check if we're over watermark.
946  * If we are over threshold_buffers, start freeing buffers.
947  * If we're over "limit_buffers", block until we get under the limit.
948  */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)949 static void __check_watermark(struct dm_bufio_client *c,
950 			      struct list_head *write_list)
951 {
952 	unsigned long threshold_buffers, limit_buffers;
953 
954 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
955 
956 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
957 	       limit_buffers) {
958 
959 		struct dm_buffer *b = __get_unclaimed_buffer(c);
960 
961 		if (!b)
962 			return;
963 
964 		__free_buffer_wake(b);
965 		cond_resched();
966 	}
967 
968 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
969 		__write_dirty_buffers_async(c, 1, write_list);
970 }
971 
972 /*----------------------------------------------------------------
973  * Getting a buffer
974  *--------------------------------------------------------------*/
975 
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)976 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
977 				     enum new_flag nf, int *need_submit,
978 				     struct list_head *write_list)
979 {
980 	struct dm_buffer *b, *new_b = NULL;
981 
982 	*need_submit = 0;
983 
984 	b = __find(c, block);
985 	if (b)
986 		goto found_buffer;
987 
988 	if (nf == NF_GET)
989 		return NULL;
990 
991 	new_b = __alloc_buffer_wait(c, nf);
992 	if (!new_b)
993 		return NULL;
994 
995 	/*
996 	 * We've had a period where the mutex was unlocked, so need to
997 	 * recheck the hash table.
998 	 */
999 	b = __find(c, block);
1000 	if (b) {
1001 		__free_buffer_wake(new_b);
1002 		goto found_buffer;
1003 	}
1004 
1005 	__check_watermark(c, write_list);
1006 
1007 	b = new_b;
1008 	b->hold_count = 1;
1009 	b->read_error = 0;
1010 	b->write_error = 0;
1011 	__link_buffer(b, block, LIST_CLEAN);
1012 
1013 	if (nf == NF_FRESH) {
1014 		b->state = 0;
1015 		return b;
1016 	}
1017 
1018 	b->state = 1 << B_READING;
1019 	*need_submit = 1;
1020 
1021 	return b;
1022 
1023 found_buffer:
1024 	if (nf == NF_PREFETCH)
1025 		return NULL;
1026 	/*
1027 	 * Note: it is essential that we don't wait for the buffer to be
1028 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1029 	 * dm_bufio_prefetch can be used in the driver request routine.
1030 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1031 	 * the same buffer, it would deadlock if we waited.
1032 	 */
1033 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1034 		return NULL;
1035 
1036 	b->hold_count++;
1037 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1038 		     test_bit(B_WRITING, &b->state));
1039 	return b;
1040 }
1041 
1042 /*
1043  * The endio routine for reading: set the error, clear the bit and wake up
1044  * anyone waiting on the buffer.
