1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
r1bio_pool_alloc(gfp_t gfp_flags,void * data)73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
r1bio_pool_free(void * r1_bio,void * data)82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
r1buf_pool_alloc(gfp_t gfp_flags,void * data)97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
123 */
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
131
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
147 out_free_pages:
148 while (--j >= 0)
149 bio_free_pages(r1_bio->bios[j]);
150
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
r1buf_pool_free(void * __r1_bio,void * data)158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
free_r1bio(struct r1bio * r1_bio)189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
put_buf(struct r1bio * r1_bio)197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
reschedule_retry(struct r1bio * r1_bio)213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
call_bio_endio(struct r1bio * r1_bio)233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t start_next_window = r1_bio->start_next_window;
239 sector_t bi_sector = bio->bi_iter.bi_sector;
240
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
247 /*
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
250 */
251 wake_up(&conf->wait_barrier);
252 } else
253 done = 1;
254
255 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 bio->bi_error = -EIO;
257
258 if (done) {
259 bio_endio(bio);
260 /*
261 * Wake up any possible resync thread that waits for the device
262 * to go idle.
263 */
264 allow_barrier(conf, start_next_window, bi_sector);
265 }
266 }
267
raid_end_bio_io(struct r1bio * r1_bio)268 static void raid_end_bio_io(struct r1bio *r1_bio)
269 {
270 struct bio *bio = r1_bio->master_bio;
271
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 (unsigned long long) bio->bi_iter.bi_sector,
277 (unsigned long long) bio_end_sector(bio) - 1);
278
279 call_bio_endio(r1_bio);
280 }
281 free_r1bio(r1_bio);
282 }
283
284 /*
285 * Update disk head position estimator based on IRQ completion info.
286 */
update_head_pos(int disk,struct r1bio * r1_bio)287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
288 {
289 struct r1conf *conf = r1_bio->mddev->private;
290
291 conf->mirrors[disk].head_position =
292 r1_bio->sector + (r1_bio->sectors);
293 }
294
295 /*
296 * Find the disk number which triggered given bio
297 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
299 {
300 int mirror;
301 struct r1conf *conf = r1_bio->mddev->private;
302 int raid_disks = conf->raid_disks;
303
304 for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 if (r1_bio->bios[mirror] == bio)
306 break;
307
308 BUG_ON(mirror == raid_disks * 2);
309 update_head_pos(mirror, r1_bio);
310
311 return mirror;
312 }
313
raid1_end_read_request(struct bio * bio)314 static void raid1_end_read_request(struct bio *bio)
315 {
316 int uptodate = !bio->bi_error;
317 struct r1bio *r1_bio = bio->bi_private;
318 struct r1conf *conf = r1_bio->mddev->private;
319 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
320
321 /*
322 * this branch is our 'one mirror IO has finished' event handler:
323 */
324 update_head_pos(r1_bio->read_disk, r1_bio);
325
326 if (uptodate)
327 set_bit(R1BIO_Uptodate, &r1_bio->state);
328 else {
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
332 */
333 unsigned long flags;
334 spin_lock_irqsave(&conf->device_lock, flags);
335 if (r1_bio->mddev->degraded == conf->raid_disks ||
336 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 test_bit(In_sync, &rdev->flags)))
338 uptodate = 1;
339 spin_unlock_irqrestore(&conf->device_lock, flags);
340 }
341
342 if (uptodate) {
343 raid_end_bio_io(r1_bio);
344 rdev_dec_pending(rdev, conf->mddev);
345 } else {
346 /*
347 * oops, read error:
348 */
349 char b[BDEVNAME_SIZE];
350 printk_ratelimited(
351 KERN_ERR "md/raid1:%s: %s: "
352 "rescheduling sector %llu\n",
353 mdname(conf->mddev),
354 bdevname(rdev->bdev,
355 b),
356 (unsigned long long)r1_bio->sector);
357 set_bit(R1BIO_ReadError, &r1_bio->state);
358 reschedule_retry(r1_bio);
359 /* don't drop the reference on read_disk yet */
360 }
361 }
362
close_write(struct r1bio * r1_bio)363 static void close_write(struct r1bio *r1_bio)
364 {
365 /* it really is the end of this request */
366 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
367 /* free extra copy of the data pages */
368 int i = r1_bio->behind_page_count;
369 while (i--)
370 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
371 kfree(r1_bio->behind_bvecs);
372 r1_bio->behind_bvecs = NULL;
373 }
374 /* clear the bitmap if all writes complete successfully */
375 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
376 r1_bio->sectors,
377 !test_bit(R1BIO_Degraded, &r1_bio->state),
378 test_bit(R1BIO_BehindIO, &r1_bio->state));
379 md_write_end(r1_bio->mddev);
380 }
381
r1_bio_write_done(struct r1bio * r1_bio)382 static void r1_bio_write_done(struct r1bio *r1_bio)
383 {
384 if (!atomic_dec_and_test(&r1_bio->remaining))
385 return;
386
387 if (test_bit(R1BIO_WriteError, &r1_bio->state))
388 reschedule_retry(r1_bio);
389 else {
390 close_write(r1_bio);
391 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else
394 raid_end_bio_io(r1_bio);
395 }
396 }
397
raid1_end_write_request(struct bio * bio)398 static void raid1_end_write_request(struct bio *bio)
399 {
400 struct r1bio *r1_bio = bio->bi_private;
401 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
402 struct r1conf *conf = r1_bio->mddev->private;
403 struct bio *to_put = NULL;
404 int mirror = find_bio_disk(r1_bio, bio);
405 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
406 bool discard_error;
407
408 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (bio->bi_error && !discard_error) {
414 set_bit(WriteErrorSeen, &rdev->flags);
415 if (!test_and_set_bit(WantReplacement, &rdev->flags))
416 set_bit(MD_RECOVERY_NEEDED, &
417 conf->mddev->recovery);
418
419 set_bit(R1BIO_WriteError, &r1_bio->state);
420 } else {
421 /*
422 * Set R1BIO_Uptodate in our master bio, so that we
423 * will return a good error code for to the higher
424 * levels even if IO on some other mirrored buffer
425 * fails.
426 *
427 * The 'master' represents the composite IO operation
428 * to user-side. So if something waits for IO, then it
429 * will wait for the 'master' bio.
430 */
431 sector_t first_bad;
432 int bad_sectors;
433
434 r1_bio->bios[mirror] = NULL;
435 to_put = bio;
436 /*
437 * Do not set R1BIO_Uptodate if the current device is
438 * rebuilding or Faulty. This is because we cannot use
439 * such device for properly reading the data back (we could
440 * potentially use it, if the current write would have felt
441 * before rdev->recovery_offset, but for simplicity we don't
442 * check this here.
443 */
444 if (test_bit(In_sync, &rdev->flags) &&
445 !test_bit(Faulty, &rdev->flags))
446 set_bit(R1BIO_Uptodate, &r1_bio->state);
447
448 /* Maybe we can clear some bad blocks. */
449 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
450 &first_bad, &bad_sectors) && !discard_error) {
451 r1_bio->bios[mirror] = IO_MADE_GOOD;
452 set_bit(R1BIO_MadeGood, &r1_bio->state);
453 }
454 }
455
456 if (behind) {
457 if (test_bit(WriteMostly, &rdev->flags))
458 atomic_dec(&r1_bio->behind_remaining);
459
460 /*
461 * In behind mode, we ACK the master bio once the I/O
462 * has safely reached all non-writemostly
463 * disks. Setting the Returned bit ensures that this
464 * gets done only once -- we don't ever want to return
465 * -EIO here, instead we'll wait
466 */
467 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
468 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
469 /* Maybe we can return now */
470 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
471 struct bio *mbio = r1_bio->master_bio;
472 pr_debug("raid1: behind end write sectors"
473 " %llu-%llu\n",
474 (unsigned long long) mbio->bi_iter.bi_sector,
475 (unsigned long long) bio_end_sector(mbio) - 1);
476 call_bio_endio(r1_bio);
477 }
478 }
479 }
480 if (r1_bio->bios[mirror] == NULL)
481 rdev_dec_pending(rdev, conf->mddev);
482
483 /*
484 * Let's see if all mirrored write operations have finished
485 * already.
486 */
487 r1_bio_write_done(r1_bio);
488
489 if (to_put)
490 bio_put(to_put);
491 }
492
493 /*
494 * This routine returns the disk from which the requested read should
495 * be done. There is a per-array 'next expected sequential IO' sector
496 * number - if this matches on the next IO then we use the last disk.
497 * There is also a per-disk 'last know head position' sector that is
498 * maintained from IRQ contexts, both the normal and the resync IO
499 * completion handlers update this position correctly. If there is no
500 * perfect sequential match then we pick the disk whose head is closest.
501 *
502 * If there are 2 mirrors in the same 2 devices, performance degrades
503 * because position is mirror, not device based.
504 *
505 * The rdev for the device selected will have nr_pending incremented.
506 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)507 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
508 {
509 const sector_t this_sector = r1_bio->sector;
510 int sectors;
511 int best_good_sectors;
512 int best_disk, best_dist_disk, best_pending_disk;
513 int has_nonrot_disk;
514 int disk;
515 sector_t best_dist;
516 unsigned int min_pending;
517 struct md_rdev *rdev;
518 int choose_first;
519 int choose_next_idle;
520
521 rcu_read_lock();
522 /*
523 * Check if we can balance. We can balance on the whole
524 * device if no resync is going on, or below the resync window.
525 * We take the first readable disk when above the resync window.
526 */
527 retry:
528 sectors = r1_bio->sectors;
529 best_disk = -1;
530 best_dist_disk = -1;
531 best_dist = MaxSector;
532 best_pending_disk = -1;
533 min_pending = UINT_MAX;
534 best_good_sectors = 0;
535 has_nonrot_disk = 0;
536 choose_next_idle = 0;
537
538 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
539 (mddev_is_clustered(conf->mddev) &&
540 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
541 this_sector + sectors)))
542 choose_first = 1;
543 else
544 choose_first = 0;
545
546 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
547 sector_t dist;
548 sector_t first_bad;
549 int bad_sectors;
550 unsigned int pending;
551 bool nonrot;
552
553 rdev = rcu_dereference(conf->mirrors[disk].rdev);
554 if (r1_bio->bios[disk] == IO_BLOCKED
555 || rdev == NULL
556 || test_bit(Faulty, &rdev->flags))
557 continue;
558 if (!test_bit(In_sync, &rdev->flags) &&
559 rdev->recovery_offset < this_sector + sectors)
560 continue;
561 if (test_bit(WriteMostly, &rdev->flags)) {
562 /* Don't balance among write-mostly, just
563 * use the first as a last resort */
564 if (best_dist_disk < 0) {
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (first_bad <= this_sector)
568 /* Cannot use this */
569 continue;
570 best_good_sectors = first_bad - this_sector;
571 } else
572 best_good_sectors = sectors;
573 best_dist_disk = disk;
574 best_pending_disk = disk;
575 }
576 continue;
577 }
578 /* This is a reasonable device to use. It might
579 * even be best.
580 */
581 if (is_badblock(rdev, this_sector, sectors,
582 &first_bad, &bad_sectors)) {
583 if (best_dist < MaxSector)
584 /* already have a better device */
585 continue;
586 if (first_bad <= this_sector) {
587 /* cannot read here. If this is the 'primary'
588 * device, then we must not read beyond
589 * bad_sectors from another device..
590 */
591 bad_sectors -= (this_sector - first_bad);
592 if (choose_first && sectors > bad_sectors)
593 sectors = bad_sectors;
594 if (best_good_sectors > sectors)
595 best_good_sectors = sectors;
596
597 } else {
598 sector_t good_sectors = first_bad - this_sector;
599 if (good_sectors > best_good_sectors) {
600 best_good_sectors = good_sectors;
601 best_disk = disk;
602 }
603 if (choose_first)
604 break;
605 }
606 continue;
607 } else
608 best_good_sectors = sectors;
609
610 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
611 has_nonrot_disk |= nonrot;
612 pending = atomic_read(&rdev->nr_pending);
613 dist = abs(this_sector - conf->mirrors[disk].head_position);
614 if (choose_first) {
615 best_disk = disk;
616 break;
617 }
618 /* Don't change to another disk for sequential reads */
619 if (conf->mirrors[disk].next_seq_sect == this_sector
620 || dist == 0) {
621 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
622 struct raid1_info *mirror = &conf->mirrors[disk];
623
624 best_disk = disk;
625 /*
626 * If buffered sequential IO size exceeds optimal
627 * iosize, check if there is idle disk. If yes, choose
628 * the idle disk. read_balance could already choose an
629 * idle disk before noticing it's a sequential IO in
630 * this disk. This doesn't matter because this disk
631 * will idle, next time it will be utilized after the
632 * first disk has IO size exceeds optimal iosize. In
633 * this way, iosize of the first disk will be optimal
634 * iosize at least. iosize of the second disk might be
635 * small, but not a big deal since when the second disk
636 * starts IO, the first disk is likely still busy.
