• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mirics MSi001 silicon tuner driver
3  *
4  * Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
5  * Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/gcd.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-ctrls.h>
22 
23 static const struct v4l2_frequency_band bands[] = {
24 	{
25 		.type = V4L2_TUNER_RF,
26 		.index = 0,
27 		.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
28 		.rangelow   =   49000000,
29 		.rangehigh  =  263000000,
30 	}, {
31 		.type = V4L2_TUNER_RF,
32 		.index = 1,
33 		.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
34 		.rangelow   =  390000000,
35 		.rangehigh  =  960000000,
36 	},
37 };
38 
39 struct msi001_dev {
40 	struct spi_device *spi;
41 	struct v4l2_subdev sd;
42 
43 	/* Controls */
44 	struct v4l2_ctrl_handler hdl;
45 	struct v4l2_ctrl *bandwidth_auto;
46 	struct v4l2_ctrl *bandwidth;
47 	struct v4l2_ctrl *lna_gain;
48 	struct v4l2_ctrl *mixer_gain;
49 	struct v4l2_ctrl *if_gain;
50 
51 	unsigned int f_tuner;
52 };
53 
sd_to_msi001_dev(struct v4l2_subdev * sd)54 static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
55 {
56 	return container_of(sd, struct msi001_dev, sd);
57 }
58 
msi001_wreg(struct msi001_dev * dev,u32 data)59 static int msi001_wreg(struct msi001_dev *dev, u32 data)
60 {
61 	/* Register format: 4 bits addr + 20 bits value */
62 	return spi_write(dev->spi, &data, 3);
63 };
64 
msi001_set_gain(struct msi001_dev * dev,int lna_gain,int mixer_gain,int if_gain)65 static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
66 			   int if_gain)
67 {
68 	struct spi_device *spi = dev->spi;
69 	int ret;
70 	u32 reg;
71 
72 	dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
73 		lna_gain, mixer_gain, if_gain);
74 
75 	reg = 1 << 0;
76 	reg |= (59 - if_gain) << 4;
77 	reg |= 0 << 10;
78 	reg |= (1 - mixer_gain) << 12;
79 	reg |= (1 - lna_gain) << 13;
80 	reg |= 4 << 14;
81 	reg |= 0 << 17;
82 	ret = msi001_wreg(dev, reg);
83 	if (ret)
84 		goto err;
85 
86 	return 0;
87 err:
88 	dev_dbg(&spi->dev, "failed %d\n", ret);
89 	return ret;
90 };
91 
msi001_set_tuner(struct msi001_dev * dev)92 static int msi001_set_tuner(struct msi001_dev *dev)
93 {
94 	struct spi_device *spi = dev->spi;
95 	int ret, i;
96 	unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
97 	u32 reg;
98 	u64 f_vco;
99 	u8 mode, filter_mode;
100 
101 	static const struct {
102 		u32 rf;
103 		u8 mode;
104 		u8 div_lo;
105 	} band_lut[] = {
106 		{ 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
107 		{108000000, 0x42, 32}, /* VHF_MODE */
108 		{330000000, 0x44, 16}, /* B3_MODE */
109 		{960000000, 0x48,  4}, /* B45_MODE */
110 		{      ~0U, 0x50,  2}, /* BL_MODE */
111 	};
112 	static const struct {
113 		u32 freq;
114 		u8 filter_mode;
115 	} if_freq_lut[] = {
116 		{      0, 0x03}, /* Zero IF */
117 		{ 450000, 0x02}, /* 450 kHz IF */
118 		{1620000, 0x01}, /* 1.62 MHz IF */
119 		{2048000, 0x00}, /* 2.048 MHz IF */
120 	};
121 	static const struct {
122 		u32 freq;
123 		u8 val;
124 	} bandwidth_lut[] = {
125 		{ 200000, 0x00}, /* 200 kHz */
126 		{ 300000, 0x01}, /* 300 kHz */
127 		{ 600000, 0x02}, /* 600 kHz */
128 		{1536000, 0x03}, /* 1.536 MHz */
129 		{5000000, 0x04}, /* 5 MHz */
130 		{6000000, 0x05}, /* 6 MHz */
131 		{7000000, 0x06}, /* 7 MHz */
132 		{8000000, 0x07}, /* 8 MHz */
133 	};
134 
135 	unsigned int f_rf = dev->f_tuner;
136 
137 	/*
138 	 * bandwidth (Hz)
139 	 * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
140 	 */
141 	unsigned int bandwidth;
142 
143 	/*
144 	 * intermediate frequency (Hz)
145 	 * 0, 450000, 1620000, 2048000
146 	 */
147 	unsigned int f_if = 0;
148 	#define F_REF 24000000
149 	#define DIV_PRE_N 4
150 	#define	F_VCO_STEP div_lo
151 
152 	dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