1045  */
read_endio(struct bio * bio)1046 static void read_endio(struct bio *bio)
1047 {
1048 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1049 
1050 	b->read_error = bio->bi_error;
1051 
1052 	BUG_ON(!test_bit(B_READING, &b->state));
1053 
1054 	smp_mb__before_atomic();
1055 	clear_bit(B_READING, &b->state);
1056 	smp_mb__after_atomic();
1057 
1058 	wake_up_bit(&b->state, B_READING);
1059 }
1060 
1061 /*
1062  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1063  * functions is similar except that dm_bufio_new doesn't read the
1064  * buffer from the disk (assuming that the caller overwrites all the data
1065  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1066  */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)1067 static void *new_read(struct dm_bufio_client *c, sector_t block,
1068 		      enum new_flag nf, struct dm_buffer **bp)
1069 {
1070 	int need_submit;
1071 	struct dm_buffer *b;
1072 
1073 	LIST_HEAD(write_list);
1074 
1075 	dm_bufio_lock(c);
1076 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1077 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1078 	if (b && b->hold_count == 1)
1079 		buffer_record_stack(b);
1080 #endif
1081 	dm_bufio_unlock(c);
1082 
1083 	__flush_write_list(&write_list);
1084 
1085 	if (!b)
1086 		return NULL;
1087 
1088 	if (need_submit)
1089 		submit_io(b, READ, b->block, read_endio);
1090 
1091 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1092 
1093 	if (b->read_error) {
1094 		int error = b->read_error;
1095 
1096 		dm_bufio_release(b);
1097 
1098 		return ERR_PTR(error);
1099 	}
1100 
1101 	*bp = b;
1102 
1103 	return b->data;
1104 }
1105 
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1106 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1107 		   struct dm_buffer **bp)
1108 {
1109 	return new_read(c, block, NF_GET, bp);
1110 }
1111 EXPORT_SYMBOL_GPL(dm_bufio_get);
1112 
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1113 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1114 		    struct dm_buffer **bp)
1115 {
1116 	BUG_ON(dm_bufio_in_request());
1117 
1118 	return new_read(c, block, NF_READ, bp);
1119 }
1120 EXPORT_SYMBOL_GPL(dm_bufio_read);
1121 
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1122 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1123 		   struct dm_buffer **bp)
1124 {
1125 	BUG_ON(dm_bufio_in_request());
1126 
1127 	return new_read(c, block, NF_FRESH, bp);
1128 }
1129 EXPORT_SYMBOL_GPL(dm_bufio_new);
1130 
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1131 void dm_bufio_prefetch(struct dm_bufio_client *c,
1132 		       sector_t block, unsigned n_blocks)
1133 {
1134 	struct blk_plug plug;
1135 
1136 	LIST_HEAD(write_list);
1137 
1138 	BUG_ON(dm_bufio_in_request());
1139 
1140 	blk_start_plug(&plug);
1141 	dm_bufio_lock(c);
1142 
1143 	for (; n_blocks--; block++) {
1144 		int need_submit;
1145 		struct dm_buffer *b;
1146 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1147 				&write_list);
1148 		if (unlikely(!list_empty(&write_list))) {
1149 			dm_bufio_unlock(c);
1150 			blk_finish_plug(&plug);
1151 			__flush_write_list(&write_list);
1152 			blk_start_plug(&plug);
1153 			dm_bufio_lock(c);
1154 		}
1155 		if (unlikely(b != NULL)) {
1156 			dm_bufio_unlock(c);
1157 
1158 			if (need_submit)
1159 				submit_io(b, READ, b->block, read_endio);
1160 			dm_bufio_release(b);
1161 
1162 			cond_resched();
1163 
1164 			if (!n_blocks)
1165 				goto flush_plug;
1166 			dm_bufio_lock(c);
1167 		}
1168 	}
1169 
1170 	dm_bufio_unlock(c);
1171 
1172 flush_plug:
1173 	blk_finish_plug(&plug);
1174 }
1175 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1176 
dm_bufio_release(struct dm_buffer * b)1177 void dm_bufio_release(struct dm_buffer *b)
1178 {
1179 	struct dm_bufio_client *c = b->c;
1180 
1181 	dm_bufio_lock(c);
1182 
1183 	BUG_ON(!b->hold_count);
1184 
1185 	b->hold_count--;
1186 	if (!b->hold_count) {
1187 		wake_up(&c->free_buffer_wait);
1188 
1189 		/*
1190 		 * If there were errors on the buffer, and the buffer is not
1191 		 * to be written, free the buffer. There is no point in caching
1192 		 * invalid buffer.
