• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/media/i2c/smiapp-pll.c
3  *
4  * Generic driver for SMIA/SMIA++ compliant camera modules
5  *
6  * Copyright (C) 2011--2012 Nokia Corporation
7  * Contact: Sakari Ailus <sakari.ailus@iki.fi>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18 
19 #include <linux/device.h>
20 #include <linux/gcd.h>
21 #include <linux/lcm.h>
22 #include <linux/module.h>
23 
24 #include "smiapp-pll.h"
25 
26 /* Return an even number or one. */
clk_div_even(uint32_t a)27 static inline uint32_t clk_div_even(uint32_t a)
28 {
29 	return max_t(uint32_t, 1, a & ~1);
30 }
31 
32 /* Return an even number or one. */
clk_div_even_up(uint32_t a)33 static inline uint32_t clk_div_even_up(uint32_t a)
34 {
35 	if (a == 1)
36 		return 1;
37 	return (a + 1) & ~1;
38 }
39 
is_one_or_even(uint32_t a)40 static inline uint32_t is_one_or_even(uint32_t a)
41 {
42 	if (a == 1)
43 		return 1;
44 	if (a & 1)
45 		return 0;
46 
47 	return 1;
48 }
49 
bounds_check(struct device * dev,uint32_t val,uint32_t min,uint32_t max,char * str)50 static int bounds_check(struct device *dev, uint32_t val,
51 			uint32_t min, uint32_t max, char *str)
52 {
53 	if (val >= min && val <= max)
54 		return 0;
55 
56 	dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
57 
58 	return -EINVAL;
59 }
60 
print_pll(struct device * dev,struct smiapp_pll * pll)61 static void print_pll(struct device *dev, struct smiapp_pll *pll)
62 {
63 	dev_dbg(dev, "pre_pll_clk_div\t%u\n",  pll->pre_pll_clk_div);
64 	dev_dbg(dev, "pll_multiplier \t%u\n",  pll->pll_multiplier);
65 	if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
66 		dev_dbg(dev, "op_sys_clk_div \t%u\n", pll->op.sys_clk_div);
67 		dev_dbg(dev, "op_pix_clk_div \t%u\n", pll->op.pix_clk_div);
68 	}
69 	dev_dbg(dev, "vt_sys_clk_div \t%u\n",  pll->vt.sys_clk_div);
70 	dev_dbg(dev, "vt_pix_clk_div \t%u\n",  pll->vt.pix_clk_div);
71 
72 	dev_dbg(dev, "ext_clk_freq_hz \t%u\n", pll->ext_clk_freq_hz);
73 	dev_dbg(dev, "pll_ip_clk_freq_hz \t%u\n", pll->pll_ip_clk_freq_hz);
74 	dev_dbg(dev, "pll_op_clk_freq_hz \t%u\n", pll->pll_op_clk_freq_hz);
75 	if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
76 		dev_dbg(dev, "op_sys_clk_freq_hz \t%u\n",
77 			pll->op.sys_clk_freq_hz);
78 		dev_dbg(dev, "op_pix_clk_freq_hz \t%u\n",
79 			pll->op.pix_clk_freq_hz);
80 	}
81 	dev_dbg(dev, "vt_sys_clk_freq_hz \t%u\n", pll->vt.sys_clk_freq_hz);
82 	dev_dbg(dev, "vt_pix_clk_freq_hz \t%u\n", pll->vt.pix_clk_freq_hz);
83 }
84 
check_all_bounds(struct device * dev,const struct smiapp_pll_limits * limits,const struct smiapp_pll_branch_limits * op_limits,struct smiapp_pll * pll,struct smiapp_pll_branch * op_pll)85 static int check_all_bounds(struct device *dev,
86 			    const struct smiapp_pll_limits *limits,
87 			    const struct smiapp_pll_branch_limits *op_limits,
88 			    struct smiapp_pll *pll,
89 			    struct smiapp_pll_branch *op_pll)
90 {
91 	int rval;
92 
93 	rval = bounds_check(dev, pll->pll_ip_clk_freq_hz,
94 			    limits->min_pll_ip_freq_hz,
95 			    limits->max_pll_ip_freq_hz,
96 			    "pll_ip_clk_freq_hz");
97 	if (!rval)