153 
154 	for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
155 		if (f_rf <= band_lut[i].rf) {
156 			mode = band_lut[i].mode;
157 			div_lo = band_lut[i].div_lo;
158 			break;
159 		}
160 	}
161 	if (i == ARRAY_SIZE(band_lut)) {
162 		ret = -EINVAL;
163 		goto err;
164 	}
165 
166 	/* AM_MODE is upconverted */
167 	if ((mode >> 0) & 0x1)
168 		f_if1 =  5 * F_REF;
169 	else
170 		f_if1 =  0;
171 
172 	for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
173 		if (f_if == if_freq_lut[i].freq) {
174 			filter_mode = if_freq_lut[i].filter_mode;
175 			break;
176 		}
177 	}
178 	if (i == ARRAY_SIZE(if_freq_lut)) {
179 		ret = -EINVAL;
180 		goto err;
181 	}
182 
183 	/* filters */
184 	bandwidth = dev->bandwidth->val;
185 	bandwidth = clamp(bandwidth, 200000U, 8000000U);
186 
187 	for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
188 		if (bandwidth <= bandwidth_lut[i].freq) {
189 			bandwidth = bandwidth_lut[i].val;
190 			break;
191 		}
192 	}
193 	if (i == ARRAY_SIZE(bandwidth_lut)) {
194 		ret = -EINVAL;
195 		goto err;
196 	}
197 
198 	dev->bandwidth->val = bandwidth_lut[i].freq;
199 
200 	dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
201 
202 	/*
203 	 * Fractional-N synthesizer
204 	 *
205 	 *           +---------------------------------------+
206 	 *           v                                       |
207 	 *  Fref   +----+     +-------+         +----+     +------+     +---+
208 	 * ------> | PD | --> |  VCO  | ------> | /4 | --> | /N.F | <-- | K |
209 	 *         +----+     +-------+         +----+     +------+     +---+
210 	 *                      |
211 	 *                      |
212 	 *                      v
213 	 *                    +-------+  Fout
214 	 *                    | /Rout | ------>
215 	 *                    +-------+
216 	 */
217 
218 	/* Calculate PLL integer and fractional control word. */
219 	f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
220 	div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
221 	k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
222 	k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
223 
224 	/* Find out greatest common divisor and divide to smaller. */
225 	uitmp = gcd(k_thresh, k_frac);
226 	k_thresh /= uitmp;
227 	k_frac /= uitmp;
228 
229 	/* Force divide to reg max. Resolution will be reduced. */
230 	uitmp = DIV_ROUND_UP(k_thresh, 4095);
231 	k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
232 	k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
233 
234 	/* Calculate real RF set. */
235 	uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
236 	uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
237 	uitmp /= div_lo;
238 
239 	dev_dbg(&spi->dev,
240 		"f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
241 		f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
242 
243 	ret = msi001_wreg(dev, 0x00000e);
244 	if (ret)
245 		goto err;
246 
247 	ret = msi001_wreg(dev, 0x000003);
248 	if (ret)
249 		goto err;
250 
251 	reg = 0 << 0;
252 	reg |= mode << 4;
253 	reg |= filter_mode << 12;
254 	reg |= bandwidth << 14;
255 	reg |= 0x02 << 17;
256 	reg |= 0x00 << 20;
257 	ret = msi001_wreg(dev, reg);
258 	if (ret)
259 		goto err;
260 
261 	reg = 5 << 0;
262 	reg |= k_thresh << 4;
263 	reg |= 1 << 19;
264 	reg |= 1 << 21;
265 	ret = msi001_wreg(dev, reg);
266 	if (ret)
267 		goto err;
268 
269 	reg = 2 << 0;
270 	reg |= k_frac << 4;
271 	reg |= div_n << 16;
272 	ret = msi001_wreg(dev, reg);
273 	if (ret)
274 		goto err;
275 
276 	ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
277 			      dev->mixer_gain->cur.val, dev->if_gain->cur.val);
278 	if (ret)
279 		goto err;
280 
281 	reg = 6 << 0;
282 	reg |= 63 << 4;
283 	reg |= 4095 << 10;
284 	ret = msi001_wreg(dev, reg);
285 	if (ret)
286 		goto err;
287 
288 	return 0;