637 */
638 if (nonrot && opt_iosize > 0 &&
639 mirror->seq_start != MaxSector &&
640 mirror->next_seq_sect > opt_iosize &&
641 mirror->next_seq_sect - opt_iosize >=
642 mirror->seq_start) {
643 choose_next_idle = 1;
644 continue;
645 }
646 break;
647 }
648 /* If device is idle, use it */
649 if (pending == 0) {
650 best_disk = disk;
651 break;
652 }
653
654 if (choose_next_idle)
655 continue;
656
657 if (min_pending > pending) {
658 min_pending = pending;
659 best_pending_disk = disk;
660 }
661
662 if (dist < best_dist) {
663 best_dist = dist;
664 best_dist_disk = disk;
665 }
666 }
667
668 /*
669 * If all disks are rotational, choose the closest disk. If any disk is
670 * non-rotational, choose the disk with less pending request even the
671 * disk is rotational, which might/might not be optimal for raids with
672 * mixed ratation/non-rotational disks depending on workload.
673 */
674 if (best_disk == -1) {
675 if (has_nonrot_disk)
676 best_disk = best_pending_disk;
677 else
678 best_disk = best_dist_disk;
679 }
680
681 if (best_disk >= 0) {
682 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
683 if (!rdev)
684 goto retry;
685 atomic_inc(&rdev->nr_pending);
686 sectors = best_good_sectors;
687
688 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
689 conf->mirrors[best_disk].seq_start = this_sector;
690
691 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
692 }
693 rcu_read_unlock();
694 *max_sectors = sectors;
695
696 return best_disk;
697 }
698
raid1_congested(struct mddev * mddev,int bits)699 static int raid1_congested(struct mddev *mddev, int bits)
700 {
701 struct r1conf *conf = mddev->private;
702 int i, ret = 0;
703
704 if ((bits & (1 << WB_async_congested)) &&
705 conf->pending_count >= max_queued_requests)
706 return 1;
707
708 rcu_read_lock();
709 for (i = 0; i < conf->raid_disks * 2; i++) {
710 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
711 if (rdev && !test_bit(Faulty, &rdev->flags)) {
712 struct request_queue *q = bdev_get_queue(rdev->bdev);
713
714 BUG_ON(!q);
715
716 /* Note the '|| 1' - when read_balance prefers
717 * non-congested targets, it can be removed
718 */
719 if ((bits & (1 << WB_async_congested)) || 1)
720 ret |= bdi_congested(&q->backing_dev_info, bits);
721 else
722 ret &= bdi_congested(&q->backing_dev_info, bits);
723 }
724 }
725 rcu_read_unlock();
726 return ret;
727 }
728
flush_pending_writes(struct r1conf * conf)729 static void flush_pending_writes(struct r1conf *conf)
730 {
731 /* Any writes that have been queued but are awaiting
732 * bitmap updates get flushed here.
733 */
734 spin_lock_irq(&conf->device_lock);
735
736 if (conf->pending_bio_list.head) {
737 struct bio *bio;
738 bio = bio_list_get(&conf->pending_bio_list);
739 conf->pending_count = 0;
740 spin_unlock_irq(&conf->device_lock);
741 /* flush any pending bitmap writes to
742 * disk before proceeding w/ I/O */
743 bitmap_unplug(conf->mddev->bitmap);
744 wake_up(&conf->wait_barrier);
745
746 while (bio) { /* submit pending writes */
747 struct bio *next = bio->bi_next;
748 bio->bi_next = NULL;
749 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
750 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
751 /* Just ignore it */
752 bio_endio(bio);
753 else
754 generic_make_request(bio);
755 bio = next;
756 }
757 } else
758 spin_unlock_irq(&conf->device_lock);
759 }
760
761 /* Barriers....
762 * Sometimes we need to suspend IO while we do something else,
763 * either some resync/recovery, or reconfigure the array.
764 * To do this we raise a 'barrier'.
765 * The 'barrier' is a counter that can be raised multiple times
766 * to count how many activities are happening which preclude
767 * normal IO.
768 * We can only raise the barrier if there is no pending IO.
769 * i.e. if nr_pending == 0.
770 * We choose only to raise the barrier if no-one is waiting for the
771 * barrier to go down. This means that as soon as an IO request
772 * is ready, no other operations which require a barrier will start
773 * until the IO request has had a chance.
774 *
775 * So: regular IO calls 'wait_barrier'. When that returns there
776 * is no backgroup IO happening, It must arrange to call
777 * allow_barrier when it has finished its IO.
778 * backgroup IO calls must call raise_barrier. Once that returns
779 * there is no normal IO happeing. It must arrange to call
780 * lower_barrier when the particular background IO completes.
781 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)782 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
783 {
784 spin_lock_irq(&conf->resync_lock);
785
786 /* Wait until no block IO is waiting */
787 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
788 conf->resync_lock);
789
790 /* block any new IO from starting */
791 conf->barrier++;
792 conf->next_resync = sector_nr;
793
794 /* For these conditions we must wait:
795 * A: while the array is in frozen state
796 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
797 * the max count which allowed.
798 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
799 * next resync will reach to the window which normal bios are
800 * handling.
801 * D: while there are any active requests in the current window.
802 */
803 wait_event_lock_irq(conf->wait_barrier,
804 !conf->array_frozen &&
805 conf->barrier < RESYNC_DEPTH &&
806 conf->current_window_requests == 0 &&
807 (conf->start_next_window >=
808 conf->next_resync + RESYNC_SECTORS),
809 conf->resync_lock);
810
811 conf->nr_pending++;
812 spin_unlock_irq(&conf->resync_lock);
813 }
814
lower_barrier(struct r1conf * conf)815 static void lower_barrier(struct r1conf *conf)
816 {
817 unsigned long flags;
818 BUG_ON(conf->barrier <= 0);
819 spin_lock_irqsave(&conf->resync_lock, flags);
820 conf->barrier--;
821 conf->nr_pending--;
822 spin_unlock_irqrestore(&conf->resync_lock, flags);
823 wake_up(&conf->wait_barrier);
824 }
825
need_to_wait_for_sync(struct r1conf * conf,struct bio * bio)826 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
827 {
828 bool wait = false;
829
830 if (conf->array_frozen || !bio)
831 wait = true;
832 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
833 if ((conf->mddev->curr_resync_completed
834 >= bio_end_sector(bio)) ||
835 (conf->next_resync + NEXT_NORMALIO_DISTANCE
836 <= bio->bi_iter.bi_sector))
837 wait = false;
838 else
839 wait = true;
840 }
841
842 return wait;
843 }
844
wait_barrier(struct r1conf * conf,struct bio * bio)845 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
846 {
847 sector_t sector = 0;
848
849 spin_lock_irq(&conf->resync_lock);
850 if (need_to_wait_for_sync(conf, bio)) {
851 conf->nr_waiting++;
852 /* Wait for the barrier to drop.
853 * However if there are already pending
854 * requests (preventing the barrier from
855 * rising completely), and the
856 * per-process bio queue isn't empty,
857 * then don't wait, as we need to empty
858 * that queue to allow conf->start_next_window
859 * to increase.
860 */
861 wait_event_lock_irq(conf->wait_barrier,
862 !conf->array_frozen &&
863 (!conf->barrier ||
864 ((conf->start_next_window <
865 conf->next_resync + RESYNC_SECTORS) &&
866 current->bio_list &&
867 !bio_list_empty(current->bio_list))),
868 conf->resync_lock);
869 conf->nr_waiting--;
870 }
871
872 if (bio && bio_data_dir(bio) == WRITE) {
873 if (bio->bi_iter.bi_sector >= conf->next_resync) {
874 if (conf->start_next_window == MaxSector)
875 conf->start_next_window =
876 conf->next_resync +
877 NEXT_NORMALIO_DISTANCE;
878
879 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
880 <= bio->bi_iter.bi_sector)
881 conf->next_window_requests++;
882 else
883 conf->current_window_requests++;
884 sector = conf->start_next_window;
885 }
886 }
887
888 conf->nr_pending++;
889 spin_unlock_irq(&conf->resync_lock);
890 return sector;
891 }
892
allow_barrier(struct r1conf * conf,sector_t start_next_window,sector_t bi_sector)893 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
894 sector_t bi_sector)
895 {
896 unsigned long flags;
897
898 spin_lock_irqsave(&conf->resync_lock, flags);
899 conf->nr_pending--;
900 if (start_next_window) {
901 if (start_next_window == conf->start_next_window) {
902 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
903 <= bi_sector)
904 conf->next_window_requests--;
905 else
906 conf->current_window_requests--;
907 } else
908 conf->current_window_requests--;
909
910 if (!conf->current_window_requests) {
911 if (conf->next_window_requests) {
912 conf->current_window_requests =
913 conf->next_window_requests;
914 conf->next_window_requests = 0;
915 conf->start_next_window +=
916 NEXT_NORMALIO_DISTANCE;
917 } else
918 conf->start_next_window = MaxSector;
919 }
920 }
921 spin_unlock_irqrestore(&conf->resync_lock, flags);
922 wake_up(&conf->wait_barrier);
923 }
924
freeze_array(struct r1conf * conf,int extra)925 static void freeze_array(struct r1conf *conf, int extra)
926 {
927 /* stop syncio and normal IO and wait for everything to
928 * go quite.
929 * We wait until nr_pending match nr_queued+extra
930 * This is called in the context of one normal IO request
931 * that has failed. Thus any sync request that might be pending
932 * will be blocked by nr_pending, and we need to wait for
933 * pending IO requests to complete or be queued for re-try.
934 * Thus the number queued (nr_queued) plus this request (extra)
935 * must match the number of pending IOs (nr_pending) before
936 * we continue.
937 */
938 spin_lock_irq(&conf->resync_lock);
939 conf->array_frozen = 1;
940 wait_event_lock_irq_cmd(conf->wait_barrier,
941 conf->nr_pending == conf->nr_queued+extra,
942 conf->resync_lock,
943 flush_pending_writes(conf));
944 spin_unlock_irq(&conf->resync_lock);
945 }
unfreeze_array(struct r1conf * conf)946 static void unfreeze_array(struct r1conf *conf)
947 {
948 /* reverse the effect of the freeze */
949 spin_lock_irq(&conf->resync_lock);
950 conf->array_frozen = 0;
951 wake_up(&conf->wait_barrier);
952 spin_unlock_irq(&conf->resync_lock);
953 }
954
955 /* duplicate the data pages for behind I/O
956 */
alloc_behind_pages(struct bio * bio,struct r1bio * r1_bio)957 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
958 {
959 int i;
960 struct bio_vec *bvec;
961 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
962 GFP_NOIO);
963 if (unlikely(!bvecs))
964 return;
965
966 bio_for_each_segment_all(bvec, bio, i) {
967 bvecs[i] = *bvec;
968 bvecs[i].bv_page = alloc_page(GFP_NOIO);
969 if (unlikely(!bvecs[i].bv_page))
970 goto do_sync_io;
971 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
972 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
973 kunmap(bvecs[i].bv_page);
974 kunmap(bvec->bv_page);
975 }
976 r1_bio->behind_bvecs = bvecs;
977 r1_bio->behind_page_count = bio->bi_vcnt;
978 set_bit(R1BIO_BehindIO, &r1_bio->state);
979 return;
980
981 do_sync_io:
982 for (i = 0; i < bio->bi_vcnt; i++)
983 if (bvecs[i].bv_page)
984 put_page(bvecs[i].bv_page);
985 kfree(bvecs);
986 pr_debug("%dB behind alloc failed, doing sync I/O\n",
987 bio->bi_iter.bi_size);
988 }
989
990 struct raid1_plug_cb {
991 struct blk_plug_cb cb;
992 struct bio_list pending;
993 int pending_cnt;
994 };
995
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)996 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
997 {
998 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
999 cb);
1000 struct mddev *mddev = plug->cb.data;
1001 struct r1conf *conf = mddev->private;
1002 struct bio *bio;
1003
1004 if (from_schedule || current->bio_list) {
1005 spin_lock_irq(&conf->device_lock);
1006 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1007 conf->pending_count += plug->pending_cnt;
1008 spin_unlock_irq(&conf->device_lock);
1009 wake_up(&conf->wait_barrier);
1010 md_wakeup_thread(mddev->thread);
1011 kfree(plug);
1012 return;
1013 }
1014
1015 /* we aren't scheduling, so we can do the write-out directly. */
1016 bio = bio_list_get(&plug->pending);
1017 bitmap_unplug(mddev->bitmap);
1018 wake_up(&conf->wait_barrier);
1019
1020 while (bio) { /* submit pending writes */
1021 struct bio *next = bio->bi_next;
1022 bio->bi_next = NULL;
1023 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1024 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1025 /* Just ignore it */
1026 bio_endio(bio);
1027 else
1028 generic_make_request(bio);
1029 bio = next;
1030 }
1031 kfree(plug);
1032 }
1033
raid1_make_request(struct mddev * mddev,struct bio * bio)1034 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1035 {
1036 struct r1conf *conf = mddev->private;
1037 struct raid1_info *mirror;
1038 struct r1bio *r1_bio;
1039 struct bio *read_bio;
1040 int i, disks;
1041 struct bitmap *bitmap;
1042 unsigned long flags;
1043 const int op = bio_op(bio);
1044 const int rw = bio_data_dir(bio);
1045 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1046 const unsigned long do_flush_fua = (bio->bi_opf &
1047 (REQ_PREFLUSH | REQ_FUA));
1048 struct md_rdev *blocked_rdev;
1049 struct blk_plug_cb *cb;
1050 struct raid1_plug_cb *plug = NULL;
1051 int first_clone;
1052 int sectors_handled;
1053 int max_sectors;
1054 sector_t start_next_window;
1055
1056 /*
1057 * Register the new request and wait if the reconstruction
1058 * thread has put up a bar for new requests.
