• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  drivers/mtd/nand/au1550nd.c
3  *
4  *  Copyright (C) 2004 Embedded Edge, LLC
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
20 #include <asm/io.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
23 
24 
25 struct au1550nd_ctx {
26 	struct nand_chip chip;
27 
28 	int cs;
29 	void __iomem *base;
30 	void (*write_byte)(struct mtd_info *, u_char);
31 };
32 
33 /**
34  * au_read_byte -  read one byte from the chip
35  * @mtd:	MTD device structure
36  *
37  * read function for 8bit buswidth
38  */
au_read_byte(struct mtd_info * mtd)39 static u_char au_read_byte(struct mtd_info *mtd)
40 {
41 	struct nand_chip *this = mtd_to_nand(mtd);
42 	u_char ret = readb(this->IO_ADDR_R);
43 	wmb(); /* drain writebuffer */
44 	return ret;
45 }
46 
47 /**
48  * au_write_byte -  write one byte to the chip
49  * @mtd:	MTD device structure
50  * @byte:	pointer to data byte to write
51  *
52  * write function for 8it buswidth
53  */
au_write_byte(struct mtd_info * mtd,u_char byte)54 static void au_write_byte(struct mtd_info *mtd, u_char byte)
55 {
56 	struct nand_chip *this = mtd_to_nand(mtd);
57 	writeb(byte, this->IO_ADDR_W);
58 	wmb(); /* drain writebuffer */
59 }
60 
61 /**
62  * au_read_byte16 -  read one byte endianness aware from the chip
63  * @mtd:	MTD device structure
64  *
65  * read function for 16bit buswidth with endianness conversion
66  */
au_read_byte16(struct mtd_info * mtd)67 static u_char au_read_byte16(struct mtd_info *mtd)
68 {
69 	struct nand_chip *this = mtd_to_nand(mtd);
70 	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
71 	wmb(); /* drain writebuffer */
72 	return ret;
73 }
74 
75 /**
76  * au_write_byte16 -  write one byte endianness aware to the chip
77  * @mtd:	MTD device structure
78  * @byte:	pointer to data byte to write
79  *
80  * write function for 16bit buswidth with endianness conversion
81  */
au_write_byte16(struct mtd_info * mtd,u_char byte)82 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
83 {
84 	struct nand_chip *this = mtd_to_nand(mtd);
85 	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
86 	wmb(); /* drain writebuffer */
87 }
88 
89 /**
90  * au_read_word -  read one word from the chip
91  * @mtd:	MTD device structure
92  *
93  * read function for 16bit buswidth without endianness conversion
94  */
au_read_word(struct mtd_info * mtd)95 static u16 au_read_word(struct mtd_info *mtd)
96 {
97 	struct nand_chip *this = mtd_to_nand(mtd);
98 	u16 ret = readw(this->IO_ADDR_R);
99 	wmb(); /* drain writebuffer */
100 	return ret;
101 }
102 
103 /**
104  * au_write_buf -  write buffer to chip
105  * @mtd:	MTD device structure
106  * @buf:	data buffer
107  * @len:	number of bytes to write
108  *
109  * write function for 8bit buswidth
110  */
au_write_buf(struct mtd_info * mtd,const u_char * buf,int len)111 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
112 {
113 	int i;
114 	struct nand_chip *this = mtd_to_nand(mtd);
115 
116 	for (i = 0; i < len; i++) {
117 		writeb(buf[i], this->IO_ADDR_W);
118 		wmb(); /* drain writebuffer */
119 	}
120 }
121 
122 /**
123  * au_read_buf -  read chip data into buffer
124  * @mtd:	MTD device structure
125  * @buf:	buffer to store date
126  * @len:	number of bytes to read
127  *
128  * read function for 8bit buswidth
129  */
au_read_buf(struct mtd_info * mtd,u_char * buf,int len)130 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
131 {
132 	int i;
133 	struct nand_chip *this = mtd_to_nand(mtd);
134 
135 	for (i = 0; i < len; i++) {
