• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10 
11 #define DEBUG
12 
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26 
27 #define CAFE_NAND_CTRL1		0x00
28 #define CAFE_NAND_CTRL2		0x04
29 #define CAFE_NAND_CTRL3		0x08
30 #define CAFE_NAND_STATUS	0x0c
31 #define CAFE_NAND_IRQ		0x10
32 #define CAFE_NAND_IRQ_MASK	0x14
33 #define CAFE_NAND_DATA_LEN	0x18
34 #define CAFE_NAND_ADDR1		0x1c
35 #define CAFE_NAND_ADDR2		0x20
36 #define CAFE_NAND_TIMING1	0x24
37 #define CAFE_NAND_TIMING2	0x28
38 #define CAFE_NAND_TIMING3	0x2c
39 #define CAFE_NAND_NONMEM	0x30
40 #define CAFE_NAND_ECC_RESULT	0x3C
41 #define CAFE_NAND_DMA_CTRL	0x40
42 #define CAFE_NAND_DMA_ADDR0	0x44
43 #define CAFE_NAND_DMA_ADDR1	0x48
44 #define CAFE_NAND_ECC_SYN01	0x50
45 #define CAFE_NAND_ECC_SYN23	0x54
46 #define CAFE_NAND_ECC_SYN45	0x58
47 #define CAFE_NAND_ECC_SYN67	0x5c
48 #define CAFE_NAND_READ_DATA	0x1000
49 #define CAFE_NAND_WRITE_DATA	0x2000
50 
51 #define CAFE_GLOBAL_CTRL	0x3004
52 #define CAFE_GLOBAL_IRQ		0x3008
53 #define CAFE_GLOBAL_IRQ_MASK	0x300c
54 #define CAFE_NAND_RESET		0x3034
55 
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT	(1<<19)
58 
59 struct cafe_priv {
60 	struct nand_chip nand;
61 	struct pci_dev *pdev;
62 	void __iomem *mmio;
63 	struct rs_control *rs;
64 	uint32_t ctl1;
65 	uint32_t ctl2;
66 	int datalen;
67 	int nr_data;
68 	int data_pos;
69 	int page_addr;
70 	dma_addr_t dmaaddr;
71 	unsigned char *dmabuf;
72 };
73 
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76 
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79 
80 static int debug = 0;
81 module_param(debug, int, 0644);
82 
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85 
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88 
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92 
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97 
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
101 
cafe_device_ready(struct mtd_info * mtd)102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104 	struct nand_chip *chip = mtd_to_nand(mtd);
105 	struct cafe_priv *cafe = nand_get_controller_data(chip);
106 	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108 
109 	cafe_writel(cafe, irqs, NAND_IRQ);
110 
111 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114 
115 	return result;
116 }
117 
118 
cafe_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
120 {
121 	struct nand_chip *chip = mtd_to_nand(mtd);
122 	struct cafe_priv *cafe = nand_get_controller_data(chip);
123 
124 	if (usedma)
125 		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126 	else
127 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128 
129 	cafe->datalen += len;
130 
131 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132 		len, cafe->datalen);
133 }
134 
cafe_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)135 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136 {
137 	struct nand_chip *chip = mtd_to_nand(mtd);
138 	struct cafe_priv *cafe = nand_get_controller_data(chip);
139 
140 	if (usedma)
141 		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
142 	else
143 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
144 
145 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
146 		  len, cafe->datalen);
147 	cafe->datalen += len;
148 }
149 
cafe_read_byte(struct mtd_info * mtd)150 static uint8_t cafe_read_byte(struct mtd_info *mtd)
151 {
152 	struct nand_chip *chip = mtd_to_nand(mtd);
153 	struct cafe_priv *cafe = nand_get_controller_data(chip);
154 	uint8_t d;
155 
156 	cafe_read_buf(mtd, &d, 1);
157 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