98 		rval = bounds_check(
99 			dev, pll->pll_multiplier,
100 			limits->min_pll_multiplier, limits->max_pll_multiplier,
101 			"pll_multiplier");
102 	if (!rval)
103 		rval = bounds_check(
104 			dev, pll->pll_op_clk_freq_hz,
105 			limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
106 			"pll_op_clk_freq_hz");
107 	if (!rval)
108 		rval = bounds_check(
109 			dev, op_pll->sys_clk_div,
110 			op_limits->min_sys_clk_div, op_limits->max_sys_clk_div,
111 			"op_sys_clk_div");
112 	if (!rval)
113 		rval = bounds_check(
114 			dev, op_pll->sys_clk_freq_hz,
115 			op_limits->min_sys_clk_freq_hz,
116 			op_limits->max_sys_clk_freq_hz,
117 			"op_sys_clk_freq_hz");
118 	if (!rval)
119 		rval = bounds_check(
120 			dev, op_pll->pix_clk_freq_hz,
121 			op_limits->min_pix_clk_freq_hz,
122 			op_limits->max_pix_clk_freq_hz,
123 			"op_pix_clk_freq_hz");
124 
125 	/*
126 	 * If there are no OP clocks, the VT clocks are contained in
127 	 * the OP clock struct.
128 	 */
129 	if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)
130 		return rval;
131 
132 	if (!rval)
133 		rval = bounds_check(
134 			dev, pll->vt.sys_clk_freq_hz,
135 			limits->vt.min_sys_clk_freq_hz,
136 			limits->vt.max_sys_clk_freq_hz,
137 			"vt_sys_clk_freq_hz");
138 	if (!rval)
139 		rval = bounds_check(
140 			dev, pll->vt.pix_clk_freq_hz,
141 			limits->vt.min_pix_clk_freq_hz,
142 			limits->vt.max_pix_clk_freq_hz,
143 			"vt_pix_clk_freq_hz");
144 
145 	return rval;
146 }
147 
148 /*
149  * Heuristically guess the PLL tree for a given common multiplier and
150  * divisor. Begin with the operational timing and continue to video
151  * timing once operational timing has been verified.
152  *
153  * @mul is the PLL multiplier and @div is the common divisor
154  * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
155  * multiplier will be a multiple of @mul.
156  *
157  * @return Zero on success, error code on error.
158  */
__smiapp_pll_calculate(struct device * dev,const struct smiapp_pll_limits * limits,const struct smiapp_pll_branch_limits * op_limits,struct smiapp_pll * pll,struct smiapp_pll_branch * op_pll,uint32_t mul,uint32_t div,uint32_t lane_op_clock_ratio)159 static int __smiapp_pll_calculate(
160 	struct device *dev, const struct smiapp_pll_limits *limits,
161 	const struct smiapp_pll_branch_limits *op_limits,
162 	struct smiapp_pll *pll, struct smiapp_pll_branch *op_pll, uint32_t mul,
163 	uint32_t div, uint32_t lane_op_clock_ratio)
164 {
165 	uint32_t sys_div;
166 	uint32_t best_pix_div = INT_MAX >> 1;
167 	uint32_t vt_op_binning_div;
168 	/*
169 	 * Higher multipliers (and divisors) are often required than
170 	 * necessitated by the external clock and the output clocks.
171 	 * There are limits for all values in the clock tree. These
172 	 * are the minimum and maximum multiplier for mul.
173 	 */
174 	uint32_t more_mul_min, more_mul_max;
175 	uint32_t more_mul_factor;
176 	uint32_t min_vt_div, max_vt_div, vt_div;
177 	uint32_t min_sys_div, max_sys_div;
178 	unsigned int i;
179 
180 	/*
181 	 * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
182 	 * too high.