1059 * Continue immediately if no resync is active currently.
1060 */
1061
1062 md_write_start(mddev, bio); /* wait on superblock update early */
1063
1064 if (bio_data_dir(bio) == WRITE &&
1065 ((bio_end_sector(bio) > mddev->suspend_lo &&
1066 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1067 (mddev_is_clustered(mddev) &&
1068 md_cluster_ops->area_resyncing(mddev, WRITE,
1069 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1070 /* As the suspend_* range is controlled by
1071 * userspace, we want an interruptible
1072 * wait.
1073 */
1074 DEFINE_WAIT(w);
1075 for (;;) {
1076 sigset_t full, old;
1077 prepare_to_wait(&conf->wait_barrier,
1078 &w, TASK_INTERRUPTIBLE);
1079 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1080 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1081 (mddev_is_clustered(mddev) &&
1082 !md_cluster_ops->area_resyncing(mddev, WRITE,
1083 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1084 break;
1085 sigfillset(&full);
1086 sigprocmask(SIG_BLOCK, &full, &old);
1087 schedule();
1088 sigprocmask(SIG_SETMASK, &old, NULL);
1089 }
1090 finish_wait(&conf->wait_barrier, &w);
1091 }
1092
1093 start_next_window = wait_barrier(conf, bio);
1094
1095 bitmap = mddev->bitmap;
1096
1097 /*
1098 * make_request() can abort the operation when read-ahead is being
1099 * used and no empty request is available.
1100 *
1101 */
1102 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1103
1104 r1_bio->master_bio = bio;
1105 r1_bio->sectors = bio_sectors(bio);
1106 r1_bio->state = 0;
1107 r1_bio->mddev = mddev;
1108 r1_bio->sector = bio->bi_iter.bi_sector;
1109
1110 /* We might need to issue multiple reads to different
1111 * devices if there are bad blocks around, so we keep
1112 * track of the number of reads in bio->bi_phys_segments.
1113 * If this is 0, there is only one r1_bio and no locking
1114 * will be needed when requests complete. If it is
1115 * non-zero, then it is the number of not-completed requests.
1116 */
1117 bio->bi_phys_segments = 0;
1118 bio_clear_flag(bio, BIO_SEG_VALID);
1119
1120 if (rw == READ) {
1121 /*
1122 * read balancing logic:
1123 */
1124 int rdisk;
1125
1126 read_again:
1127 rdisk = read_balance(conf, r1_bio, &max_sectors);
1128
1129 if (rdisk < 0) {
1130 /* couldn't find anywhere to read from */
1131 raid_end_bio_io(r1_bio);
1132 return;
1133 }
1134 mirror = conf->mirrors + rdisk;
1135
1136 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1137 bitmap) {
1138 /* Reading from a write-mostly device must
1139 * take care not to over-take any writes
1140 * that are 'behind'
1141 */
1142 wait_event(bitmap->behind_wait,
1143 atomic_read(&bitmap->behind_writes) == 0);
1144 }
1145 r1_bio->read_disk = rdisk;
1146 r1_bio->start_next_window = 0;
1147
1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1150 max_sectors);
1151
1152 r1_bio->bios[rdisk] = read_bio;
1153
1154 read_bio->bi_iter.bi_sector = r1_bio->sector +
1155 mirror->rdev->data_offset;
1156 read_bio->bi_bdev = mirror->rdev->bdev;
1157 read_bio->bi_end_io = raid1_end_read_request;
1158 bio_set_op_attrs(read_bio, op, do_sync);
1159 read_bio->bi_private = r1_bio;
1160
1161 if (max_sectors < r1_bio->sectors) {
1162 /* could not read all from this device, so we will
1163 * need another r1_bio.
1164 */
1165
1166 sectors_handled = (r1_bio->sector + max_sectors
1167 - bio->bi_iter.bi_sector);
1168 r1_bio->sectors = max_sectors;
1169 spin_lock_irq(&conf->device_lock);
1170 if (bio->bi_phys_segments == 0)
1171 bio->bi_phys_segments = 2;
1172 else
1173 bio->bi_phys_segments++;
1174 spin_unlock_irq(&conf->device_lock);
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __make_request
1177 * and subsequent mempool_alloc might block waiting
1178 * for it. So hand bio over to raid1d.
1179 */
1180 reschedule_retry(r1_bio);
1181
1182 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183
1184 r1_bio->master_bio = bio;
1185 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 r1_bio->state = 0;
1187 r1_bio->mddev = mddev;
1188 r1_bio->sector = bio->bi_iter.bi_sector +
1189 sectors_handled;
1190 goto read_again;
1191 } else
1192 generic_make_request(read_bio);
1193 return;
1194 }
1195
1196 /*
1197 * WRITE:
1198 */
1199 if (conf->pending_count >= max_queued_requests) {
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(conf->wait_barrier,
1202 conf->pending_count < max_queued_requests);
1203 }
1204 /* first select target devices under rcu_lock and
1205 * inc refcount on their rdev. Record them by setting
1206 * bios[x] to bio
1207 * If there are known/acknowledged bad blocks on any device on
1208 * which we have seen a write error, we want to avoid writing those
1209 * blocks.
1210 * This potentially requires several writes to write around
1211 * the bad blocks. Each set of writes gets it's own r1bio
1212 * with a set of bios attached.
1213 */
1214
1215 disks = conf->raid_disks * 2;
1216 retry_write:
1217 r1_bio->start_next_window = start_next_window;
1218 blocked_rdev = NULL;
1219 rcu_read_lock();
1220 max_sectors = r1_bio->sectors;
1221 for (i = 0; i < disks; i++) {
1222 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1223 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1224 atomic_inc(&rdev->nr_pending);
1225 blocked_rdev = rdev;
1226 break;
1227 }
1228 r1_bio->bios[i] = NULL;
1229 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1230 if (i < conf->raid_disks)
1231 set_bit(R1BIO_Degraded, &r1_bio->state);
1232 continue;
1233 }
1234
1235 atomic_inc(&rdev->nr_pending);
1236 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1237 sector_t first_bad;
1238 int bad_sectors;
1239 int is_bad;
1240
1241 is_bad = is_badblock(rdev, r1_bio->sector,
1242 max_sectors,
1243 &first_bad, &bad_sectors);
1244 if (is_bad < 0) {
1245 /* mustn't write here until the bad block is
1246 * acknowledged*/
1247 set_bit(BlockedBadBlocks, &rdev->flags);
1248 blocked_rdev = rdev;
1249 break;
1250 }
1251 if (is_bad && first_bad <= r1_bio->sector) {
1252 /* Cannot write here at all */
1253 bad_sectors -= (r1_bio->sector - first_bad);
1254 if (bad_sectors < max_sectors)
1255 /* mustn't write more than bad_sectors
1256 * to other devices yet
1257 */
1258 max_sectors = bad_sectors;
1259 rdev_dec_pending(rdev, mddev);
1260 /* We don't set R1BIO_Degraded as that
1261 * only applies if the disk is
1262 * missing, so it might be re-added,
1263 * and we want to know to recover this
1264 * chunk.
1265 * In this case the device is here,
1266 * and the fact that this chunk is not
1267 * in-sync is recorded in the bad
1268 * block log
1269 */
1270 continue;
1271 }
1272 if (is_bad) {
1273 int good_sectors = first_bad - r1_bio->sector;
1274 if (good_sectors < max_sectors)
1275 max_sectors = good_sectors;
1276 }
1277 }
1278 r1_bio->bios[i] = bio;
1279 }
1280 rcu_read_unlock();
1281
1282 if (unlikely(blocked_rdev)) {
1283 /* Wait for this device to become unblocked */
1284 int j;
1285 sector_t old = start_next_window;
1286
1287 for (j = 0; j < i; j++)
1288 if (r1_bio->bios[j])
1289 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1290 r1_bio->state = 0;
1291 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1292 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1293 start_next_window = wait_barrier(conf, bio);
1294 /*
1295 * We must make sure the multi r1bios of bio have
1296 * the same value of bi_phys_segments
1297 */
1298 if (bio->bi_phys_segments && old &&
1299 old != start_next_window)
1300 /* Wait for the former r1bio(s) to complete */
1301 wait_event(conf->wait_barrier,
1302 bio->bi_phys_segments == 1);
1303 goto retry_write;
1304 }
1305
1306 if (max_sectors < r1_bio->sectors) {
1307 /* We are splitting this write into multiple parts, so
1308 * we need to prepare for allocating another r1_bio.
1309 */
1310 r1_bio->sectors = max_sectors;
1311 spin_lock_irq(&conf->device_lock);
1312 if (bio->bi_phys_segments == 0)
1313 bio->bi_phys_segments = 2;
1314 else
1315 bio->bi_phys_segments++;
1316 spin_unlock_irq(&conf->device_lock);
1317 }
1318 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1319
1320 atomic_set(&r1_bio->remaining, 1);
1321 atomic_set(&r1_bio->behind_remaining, 0);
1322
1323 first_clone = 1;
1324 for (i = 0; i < disks; i++) {
1325 struct bio *mbio;
1326 if (!r1_bio->bios[i])
1327 continue;
1328
1329 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1330 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1331
1332 if (first_clone) {
1333 /* do behind I/O ?
1334 * Not if there are too many, or cannot
1335 * allocate memory, or a reader on WriteMostly
1336 * is waiting for behind writes to flush */
1337 if (bitmap &&
1338 (atomic_read(&bitmap->behind_writes)
1339 < mddev->bitmap_info.max_write_behind) &&
1340 !waitqueue_active(&bitmap->behind_wait))
1341 alloc_behind_pages(mbio, r1_bio);
1342
1343 bitmap_startwrite(bitmap, r1_bio->sector,
1344 r1_bio->sectors,
1345 test_bit(R1BIO_BehindIO,
1346 &r1_bio->state));
1347 first_clone = 0;
1348 }
1349 if (r1_bio->behind_bvecs) {
1350 struct bio_vec *bvec;
1351 int j;
1352
1353 /*
1354 * We trimmed the bio, so _all is legit
1355 */
1356 bio_for_each_segment_all(bvec, mbio, j)
1357 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1358 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1359 atomic_inc(&r1_bio->behind_remaining);
1360 }
1361
1362 r1_bio->bios[i] = mbio;
1363
1364 mbio->bi_iter.bi_sector = (r1_bio->sector +
1365 conf->mirrors[i].rdev->data_offset);
1366 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1367 mbio->bi_end_io = raid1_end_write_request;
1368 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1369 mbio->bi_private = r1_bio;
1370
1371 atomic_inc(&r1_bio->remaining);
1372
1373 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid1_plug_cb, cb);
1376 else
1377 plug = NULL;
1378 spin_lock_irqsave(&conf->device_lock, flags);
1379 if (plug) {
1380 bio_list_add(&plug->pending, mbio);
1381 plug->pending_cnt++;
1382 } else {
1383 bio_list_add(&conf->pending_bio_list, mbio);
1384 conf->pending_count++;
1385 }
1386 spin_unlock_irqrestore(&conf->device_lock, flags);
1387 if (!plug)
1388 md_wakeup_thread(mddev->thread);
1389 }
1390 /* Mustn't call r1_bio_write_done before this next test,
1391 * as it could result in the bio being freed.