1193 		 */
1194 		if ((b->read_error || b->write_error) &&
1195 		    !test_bit(B_READING, &b->state) &&
1196 		    !test_bit(B_WRITING, &b->state) &&
1197 		    !test_bit(B_DIRTY, &b->state)) {
1198 			__unlink_buffer(b);
1199 			__free_buffer_wake(b);
1200 		}
1201 	}
1202 
1203 	dm_bufio_unlock(c);
1204 }
1205 EXPORT_SYMBOL_GPL(dm_bufio_release);
1206 
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1207 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1208 {
1209 	struct dm_bufio_client *c = b->c;
1210 
1211 	dm_bufio_lock(c);
1212 
1213 	BUG_ON(test_bit(B_READING, &b->state));
1214 
1215 	if (!test_and_set_bit(B_DIRTY, &b->state))
1216 		__relink_lru(b, LIST_DIRTY);
1217 
1218 	dm_bufio_unlock(c);
1219 }
1220 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1221 
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1222 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1223 {
1224 	LIST_HEAD(write_list);
1225 
1226 	BUG_ON(dm_bufio_in_request());
1227 
1228 	dm_bufio_lock(c);
1229 	__write_dirty_buffers_async(c, 0, &write_list);
1230 	dm_bufio_unlock(c);
1231 	__flush_write_list(&write_list);
1232 }
1233 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1234 
1235 /*
1236  * For performance, it is essential that the buffers are written asynchronously
1237  * and simultaneously (so that the block layer can merge the writes) and then
1238  * waited upon.
1239  *
1240  * Finally, we flush hardware disk cache.
1241  */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1242 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1243 {
1244 	int a, f;
1245 	unsigned long buffers_processed = 0;
1246 	struct dm_buffer *b, *tmp;
1247 
1248 	LIST_HEAD(write_list);
1249 
1250 	dm_bufio_lock(c);
1251 	__write_dirty_buffers_async(c, 0, &write_list);
1252 	dm_bufio_unlock(c);
1253 	__flush_write_list(&write_list);
1254 	dm_bufio_lock(c);
1255 
1256 again:
1257 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1258 		int dropped_lock = 0;
1259 
1260 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1261 			buffers_processed++;
1262 
1263 		BUG_ON(test_bit(B_READING, &b->state));
1264 
1265 		if (test_bit(B_WRITING, &b->state)) {
1266 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1267 				dropped_lock = 1;
1268 				b->hold_count++;
1269 				dm_bufio_unlock(c);
1270 				wait_on_bit_io(&b->state, B_WRITING,
1271 					       TASK_UNINTERRUPTIBLE);
1272 				dm_bufio_lock(c);
1273 				b->hold_count--;
1274 			} else
1275 				wait_on_bit_io(&b->state, B_WRITING,
1276 					       TASK_UNINTERRUPTIBLE);
1277 		}
1278 
1279 		if (!test_bit(B_DIRTY, &b->state) &&
1280 		    !test_bit(B_WRITING, &b->state))
1281 			__relink_lru(b, LIST_CLEAN);
1282 
1283 		cond_resched();
1284 
1285 		/*
1286 		 * If we dropped the lock, the list is no longer consistent,
1287 		 * so we must restart the search.
1288 		 *
1289 		 * In the most common case, the buffer just processed is
1290 		 * relinked to the clean list, so we won't loop scanning the
1291 		 * same buffer again and again.
1292 		 *
1293 		 * This may livelock if there is another thread simultaneously
1294 		 * dirtying buffers, so we count the number of buffers walked
1295 		 * and if it exceeds the total number of buffers, it means that
1296 		 * someone is doing some writes simultaneously with us.  In
1297 		 * this case, stop, dropping the lock.
1298 		 */
1299 		if (dropped_lock)
1300 			goto again;
1301 	}
1302 	wake_up(&c->free_buffer_wait);
1303 	dm_bufio_unlock(c);
1304 
1305 	a = xchg(&c->async_write_error, 0);
1306 	f = dm_bufio_issue_flush(c);
1307 	if (a)
1308 		return a;
1309 
1310 	return f;
1311 }
1312 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1313 
1314 /*
1315  * Use dm-io to send and empty barrier flush the device.