158 
159 	return d;
160 }
161 
cafe_nand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)162 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
163 			      int column, int page_addr)
164 {
165 	struct nand_chip *chip = mtd_to_nand(mtd);
166 	struct cafe_priv *cafe = nand_get_controller_data(chip);
167 	int adrbytes = 0;
168 	uint32_t ctl1;
169 	uint32_t doneint = 0x80000000;
170 
171 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
172 		command, column, page_addr);
173 
174 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
175 		/* Second half of a command we already calculated */
176 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
177 		ctl1 = cafe->ctl1;
178 		cafe->ctl2 &= ~(1<<30);
179 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
180 			  cafe->ctl1, cafe->nr_data);
181 		goto do_command;
182 	}
183 	/* Reset ECC engine */
184 	cafe_writel(cafe, 0, NAND_CTRL2);
185 
186 	/* Emulate NAND_CMD_READOOB on large-page chips */
187 	if (mtd->writesize > 512 &&
188 	    command == NAND_CMD_READOOB) {
189 		column += mtd->writesize;
190 		command = NAND_CMD_READ0;
191 	}
192 
193 	/* FIXME: Do we need to send read command before sending data
194 	   for small-page chips, to position the buffer correctly? */
195 
196 	if (column != -1) {
197 		cafe_writel(cafe, column, NAND_ADDR1);
198 		adrbytes = 2;
199 		if (page_addr != -1)
200 			goto write_adr2;
201 	} else if (page_addr != -1) {
202 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
203 		page_addr >>= 16;
204 	write_adr2:
205 		cafe_writel(cafe, page_addr, NAND_ADDR2);
206 		adrbytes += 2;
207 		if (mtd->size > mtd->writesize << 16)
208 			adrbytes++;
209 	}
210 
211 	cafe->data_pos = cafe->datalen = 0;
212 
213 	/* Set command valid bit, mask in the chip select bit  */
214 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
215 
216 	/* Set RD or WR bits as appropriate */
217 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
218 		ctl1 |= (1<<26); /* rd */
219 		/* Always 5 bytes, for now */
220 		cafe->datalen = 4;
221 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
222 		adrbytes = 1;
223 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
224 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
225 		ctl1 |= 1<<26; /* rd */
226 		/* For now, assume just read to end of page */
227 		cafe->datalen = mtd->writesize + mtd->oobsize - column;
228 	} else if (command == NAND_CMD_SEQIN)
229 		ctl1 |= 1<<25; /* wr */
230 
231 	/* Set number of address bytes */
232 	if (adrbytes)
233 		ctl1 |= ((adrbytes-1)|8) << 27;
234 
235 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
236 		/* Ignore the first command of a pair; the hardware
237 		   deals with them both at once, later */
238 		cafe->ctl1 = ctl1;
239 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
240 			  cafe->ctl1, cafe->datalen);
241 		return;
242 	}
243 	/* RNDOUT and READ0 commands need a following byte */
244 	if (command == NAND_CMD_RNDOUT)
245 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
246 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
247 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
248 
249  do_command:
250 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
251 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
252 
253 	/* NB: The datasheet lies -- we really should be subtracting 1 here */
254 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
255 	cafe_writel(cafe, 0x90000000, NAND_IRQ);
256 	if (usedma && (ctl1 & (3<<25))) {
257 		uint32_t dmactl = 0xc0000000 + cafe->datalen;
258 		/* If WR or RD bits set, set up DMA */