1392 */
1393 if (sectors_handled < bio_sectors(bio)) {
1394 r1_bio_write_done(r1_bio);
1395 /* We need another r1_bio. It has already been counted
1396 * in bio->bi_phys_segments
1397 */
1398 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1399 r1_bio->master_bio = bio;
1400 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1401 r1_bio->state = 0;
1402 r1_bio->mddev = mddev;
1403 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1404 goto retry_write;
1405 }
1406
1407 r1_bio_write_done(r1_bio);
1408
1409 /* In case raid1d snuck in to freeze_array */
1410 wake_up(&conf->wait_barrier);
1411 }
1412
raid1_status(struct seq_file * seq,struct mddev * mddev)1413 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1414 {
1415 struct r1conf *conf = mddev->private;
1416 int i;
1417
1418 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1419 conf->raid_disks - mddev->degraded);
1420 rcu_read_lock();
1421 for (i = 0; i < conf->raid_disks; i++) {
1422 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1423 seq_printf(seq, "%s",
1424 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1425 }
1426 rcu_read_unlock();
1427 seq_printf(seq, "]");
1428 }
1429
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1430 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1431 {
1432 char b[BDEVNAME_SIZE];
1433 struct r1conf *conf = mddev->private;
1434 unsigned long flags;
1435
1436 /*
1437 * If it is not operational, then we have already marked it as dead
1438 * else if it is the last working disks, ignore the error, let the
1439 * next level up know.
1440 * else mark the drive as failed
1441 */
1442 if (test_bit(In_sync, &rdev->flags)
1443 && (conf->raid_disks - mddev->degraded) == 1) {
1444 /*
1445 * Don't fail the drive, act as though we were just a
1446 * normal single drive.
1447 * However don't try a recovery from this drive as
1448 * it is very likely to fail.
1449 */
1450 conf->recovery_disabled = mddev->recovery_disabled;
1451 return;
1452 }
1453 set_bit(Blocked, &rdev->flags);
1454 spin_lock_irqsave(&conf->device_lock, flags);
1455 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1456 mddev->degraded++;
1457 set_bit(Faulty, &rdev->flags);
1458 } else
1459 set_bit(Faulty, &rdev->flags);
1460 spin_unlock_irqrestore(&conf->device_lock, flags);
1461 /*
1462 * if recovery is running, make sure it aborts.
1463 */
1464 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1465 set_mask_bits(&mddev->flags, 0,
1466 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1467 printk(KERN_ALERT
1468 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1469 "md/raid1:%s: Operation continuing on %d devices.\n",
1470 mdname(mddev), bdevname(rdev->bdev, b),
1471 mdname(mddev), conf->raid_disks - mddev->degraded);
1472 }
1473
print_conf(struct r1conf * conf)1474 static void print_conf(struct r1conf *conf)
1475 {
1476 int i;
1477
1478 printk(KERN_DEBUG "RAID1 conf printout:\n");
1479 if (!conf) {
1480 printk(KERN_DEBUG "(!conf)\n");
1481 return;
1482 }
1483 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1484 conf->raid_disks);
1485
1486 rcu_read_lock();
1487 for (i = 0; i < conf->raid_disks; i++) {
1488 char b[BDEVNAME_SIZE];
1489 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1490 if (rdev)
1491 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1492 i, !test_bit(In_sync, &rdev->flags),
1493 !test_bit(Faulty, &rdev->flags),
1494 bdevname(rdev->bdev,b));
1495 }
1496 rcu_read_unlock();
1497 }
1498
close_sync(struct r1conf * conf)1499 static void close_sync(struct r1conf *conf)
1500 {
1501 wait_barrier(conf, NULL);
1502 allow_barrier(conf, 0, 0);
1503
1504 mempool_destroy(conf->r1buf_pool);
1505 conf->r1buf_pool = NULL;
1506
1507 spin_lock_irq(&conf->resync_lock);
1508 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1509 conf->start_next_window = MaxSector;
1510 conf->current_window_requests +=
1511 conf->next_window_requests;
1512 conf->next_window_requests = 0;
1513 spin_unlock_irq(&conf->resync_lock);
1514 }
1515
raid1_spare_active(struct mddev * mddev)1516 static int raid1_spare_active(struct mddev *mddev)
1517 {
1518 int i;
1519 struct r1conf *conf = mddev->private;
1520 int count = 0;
1521 unsigned long flags;
1522
1523 /*
1524 * Find all failed disks within the RAID1 configuration
1525 * and mark them readable.
1526 * Called under mddev lock, so rcu protection not needed.
1527 * device_lock used to avoid races with raid1_end_read_request
1528 * which expects 'In_sync' flags and ->degraded to be consistent.
1529 */
1530 spin_lock_irqsave(&conf->device_lock, flags);
1531 for (i = 0; i < conf->raid_disks; i++) {
1532 struct md_rdev *rdev = conf->mirrors[i].rdev;
1533 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1534 if (repl
1535 && !test_bit(Candidate, &repl->flags)
1536 && repl->recovery_offset == MaxSector
1537 && !test_bit(Faulty, &repl->flags)
1538 && !test_and_set_bit(In_sync, &repl->flags)) {
1539 /* replacement has just become active */
1540 if (!rdev ||
1541 !test_and_clear_bit(In_sync, &rdev->flags))
1542 count++;
1543 if (rdev) {
1544 /* Replaced device not technically
1545 * faulty, but we need to be sure
1546 * it gets removed and never re-added
1547 */
1548 set_bit(Faulty, &rdev->flags);
1549 sysfs_notify_dirent_safe(
1550 rdev->sysfs_state);
1551 }
1552 }
1553 if (rdev
1554 && rdev->recovery_offset == MaxSector
1555 && !test_bit(Faulty, &rdev->flags)
1556 && !test_and_set_bit(In_sync, &rdev->flags)) {
1557 count++;
1558 sysfs_notify_dirent_safe(rdev->sysfs_state);
1559 }
1560 }
1561 mddev->degraded -= count;
1562 spin_unlock_irqrestore(&conf->device_lock, flags);
1563
1564 print_conf(conf);
1565 return count;
1566 }
1567
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1568 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1569 {
1570 struct r1conf *conf = mddev->private;
1571 int err = -EEXIST;
1572 int mirror = 0;
1573 struct raid1_info *p;
1574 int first = 0;
1575 int last = conf->raid_disks - 1;
1576
1577 if (mddev->recovery_disabled == conf->recovery_disabled)
1578 return -EBUSY;
1579
1580 if (md_integrity_add_rdev(rdev, mddev))
1581 return -ENXIO;
1582
1583 if (rdev->raid_disk >= 0)
1584 first = last = rdev->raid_disk;
1585
1586 /*
1587 * find the disk ... but prefer rdev->saved_raid_disk
1588 * if possible.
1589 */
1590 if (rdev->saved_raid_disk >= 0 &&
1591 rdev->saved_raid_disk >= first &&
1592 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1593 first = last = rdev->saved_raid_disk;
1594
1595 for (mirror = first; mirror <= last; mirror++) {
1596 p = conf->mirrors+mirror;
1597 if (!p->rdev) {
1598
1599 if (mddev->gendisk)
1600 disk_stack_limits(mddev->gendisk, rdev->bdev,
1601 rdev->data_offset << 9);
1602
1603 p->head_position = 0;
1604 rdev->raid_disk = mirror;
1605 err = 0;
1606 /* As all devices are equivalent, we don't need a full recovery
1607 * if this was recently any drive of the array
1608 */
1609 if (rdev->saved_raid_disk < 0)
1610 conf->fullsync = 1;
1611 rcu_assign_pointer(p->rdev, rdev);
1612 break;
1613 }
1614 if (test_bit(WantReplacement, &p->rdev->flags) &&
1615 p[conf->raid_disks].rdev == NULL) {
1616 /* Add this device as a replacement */
1617 clear_bit(In_sync, &rdev->flags);
1618 set_bit(Replacement, &rdev->flags);
1619 rdev->raid_disk = mirror;
1620 err = 0;
1621 conf->fullsync = 1;
1622 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1623 break;
1624 }
1625 }
1626 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1627 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1628 print_conf(conf);
1629 return err;
1630 }
1631
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1632 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1633 {
1634 struct r1conf *conf = mddev->private;
1635 int err = 0;
1636 int number = rdev->raid_disk;
1637 struct raid1_info *p = conf->mirrors + number;
1638
1639 if (rdev != p->rdev)
1640 p = conf->mirrors + conf->raid_disks + number;
1641
1642 print_conf(conf);
1643 if (rdev == p->rdev) {
1644 if (test_bit(In_sync, &rdev->flags) ||
1645 atomic_read(&rdev->nr_pending)) {
1646 err = -EBUSY;
1647 goto abort;
1648 }
1649 /* Only remove non-faulty devices if recovery
1650 * is not possible.
1651 */
1652 if (!test_bit(Faulty, &rdev->flags) &&
1653 mddev->recovery_disabled != conf->recovery_disabled &&
1654 mddev->degraded < conf->raid_disks) {
1655 err = -EBUSY;
1656 goto abort;
1657 }
1658 p->rdev = NULL;
1659 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1660 synchronize_rcu();
1661 if (atomic_read(&rdev->nr_pending)) {
1662 /* lost the race, try later */
1663 err = -EBUSY;
1664 p->rdev = rdev;
1665 goto abort;
1666 }
1667 }
1668 if (conf->mirrors[conf->raid_disks + number].rdev) {
1669 /* We just removed a device that is being replaced.
1670 * Move down the replacement. We drain all IO before
1671 * doing this to avoid confusion.
1672 */
1673 struct md_rdev *repl =
1674 conf->mirrors[conf->raid_disks + number].rdev;
1675 freeze_array(conf, 0);
1676 clear_bit(Replacement, &repl->flags);
1677 p->rdev = repl;
1678 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1679 unfreeze_array(conf);
1680 clear_bit(WantReplacement, &rdev->flags);
1681 } else
1682 clear_bit(WantReplacement, &rdev->flags);
1683 err = md_integrity_register(mddev);
1684 }
1685 abort:
1686
1687 print_conf(conf);
1688 return err;
1689 }
1690
end_sync_read(struct bio * bio)1691 static void end_sync_read(struct bio *bio)
1692 {
1693 struct r1bio *r1_bio = bio->bi_private;
1694
1695 update_head_pos(r1_bio->read_disk, r1_bio);
1696
1697 /*
1698 * we have read a block, now it needs to be re-written,
1699 * or re-read if the read failed.