1316  */
dm_bufio_issue_flush(struct dm_bufio_client * c)1317 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1318 {
1319 	struct dm_io_request io_req = {
1320 		.bi_op = REQ_OP_WRITE,
1321 		.bi_op_flags = WRITE_FLUSH,
1322 		.mem.type = DM_IO_KMEM,
1323 		.mem.ptr.addr = NULL,
1324 		.client = c->dm_io,
1325 	};
1326 	struct dm_io_region io_reg = {
1327 		.bdev = c->bdev,
1328 		.sector = 0,
1329 		.count = 0,
1330 	};
1331 
1332 	BUG_ON(dm_bufio_in_request());
1333 
1334 	return dm_io(&io_req, 1, &io_reg, NULL);
1335 }
1336 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1337 
1338 /*
1339  * We first delete any other buffer that may be at that new location.
1340  *
1341  * Then, we write the buffer to the original location if it was dirty.
1342  *
1343  * Then, if we are the only one who is holding the buffer, relink the buffer
1344  * in the hash queue for the new location.
1345  *
1346  * If there was someone else holding the buffer, we write it to the new
1347  * location but not relink it, because that other user needs to have the buffer
1348  * at the same place.
1349  */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1350 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1351 {
1352 	struct dm_bufio_client *c = b->c;
1353 	struct dm_buffer *new;
1354 
1355 	BUG_ON(dm_bufio_in_request());
1356 
1357 	dm_bufio_lock(c);
1358 
1359 retry:
1360 	new = __find(c, new_block);
1361 	if (new) {
1362 		if (new->hold_count) {
1363 			__wait_for_free_buffer(c);
1364 			goto retry;
1365 		}
1366 
1367 		/*
1368 		 * FIXME: Is there any point waiting for a write that's going
1369 		 * to be overwritten in a bit?
1370 		 */
1371 		__make_buffer_clean(new);
1372 		__unlink_buffer(new);
1373 		__free_buffer_wake(new);
1374 	}
1375 
1376 	BUG_ON(!b->hold_count);
1377 	BUG_ON(test_bit(B_READING, &b->state));
1378 
1379 	__write_dirty_buffer(b, NULL);
1380 	if (b->hold_count == 1) {
1381 		wait_on_bit_io(&b->state, B_WRITING,
1382 			       TASK_UNINTERRUPTIBLE);
1383 		set_bit(B_DIRTY, &b->state);
1384 		__unlink_buffer(b);
1385 		__link_buffer(b, new_block, LIST_DIRTY);
1386 	} else {
1387 		sector_t old_block;
1388 		wait_on_bit_lock_io(&b->state, B_WRITING,
1389 				    TASK_UNINTERRUPTIBLE);
1390 		/*
1391 		 * Relink buffer to "new_block" so that write_callback
1392 		 * sees "new_block" as a block number.
1393 		 * After the write, link the buffer back to old_block.
1394 		 * All this must be done in bufio lock, so that block number
1395 		 * change isn't visible to other threads.
1396 		 */
1397 		old_block = b->block;
1398 		__unlink_buffer(b);
1399 		__link_buffer(b, new_block, b->list_mode);
1400 		submit_io(b, WRITE, new_block, write_endio);
1401 		wait_on_bit_io(&b->state, B_WRITING,
1402 			       TASK_UNINTERRUPTIBLE);
1403 		__unlink_buffer(b);
1404 		__link_buffer(b, old_block, b->list_mode);
1405 	}
1406 
1407 	dm_bufio_unlock(c);
1408 	dm_bufio_release(b);
1409 }
1410 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1411 
1412 /*
1413  * Free the given buffer.
1414  *
1415  * This is just a hint, if the buffer is in use or dirty, this function
1416  * does nothing.