136 		buf[i] = readb(this->IO_ADDR_R);
137 		wmb(); /* drain writebuffer */
138 	}
139 }
140 
141 /**
142  * au_write_buf16 -  write buffer to chip
143  * @mtd:	MTD device structure
144  * @buf:	data buffer
145  * @len:	number of bytes to write
146  *
147  * write function for 16bit buswidth
148  */
au_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)149 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
150 {
151 	int i;
152 	struct nand_chip *this = mtd_to_nand(mtd);
153 	u16 *p = (u16 *) buf;
154 	len >>= 1;
155 
156 	for (i = 0; i < len; i++) {
157 		writew(p[i], this->IO_ADDR_W);
158 		wmb(); /* drain writebuffer */
159 	}
160 
161 }
162 
163 /**
164  * au_read_buf16 -  read chip data into buffer
165  * @mtd:	MTD device structure
166  * @buf:	buffer to store date
167  * @len:	number of bytes to read
168  *
169  * read function for 16bit buswidth
170  */
au_read_buf16(struct mtd_info * mtd,u_char * buf,int len)171 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
172 {
173 	int i;
174 	struct nand_chip *this = mtd_to_nand(mtd);
175 	u16 *p = (u16 *) buf;
176 	len >>= 1;
177 
178 	for (i = 0; i < len; i++) {
179 		p[i] = readw(this->IO_ADDR_R);
180 		wmb(); /* drain writebuffer */
181 	}
182 }
183 
184 /* Select the chip by setting nCE to low */
185 #define NAND_CTL_SETNCE		1
186 /* Deselect the chip by setting nCE to high */
187 #define NAND_CTL_CLRNCE		2
188 /* Select the command latch by setting CLE to high */
189 #define NAND_CTL_SETCLE		3
190 /* Deselect the command latch by setting CLE to low */
191 #define NAND_CTL_CLRCLE		4
192 /* Select the address latch by setting ALE to high */
193 #define NAND_CTL_SETALE		5
194 /* Deselect the address latch by setting ALE to low */
195 #define NAND_CTL_CLRALE		6
196 
au1550_hwcontrol(struct mtd_info * mtd,int cmd)197 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
198 {
199 	struct nand_chip *this = mtd_to_nand(mtd);
200 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
201 						chip);
202 
203 	switch (cmd) {
204 
205 	case NAND_CTL_SETCLE:
206 		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
207 		break;
208 
209 	case NAND_CTL_CLRCLE:
210 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
211 		break;
212 
213 	case NAND_CTL_SETALE:
214 		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
215 		break;
216 
217 	case NAND_CTL_CLRALE:
218 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
219 		/* FIXME: Nobody knows why this is necessary,
220 		 * but it works only that way */
221 		udelay(1);
222 		break;
223 
224 	case NAND_CTL_SETNCE:
225 		/* assert (force assert) chip enable */
226 		alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
227 		break;
228 
229 	case NAND_CTL_CLRNCE:
230 		/* deassert chip enable */
231 		alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
232 		break;
233 	}
234 
235 	this->IO_ADDR_R = this->IO_ADDR_W;
236 
237 	wmb(); /* Drain the writebuffer */
238 }
239 
au1550_device_ready(struct mtd_info * mtd)240 int au1550_device_ready(struct mtd_info *mtd)
241 {
242 	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
243 }
244 
245 /**
246  * au1550_select_chip - control -CE line
247  *	Forbid driving -CE manually permitting the NAND controller to do this.
248  *	Keeping -CE asserted during the whole sector reads interferes with the
249  *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
250  *	We only have to hold -CE low for the NAND read commands since the flash
251  *	chip needs it to be asserted during chip not ready time but the NAND
252  *	controller keeps it released.