1700 * We don't do much here, just schedule handling by raid1d
1701 */
1702 if (!bio->bi_error)
1703 set_bit(R1BIO_Uptodate, &r1_bio->state);
1704
1705 if (atomic_dec_and_test(&r1_bio->remaining))
1706 reschedule_retry(r1_bio);
1707 }
1708
end_sync_write(struct bio * bio)1709 static void end_sync_write(struct bio *bio)
1710 {
1711 int uptodate = !bio->bi_error;
1712 struct r1bio *r1_bio = bio->bi_private;
1713 struct mddev *mddev = r1_bio->mddev;
1714 struct r1conf *conf = mddev->private;
1715 sector_t first_bad;
1716 int bad_sectors;
1717 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1718
1719 if (!uptodate) {
1720 sector_t sync_blocks = 0;
1721 sector_t s = r1_bio->sector;
1722 long sectors_to_go = r1_bio->sectors;
1723 /* make sure these bits doesn't get cleared. */
1724 do {
1725 bitmap_end_sync(mddev->bitmap, s,
1726 &sync_blocks, 1);
1727 s += sync_blocks;
1728 sectors_to_go -= sync_blocks;
1729 } while (sectors_to_go > 0);
1730 set_bit(WriteErrorSeen, &rdev->flags);
1731 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1732 set_bit(MD_RECOVERY_NEEDED, &
1733 mddev->recovery);
1734 set_bit(R1BIO_WriteError, &r1_bio->state);
1735 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1736 &first_bad, &bad_sectors) &&
1737 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1738 r1_bio->sector,
1739 r1_bio->sectors,
1740 &first_bad, &bad_sectors)
1741 )
1742 set_bit(R1BIO_MadeGood, &r1_bio->state);
1743
1744 if (atomic_dec_and_test(&r1_bio->remaining)) {
1745 int s = r1_bio->sectors;
1746 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1747 test_bit(R1BIO_WriteError, &r1_bio->state))
1748 reschedule_retry(r1_bio);
1749 else {
1750 put_buf(r1_bio);
1751 md_done_sync(mddev, s, uptodate);
1752 }
1753 }
1754 }
1755
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)1756 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1757 int sectors, struct page *page, int rw)
1758 {
1759 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1760 /* success */
1761 return 1;
1762 if (rw == WRITE) {
1763 set_bit(WriteErrorSeen, &rdev->flags);
1764 if (!test_and_set_bit(WantReplacement,
1765 &rdev->flags))
1766 set_bit(MD_RECOVERY_NEEDED, &
1767 rdev->mddev->recovery);
1768 }
1769 /* need to record an error - either for the block or the device */
1770 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1771 md_error(rdev->mddev, rdev);
1772 return 0;
1773 }
1774
fix_sync_read_error(struct r1bio * r1_bio)1775 static int fix_sync_read_error(struct r1bio *r1_bio)
1776 {
1777 /* Try some synchronous reads of other devices to get
1778 * good data, much like with normal read errors. Only
1779 * read into the pages we already have so we don't
1780 * need to re-issue the read request.
1781 * We don't need to freeze the array, because being in an
1782 * active sync request, there is no normal IO, and
1783 * no overlapping syncs.
1784 * We don't need to check is_badblock() again as we
1785 * made sure that anything with a bad block in range
1786 * will have bi_end_io clear.
1787 */
1788 struct mddev *mddev = r1_bio->mddev;
1789 struct r1conf *conf = mddev->private;
1790 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1791 sector_t sect = r1_bio->sector;
1792 int sectors = r1_bio->sectors;
1793 int idx = 0;
1794
1795 while(sectors) {
1796 int s = sectors;
1797 int d = r1_bio->read_disk;
1798 int success = 0;
1799 struct md_rdev *rdev;
1800 int start;
1801
1802 if (s > (PAGE_SIZE>>9))
1803 s = PAGE_SIZE >> 9;
1804 do {
1805 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1806 /* No rcu protection needed here devices
1807 * can only be removed when no resync is
1808 * active, and resync is currently active
1809 */
1810 rdev = conf->mirrors[d].rdev;
1811 if (sync_page_io(rdev, sect, s<<9,
1812 bio->bi_io_vec[idx].bv_page,
1813 REQ_OP_READ, 0, false)) {
1814 success = 1;
1815 break;
1816 }
1817 }
1818 d++;
1819 if (d == conf->raid_disks * 2)
1820 d = 0;
1821 } while (!success && d != r1_bio->read_disk);
1822
1823 if (!success) {
1824 char b[BDEVNAME_SIZE];
1825 int abort = 0;
1826 /* Cannot read from anywhere, this block is lost.
1827 * Record a bad block on each device. If that doesn't
1828 * work just disable and interrupt the recovery.
1829 * Don't fail devices as that won't really help.
1830 */
1831 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1832 " for block %llu\n",
1833 mdname(mddev),
1834 bdevname(bio->bi_bdev, b),
1835 (unsigned long long)r1_bio->sector);
1836 for (d = 0; d < conf->raid_disks * 2; d++) {
1837 rdev = conf->mirrors[d].rdev;
1838 if (!rdev || test_bit(Faulty, &rdev->flags))
1839 continue;
1840 if (!rdev_set_badblocks(rdev, sect, s, 0))
1841 abort = 1;
1842 }
1843 if (abort) {
1844 conf->recovery_disabled =
1845 mddev->recovery_disabled;
1846 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1847 md_done_sync(mddev, r1_bio->sectors, 0);
1848 put_buf(r1_bio);
1849 return 0;
1850 }
1851 /* Try next page */
1852 sectors -= s;
1853 sect += s;
1854 idx++;
1855 continue;
1856 }
1857
1858 start = d;
1859 /* write it back and re-read */
1860 while (d != r1_bio->read_disk) {
1861 if (d == 0)
1862 d = conf->raid_disks * 2;
1863 d--;
1864 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1865 continue;
1866 rdev = conf->mirrors[d].rdev;
1867 if (r1_sync_page_io(rdev, sect, s,
1868 bio->bi_io_vec[idx].bv_page,
1869 WRITE) == 0) {
1870 r1_bio->bios[d]->bi_end_io = NULL;
1871 rdev_dec_pending(rdev, mddev);
1872 }
1873 }
1874 d = start;
1875 while (d != r1_bio->read_disk) {
1876 if (d == 0)
1877 d = conf->raid_disks * 2;
1878 d--;
1879 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880 continue;
1881 rdev = conf->mirrors[d].rdev;
1882 if (r1_sync_page_io(rdev, sect, s,
1883 bio->bi_io_vec[idx].bv_page,
1884 READ) != 0)
1885 atomic_add(s, &rdev->corrected_errors);
1886 }
1887 sectors -= s;
1888 sect += s;
1889 idx ++;
1890 }
1891 set_bit(R1BIO_Uptodate, &r1_bio->state);
1892 bio->bi_error = 0;
1893 return 1;
1894 }
1895
process_checks(struct r1bio * r1_bio)1896 static void process_checks(struct r1bio *r1_bio)
1897 {
1898 /* We have read all readable devices. If we haven't
1899 * got the block, then there is no hope left.
1900 * If we have, then we want to do a comparison
1901 * and skip the write if everything is the same.
1902 * If any blocks failed to read, then we need to
1903 * attempt an over-write
1904 */
1905 struct mddev *mddev = r1_bio->mddev;
1906 struct r1conf *conf = mddev->private;
1907 int primary;
1908 int i;
1909 int vcnt;
1910
1911 /* Fix variable parts of all bios */
1912 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1913 for (i = 0; i < conf->raid_disks * 2; i++) {
1914 int j;
1915 int size;
1916 int error;
1917 struct bio *b = r1_bio->bios[i];
1918 if (b->bi_end_io != end_sync_read)
1919 continue;
1920 /* fixup the bio for reuse, but preserve errno */
1921 error = b->bi_error;
1922 bio_reset(b);
1923 b->bi_error = error;
1924 b->bi_vcnt = vcnt;
1925 b->bi_iter.bi_size = r1_bio->sectors << 9;
1926 b->bi_iter.bi_sector = r1_bio->sector +
1927 conf->mirrors[i].rdev->data_offset;
1928 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1929 b->bi_end_io = end_sync_read;
1930 b->bi_private = r1_bio;
1931
1932 size = b->bi_iter.bi_size;
1933 for (j = 0; j < vcnt ; j++) {
1934 struct bio_vec *bi;
1935 bi = &b->bi_io_vec[j];
1936 bi->bv_offset = 0;
1937 if (size > PAGE_SIZE)
1938 bi->bv_len = PAGE_SIZE;
1939 else
1940 bi->bv_len = size;
1941 size -= PAGE_SIZE;
1942 }
1943 }
1944 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1945 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1946 !r1_bio->bios[primary]->bi_error) {
1947 r1_bio->bios[primary]->bi_end_io = NULL;
1948 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1949 break;
1950 }
1951 r1_bio->read_disk = primary;
1952 for (i = 0; i < conf->raid_disks * 2; i++) {
1953 int j;
1954 struct bio *pbio = r1_bio->bios[primary];
1955 struct bio *sbio = r1_bio->bios[i];
1956 int error = sbio->bi_error;
1957
1958 if (sbio->bi_end_io != end_sync_read)
1959 continue;
1960 /* Now we can 'fixup' the error value */
1961 sbio->bi_error = 0;
1962
1963 if (!error) {
1964 for (j = vcnt; j-- ; ) {
1965 struct page *p, *s;
1966 p = pbio->bi_io_vec[j].bv_page;
1967 s = sbio->bi_io_vec[j].bv_page;
1968 if (memcmp(page_address(p),
1969 page_address(s),
1970 sbio->bi_io_vec[j].bv_len))
1971 break;
1972 }
1973 } else
1974 j = 0;
1975 if (j >= 0)
1976 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1977 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1978 && !error)) {
1979 /* No need to write to this device. */
1980 sbio->bi_end_io = NULL;
1981 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1982 continue;
1983 }
1984
1985 bio_copy_data(sbio, pbio);
1986 }
1987 }
1988
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)1989 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1990 {
1991 struct r1conf *conf = mddev->private;
1992 int i;
1993 int disks = conf->raid_disks * 2;
1994 struct bio *bio, *wbio;
1995
1996 bio = r1_bio->bios[r1_bio->read_disk];
1997
1998 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1999 /* ouch - failed to read all of that. */
2000 if (!fix_sync_read_error(r1_bio))
2001 return;
2002
2003 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2004 process_checks(r1_bio);
2005
2006 /*
2007 * schedule writes
2008 */
2009 atomic_set(&r1_bio->remaining, 1);
2010 for (i = 0; i < disks ; i++) {
2011 wbio = r1_bio->bios[i];
2012 if (wbio->bi_end_io == NULL ||
2013 (wbio->bi_end_io == end_sync_read &&
2014 (i == r1_bio->read_disk ||
2015 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2016 continue;
2017
2018 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2019 wbio->bi_end_io = end_sync_write;
2020 atomic_inc(&r1_bio->remaining);
2021 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2022
2023 generic_make_request(wbio);
2024 }
2025
2026 if (atomic_dec_and_test(&r1_bio->remaining)) {
2027 /* if we're here, all write(s) have completed, so clean up */
2028 int s = r1_bio->sectors;
2029 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2030 test_bit(R1BIO_WriteError, &r1_bio->state))
2031 reschedule_retry(r1_bio);
2032 else {
2033 put_buf(r1_bio);
2034 md_done_sync(mddev, s, 1);
2035 }
2036 }
2037 }
2038
2039 /*
2040 * This is a kernel thread which:
2041 *
2042 * 1. Retries failed read operations on working mirrors.
2043 * 2. Updates the raid superblock when problems encounter.
2044 * 3. Performs writes following reads for array synchronising.