1417  */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)1418 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1419 {
1420 	struct dm_buffer *b;
1421 
1422 	dm_bufio_lock(c);
1423 
1424 	b = __find(c, block);
1425 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1426 		__unlink_buffer(b);
1427 		__free_buffer_wake(b);
1428 	}
1429 
1430 	dm_bufio_unlock(c);
1431 }
1432 EXPORT_SYMBOL(dm_bufio_forget);
1433 
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned n)1434 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1435 {
1436 	c->minimum_buffers = n;
1437 }
1438 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1439 
dm_bufio_get_block_size(struct dm_bufio_client * c)1440 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1441 {
1442 	return c->block_size;
1443 }
1444 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1445 
dm_bufio_get_device_size(struct dm_bufio_client * c)1446 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1447 {
1448 	return i_size_read(c->bdev->bd_inode) >>
1449 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1450 }
1451 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1452 
dm_bufio_get_block_number(struct dm_buffer * b)1453 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1454 {
1455 	return b->block;
1456 }
1457 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1458 
dm_bufio_get_block_data(struct dm_buffer * b)1459 void *dm_bufio_get_block_data(struct dm_buffer *b)
1460 {
1461 	return b->data;
1462 }
1463 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1464 
dm_bufio_get_aux_data(struct dm_buffer * b)1465 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1466 {
1467 	return b + 1;
1468 }
1469 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1470 
dm_bufio_get_client(struct dm_buffer * b)1471 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1472 {
1473 	return b->c;
1474 }
1475 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1476 
drop_buffers(struct dm_bufio_client * c)1477 static void drop_buffers(struct dm_bufio_client *c)
1478 {
1479 	struct dm_buffer *b;
1480 	int i;
1481 	bool warned = false;
1482 
1483 	BUG_ON(dm_bufio_in_request());
1484 
1485 	/*
1486 	 * An optimization so that the buffers are not written one-by-one.
1487 	 */
1488 	dm_bufio_write_dirty_buffers_async(c);
1489 
1490 	dm_bufio_lock(c);
1491 
1492 	while ((b = __get_unclaimed_buffer(c)))
1493 		__free_buffer_wake(b);
1494 
1495 	for (i = 0; i < LIST_SIZE; i++)
1496 		list_for_each_entry(b, &c->lru[i], lru_list) {
1497 			WARN_ON(!warned);
1498 			warned = true;
1499 			DMERR("leaked buffer %llx, hold count %u, list %d",
1500 			      (unsigned long long)b->block, b->hold_count, i);
1501 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1502 			print_stack_trace(&b->stack_trace, 1);
1503 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1504 #endif
1505 		}
1506 
1507 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1508 	while ((b = __get_unclaimed_buffer(c)))
1509 		__free_buffer_wake(b);
1510 #endif
1511 
1512 	for (i = 0; i < LIST_SIZE; i++)
1513 		BUG_ON(!list_empty(&c->lru[i]));
1514 
1515 	dm_bufio_unlock(c);
1516 }
1517 
1518 /*
1519  * We may not be able to evict this buffer if IO pending or the client
1520  * is still using it.  Caller is expected to know buffer is too old.
1521  *
1522  * And if GFP_NOFS is used, we must not do any I/O because we hold
1523  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1524  * rerouted to different bufio client.
1525  */
__try_evict_buffer(struct dm_buffer * b,gfp_t gfp)1526 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1527 {
1528 	if (!(gfp & __GFP_FS)) {
1529 		if (test_bit(B_READING, &b->state) ||
1530 		    test_bit(B_WRITING, &b->state) ||
1531 		    test_bit(B_DIRTY, &b->state))
1532 			return false;
1533 	}
1534 
1535 	if (b->hold_count)
1536 		return false;
1537 
1538 	__make_buffer_clean(b);
1539 	__unlink_buffer(b);
1540 	__free_buffer_wake(b);
1541 
1542 	return true;
1543 }
1544 
get_retain_buffers(struct dm_bufio_client * c)1545 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1546 {
1547         unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1548         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1549 }
1550 
__scan(struct dm_bufio_client * c,unsigned long nr_to_scan,gfp_t gfp_mask)1551 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1552 			    gfp_t gfp_mask)
1553 {