289 err:
290 	dev_dbg(&spi->dev, "failed %d\n", ret);
291 	return ret;
292 }
293 
msi001_s_power(struct v4l2_subdev * sd,int on)294 static int msi001_s_power(struct v4l2_subdev *sd, int on)
295 {
296 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
297 	struct spi_device *spi = dev->spi;
298 	int ret;
299 
300 	dev_dbg(&spi->dev, "on=%d\n", on);
301 
302 	if (on)
303 		ret = 0;
304 	else
305 		ret = msi001_wreg(dev, 0x000000);
306 
307 	return ret;
308 }
309 
310 static const struct v4l2_subdev_core_ops msi001_core_ops = {
311 	.s_power                  = msi001_s_power,
312 };
313 
msi001_g_tuner(struct v4l2_subdev * sd,struct v4l2_tuner * v)314 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
315 {
316 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
317 	struct spi_device *spi = dev->spi;
318 
319 	dev_dbg(&spi->dev, "index=%d\n", v->index);
320 
321 	strlcpy(v->name, "Mirics MSi001", sizeof(v->name));
322 	v->type = V4L2_TUNER_RF;
323 	v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
324 	v->rangelow =    49000000;
325 	v->rangehigh =  960000000;
326 
327 	return 0;
328 }
329 
msi001_s_tuner(struct v4l2_subdev * sd,const struct v4l2_tuner * v)330 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
331 {
332 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
333 	struct spi_device *spi = dev->spi;
334 
335 	dev_dbg(&spi->dev, "index=%d\n", v->index);
336 	return 0;
337 }
338 
msi001_g_frequency(struct v4l2_subdev * sd,struct v4l2_frequency * f)339 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
340 {
341 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
342 	struct spi_device *spi = dev->spi;
343 
344 	dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
345 	f->frequency = dev->f_tuner;
346 	return 0;
347 }
348 
msi001_s_frequency(struct v4l2_subdev * sd,const struct v4l2_frequency * f)349 static int msi001_s_frequency(struct v4l2_subdev *sd,
350 			      const struct v4l2_frequency *f)
351 {
352 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
353 	struct spi_device *spi = dev->spi;
354 	unsigned int band;
355 
356 	dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
357 		f->tuner, f->type, f->frequency);
358 
359 	if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
360 		band = 0;
361 	else
362 		band = 1;
363 	dev->f_tuner = clamp_t(unsigned int, f->frequency,
364 			       bands[band].rangelow, bands[band].rangehigh);
365 
366 	return msi001_set_tuner(dev);
367 }
368 
msi001_enum_freq_bands(struct v4l2_subdev * sd,struct v4l2_frequency_band * band)369 static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
370 				  struct v4l2_frequency_band *band)
371 {
372 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
373 	struct spi_device *spi = dev->spi;
374 
375 	dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
376 		band->tuner, band->type, band->index);
377 
378 	if (band->index >= ARRAY_SIZE(bands))
379 		return -EINVAL;
380 
381 	band->capability = bands[band->index].capability;
382 	band->rangelow = bands[band->index].rangelow;
383 	band->rangehigh = bands[band->index].rangehigh;
384 
385 	return 0;
386 }
387 
388 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
389 	.g_tuner                  = msi001_g_tuner,
390 	.s_tuner                  = msi001_s_tuner,
391 	.g_frequency              = msi001_g_frequency,
392 	.s_frequency              = msi001_s_frequency,
393 	.enum_freq_bands          = msi001_enum_freq_bands,
394 };
395 
396 static const struct v4l2_subdev_ops msi001_ops = {
397 	.core                     = &msi001_core_ops,
398 	.tuner                    = &msi001_tuner_ops,
399 };
400 
msi001_s_ctrl(struct v4l2_ctrl * ctrl)401 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
402 {
403 	struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