253  *
254  * @mtd:	MTD device structure
255  * @chip:	chipnumber to select, -1 for deselect
256  */
au1550_select_chip(struct mtd_info * mtd,int chip)257 static void au1550_select_chip(struct mtd_info *mtd, int chip)
258 {
259 }
260 
261 /**
262  * au1550_command - Send command to NAND device
263  * @mtd:	MTD device structure
264  * @command:	the command to be sent
265  * @column:	the column address for this command, -1 if none
266  * @page_addr:	the page address for this command, -1 if none
267  */
au1550_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)268 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
269 {
270 	struct nand_chip *this = mtd_to_nand(mtd);
271 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
272 						chip);
273 	int ce_override = 0, i;
274 	unsigned long flags = 0;
275 
276 	/* Begin command latch cycle */
277 	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
278 	/*
279 	 * Write out the command to the device.
280 	 */
281 	if (command == NAND_CMD_SEQIN) {
282 		int readcmd;
283 
284 		if (column >= mtd->writesize) {
285 			/* OOB area */
286 			column -= mtd->writesize;
287 			readcmd = NAND_CMD_READOOB;
288 		} else if (column < 256) {
289 			/* First 256 bytes --> READ0 */
290 			readcmd = NAND_CMD_READ0;
291 		} else {
292 			column -= 256;
293 			readcmd = NAND_CMD_READ1;
294 		}
295 		ctx->write_byte(mtd, readcmd);
296 	}
297 	ctx->write_byte(mtd, command);
298 
299 	/* Set ALE and clear CLE to start address cycle */
300 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
301 
302 	if (column != -1 || page_addr != -1) {
303 		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
304 
305 		/* Serially input address */
306 		if (column != -1) {
307 			/* Adjust columns for 16 bit buswidth */
308 			if (this->options & NAND_BUSWIDTH_16 &&
309 					!nand_opcode_8bits(command))
310 				column >>= 1;
311 			ctx->write_byte(mtd, column);
312 		}
313 		if (page_addr != -1) {
314 			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
315 
316 			if (command == NAND_CMD_READ0 ||
317 			    command == NAND_CMD_READ1 ||
318 			    command == NAND_CMD_READOOB) {
319 				/*
320 				 * NAND controller will release -CE after
321 				 * the last address byte is written, so we'll
322 				 * have to forcibly assert it. No interrupts
323 				 * are allowed while we do this as we don't
324 				 * want the NOR flash or PCMCIA drivers to
325 				 * steal our precious bytes of data...
326 				 */
327 				ce_override = 1;
328 				local_irq_save(flags);
329 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
330 			}
331 
332 			ctx->write_byte(mtd, (u8)(page_addr >> 8));
333 
334 			/* One more address cycle for devices > 32MiB */
335 			if (this->chipsize > (32 << 20))
336 				ctx->write_byte(mtd,
337 						((page_addr >> 16) & 0x0f));
338 		}
339 		/* Latch in address */
340 		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
341 	}
342 
343 	/*
344 	 * Program and erase have their own busy handlers.
345 	 * Status and sequential in need no delay.
346 	 */
347 	switch (command) {
348 
349 	case NAND_CMD_PAGEPROG:
350 	case NAND_CMD_ERASE1:
351 	case NAND_CMD_ERASE2:
352 	case NAND_CMD_SEQIN:
353 	case NAND_CMD_STATUS:
354 		return;
355 
356 	case NAND_CMD_RESET:
357 		break;
358 
359 	case NAND_CMD_READ0:
360 	case NAND_CMD_READ1:
361 	case NAND_CMD_READOOB:
362 		/* Check if we're really driving -CE low (just in case) */
363 		if (unlikely(!ce_override))
364 			break;
365 
366 		/* Apply a short delay always to ensure that we do wait tWB. */
367 		ndelay(100);
368 		/* Wait for a chip to become ready... */
369 		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
370 			udelay(1);
371 
372 		/* Release -CE and re-enable interrupts. */
373 		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
374 		local_irq_restore(flags);
375 		return;
376 	}
377 	/* Apply this short delay always to ensure that we do wait tWB. */