1554 	int l;
1555 	struct dm_buffer *b, *tmp;
1556 	unsigned long freed = 0;
1557 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1558 			      c->n_buffers[LIST_DIRTY];
1559 	unsigned long retain_target = get_retain_buffers(c);
1560 
1561 	for (l = 0; l < LIST_SIZE; l++) {
1562 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1563 			if (__try_evict_buffer(b, gfp_mask))
1564 				freed++;
1565 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1566 				return freed;
1567 			cond_resched();
1568 		}
1569 	}
1570 	return freed;
1571 }
1572 
1573 static unsigned long
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1574 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1575 {
1576 	struct dm_bufio_client *c;
1577 	unsigned long freed;
1578 
1579 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1580 	if (sc->gfp_mask & __GFP_FS)
1581 		dm_bufio_lock(c);
1582 	else if (!dm_bufio_trylock(c))
1583 		return SHRINK_STOP;
1584 
1585 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1586 	dm_bufio_unlock(c);
1587 	return freed;
1588 }
1589 
1590 static unsigned long
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1591 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1592 {
1593 	struct dm_bufio_client *c;
1594 	unsigned long count;
1595 	unsigned long retain_target;
1596 
1597 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1598 	if (sc->gfp_mask & __GFP_FS)
1599 		dm_bufio_lock(c);
1600 	else if (!dm_bufio_trylock(c))
1601 		return 0;
1602 
1603 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1604 	retain_target = get_retain_buffers(c);
1605 	dm_bufio_unlock(c);
1606 	return (count < retain_target) ? 0 : (count - retain_target);
1607 }
1608 
1609 /*
1610  * Create the buffering interface
1611  */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1612 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1613 					       unsigned reserved_buffers, unsigned aux_size,
1614 					       void (*alloc_callback)(struct dm_buffer *),
1615 					       void (*write_callback)(struct dm_buffer *))
1616 {
1617 	int r;
1618 	struct dm_bufio_client *c;
1619 	unsigned i;
1620 
1621 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1622 	       (block_size & (block_size - 1)));
1623 
1624 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1625 	if (!c) {
1626 		r = -ENOMEM;
1627 		goto bad_client;
1628 	}
1629 	c->buffer_tree = RB_ROOT;
1630 
1631 	c->bdev = bdev;
1632 	c->block_size = block_size;
1633 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1634 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1635 				  __ffs(block_size) - PAGE_SHIFT : 0;
1636 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1637 				  PAGE_SHIFT - __ffs(block_size) : 0);
1638 
1639 	c->aux_size = aux_size;
1640 	c->alloc_callback = alloc_callback;
1641 	c->write_callback = write_callback;
1642 
1643 	for (i = 0; i < LIST_SIZE; i++) {
1644 		INIT_LIST_HEAD(&c->lru[i]);
1645 		c->n_buffers[i] = 0;
1646 	}
1647 
1648 	mutex_init(&c->lock);
1649 	INIT_LIST_HEAD(&c->reserved_buffers);
1650 	c->need_reserved_buffers = reserved_buffers;
1651 
1652 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1653 
1654 	init_waitqueue_head(&c->free_buffer_wait);
1655 	c->async_write_error = 0;
1656 
1657 	c->dm_io = dm_io_client_create();
1658 	if (IS_ERR(c->dm_io)) {
1659 		r = PTR_ERR(c->dm_io);
1660 		goto bad_dm_io;
1661 	}
1662 
1663 	mutex_lock(&dm_bufio_clients_lock);
1664 	if (c->blocks_per_page_bits) {
1665 		if (!DM_BUFIO_CACHE_NAME(c)) {
1666 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1667 			if (!DM_BUFIO_CACHE_NAME(c)) {
1668 				r = -ENOMEM;
1669 				mutex_unlock(&dm_bufio_clients_lock);
1670 				goto bad_cache;
1671 			}
1672 		}
1673 
1674 		if (!DM_BUFIO_CACHE(c)) {
1675 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1676 							      c->block_size,
1677 							      c->block_size, 0, NULL);
1678 			if (!DM_BUFIO_CACHE(c)) {
1679 				r = -ENOMEM;
1680 				mutex_unlock(&dm_bufio_clients_lock);
1681 				goto bad_cache;
1682 			}
1683 		}
1684 	}
1685 	mutex_unlock(&dm_bufio_clients_lock);
1686 
1687 	while (c->need_reserved_buffers) {
1688 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1689 
1690 		if (!b) {
1691 			r = -ENOMEM;
1692 			goto bad_buffer;
1693 		}
1694 		__free_buffer_wake(b);
1695 	}
1696 