259 		if (ctl1 & (1<<26)) {
260 			/* It's a read */
261 			dmactl |= (1<<29);
262 			/* ... so it's done when the DMA is done, not just
263 			   the command. */
264 			doneint = 0x10000000;
265 		}
266 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
267 	}
268 	cafe->datalen = 0;
269 
270 	if (unlikely(regdebug)) {
271 		int i;
272 		printk("About to write command %08x to register 0\n", ctl1);
273 		for (i=4; i< 0x5c; i+=4)
274 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
275 	}
276 
277 	cafe_writel(cafe, ctl1, NAND_CTRL1);
278 	/* Apply this short delay always to ensure that we do wait tWB in
279 	 * any case on any machine. */
280 	ndelay(100);
281 
282 	if (1) {
283 		int c;
284 		uint32_t irqs;
285 
286 		for (c = 500000; c != 0; c--) {
287 			irqs = cafe_readl(cafe, NAND_IRQ);
288 			if (irqs & doneint)
289 				break;
290 			udelay(1);
291 			if (!(c % 100000))
292 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
293 			cpu_relax();
294 		}
295 		cafe_writel(cafe, doneint, NAND_IRQ);
296 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
297 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
298 	}
299 
300 	WARN_ON(cafe->ctl2 & (1<<30));
301 
302 	switch (command) {
303 
304 	case NAND_CMD_CACHEDPROG:
305 	case NAND_CMD_PAGEPROG:
306 	case NAND_CMD_ERASE1:
307 	case NAND_CMD_ERASE2:
308 	case NAND_CMD_SEQIN:
309 	case NAND_CMD_RNDIN:
310 	case NAND_CMD_STATUS:
311 	case NAND_CMD_RNDOUT:
312 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
313 		return;
314 	}
315 	nand_wait_ready(mtd);
316 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
317 }
318 
cafe_select_chip(struct mtd_info * mtd,int chipnr)319 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
320 {
321 	struct nand_chip *chip = mtd_to_nand(mtd);
322 	struct cafe_priv *cafe = nand_get_controller_data(chip);
323 
324 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325 
326 	/* Mask the appropriate bit into the stored value of ctl1
327 	   which will be used by cafe_nand_cmdfunc() */
328 	if (chipnr)
329 		cafe->ctl1 |= CTRL1_CHIPSELECT;
330 	else
331 		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 }
333 
cafe_nand_interrupt(int irq,void * id)334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 {
336 	struct mtd_info *mtd = id;
337 	struct nand_chip *chip = mtd_to_nand(mtd);
338 	struct cafe_priv *cafe = nand_get_controller_data(chip);
339 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341 	if (!irqs)
342 		return IRQ_NONE;
343 
344 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345 	return IRQ_HANDLED;
346 }
347 
cafe_nand_bug(struct mtd_info * mtd)348 static void cafe_nand_bug(struct mtd_info *mtd)
349 {
350 	BUG();
351 }
352 
cafe_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354 			       struct nand_chip *chip, int page)
355 {
356 	int status = 0;
357 
358 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361 	status = chip->waitfunc(mtd, chip);
362 
363 	return status & NAND_STATUS_FAIL ? -EIO : 0;
364 }
365 
366 /* Don't use -- use nand_read_oob_std for now */
cafe_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368 			      int page)
369 {
370 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372 	return 0;
373 }
374 /**
375  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
376  * @mtd:	mtd info structure
377  * @chip:	nand chip info structure
378  * @buf:	buffer to store read data
379  * @oob_required:	caller expects OOB data read to chip->oob_poi
380  *
381  * The hw generator calculates the error syndrome automatically. Therefore
382  * we need a special oob layout and handling.