2045 */
2046
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2047 static void fix_read_error(struct r1conf *conf, int read_disk,
2048 sector_t sect, int sectors)
2049 {
2050 struct mddev *mddev = conf->mddev;
2051 while(sectors) {
2052 int s = sectors;
2053 int d = read_disk;
2054 int success = 0;
2055 int start;
2056 struct md_rdev *rdev;
2057
2058 if (s > (PAGE_SIZE>>9))
2059 s = PAGE_SIZE >> 9;
2060
2061 do {
2062 sector_t first_bad;
2063 int bad_sectors;
2064
2065 rcu_read_lock();
2066 rdev = rcu_dereference(conf->mirrors[d].rdev);
2067 if (rdev &&
2068 (test_bit(In_sync, &rdev->flags) ||
2069 (!test_bit(Faulty, &rdev->flags) &&
2070 rdev->recovery_offset >= sect + s)) &&
2071 is_badblock(rdev, sect, s,
2072 &first_bad, &bad_sectors) == 0) {
2073 atomic_inc(&rdev->nr_pending);
2074 rcu_read_unlock();
2075 if (sync_page_io(rdev, sect, s<<9,
2076 conf->tmppage, REQ_OP_READ, 0, false))
2077 success = 1;
2078 rdev_dec_pending(rdev, mddev);
2079 if (success)
2080 break;
2081 } else
2082 rcu_read_unlock();
2083 d++;
2084 if (d == conf->raid_disks * 2)
2085 d = 0;
2086 } while (!success && d != read_disk);
2087
2088 if (!success) {
2089 /* Cannot read from anywhere - mark it bad */
2090 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2091 if (!rdev_set_badblocks(rdev, sect, s, 0))
2092 md_error(mddev, rdev);
2093 break;
2094 }
2095 /* write it back and re-read */
2096 start = d;
2097 while (d != read_disk) {
2098 if (d==0)
2099 d = conf->raid_disks * 2;
2100 d--;
2101 rcu_read_lock();
2102 rdev = rcu_dereference(conf->mirrors[d].rdev);
2103 if (rdev &&
2104 !test_bit(Faulty, &rdev->flags)) {
2105 atomic_inc(&rdev->nr_pending);
2106 rcu_read_unlock();
2107 r1_sync_page_io(rdev, sect, s,
2108 conf->tmppage, WRITE);
2109 rdev_dec_pending(rdev, mddev);
2110 } else
2111 rcu_read_unlock();
2112 }
2113 d = start;
2114 while (d != read_disk) {
2115 char b[BDEVNAME_SIZE];
2116 if (d==0)
2117 d = conf->raid_disks * 2;
2118 d--;
2119 rcu_read_lock();
2120 rdev = rcu_dereference(conf->mirrors[d].rdev);
2121 if (rdev &&
2122 !test_bit(Faulty, &rdev->flags)) {
2123 atomic_inc(&rdev->nr_pending);
2124 rcu_read_unlock();
2125 if (r1_sync_page_io(rdev, sect, s,
2126 conf->tmppage, READ)) {
2127 atomic_add(s, &rdev->corrected_errors);
2128 printk(KERN_INFO
2129 "md/raid1:%s: read error corrected "
2130 "(%d sectors at %llu on %s)\n",
2131 mdname(mddev), s,
2132 (unsigned long long)(sect +
2133 rdev->data_offset),
2134 bdevname(rdev->bdev, b));
2135 }
2136 rdev_dec_pending(rdev, mddev);
2137 } else
2138 rcu_read_unlock();
2139 }
2140 sectors -= s;
2141 sect += s;
2142 }
2143 }
2144
narrow_write_error(struct r1bio * r1_bio,int i)2145 static int narrow_write_error(struct r1bio *r1_bio, int i)
2146 {
2147 struct mddev *mddev = r1_bio->mddev;
2148 struct r1conf *conf = mddev->private;
2149 struct md_rdev *rdev = conf->mirrors[i].rdev;
2150
2151 /* bio has the data to be written to device 'i' where
2152 * we just recently had a write error.
2153 * We repeatedly clone the bio and trim down to one block,
2154 * then try the write. Where the write fails we record
2155 * a bad block.
2156 * It is conceivable that the bio doesn't exactly align with
2157 * blocks. We must handle this somehow.
2158 *
2159 * We currently own a reference on the rdev.
2160 */
2161
2162 int block_sectors;
2163 sector_t sector;
2164 int sectors;
2165 int sect_to_write = r1_bio->sectors;
2166 int ok = 1;
2167
2168 if (rdev->badblocks.shift < 0)
2169 return 0;
2170
2171 block_sectors = roundup(1 << rdev->badblocks.shift,
2172 bdev_logical_block_size(rdev->bdev) >> 9);
2173 sector = r1_bio->sector;
2174 sectors = ((sector + block_sectors)
2175 & ~(sector_t)(block_sectors - 1))
2176 - sector;
2177
2178 while (sect_to_write) {
2179 struct bio *wbio;
2180 if (sectors > sect_to_write)
2181 sectors = sect_to_write;
2182 /* Write at 'sector' for 'sectors'*/
2183
2184 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2185 unsigned vcnt = r1_bio->behind_page_count;
2186 struct bio_vec *vec = r1_bio->behind_bvecs;
2187
2188 while (!vec->bv_page) {
2189 vec++;
2190 vcnt--;
2191 }
2192
2193 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2194 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2195
2196 wbio->bi_vcnt = vcnt;
2197 } else {
2198 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2199 }
2200
2201 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2202 wbio->bi_iter.bi_sector = r1_bio->sector;
2203 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2204
2205 bio_trim(wbio, sector - r1_bio->sector, sectors);
2206 wbio->bi_iter.bi_sector += rdev->data_offset;
2207 wbio->bi_bdev = rdev->bdev;
2208
2209 if (submit_bio_wait(wbio) < 0)
2210 /* failure! */
2211 ok = rdev_set_badblocks(rdev, sector,
2212 sectors, 0)
2213 && ok;
2214
2215 bio_put(wbio);
2216 sect_to_write -= sectors;
2217 sector += sectors;
2218 sectors = block_sectors;
2219 }
2220 return ok;
2221 }
2222
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2223 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2224 {
2225 int m;
2226 int s = r1_bio->sectors;
2227 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2228 struct md_rdev *rdev = conf->mirrors[m].rdev;
2229 struct bio *bio = r1_bio->bios[m];
2230 if (bio->bi_end_io == NULL)
2231 continue;
2232 if (!bio->bi_error &&
2233 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2234 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2235 }
2236 if (bio->bi_error &&
2237 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2238 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2239 md_error(conf->mddev, rdev);
2240 }
2241 }
2242 put_buf(r1_bio);
2243 md_done_sync(conf->mddev, s, 1);
2244 }
2245
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2246 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2247 {
2248 int m;
2249 bool fail = false;
2250 for (m = 0; m < conf->raid_disks * 2 ; m++)
2251 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2252 struct md_rdev *rdev = conf->mirrors[m].rdev;
2253 rdev_clear_badblocks(rdev,
2254 r1_bio->sector,
2255 r1_bio->sectors, 0);
2256 rdev_dec_pending(rdev, conf->mddev);
2257 } else if (r1_bio->bios[m] != NULL) {
2258 /* This drive got a write error. We need to
2259 * narrow down and record precise write
2260 * errors.
2261 */
2262 fail = true;
2263 if (!narrow_write_error(r1_bio, m)) {
2264 md_error(conf->mddev,
2265 conf->mirrors[m].rdev);
2266 /* an I/O failed, we can't clear the bitmap */
2267 set_bit(R1BIO_Degraded, &r1_bio->state);
2268 }
2269 rdev_dec_pending(conf->mirrors[m].rdev,
2270 conf->mddev);
2271 }
2272 if (fail) {
2273 spin_lock_irq(&conf->device_lock);
2274 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2275 conf->nr_queued++;
2276 spin_unlock_irq(&conf->device_lock);
2277 md_wakeup_thread(conf->mddev->thread);
2278 } else {
2279 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2280 close_write(r1_bio);
2281 raid_end_bio_io(r1_bio);
2282 }
2283 }
2284
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2285 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2286 {
2287 int disk;
2288 int max_sectors;
2289 struct mddev *mddev = conf->mddev;
2290 struct bio *bio;
2291 char b[BDEVNAME_SIZE];
2292 struct md_rdev *rdev;
2293
2294 clear_bit(R1BIO_ReadError, &r1_bio->state);
2295 /* we got a read error. Maybe the drive is bad. Maybe just
2296 * the block and we can fix it.
2297 * We freeze all other IO, and try reading the block from
2298 * other devices. When we find one, we re-write
2299 * and check it that fixes the read error.
2300 * This is all done synchronously while the array is
2301 * frozen
2302 */
2303
2304 bio = r1_bio->bios[r1_bio->read_disk];
2305 bdevname(bio->bi_bdev, b);
2306 bio_put(bio);
2307 r1_bio->bios[r1_bio->read_disk] = NULL;
2308
2309 if (mddev->ro == 0) {
2310 freeze_array(conf, 1);
2311 fix_read_error(conf, r1_bio->read_disk,
2312 r1_bio->sector, r1_bio->sectors);
2313 unfreeze_array(conf);
2314 } else {
2315 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2316 }
2317
2318 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2319
2320 read_more:
2321 disk = read_balance(conf, r1_bio, &max_sectors);
2322 if (disk == -1) {
2323 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2324 " read error for block %llu\n",
2325 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2326 raid_end_bio_io(r1_bio);
2327 } else {
2328 const unsigned long do_sync
2329 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2330 r1_bio->read_disk = disk;
2331 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333 max_sectors);
2334 r1_bio->bios[r1_bio->read_disk] = bio;
2335 rdev = conf->mirrors[disk].rdev;
2336 printk_ratelimited(KERN_ERR
2337 "md/raid1:%s: redirecting sector %llu"
2338 " to other mirror: %s\n",
2339 mdname(mddev),
2340 (unsigned long long)r1_bio->sector,
2341 bdevname(rdev->bdev, b));
2342 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343 bio->bi_bdev = rdev->bdev;
2344 bio->bi_end_io = raid1_end_read_request;
2345 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2346 bio->bi_private = r1_bio;
2347 if (max_sectors < r1_bio->sectors) {
2348 /* Drat - have to split this up more */
2349 struct bio *mbio = r1_bio->master_bio;
2350 int sectors_handled = (r1_bio->sector + max_sectors
2351 - mbio->bi_iter.bi_sector);
2352 r1_bio->sectors = max_sectors;
2353 spin_lock_irq(&conf->device_lock);
2354 if (mbio->bi_phys_segments == 0)
2355 mbio->bi_phys_segments = 2;
2356 else
2357 mbio->bi_phys_segments++;
2358 spin_unlock_irq(&conf->device_lock);
2359 generic_make_request(bio);
2360 bio = NULL;
2361
2362 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2363
2364 r1_bio->master_bio = mbio;
2365 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366 r1_bio->state = 0;
2367 set_bit(R1BIO_ReadError, &r1_bio->state);
2368 r1_bio->mddev = mddev;
2369 r1_bio->sector = mbio->bi_iter.bi_sector +
2370 sectors_handled;
2371
2372 goto read_more;
2373 } else
2374 generic_make_request(bio);
2375 }
2376 }
2377
raid1d(struct md_thread * thread)2378 static void raid1d(struct md_thread *thread)
2379 {
2380 struct mddev *mddev = thread->mddev;
2381 struct r1bio *r1_bio;
2382 unsigned long flags;
2383 struct r1conf *conf = mddev->private;
2384 struct list_head *head = &conf->retry_list;
2385 struct blk_plug plug;
2386
2387 md_check_recovery(mddev);
2388
2389 if (!list_empty_careful(&conf->bio_end_io_list) &&
2390 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 LIST_HEAD(tmp);
2392 spin_lock_irqsave(&conf->device_lock, flags);
2393 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394 while (!list_empty(&conf->bio_end_io_list)) {
2395 list_move(conf->bio_end_io_list.prev, &tmp);
2396 conf->nr_queued--;
2397 }
2398 }
2399 spin_unlock_irqrestore(&conf->device_lock, flags);
2400 while (!list_empty(&tmp)) {
2401 r1_bio = list_first_entry(&tmp, struct r1bio,
2402 retry_list);
2403 list_del(&r1_bio->retry_list);
2404 if (mddev->degraded)
2405 set_bit(R1BIO_Degraded, &r1_bio->state);
2406 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2407 close_write(r1_bio);
2408 raid_end_bio_io(r1_bio);
2409 }
2410 }
2411
2412 blk_start_plug(&plug);
2413 for (;;) {
2414
2415 flush_pending_writes(conf);
2416
2417 spin_lock_irqsave(&conf->device_lock, flags);
2418 if (list_empty(head)) {
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2420 break;
2421 }
2422 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2423 list_del(head->prev);
2424 conf->nr_queued--;
2425 spin_unlock_irqrestore(&conf->device_lock, flags);
2426
2427 mddev = r1_bio->mddev;
2428 conf = mddev->private;
2429 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2430 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2431 test_bit(R1BIO_WriteError, &r1_bio->state))
2432 handle_sync_write_finished(conf, r1_bio);
2433 else
2434 sync_request_write(mddev, r1_bio);
2435 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436 test_bit(R1BIO_WriteError, &r1_bio->state))
2437 handle_write_finished(conf, r1_bio);
2438 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2439 handle_read_error(conf, r1_bio);
2440 else
2441 /* just a partial read to be scheduled from separate
2442 * context
2443 */
2444 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2445
2446 cond_resched();
2447 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2448 md_check_recovery(mddev);
2449 }
2450 blk_finish_plug(&plug);
2451 }
2452
init_resync(struct r1conf * conf)2453 static int init_resync(struct r1conf *conf)
2454 {
2455 int buffs;
2456
2457 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2458 BUG_ON(conf->r1buf_pool);
2459 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2460 conf->poolinfo);
2461 if (!conf->r1buf_pool)
2462 return -ENOMEM;
2463 conf->next_resync = 0;
2464 return 0;
2465 }
2466
2467 /*
2468 * perform a "sync" on one "block"
2469 *
2470 * We need to make sure that no normal I/O request - particularly write
2471 * requests - conflict with active sync requests.