1697 	mutex_lock(&dm_bufio_clients_lock);
1698 	dm_bufio_client_count++;
1699 	list_add(&c->client_list, &dm_bufio_all_clients);
1700 	__cache_size_refresh();
1701 	mutex_unlock(&dm_bufio_clients_lock);
1702 
1703 	c->shrinker.count_objects = dm_bufio_shrink_count;
1704 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1705 	c->shrinker.seeks = 1;
1706 	c->shrinker.batch = 0;
1707 	register_shrinker(&c->shrinker);
1708 
1709 	return c;
1710 
1711 bad_buffer:
1712 bad_cache:
1713 	while (!list_empty(&c->reserved_buffers)) {
1714 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1715 						 struct dm_buffer, lru_list);
1716 		list_del(&b->lru_list);
1717 		free_buffer(b);
1718 	}
1719 	dm_io_client_destroy(c->dm_io);
1720 bad_dm_io:
1721 	kfree(c);
1722 bad_client:
1723 	return ERR_PTR(r);
1724 }
1725 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1726 
1727 /*
1728  * Free the buffering interface.
1729  * It is required that there are no references on any buffers.
1730  */
dm_bufio_client_destroy(struct dm_bufio_client * c)1731 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1732 {
1733 	unsigned i;
1734 
1735 	drop_buffers(c);
1736 
1737 	unregister_shrinker(&c->shrinker);
1738 
1739 	mutex_lock(&dm_bufio_clients_lock);
1740 
1741 	list_del(&c->client_list);
1742 	dm_bufio_client_count--;
1743 	__cache_size_refresh();
1744 
1745 	mutex_unlock(&dm_bufio_clients_lock);
1746 
1747 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1748 	BUG_ON(c->need_reserved_buffers);
1749 
1750 	while (!list_empty(&c->reserved_buffers)) {
1751 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1752 						 struct dm_buffer, lru_list);
1753 		list_del(&b->lru_list);
1754 		free_buffer(b);
1755 	}
1756 
1757 	for (i = 0; i < LIST_SIZE; i++)
1758 		if (c->n_buffers[i])
1759 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1760 
1761 	for (i = 0; i < LIST_SIZE; i++)
1762 		BUG_ON(c->n_buffers[i]);
1763 
1764 	dm_io_client_destroy(c->dm_io);
1765 	kfree(c);
1766 }
1767 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1768 
get_max_age_hz(void)1769 static unsigned get_max_age_hz(void)
1770 {
1771 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1772 
1773 	if (max_age > UINT_MAX / HZ)
1774 		max_age = UINT_MAX / HZ;
1775 
1776 	return max_age * HZ;
1777 }
1778 
older_than(struct dm_buffer * b,unsigned long age_hz)1779 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1780 {
1781 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1782 }
1783 
__evict_old_buffers(struct dm_bufio_client * c,unsigned long age_hz)1784 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1785 {
1786 	struct dm_buffer *b, *tmp;
1787 	unsigned long retain_target = get_retain_buffers(c);
1788 	unsigned long count;
1789 	LIST_HEAD(write_list);
1790 
1791 	dm_bufio_lock(c);
1792 
1793 	__check_watermark(c, &write_list);
1794 	if (unlikely(!list_empty(&write_list))) {
1795 		dm_bufio_unlock(c);
1796 		__flush_write_list(&write_list);
1797 		dm_bufio_lock(c);
1798 	}
1799 
1800 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1801 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1802 		if (count <= retain_target)
1803 			break;
1804 
1805 		if (!older_than(b, age_hz))
1806 			break;
1807 
1808 		if (__try_evict_buffer(b, 0))
1809 			count--;
1810 
1811 		cond_resched();
1812 	}
1813 
1814 	dm_bufio_unlock(c);
1815 }
1816 
cleanup_old_buffers(void)1817 static void cleanup_old_buffers(void)
1818 {
1819 	unsigned long max_age_hz = get_max_age_hz();
1820 	struct dm_bufio_client *c;
1821 
1822 	mutex_lock(&dm_bufio_clients_lock);
1823 
1824 	__cache_size_refresh();
1825 
1826 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1827 		__evict_old_buffers(c, max_age_hz);
1828 
1829 	mutex_unlock(&dm_bufio_clients_lock);
1830 }
1831 
1832 static struct workqueue_struct *dm_bufio_wq;
1833 static struct delayed_work dm_bufio_work;
1834 
work_fn(struct work_struct * w)1835 static void work_fn(struct work_struct *w)
1836 {
1837 	cleanup_old_buffers();
1838 
1839 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1840 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1841 }
1842 
1843 /*----------------------------------------------------------------
1844  * Module setup
1845  *--------------------------------------------------------------*/
1846 
1847 /*
1848  * This is called only once for the whole dm_bufio module.