383  */
cafe_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)384 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385 			       uint8_t *buf, int oob_required, int page)
386 {
387 	struct cafe_priv *cafe = nand_get_controller_data(chip);
388 	unsigned int max_bitflips = 0;
389 
390 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
391 		     cafe_readl(cafe, NAND_ECC_RESULT),
392 		     cafe_readl(cafe, NAND_ECC_SYN01));
393 
394 	chip->read_buf(mtd, buf, mtd->writesize);
395 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
396 
397 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
398 		unsigned short syn[8], pat[4];
399 		int pos[4];
400 		u8 *oob = chip->oob_poi;
401 		int i, n;
402 
403 		for (i=0; i<8; i+=2) {
404 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
405 			syn[i] = cafe->rs->index_of[tmp & 0xfff];
406 			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
407 		}
408 
409 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
410 		                pat);
411 
412 		for (i = 0; i < n; i++) {
413 			int p = pos[i];
414 
415 			/* The 12-bit symbols are mapped to bytes here */
416 
417 			if (p > 1374) {
418 				/* out of range */
419 				n = -1374;
420 			} else if (p == 0) {
421 				/* high four bits do not correspond to data */
422 				if (pat[i] > 0xff)
423 					n = -2048;
424 				else
425 					buf[0] ^= pat[i];
426 			} else if (p == 1365) {
427 				buf[2047] ^= pat[i] >> 4;
428 				oob[0] ^= pat[i] << 4;
429 			} else if (p > 1365) {
430 				if ((p & 1) == 1) {
431 					oob[3*p/2 - 2048] ^= pat[i] >> 4;
432 					oob[3*p/2 - 2047] ^= pat[i] << 4;
433 				} else {
434 					oob[3*p/2 - 2049] ^= pat[i] >> 8;
435 					oob[3*p/2 - 2048] ^= pat[i];
436 				}
437 			} else if ((p & 1) == 1) {
438 				buf[3*p/2] ^= pat[i] >> 4;
439 				buf[3*p/2 + 1] ^= pat[i] << 4;
440 			} else {
441 				buf[3*p/2 - 1] ^= pat[i] >> 8;
442 				buf[3*p/2] ^= pat[i];
443 			}
444 		}
445 
446 		if (n < 0) {
447 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
448 				cafe_readl(cafe, NAND_ADDR2) * 2048);
449 			for (i = 0; i < 0x5c; i += 4)
450 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
451 			mtd->ecc_stats.failed++;
452 		} else {
453 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
454 			mtd->ecc_stats.corrected += n;
455 			max_bitflips = max_t(unsigned int, max_bitflips, n);
456 		}
457 	}
458 
459 	return max_bitflips;
460 }
461 
cafe_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)462 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
463 			      struct mtd_oob_region *oobregion)
464 {
465 	struct nand_chip *chip = mtd_to_nand(mtd);
466 
467 	if (section)
468 		return -ERANGE;
469 
470 	oobregion->offset = 0;
471 	oobregion->length = chip->ecc.total;
472 
473 	return 0;
474 }
475 
cafe_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)476 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
477 			       struct mtd_oob_region *oobregion)
478 {
479 	struct nand_chip *chip = mtd_to_nand(mtd);
480 
481 	if (section)
482 		return -ERANGE;
483 
484 	oobregion->offset = chip->ecc.total;
485 	oobregion->length = mtd->oobsize - chip->ecc.total;
486 
487 	return 0;
488 }
489 
490 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
491 	.ecc = cafe_ooblayout_ecc,
492 	.free = cafe_ooblayout_free,
493 };
494 
495 /* Ick. The BBT code really ought to be able to work this bit out
496    for itself from the above, at least for the 2KiB case */
497 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
498 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
499 
500 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
501 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
502 
503 
504 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
505 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
506 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
507 	.offs =	14,
508 	.len = 4,
509 	.veroffs = 18,
510 	.maxblocks = 4,
511 	.pattern = cafe_bbt_pattern_2048
512 };
513 
514 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
515 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