2472 *
2473 * This is achieved by tracking pending requests and a 'barrier' concept
2474 * that can be installed to exclude normal IO requests.
2475 */
2476
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2477 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2478 int *skipped)
2479 {
2480 struct r1conf *conf = mddev->private;
2481 struct r1bio *r1_bio;
2482 struct bio *bio;
2483 sector_t max_sector, nr_sectors;
2484 int disk = -1;
2485 int i;
2486 int wonly = -1;
2487 int write_targets = 0, read_targets = 0;
2488 sector_t sync_blocks;
2489 int still_degraded = 0;
2490 int good_sectors = RESYNC_SECTORS;
2491 int min_bad = 0; /* number of sectors that are bad in all devices */
2492
2493 if (!conf->r1buf_pool)
2494 if (init_resync(conf))
2495 return 0;
2496
2497 max_sector = mddev->dev_sectors;
2498 if (sector_nr >= max_sector) {
2499 /* If we aborted, we need to abort the
2500 * sync on the 'current' bitmap chunk (there will
2501 * only be one in raid1 resync.
2502 * We can find the current addess in mddev->curr_resync
2503 */
2504 if (mddev->curr_resync < max_sector) /* aborted */
2505 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2506 &sync_blocks, 1);
2507 else /* completed sync */
2508 conf->fullsync = 0;
2509
2510 bitmap_close_sync(mddev->bitmap);
2511 close_sync(conf);
2512
2513 if (mddev_is_clustered(mddev)) {
2514 conf->cluster_sync_low = 0;
2515 conf->cluster_sync_high = 0;
2516 }
2517 return 0;
2518 }
2519
2520 if (mddev->bitmap == NULL &&
2521 mddev->recovery_cp == MaxSector &&
2522 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2523 conf->fullsync == 0) {
2524 *skipped = 1;
2525 return max_sector - sector_nr;
2526 }
2527 /* before building a request, check if we can skip these blocks..
2528 * This call the bitmap_start_sync doesn't actually record anything
2529 */
2530 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2531 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2532 /* We can skip this block, and probably several more */
2533 *skipped = 1;
2534 return sync_blocks;
2535 }
2536
2537 /*
2538 * If there is non-resync activity waiting for a turn, then let it
2539 * though before starting on this new sync request.
2540 */
2541 if (conf->nr_waiting)
2542 schedule_timeout_uninterruptible(1);
2543
2544 /* we are incrementing sector_nr below. To be safe, we check against
2545 * sector_nr + two times RESYNC_SECTORS
2546 */
2547
2548 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2549 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2550 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2551
2552 raise_barrier(conf, sector_nr);
2553
2554 rcu_read_lock();
2555 /*
2556 * If we get a correctably read error during resync or recovery,
2557 * we might want to read from a different device. So we
2558 * flag all drives that could conceivably be read from for READ,
2559 * and any others (which will be non-In_sync devices) for WRITE.
2560 * If a read fails, we try reading from something else for which READ
2561 * is OK.
2562 */
2563
2564 r1_bio->mddev = mddev;
2565 r1_bio->sector = sector_nr;
2566 r1_bio->state = 0;
2567 set_bit(R1BIO_IsSync, &r1_bio->state);
2568
2569 for (i = 0; i < conf->raid_disks * 2; i++) {
2570 struct md_rdev *rdev;
2571 bio = r1_bio->bios[i];
2572 bio_reset(bio);
2573
2574 rdev = rcu_dereference(conf->mirrors[i].rdev);
2575 if (rdev == NULL ||
2576 test_bit(Faulty, &rdev->flags)) {
2577 if (i < conf->raid_disks)
2578 still_degraded = 1;
2579 } else if (!test_bit(In_sync, &rdev->flags)) {
2580 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2581 bio->bi_end_io = end_sync_write;
2582 write_targets ++;
2583 } else {
2584 /* may need to read from here */
2585 sector_t first_bad = MaxSector;
2586 int bad_sectors;
2587
2588 if (is_badblock(rdev, sector_nr, good_sectors,
2589 &first_bad, &bad_sectors)) {
2590 if (first_bad > sector_nr)
2591 good_sectors = first_bad - sector_nr;
2592 else {
2593 bad_sectors -= (sector_nr - first_bad);
2594 if (min_bad == 0 ||
2595 min_bad > bad_sectors)
2596 min_bad = bad_sectors;
2597 }
2598 }
2599 if (sector_nr < first_bad) {
2600 if (test_bit(WriteMostly, &rdev->flags)) {
2601 if (wonly < 0)
2602 wonly = i;
2603 } else {
2604 if (disk < 0)
2605 disk = i;
2606 }
2607 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2608 bio->bi_end_io = end_sync_read;
2609 read_targets++;
2610 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2611 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2612 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2613 /*
2614 * The device is suitable for reading (InSync),
2615 * but has bad block(s) here. Let's try to correct them,
2616 * if we are doing resync or repair. Otherwise, leave
2617 * this device alone for this sync request.
2618 */
2619 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2620 bio->bi_end_io = end_sync_write;
2621 write_targets++;
2622 }
2623 }
2624 if (bio->bi_end_io) {
2625 atomic_inc(&rdev->nr_pending);
2626 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2627 bio->bi_bdev = rdev->bdev;
2628 bio->bi_private = r1_bio;
2629 }
2630 }
2631 rcu_read_unlock();
2632 if (disk < 0)
2633 disk = wonly;
2634 r1_bio->read_disk = disk;
2635
2636 if (read_targets == 0 && min_bad > 0) {
2637 /* These sectors are bad on all InSync devices, so we
2638 * need to mark them bad on all write targets
2639 */
2640 int ok = 1;
2641 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2642 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2643 struct md_rdev *rdev = conf->mirrors[i].rdev;
2644 ok = rdev_set_badblocks(rdev, sector_nr,
2645 min_bad, 0
2646 ) && ok;
2647 }
2648 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2649 *skipped = 1;
2650 put_buf(r1_bio);
2651
2652 if (!ok) {
2653 /* Cannot record the badblocks, so need to
2654 * abort the resync.
2655 * If there are multiple read targets, could just
2656 * fail the really bad ones ???
2657 */
2658 conf->recovery_disabled = mddev->recovery_disabled;
2659 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2660 return 0;
2661 } else
2662 return min_bad;
2663
2664 }
2665 if (min_bad > 0 && min_bad < good_sectors) {
2666 /* only resync enough to reach the next bad->good
2667 * transition */
2668 good_sectors = min_bad;
2669 }
2670
2671 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2672 /* extra read targets are also write targets */
2673 write_targets += read_targets-1;
2674
2675 if (write_targets == 0 || read_targets == 0) {
2676 /* There is nowhere to write, so all non-sync
2677 * drives must be failed - so we are finished
2678 */
2679 sector_t rv;
2680 if (min_bad > 0)
2681 max_sector = sector_nr + min_bad;
2682 rv = max_sector - sector_nr;
2683 *skipped = 1;
2684 put_buf(r1_bio);
2685 return rv;
2686 }
2687
2688 if (max_sector > mddev->resync_max)
2689 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2690 if (max_sector > sector_nr + good_sectors)
2691 max_sector = sector_nr + good_sectors;
2692 nr_sectors = 0;
2693 sync_blocks = 0;
2694 do {
2695 struct page *page;
2696 int len = PAGE_SIZE;
2697 if (sector_nr + (len>>9) > max_sector)
2698 len = (max_sector - sector_nr) << 9;
2699 if (len == 0)
2700 break;
2701 if (sync_blocks == 0) {
2702 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2703 &sync_blocks, still_degraded) &&
2704 !conf->fullsync &&
2705 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2706 break;
2707 if ((len >> 9) > sync_blocks)
2708 len = sync_blocks<<9;
2709 }
2710
2711 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2712 bio = r1_bio->bios[i];
2713 if (bio->bi_end_io) {
2714 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2715 if (bio_add_page(bio, page, len, 0) == 0) {
2716 /* stop here */
2717 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2718 while (i > 0) {
2719 i--;
2720 bio = r1_bio->bios[i];
2721 if (bio->bi_end_io==NULL)
2722 continue;
2723 /* remove last page from this bio */
2724 bio->bi_vcnt--;
2725 bio->bi_iter.bi_size -= len;
2726 bio_clear_flag(bio, BIO_SEG_VALID);
2727 }
2728 goto bio_full;
2729 }
2730 }
2731 }
2732 nr_sectors += len>>9;
2733 sector_nr += len>>9;
2734 sync_blocks -= (len>>9);
2735 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2736 bio_full:
2737 r1_bio->sectors = nr_sectors;
2738
2739 if (mddev_is_clustered(mddev) &&
2740 conf->cluster_sync_high < sector_nr + nr_sectors) {
2741 conf->cluster_sync_low = mddev->curr_resync_completed;
2742 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2743 /* Send resync message */
2744 md_cluster_ops->resync_info_update(mddev,
2745 conf->cluster_sync_low,
2746 conf->cluster_sync_high);
2747 }
2748
2749 /* For a user-requested sync, we read all readable devices and do a
2750 * compare
2751 */
2752 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2753 atomic_set(&r1_bio->remaining, read_targets);
2754 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2755 bio = r1_bio->bios[i];
2756 if (bio->bi_end_io == end_sync_read) {
2757 read_targets--;
2758 md_sync_acct(bio->bi_bdev, nr_sectors);
2759 generic_make_request(bio);
2760 }
2761 }
2762 } else {
2763 atomic_set(&r1_bio->remaining, 1);
2764 bio = r1_bio->bios[r1_bio->read_disk];
2765 md_sync_acct(bio->bi_bdev, nr_sectors);
2766 generic_make_request(bio);
2767
2768 }
2769 return nr_sectors;
2770 }
2771
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2772 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2773 {
2774 if (sectors)
2775 return sectors;
2776
2777 return mddev->dev_sectors;
2778 }
2779
setup_conf(struct mddev * mddev)2780 static struct r1conf *setup_conf(struct mddev *mddev)
2781 {
2782 struct r1conf *conf;
2783 int i;
2784 struct raid1_info *disk;
2785 struct md_rdev *rdev;
2786 int err = -ENOMEM;
2787
2788 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2789 if (!conf)
2790 goto abort;
2791
2792 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2793 * mddev->raid_disks * 2,
2794 GFP_KERNEL);
2795 if (!conf->mirrors)
2796 goto abort;
2797
2798 conf->tmppage = alloc_page(GFP_KERNEL);
2799 if (!conf->tmppage)
2800 goto abort;
2801
2802 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2803 if (!conf->poolinfo)
2804 goto abort;
2805 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2806 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2807 r1bio_pool_free,
2808 conf->poolinfo);
2809 if (!conf->r1bio_pool)
2810 goto abort;
2811
2812 conf->poolinfo->mddev = mddev;
2813
2814 err = -EINVAL;
2815 spin_lock_init(&conf->device_lock);
2816 rdev_for_each(rdev, mddev) {
2817 struct request_queue *q;
2818 int disk_idx = rdev->raid_disk;
2819 if (disk_idx >= mddev->raid_disks
2820 || disk_idx < 0)
2821 continue;
2822 if (test_bit(Replacement, &rdev->flags))
2823 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2824 else
2825 disk = conf->mirrors + disk_idx;
2826
2827 if (disk->rdev)
2828 goto abort;
2829 disk->rdev = rdev;
2830 q = bdev_get_queue(rdev->bdev);
2831
2832 disk->head_position = 0;
2833 disk->seq_start = MaxSector;
2834 }
2835 conf->raid_disks = mddev->raid_disks;