404 	struct spi_device *spi = dev->spi;
405 
406 	int ret;
407 
408 	dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
409 		ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
410 		ctrl->step);
411 
412 	switch (ctrl->id) {
413 	case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
414 	case V4L2_CID_RF_TUNER_BANDWIDTH:
415 		ret = msi001_set_tuner(dev);
416 		break;
417 	case  V4L2_CID_RF_TUNER_LNA_GAIN:
418 		ret = msi001_set_gain(dev, dev->lna_gain->val,
419 				      dev->mixer_gain->cur.val,
420 				      dev->if_gain->cur.val);
421 		break;
422 	case  V4L2_CID_RF_TUNER_MIXER_GAIN:
423 		ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
424 				      dev->mixer_gain->val,
425 				      dev->if_gain->cur.val);
426 		break;
427 	case  V4L2_CID_RF_TUNER_IF_GAIN:
428 		ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
429 				      dev->mixer_gain->cur.val,
430 				      dev->if_gain->val);
431 		break;
432 	default:
433 		dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
434 		ret = -EINVAL;
435 	}
436 
437 	return ret;
438 }
439 
440 static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
441 	.s_ctrl                   = msi001_s_ctrl,
442 };
443 
msi001_probe(struct spi_device * spi)444 static int msi001_probe(struct spi_device *spi)
445 {
446 	struct msi001_dev *dev;
447 	int ret;
448 
449 	dev_dbg(&spi->dev, "\n");
450 
451 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
452 	if (!dev) {
453 		ret = -ENOMEM;
454 		goto err;
455 	}
456 
457 	dev->spi = spi;
458 	dev->f_tuner = bands[0].rangelow;
459 	v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
460 
461 	/* Register controls */
462 	v4l2_ctrl_handler_init(&dev->hdl, 5);
463 	dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
464 			V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
465 	dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
466 			V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
467 	v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
468 	dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
469 			V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
470 	dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
471 			V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
472 	dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
473 			V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
474 	if (dev->hdl.error) {
475 		ret = dev->hdl.error;
476 		dev_err(&spi->dev, "Could not initialize controls\n");
477 		/* control init failed, free handler */
478 		goto err_ctrl_handler_free;
479 	}
480 
481 	dev->sd.ctrl_handler = &dev->hdl;
482 	return 0;
483 err_ctrl_handler_free:
484 	v4l2_ctrl_handler_free(&dev->hdl);
485 	kfree(dev);
486 err:
487 	return ret;
488 }
489 
msi001_remove(struct spi_device * spi)490 static int msi001_remove(struct spi_device *spi)
491 {
492 	struct v4l2_subdev *sd = spi_get_drvdata(spi);
493 	struct msi001_dev *dev = sd_to_msi001_dev(sd);
494 
495 	dev_dbg(&spi->dev, "\n");
496 
497 	/*
498 	 * Registered by v4l2_spi_new_subdev() from master driver, but we must
499 	 * unregister it from here. Weird.
500 	 */
501 	v4l2_device_unregister_subdev(&dev->sd);
502 	v4l2_ctrl_handler_free(&dev->hdl);
503 	kfree(dev);
504 	return 0;
505 }
506 
507 static const struct spi_device_id msi001_id_table[] = {
508 	{"msi001", 0},
509 	{}
510 };
511 MODULE_DEVICE_TABLE(spi, msi001_id_table);
512 
513 static struct spi_driver msi001_driver = {
514 	.driver = {
515 		.name	= "msi001",
516 		.suppress_bind_attrs = true,
517 	},
518 	.probe		= msi001_probe,
519 	.remove		= msi001_remove,
520 	.id_table	= msi001_id_table,
521 };
522 module_spi_driver(msi001_driver);
523 
524 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
525 MODULE_DESCRIPTION("Mirics MSi001");
526 MODULE_LICENSE("GPL");
527