516 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
517 	.offs =	14,
518 	.len = 4,
519 	.veroffs = 18,
520 	.maxblocks = 4,
521 	.pattern = cafe_mirror_pattern_2048
522 };
523 
524 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
525 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
526 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
527 	.offs =	14,
528 	.len = 1,
529 	.veroffs = 15,
530 	.maxblocks = 4,
531 	.pattern = cafe_bbt_pattern_512
532 };
533 
534 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
535 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
536 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
537 	.offs =	14,
538 	.len = 1,
539 	.veroffs = 15,
540 	.maxblocks = 4,
541 	.pattern = cafe_mirror_pattern_512
542 };
543 
544 
cafe_nand_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)545 static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
546 					  struct nand_chip *chip,
547 					  const uint8_t *buf, int oob_required,
548 					  int page)
549 {
550 	struct cafe_priv *cafe = nand_get_controller_data(chip);
551 
552 	chip->write_buf(mtd, buf, mtd->writesize);
553 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
554 
555 	/* Set up ECC autogeneration */
556 	cafe->ctl2 |= (1<<30);
557 
558 	return 0;
559 }
560 
cafe_nand_block_bad(struct mtd_info * mtd,loff_t ofs)561 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
562 {
563 	return 0;
564 }
565 
566 /* F_2[X]/(X**6+X+1)  */
gf64_mul(u8 a,u8 b)567 static unsigned short gf64_mul(u8 a, u8 b)
568 {
569 	u8 c;
570 	unsigned int i;
571 
572 	c = 0;
573 	for (i = 0; i < 6; i++) {
574 		if (a & 1)
575 			c ^= b;
576 		a >>= 1;
577 		b <<= 1;
578 		if ((b & 0x40) != 0)
579 			b ^= 0x43;
580 	}
581 
582 	return c;
583 }
584 
585 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
gf4096_mul(u16 a,u16 b)586 static u16 gf4096_mul(u16 a, u16 b)
587 {
588 	u8 ah, al, bh, bl, ch, cl;
589 
590 	ah = a >> 6;
591 	al = a & 0x3f;
592 	bh = b >> 6;
593 	bl = b & 0x3f;
594 
595 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
596 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
597 
598 	return (ch << 6) ^ cl;
599 }
600 
cafe_mul(int x)601 static int cafe_mul(int x)
602 {
603 	if (x == 0)
604 		return 1;
605 	return gf4096_mul(x, 0xe01);
606 }
607 
cafe_nand_probe(struct pci_dev * pdev,const struct pci_device_id * ent)608 static int cafe_nand_probe(struct pci_dev *pdev,
609 				     const struct pci_device_id *ent)
610 {
611 	struct mtd_info *mtd;
612 	struct cafe_priv *cafe;
613 	uint32_t ctrl;
614 	int err = 0;
615 	int old_dma;
616 	struct nand_buffers *nbuf;
617 
618 	/* Very old versions shared the same PCI ident for all three
619 	   functions on the chip. Verify the class too... */
620 	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
621 		return -ENODEV;
622 
623 	err = pci_enable_device(pdev);
624 	if (err)
625 		return err;
626 
627 	pci_set_master(pdev);
628 
629 	cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
630 	if (!cafe)
631 		return  -ENOMEM;
632 
633 	mtd = nand_to_mtd(&cafe->nand);
634 	mtd->dev.parent = &pdev->dev;
635 	nand_set_controller_data(&cafe->nand, cafe);
636 
637 	cafe->pdev = pdev;
638 	cafe->mmio = pci_iomap(pdev, 0, 0);
639 	if (!cafe->mmio) {
640 		dev_warn(&pdev->dev, "failed to iomap\n");
641 		err = -ENOMEM;
642 		goto out_free_mtd;
643 	}
644 
645 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
646 	if (!cafe->rs) {
647 		err = -ENOMEM;
648 		goto out_ior;
649 	}
650 
651 	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
652 	cafe->nand.dev_ready = cafe_device_ready;
653 	cafe->nand.read_byte = cafe_read_byte;
654 	cafe->nand.read_buf = cafe_read_buf;
655 	cafe->nand.write_buf = cafe_write_buf;
656 	cafe->nand.select_chip = cafe_select_chip;
657 
658 	cafe->nand.chip_delay = 0;
659 
660 	/* Enable the following for a flash based bad block table */
661 	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
662 	cafe->nand.options = NAND_OWN_BUFFERS;
663 
664 	if (skipbbt) {
665 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