2836 conf->mddev = mddev;
2837 INIT_LIST_HEAD(&conf->retry_list);
2838 INIT_LIST_HEAD(&conf->bio_end_io_list);
2839
2840 spin_lock_init(&conf->resync_lock);
2841 init_waitqueue_head(&conf->wait_barrier);
2842
2843 bio_list_init(&conf->pending_bio_list);
2844 conf->pending_count = 0;
2845 conf->recovery_disabled = mddev->recovery_disabled - 1;
2846
2847 conf->start_next_window = MaxSector;
2848 conf->current_window_requests = conf->next_window_requests = 0;
2849
2850 err = -EIO;
2851 for (i = 0; i < conf->raid_disks * 2; i++) {
2852
2853 disk = conf->mirrors + i;
2854
2855 if (i < conf->raid_disks &&
2856 disk[conf->raid_disks].rdev) {
2857 /* This slot has a replacement. */
2858 if (!disk->rdev) {
2859 /* No original, just make the replacement
2860 * a recovering spare
2861 */
2862 disk->rdev =
2863 disk[conf->raid_disks].rdev;
2864 disk[conf->raid_disks].rdev = NULL;
2865 } else if (!test_bit(In_sync, &disk->rdev->flags))
2866 /* Original is not in_sync - bad */
2867 goto abort;
2868 }
2869
2870 if (!disk->rdev ||
2871 !test_bit(In_sync, &disk->rdev->flags)) {
2872 disk->head_position = 0;
2873 if (disk->rdev &&
2874 (disk->rdev->saved_raid_disk < 0))
2875 conf->fullsync = 1;
2876 }
2877 }
2878
2879 err = -ENOMEM;
2880 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2881 if (!conf->thread) {
2882 printk(KERN_ERR
2883 "md/raid1:%s: couldn't allocate thread\n",
2884 mdname(mddev));
2885 goto abort;
2886 }
2887
2888 return conf;
2889
2890 abort:
2891 if (conf) {
2892 mempool_destroy(conf->r1bio_pool);
2893 kfree(conf->mirrors);
2894 safe_put_page(conf->tmppage);
2895 kfree(conf->poolinfo);
2896 kfree(conf);
2897 }
2898 return ERR_PTR(err);
2899 }
2900
2901 static void raid1_free(struct mddev *mddev, void *priv);
raid1_run(struct mddev * mddev)2902 static int raid1_run(struct mddev *mddev)
2903 {
2904 struct r1conf *conf;
2905 int i;
2906 struct md_rdev *rdev;
2907 int ret;
2908 bool discard_supported = false;
2909
2910 if (mddev->level != 1) {
2911 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2912 mdname(mddev), mddev->level);
2913 return -EIO;
2914 }
2915 if (mddev->reshape_position != MaxSector) {
2916 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2917 mdname(mddev));
2918 return -EIO;
2919 }
2920 /*
2921 * copy the already verified devices into our private RAID1
2922 * bookkeeping area. [whatever we allocate in run(),
2923 * should be freed in raid1_free()]
2924 */
2925 if (mddev->private == NULL)
2926 conf = setup_conf(mddev);
2927 else
2928 conf = mddev->private;
2929
2930 if (IS_ERR(conf))
2931 return PTR_ERR(conf);
2932
2933 if (mddev->queue)
2934 blk_queue_max_write_same_sectors(mddev->queue, 0);
2935
2936 rdev_for_each(rdev, mddev) {
2937 if (!mddev->gendisk)
2938 continue;
2939 disk_stack_limits(mddev->gendisk, rdev->bdev,
2940 rdev->data_offset << 9);
2941 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2942 discard_supported = true;
2943 }
2944
2945 mddev->degraded = 0;
2946 for (i=0; i < conf->raid_disks; i++)
2947 if (conf->mirrors[i].rdev == NULL ||
2948 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2949 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2950 mddev->degraded++;
2951
2952 if (conf->raid_disks - mddev->degraded == 1)
2953 mddev->recovery_cp = MaxSector;
2954
2955 if (mddev->recovery_cp != MaxSector)
2956 printk(KERN_NOTICE "md/raid1:%s: not clean"
2957 " -- starting background reconstruction\n",
2958 mdname(mddev));
2959 printk(KERN_INFO
2960 "md/raid1:%s: active with %d out of %d mirrors\n",
2961 mdname(mddev), mddev->raid_disks - mddev->degraded,
2962 mddev->raid_disks);
2963
2964 /*
2965 * Ok, everything is just fine now
2966 */
2967 mddev->thread = conf->thread;
2968 conf->thread = NULL;
2969 mddev->private = conf;
2970
2971 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2972
2973 if (mddev->queue) {
2974 if (discard_supported)
2975 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2976 mddev->queue);
2977 else
2978 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2979 mddev->queue);
2980 }
2981
2982 ret = md_integrity_register(mddev);
2983 if (ret) {
2984 md_unregister_thread(&mddev->thread);
2985 raid1_free(mddev, conf);
2986 }
2987 return ret;
2988 }
2989
raid1_free(struct mddev * mddev,void * priv)2990 static void raid1_free(struct mddev *mddev, void *priv)
2991 {
2992 struct r1conf *conf = priv;
2993
2994 mempool_destroy(conf->r1bio_pool);
2995 kfree(conf->mirrors);
2996 safe_put_page(conf->tmppage);
2997 kfree(conf->poolinfo);
2998 kfree(conf);
2999 }
3000
raid1_resize(struct mddev * mddev,sector_t sectors)3001 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3002 {
3003 /* no resync is happening, and there is enough space
3004 * on all devices, so we can resize.
3005 * We need to make sure resync covers any new space.
3006 * If the array is shrinking we should possibly wait until
3007 * any io in the removed space completes, but it hardly seems
3008 * worth it.
3009 */
3010 sector_t newsize = raid1_size(mddev, sectors, 0);
3011 if (mddev->external_size &&
3012 mddev->array_sectors > newsize)
3013 return -EINVAL;
3014 if (mddev->bitmap) {
3015 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3016 if (ret)
3017 return ret;
3018 }
3019 md_set_array_sectors(mddev, newsize);
3020 set_capacity(mddev->gendisk, mddev->array_sectors);
3021 revalidate_disk(mddev->gendisk);
3022 if (sectors > mddev->dev_sectors &&
3023 mddev->recovery_cp > mddev->dev_sectors) {
3024 mddev->recovery_cp = mddev->dev_sectors;
3025 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3026 }
3027 mddev->dev_sectors = sectors;
3028 mddev->resync_max_sectors = sectors;
3029 return 0;
3030 }
3031
raid1_reshape(struct mddev * mddev)3032 static int raid1_reshape(struct mddev *mddev)
3033 {
3034 /* We need to:
3035 * 1/ resize the r1bio_pool
3036 * 2/ resize conf->mirrors
3037 *
3038 * We allocate a new r1bio_pool if we can.
3039 * Then raise a device barrier and wait until all IO stops.
3040 * Then resize conf->mirrors and swap in the new r1bio pool.
3041 *
3042 * At the same time, we "pack" the devices so that all the missing
3043 * devices have the higher raid_disk numbers.
3044 */
3045 mempool_t *newpool, *oldpool;
3046 struct pool_info *newpoolinfo;
3047 struct raid1_info *newmirrors;
3048 struct r1conf *conf = mddev->private;
3049 int cnt, raid_disks;
3050 unsigned long flags;
3051 int d, d2, err;
3052
3053 /* Cannot change chunk_size, layout, or level */
3054 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3055 mddev->layout != mddev->new_layout ||
3056 mddev->level != mddev->new_level) {
3057 mddev->new_chunk_sectors = mddev->chunk_sectors;
3058 mddev->new_layout = mddev->layout;
3059 mddev->new_level = mddev->level;
3060 return -EINVAL;
3061 }
3062
3063 if (!mddev_is_clustered(mddev)) {
3064 err = md_allow_write(mddev);
3065 if (err)
3066 return err;
3067 }
3068
3069 raid_disks = mddev->raid_disks + mddev->delta_disks;
3070
3071 if (raid_disks < conf->raid_disks) {
3072 cnt=0;
3073 for (d= 0; d < conf->raid_disks; d++)
3074 if (conf->mirrors[d].rdev)
3075 cnt++;
3076 if (cnt > raid_disks)
3077 return -EBUSY;
3078 }
3079
3080 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3081 if (!newpoolinfo)
3082 return -ENOMEM;
3083 newpoolinfo->mddev = mddev;
3084 newpoolinfo->raid_disks = raid_disks * 2;
3085
3086 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3087 r1bio_pool_free, newpoolinfo);
3088 if (!newpool) {
3089 kfree(newpoolinfo);
3090 return -ENOMEM;
3091 }
3092 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3093 GFP_KERNEL);
3094 if (!newmirrors) {
3095 kfree(newpoolinfo);
3096 mempool_destroy(newpool);
3097 return -ENOMEM;
3098 }
3099
3100 freeze_array(conf, 0);
3101
3102 /* ok, everything is stopped */
3103 oldpool = conf->r1bio_pool;
3104 conf->r1bio_pool = newpool;
3105
3106 for (d = d2 = 0; d < conf->raid_disks; d++) {
3107 struct md_rdev *rdev = conf->mirrors[d].rdev;
3108 if (rdev && rdev->raid_disk != d2) {
3109 sysfs_unlink_rdev(mddev, rdev);
3110 rdev->raid_disk = d2;
3111 sysfs_unlink_rdev(mddev, rdev);
3112 if (sysfs_link_rdev(mddev, rdev))
3113 printk(KERN_WARNING
3114 "md/raid1:%s: cannot register rd%d\n",
3115 mdname(mddev), rdev->raid_disk);
3116 }
3117 if (rdev)
3118 newmirrors[d2++].rdev = rdev;
3119 }
3120 kfree(conf->mirrors);
3121 conf->mirrors = newmirrors;
3122 kfree(conf->poolinfo);
3123 conf->poolinfo = newpoolinfo;
3124
3125 spin_lock_irqsave(&conf->device_lock, flags);
3126 mddev->degraded += (raid_disks - conf->raid_disks);
3127 spin_unlock_irqrestore(&conf->device_lock, flags);
3128 conf->raid_disks = mddev->raid_disks = raid_disks;
3129 mddev->delta_disks = 0;
3130
3131 unfreeze_array(conf);
3132
3133 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135 md_wakeup_thread(mddev->thread);
3136
3137 mempool_destroy(oldpool);
3138 return 0;
3139 }
3140
raid1_quiesce(struct mddev * mddev,int state)3141 static void raid1_quiesce(struct mddev *mddev, int state)
3142 {
3143 struct r1conf *conf = mddev->private;
3144
3145 switch(state) {
3146 case 2: /* wake for suspend */
3147 wake_up(&conf->wait_barrier);
3148 break;
3149 case 1:
3150 freeze_array(conf, 0);
3151 break;
3152 case 0:
3153 unfreeze_array(conf);
3154 break;
3155 }
3156 }
3157
raid1_takeover(struct mddev * mddev)3158 static void *raid1_takeover(struct mddev *mddev)
3159 {
3160 /* raid1 can take over:
3161 * raid5 with 2 devices, any layout or chunk size
3162 */
3163 if (mddev->level == 5 && mddev->raid_disks == 2) {
3164 struct r1conf *conf;
3165 mddev->new_level = 1;
3166 mddev->new_layout = 0;
3167 mddev->new_chunk_sectors = 0;
3168 conf = setup_conf(mddev);
3169 if (!IS_ERR(conf))
3170 /* Array must appear to be quiesced */
3171 conf->array_frozen = 1;
3172 return conf;
3173 }
3174 return ERR_PTR(-EINVAL);
3175 }
3176
3177 static struct md_personality raid1_personality =
3178 {
3179 .name = "raid1",
3180 .level = 1,
3181 .owner = THIS_MODULE,
3182 .make_request = raid1_make_request,
3183 .run = raid1_run,
3184 .free = raid1_free,
3185 .status = raid1_status,
3186 .error_handler = raid1_error,
3187 .hot_add_disk = raid1_add_disk,
3188 .hot_remove_disk= raid1_remove_disk,
3189 .spare_active = raid1_spare_active,
3190 .sync_request = raid1_sync_request,
3191 .resize = raid1_resize,
3192 .size = raid1_size,
3193 .check_reshape = raid1_reshape,
3194 .quiesce = raid1_quiesce,
3195 .takeover = raid1_takeover,
3196 .congested = raid1_congested,
3197 };
3198
raid_init(void)3199 static int __init raid_init(void)
3200 {
3201 return register_md_personality(&raid1_personality);
3202 }
3203
raid_exit(void)3204 static void raid_exit(void)
3205 {
3206 unregister_md_personality(&raid1_personality);
3207 }
3208
3209 module_init(raid_init);
3210 module_exit(raid_exit);
3211 MODULE_LICENSE("GPL");
3212 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3213 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3214 MODULE_ALIAS("md-raid1");
3215 MODULE_ALIAS("md-level-1");
3216
3217 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3218