1849  * It initializes memory limit.
1850  */
dm_bufio_init(void)1851 static int __init dm_bufio_init(void)
1852 {
1853 	__u64 mem;
1854 
1855 	dm_bufio_allocated_kmem_cache = 0;
1856 	dm_bufio_allocated_get_free_pages = 0;
1857 	dm_bufio_allocated_vmalloc = 0;
1858 	dm_bufio_current_allocated = 0;
1859 
1860 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1861 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1862 
1863 	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1864 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1865 
1866 	if (mem > ULONG_MAX)
1867 		mem = ULONG_MAX;
1868 
1869 #ifdef CONFIG_MMU
1870 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1871 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1872 #endif
1873 
1874 	dm_bufio_default_cache_size = mem;
1875 
1876 	mutex_lock(&dm_bufio_clients_lock);
1877 	__cache_size_refresh();
1878 	mutex_unlock(&dm_bufio_clients_lock);
1879 
1880 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1881 	if (!dm_bufio_wq)
1882 		return -ENOMEM;
1883 
1884 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1885 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1886 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * This is called once when unloading the dm_bufio module.
1893  */
dm_bufio_exit(void)1894 static void __exit dm_bufio_exit(void)
1895 {
1896 	int bug = 0;
1897 	int i;
1898 
1899 	cancel_delayed_work_sync(&dm_bufio_work);
1900 	destroy_workqueue(dm_bufio_wq);
1901 
1902 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1903 		kmem_cache_destroy(dm_bufio_caches[i]);
1904 
1905 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1906 		kfree(dm_bufio_cache_names[i]);
1907 
1908 	if (dm_bufio_client_count) {
1909 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1910 			__func__, dm_bufio_client_count);
1911 		bug = 1;
1912 	}
1913 
1914 	if (dm_bufio_current_allocated) {
1915 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1916 			__func__, dm_bufio_current_allocated);
1917 		bug = 1;
1918 	}
1919 
1920 	if (dm_bufio_allocated_get_free_pages) {
1921 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1922 		       __func__, dm_bufio_allocated_get_free_pages);
1923 		bug = 1;
1924 	}
1925 
1926 	if (dm_bufio_allocated_vmalloc) {
1927 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1928 		       __func__, dm_bufio_allocated_vmalloc);
1929 		bug = 1;
1930 	}
1931 
1932 	BUG_ON(bug);
1933 }
1934 
1935 module_init(dm_bufio_init)
1936 module_exit(dm_bufio_exit)
1937 
1938 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1939 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1940 
1941 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1942 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1943 
1944 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1945 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1946 
1947 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1948 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1949 
1950 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1951 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1952 
1953 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1954 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1955 
1956 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1957 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1958 
1959 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1960 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1961 
1962 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1963 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1964 MODULE_LICENSE("GPL");
1965