666 		cafe->nand.block_bad = cafe_nand_block_bad;
667 	}
668 
669 	if (numtimings && numtimings != 3) {
670 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
671 	}
672 
673 	if (numtimings == 3) {
674 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
675 			     timing[0], timing[1], timing[2]);
676 	} else {
677 		timing[0] = cafe_readl(cafe, NAND_TIMING1);
678 		timing[1] = cafe_readl(cafe, NAND_TIMING2);
679 		timing[2] = cafe_readl(cafe, NAND_TIMING3);
680 
681 		if (timing[0] | timing[1] | timing[2]) {
682 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
683 				     timing[0], timing[1], timing[2]);
684 		} else {
685 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
686 			timing[0] = timing[1] = timing[2] = 0xffffffff;
687 		}
688 	}
689 
690 	/* Start off by resetting the NAND controller completely */
691 	cafe_writel(cafe, 1, NAND_RESET);
692 	cafe_writel(cafe, 0, NAND_RESET);
693 
694 	cafe_writel(cafe, timing[0], NAND_TIMING1);
695 	cafe_writel(cafe, timing[1], NAND_TIMING2);
696 	cafe_writel(cafe, timing[2], NAND_TIMING3);
697 
698 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
699 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
700 			  "CAFE NAND", mtd);
701 	if (err) {
702 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
703 		goto out_ior;
704 	}
705 
706 	/* Disable master reset, enable NAND clock */
707 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
708 	ctrl &= 0xffffeff0;
709 	ctrl |= 0x00007000;
710 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
711 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
712 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
713 
714 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
715 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
716 
717 	/* Enable NAND IRQ in global IRQ mask register */
718 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
719 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
720 		cafe_readl(cafe, GLOBAL_CTRL),
721 		cafe_readl(cafe, GLOBAL_IRQ_MASK));
722 
723 	/* Do not use the DMA for the nand_scan_ident() */
724 	old_dma = usedma;
725 	usedma = 0;
726 
727 	/* Scan to find existence of the device */
728 	if (nand_scan_ident(mtd, 2, NULL)) {
729 		err = -ENXIO;
730 		goto out_irq;
731 	}
732 
733 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
734 				2112 + sizeof(struct nand_buffers) +
735 				mtd->writesize + mtd->oobsize,
736 				&cafe->dmaaddr, GFP_KERNEL);
737 	if (!cafe->dmabuf) {
738 		err = -ENOMEM;
739 		goto out_irq;
740 	}
741 	cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
742 
743 	/* Set up DMA address */
744 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
745 	if (sizeof(cafe->dmaaddr) > 4)
746 		/* Shift in two parts to shut the compiler up */
747 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
748 	else
749 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
750 
751 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
752 		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
753 
754 	/* this driver does not need the @ecccalc and @ecccode */
755 	nbuf->ecccalc = NULL;
756 	nbuf->ecccode = NULL;
757 	nbuf->databuf = (uint8_t *)(nbuf + 1);
758 
759 	/* Restore the DMA flag */
760 	usedma = old_dma;
761 
762 	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
763 	if (mtd->writesize == 2048)
764 		cafe->ctl2 |= 1<<29; /* 2KiB page size */
765 
766 	/* Set up ECC according to the type of chip we found */
767 	mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
768 	if (mtd->writesize == 2048) {
769 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
770 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
771 	} else if (mtd->writesize == 512) {
772 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
773 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
774 	} else {
775 		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
776 		       mtd->writesize);
777 		goto out_free_dma;
778 	}
779 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
780 	cafe->nand.ecc.size = mtd->writesize;