183 	 */
184 	dev_dbg(dev, "pre_pll_clk_div %u\n", pll->pre_pll_clk_div);
185 
186 	/* Don't go above max pll multiplier. */
187 	more_mul_max = limits->max_pll_multiplier / mul;
188 	dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %u\n",
189 		more_mul_max);
190 	/* Don't go above max pll op frequency. */
191 	more_mul_max =
192 		min_t(uint32_t,
193 		      more_mul_max,
194 		      limits->max_pll_op_freq_hz
195 		      / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
196 	dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %u\n",
197 		more_mul_max);
198 	/* Don't go above the division capability of op sys clock divider. */
199 	more_mul_max = min(more_mul_max,
200 			   op_limits->max_sys_clk_div * pll->pre_pll_clk_div
201 			   / div);
202 	dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n",
203 		more_mul_max);
204 	/* Ensure we won't go above min_pll_multiplier. */
205 	more_mul_max = min(more_mul_max,
206 			   DIV_ROUND_UP(limits->max_pll_multiplier, mul));
207 	dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n",
208 		more_mul_max);
209 
210 	/* Ensure we won't go below min_pll_op_freq_hz. */
211 	more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
212 				    pll->ext_clk_freq_hz / pll->pre_pll_clk_div
213 				    * mul);
214 	dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %u\n",
215 		more_mul_min);
216 	/* Ensure we won't go below min_pll_multiplier. */
217 	more_mul_min = max(more_mul_min,
218 			   DIV_ROUND_UP(limits->min_pll_multiplier, mul));
219 	dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %u\n",
220 		more_mul_min);
221 
222 	if (more_mul_min > more_mul_max) {
223 		dev_dbg(dev,
224 			"unable to compute more_mul_min and more_mul_max\n");
225 		return -EINVAL;
226 	}
227 
228 	more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
229 	dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor);
230 	more_mul_factor = lcm(more_mul_factor, op_limits->min_sys_clk_div);
231 	dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
232 		more_mul_factor);
233 	i = roundup(more_mul_min, more_mul_factor);
234 	if (!is_one_or_even(i))
235 		i <<= 1;
236 
237 	dev_dbg(dev, "final more_mul: %u\n", i);
238 	if (i > more_mul_max) {
239 		dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max);
240 		return -EINVAL;
241 	}
242 
243 	pll->pll_multiplier = mul * i;
244 	op_pll->sys_clk_div = div * i / pll->pre_pll_clk_div;
245 	dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll->sys_clk_div);
246 
247 	pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
248 		/ pll->pre_pll_clk_div;
249 
250 	pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
251 		* pll->pll_multiplier;
252 
253 	/* Derive pll_op_clk_freq_hz. */
254 	op_pll->sys_clk_freq_hz =
255 		pll->pll_op_clk_freq_hz / op_pll->sys_clk_div;
256 
257 	op_pll->pix_clk_div = pll->bits_per_pixel;
258 	dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll->pix_clk_div);
259 
260 	op_pll->pix_clk_freq_hz =
261 		op_pll->sys_clk_freq_hz / op_pll->pix_clk_div;
262 
263 	if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
264 		/* No OP clocks --- VT clocks are used instead. */
265 		goto out_skip_vt_calc;
266 	}
267 
268 	/*
269 	 * Some sensors perform analogue binning and some do this
270 	 * digitally. The ones doing this digitally can be roughly be
271 	 * found out using this formula. The ones doing this digitally
272 	 * should run at higher clock rate, so smaller divisor is used
273 	 * on video timing side.
274 	 */
275 	if (limits->min_line_length_pck_bin > limits->min_line_length_pck
276 	    / pll->binning_horizontal)
277 		vt_op_binning_div = pll->binning_horizontal;
278 	else
279 		vt_op_binning_div = 1;
280 	dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div);
281 
282 	/*
283 	 * Profile 2 supports vt_pix_clk_div E [4, 10]
284 	 *
285 	 * Horizontal binning can be used as a base for difference in
286 	 * divisors. One must make sure that horizontal blanking is
287 	 * enough to accommodate the CSI-2 sync codes.
288 	 *
289 	 * Take scaling factor into account as well.
290 	 *
291 	 * Find absolute limits for the factor of vt divider.