378 	ndelay(100);
379 
380 	while(!this->dev_ready(mtd));
381 }
382 
find_nand_cs(unsigned long nand_base)383 static int find_nand_cs(unsigned long nand_base)
384 {
385 	void __iomem *base =
386 			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
387 	unsigned long addr, staddr, start, mask, end;
388 	int i;
389 
390 	for (i = 0; i < 4; i++) {
391 		addr = 0x1000 + (i * 0x10);			/* CSx */
392 		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
393 		/* figure out the decoded range of this CS */
394 		start = (staddr << 4) & 0xfffc0000;
395 		mask = (staddr << 18) & 0xfffc0000;
396 		end = (start | (start - 1)) & ~(start ^ mask);
397 		if ((nand_base >= start) && (nand_base < end))
398 			return i;
399 	}
400 
401 	return -ENODEV;
402 }
403 
au1550nd_probe(struct platform_device * pdev)404 static int au1550nd_probe(struct platform_device *pdev)
405 {
406 	struct au1550nd_platdata *pd;
407 	struct au1550nd_ctx *ctx;
408 	struct nand_chip *this;
409 	struct mtd_info *mtd;
410 	struct resource *r;
411 	int ret, cs;
412 
413 	pd = dev_get_platdata(&pdev->dev);
414 	if (!pd) {
415 		dev_err(&pdev->dev, "missing platform data\n");
416 		return -ENODEV;
417 	}
418 
419 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
420 	if (!ctx)
421 		return -ENOMEM;
422 
423 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
424 	if (!r) {
425 		dev_err(&pdev->dev, "no NAND memory resource\n");
426 		ret = -ENODEV;
427 		goto out1;
428 	}
429 	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
430 		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
431 		ret = -ENOMEM;
432 		goto out1;
433 	}
434 
435 	ctx->base = ioremap_nocache(r->start, 0x1000);
436 	if (!ctx->base) {
437 		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
438 		ret = -ENODEV;
439 		goto out2;
440 	}
441 
442 	this = &ctx->chip;
443 	mtd = nand_to_mtd(this);
444 	mtd->dev.parent = &pdev->dev;
445 
446 	/* figure out which CS# r->start belongs to */
447 	cs = find_nand_cs(r->start);
448 	if (cs < 0) {
449 		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
450 		ret = -ENODEV;
451 		goto out3;
452 	}
453 	ctx->cs = cs;
454 
455 	this->dev_ready = au1550_device_ready;
456 	this->select_chip = au1550_select_chip;
457 	this->cmdfunc = au1550_command;
458 
459 	/* 30 us command delay time */
460 	this->chip_delay = 30;
461 	this->ecc.mode = NAND_ECC_SOFT;
462 	this->ecc.algo = NAND_ECC_HAMMING;
463 
464 	if (pd->devwidth)
465 		this->options |= NAND_BUSWIDTH_16;
466 
467 	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
468 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
469 	this->read_word = au_read_word;
470 	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
471 	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
472 
473 	ret = nand_scan(mtd, 1);
474 	if (ret) {
475 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
476 		goto out3;
477 	}
478 
479 	mtd_device_register(mtd, pd->parts, pd->num_parts);
480 
481 	platform_set_drvdata(pdev, ctx);
482 
483 	return 0;
484 
485 out3:
486 	iounmap(ctx->base);
487 out2:
488 	release_mem_region(r->start, resource_size(r));
489 out1:
490 	kfree(ctx);
491 	return ret;
492 }
493 
au1550nd_remove(struct platform_device * pdev)494 static int au1550nd_remove(struct platform_device *pdev)
495 {
496 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
497 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
498 
499 	nand_release(nand_to_mtd(&ctx->chip));
500 	iounmap(ctx->base);
501 	release_mem_region(r->start, 0x1000);
502 	kfree(ctx);
503 	return 0;
504 }
505 
506 static struct platform_driver au1550nd_driver = {
507 	.driver = {
508 		.name	= "au1550-nand",
509 	},
510 	.probe		= au1550nd_probe,
511 	.remove		= au1550nd_remove,
512 };
513 
514 module_platform_driver(au1550nd_driver);
515 
516 MODULE_LICENSE("GPL");
517 MODULE_AUTHOR("Embedded Edge, LLC");
518 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
519