781 	cafe->nand.ecc.bytes = 14;
782 	cafe->nand.ecc.strength = 4;
783 	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
784 	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
785 	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
786 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
787 	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
788 	cafe->nand.ecc.read_page = cafe_nand_read_page;
789 	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
790 
791 	err = nand_scan_tail(mtd);
792 	if (err)
793 		goto out_free_dma;
794 
795 	pci_set_drvdata(pdev, mtd);
796 
797 	mtd->name = "cafe_nand";
798 	mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
799 
800 	goto out;
801 
802  out_free_dma:
803 	dma_free_coherent(&cafe->pdev->dev,
804 			2112 + sizeof(struct nand_buffers) +
805 			mtd->writesize + mtd->oobsize,
806 			cafe->dmabuf, cafe->dmaaddr);
807  out_irq:
808 	/* Disable NAND IRQ in global IRQ mask register */
809 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
810 	free_irq(pdev->irq, mtd);
811  out_ior:
812 	pci_iounmap(pdev, cafe->mmio);
813  out_free_mtd:
814 	kfree(cafe);
815  out:
816 	return err;
817 }
818 
cafe_nand_remove(struct pci_dev * pdev)819 static void cafe_nand_remove(struct pci_dev *pdev)
820 {
821 	struct mtd_info *mtd = pci_get_drvdata(pdev);
822 	struct nand_chip *chip = mtd_to_nand(mtd);
823 	struct cafe_priv *cafe = nand_get_controller_data(chip);
824 
825 	/* Disable NAND IRQ in global IRQ mask register */
826 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
827 	free_irq(pdev->irq, mtd);
828 	nand_release(mtd);
829 	free_rs(cafe->rs);
830 	pci_iounmap(pdev, cafe->mmio);
831 	dma_free_coherent(&cafe->pdev->dev,
832 			2112 + sizeof(struct nand_buffers) +
833 			mtd->writesize + mtd->oobsize,
834 			cafe->dmabuf, cafe->dmaaddr);
835 	kfree(cafe);
836 }
837 
838 static const struct pci_device_id cafe_nand_tbl[] = {
839 	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
840 	  PCI_ANY_ID, PCI_ANY_ID },
841 	{ }
842 };
843 
844 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
845 
cafe_nand_resume(struct pci_dev * pdev)846 static int cafe_nand_resume(struct pci_dev *pdev)
847 {
848 	uint32_t ctrl;
849 	struct mtd_info *mtd = pci_get_drvdata(pdev);
850 	struct nand_chip *chip = mtd_to_nand(mtd);
851 	struct cafe_priv *cafe = nand_get_controller_data(chip);
852 
853        /* Start off by resetting the NAND controller completely */
854 	cafe_writel(cafe, 1, NAND_RESET);
855 	cafe_writel(cafe, 0, NAND_RESET);
856 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
857 
858 	/* Restore timing configuration */
859 	cafe_writel(cafe, timing[0], NAND_TIMING1);
860 	cafe_writel(cafe, timing[1], NAND_TIMING2);
861 	cafe_writel(cafe, timing[2], NAND_TIMING3);
862 
863         /* Disable master reset, enable NAND clock */
864 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
865 	ctrl &= 0xffffeff0;
866 	ctrl |= 0x00007000;
867 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
868 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
869 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
870 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
871 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
872 
873 	/* Set up DMA address */
874 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
875 	if (sizeof(cafe->dmaaddr) > 4)
876 	/* Shift in two parts to shut the compiler up */
877 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
878 	else
879 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
880 
881 	/* Enable NAND IRQ in global IRQ mask register */
882 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
883 	return 0;
884 }
885 
886 static struct pci_driver cafe_nand_pci_driver = {
887 	.name = "CAFÉ NAND",
888 	.id_table = cafe_nand_tbl,
889 	.probe = cafe_nand_probe,
890 	.remove = cafe_nand_remove,
891 	.resume = cafe_nand_resume,
892 };
893 
894 module_pci_driver(cafe_nand_pci_driver);
895 
896 MODULE_LICENSE("GPL");
897 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
898 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
899