292 	 */
293 	dev_dbg(dev, "scale_m: %u\n", pll->scale_m);
294 	min_vt_div = DIV_ROUND_UP(op_pll->pix_clk_div * op_pll->sys_clk_div
295 				  * pll->scale_n,
296 				  lane_op_clock_ratio * vt_op_binning_div
297 				  * pll->scale_m);
298 
299 	/* Find smallest and biggest allowed vt divisor. */
300 	dev_dbg(dev, "min_vt_div: %u\n", min_vt_div);
301 	min_vt_div = max(min_vt_div,
302 			 DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
303 				      limits->vt.max_pix_clk_freq_hz));
304 	dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n",
305 		min_vt_div);
306 	min_vt_div = max_t(uint32_t, min_vt_div,
307 			   limits->vt.min_pix_clk_div
308 			   * limits->vt.min_sys_clk_div);
309 	dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div);
310 
311 	max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div;
312 	dev_dbg(dev, "max_vt_div: %u\n", max_vt_div);
313 	max_vt_div = min(max_vt_div,
314 			 DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
315 				      limits->vt.min_pix_clk_freq_hz));
316 	dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n",
317 		max_vt_div);
318 
319 	/*
320 	 * Find limitsits for sys_clk_div. Not all values are possible
321 	 * with all values of pix_clk_div.
322 	 */
323 	min_sys_div = limits->vt.min_sys_clk_div;
324 	dev_dbg(dev, "min_sys_div: %u\n", min_sys_div);
325 	min_sys_div = max(min_sys_div,
326 			  DIV_ROUND_UP(min_vt_div,
327 				       limits->vt.max_pix_clk_div));
328 	dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", min_sys_div);
329 	min_sys_div = max(min_sys_div,
330 			  pll->pll_op_clk_freq_hz
331 			  / limits->vt.max_sys_clk_freq_hz);
332 	dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", min_sys_div);
333 	min_sys_div = clk_div_even_up(min_sys_div);
334 	dev_dbg(dev, "min_sys_div: one or even: %u\n", min_sys_div);
335 
336 	max_sys_div = limits->vt.max_sys_clk_div;
337 	dev_dbg(dev, "max_sys_div: %u\n", max_sys_div);
338 	max_sys_div = min(max_sys_div,
339 			  DIV_ROUND_UP(max_vt_div,
340 				       limits->vt.min_pix_clk_div));
341 	dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", max_sys_div);
342 	max_sys_div = min(max_sys_div,
343 			  DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
344 				       limits->vt.min_pix_clk_freq_hz));
345 	dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", max_sys_div);
346 
347 	/*
348 	 * Find pix_div such that a legal pix_div * sys_div results
349 	 * into a value which is not smaller than div, the desired
350 	 * divisor.
351 	 */
352 	for (vt_div = min_vt_div; vt_div <= max_vt_div;
353 	     vt_div += 2 - (vt_div & 1)) {
354 		for (sys_div = min_sys_div;
355 		     sys_div <= max_sys_div;
356 		     sys_div += 2 - (sys_div & 1)) {
357 			uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div);
358 
359 			if (pix_div < limits->vt.min_pix_clk_div
360 			    || pix_div > limits->vt.max_pix_clk_div) {
361 				dev_dbg(dev,
362 					"pix_div %u too small or too big (%u--%u)\n",
363 					pix_div,
364 					limits->vt.min_pix_clk_div,
365 					limits->vt.max_pix_clk_div);
366 				continue;
367 			}
368 
369 			/* Check if this one is better. */
370 			if (pix_div * sys_div
371 			    <= roundup(min_vt_div, best_pix_div))
372 				best_pix_div = pix_div;
373 		}
374 		if (best_pix_div < INT_MAX >> 1)
375 			break;
376 	}
377 
378 	pll->vt.sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
379 	pll->vt.pix_clk_div = best_pix_div;
380 
381 	pll->vt.sys_clk_freq_hz =
382 		pll->pll_op_clk_freq_hz / pll->vt.sys_clk_div;
383 	pll->vt.pix_clk_freq_hz =
384 		pll->vt.sys_clk_freq_hz / pll->vt.pix_clk_div;
385 
386 out_skip_vt_calc:
387 	pll->pixel_rate_csi =
388 		op_pll->pix_clk_freq_hz * lane_op_clock_ratio;
389 	pll->pixel_rate_pixel_array = pll->vt.pix_clk_freq_hz;
390 
391 	return check_all_bounds(dev, limits, op_limits, pll, op_pll);
392 }
393 
smiapp_pll_calculate(struct device * dev,const struct smiapp_pll_limits * limits,struct smiapp_pll * pll)394 int smiapp_pll_calculate(struct device *dev,
395 			 const struct smiapp_pll_limits *limits,
396 			 struct smiapp_pll *pll)
397 {
398 	const struct smiapp_pll_branch_limits *op_limits = &limits->op;
399 	struct smiapp_pll_branch *op_pll = &pll->op;
400 	uint16_t min_pre_pll_clk_div;
401 	uint16_t max_pre_pll_clk_div;
402 	uint32_t lane_op_clock_ratio;
403 	uint32_t mul, div;
404 	unsigned int i;
405 	int rval = -EINVAL;
406 
407 	if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
408 		/*
409 		 * If there's no OP PLL at all, use the VT values
410 		 * instead. The OP values are ignored for the rest of
411 		 * the PLL calculation.
412 		 */
413 		op_limits = &limits->vt;
414 		op_pll = &pll->vt;
415 	}
416 
417 	if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
418 		lane_op_clock_ratio = pll->csi2.lanes;
419 	else
420 		lane_op_clock_ratio = 1;
421 	dev_dbg(dev, "lane_op_clock_ratio: %u\n", lane_op_clock_ratio);
422 
423 	dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal,
424 		pll->binning_vertical);
425 
426 	switch (pll->bus_type) {
427 	case SMIAPP_PLL_BUS_TYPE_CSI2:
428 		/* CSI transfers 2 bits per clock per lane; thus times 2 */
429 		pll->pll_op_clk_freq_hz = pll->link_freq * 2
430 			* (pll->csi2.lanes / lane_op_clock_ratio);
431 		break;
432 	case SMIAPP_PLL_BUS_TYPE_PARALLEL:
433 		pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel
434 			/ DIV_ROUND_UP(pll->bits_per_pixel,
435 				       pll->parallel.bus_width);
436 		break;
437 	default:
438 		return -EINVAL;
439 	}
440 
441 	/* Figure out limits for pre-pll divider based on extclk */
442 	dev_dbg(dev, "min / max pre_pll_clk_div: %u / %u\n",
443 		limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
444 	max_pre_pll_clk_div =
445 		min_t(uint16_t, limits->max_pre_pll_clk_div,
446 		      clk_div_even(pll->ext_clk_freq_hz /
447 				   limits->min_pll_ip_freq_hz));
448 	min_pre_pll_clk_div =
449 		max_t(uint16_t, limits->min_pre_pll_clk_div,
450 		      clk_div_even_up(
451 			      DIV_ROUND_UP(pll->ext_clk_freq_hz,
452 					   limits->max_pll_ip_freq_hz)));
453 	dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %u / %u\n",
454 		min_pre_pll_clk_div, max_pre_pll_clk_div);
455 
456 	i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
457 	mul = div_u64(pll->pll_op_clk_freq_hz, i);
458 	div = pll->ext_clk_freq_hz / i;
459 	dev_dbg(dev, "mul %u / div %u\n", mul, div);
460 
461 	min_pre_pll_clk_div =
462 		max_t(uint16_t, min_pre_pll_clk_div,
463 		      clk_div_even_up(
464 			      DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
465 					   limits->max_pll_op_freq_hz)));
466 	dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %u / %u\n",
467 		min_pre_pll_clk_div, max_pre_pll_clk_div);
468 
469 	for (pll->pre_pll_clk_div = min_pre_pll_clk_div;
470 	     pll->pre_pll_clk_div <= max_pre_pll_clk_div;
471 	     pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) {
472 		rval = __smiapp_pll_calculate(dev, limits, op_limits, pll,
473 					      op_pll, mul, div,
474 					      lane_op_clock_ratio);
475 		if (rval)
476 			continue;
477 
478 		print_pll(dev, pll);
479 		return 0;
480 	}
481 
482 	dev_info(dev, "unable to compute pre_pll divisor\n");
483 	return rval;
484 }
485 EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
486 
487 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
488 MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
489 MODULE_LICENSE("GPL");
490