1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3 *
4 * The data sheet for this device can be found at:
5 * http://wiki.laptop.org/go/Datasheets
6 *
7 * Copyright © 2006 Red Hat, Inc.
8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9 */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26
27 #define CAFE_NAND_CTRL1 0x00
28 #define CAFE_NAND_CTRL2 0x04
29 #define CAFE_NAND_CTRL3 0x08
30 #define CAFE_NAND_STATUS 0x0c
31 #define CAFE_NAND_IRQ 0x10
32 #define CAFE_NAND_IRQ_MASK 0x14
33 #define CAFE_NAND_DATA_LEN 0x18
34 #define CAFE_NAND_ADDR1 0x1c
35 #define CAFE_NAND_ADDR2 0x20
36 #define CAFE_NAND_TIMING1 0x24
37 #define CAFE_NAND_TIMING2 0x28
38 #define CAFE_NAND_TIMING3 0x2c
39 #define CAFE_NAND_NONMEM 0x30
40 #define CAFE_NAND_ECC_RESULT 0x3C
41 #define CAFE_NAND_DMA_CTRL 0x40
42 #define CAFE_NAND_DMA_ADDR0 0x44
43 #define CAFE_NAND_DMA_ADDR1 0x48
44 #define CAFE_NAND_ECC_SYN01 0x50
45 #define CAFE_NAND_ECC_SYN23 0x54
46 #define CAFE_NAND_ECC_SYN45 0x58
47 #define CAFE_NAND_ECC_SYN67 0x5c
48 #define CAFE_NAND_READ_DATA 0x1000
49 #define CAFE_NAND_WRITE_DATA 0x2000
50
51 #define CAFE_GLOBAL_CTRL 0x3004
52 #define CAFE_GLOBAL_IRQ 0x3008
53 #define CAFE_GLOBAL_IRQ_MASK 0x300c
54 #define CAFE_NAND_RESET 0x3034
55
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT (1<<19)
58
59 struct cafe_priv {
60 struct nand_chip nand;
61 struct pci_dev *pdev;
62 void __iomem *mmio;
63 struct rs_control *rs;
64 uint32_t ctl1;
65 uint32_t ctl2;
66 int datalen;
67 int nr_data;
68 int data_pos;
69 int page_addr;
70 dma_addr_t dmaaddr;
71 unsigned char *dmabuf;
72 };
73
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79
80 static int debug = 0;
81 module_param(debug, int, 0644);
82
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94
95 /* Hrm. Why isn't this already conditional on something in the struct device? */
96 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
97
98 /* Make it easier to switch to PIO if we need to */
99 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
100 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
101
cafe_device_ready(struct mtd_info * mtd)102 static int cafe_device_ready(struct mtd_info *mtd)
103 {
104 struct nand_chip *chip = mtd_to_nand(mtd);
105 struct cafe_priv *cafe = nand_get_controller_data(chip);
106 int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108
109 cafe_writel(cafe, irqs, NAND_IRQ);
110
111 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114
115 return result;
116 }
117
118
cafe_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
120 {
121 struct nand_chip *chip = mtd_to_nand(mtd);
122 struct cafe_priv *cafe = nand_get_controller_data(chip);
123
124 if (usedma)
125 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126 else
127 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129 cafe->datalen += len;
130
131 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132 len, cafe->datalen);
133 }
134
cafe_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)135 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136 {
137 struct nand_chip *chip = mtd_to_nand(mtd);
138 struct cafe_priv *cafe = nand_get_controller_data(chip);
139
140 if (usedma)
141 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
142 else
143 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
144
145 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
146 len, cafe->datalen);
147 cafe->datalen += len;
148 }
149
cafe_read_byte(struct mtd_info * mtd)150 static uint8_t cafe_read_byte(struct mtd_info *mtd)
151 {
152 struct nand_chip *chip = mtd_to_nand(mtd);
153 struct cafe_priv *cafe = nand_get_controller_data(chip);
154 uint8_t d;
155
156 cafe_read_buf(mtd, &d, 1);
157 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
158
159 return d;
160 }
161
cafe_nand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)162 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
163 int column, int page_addr)
164 {
165 struct nand_chip *chip = mtd_to_nand(mtd);
166 struct cafe_priv *cafe = nand_get_controller_data(chip);
167 int adrbytes = 0;
168 uint32_t ctl1;
169 uint32_t doneint = 0x80000000;
170
171 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
172 command, column, page_addr);
173
174 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
175 /* Second half of a command we already calculated */
176 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
177 ctl1 = cafe->ctl1;
178 cafe->ctl2 &= ~(1<<30);
179 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
180 cafe->ctl1, cafe->nr_data);
181 goto do_command;
182 }
183 /* Reset ECC engine */
184 cafe_writel(cafe, 0, NAND_CTRL2);
185
186 /* Emulate NAND_CMD_READOOB on large-page chips */
187 if (mtd->writesize > 512 &&
188 command == NAND_CMD_READOOB) {
189 column += mtd->writesize;
190 command = NAND_CMD_READ0;
191 }
192
193 /* FIXME: Do we need to send read command before sending data
194 for small-page chips, to position the buffer correctly? */
195
196 if (column != -1) {
197 cafe_writel(cafe, column, NAND_ADDR1);
198 adrbytes = 2;
199 if (page_addr != -1)
200 goto write_adr2;
201 } else if (page_addr != -1) {
202 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
203 page_addr >>= 16;
204 write_adr2:
205 cafe_writel(cafe, page_addr, NAND_ADDR2);
206 adrbytes += 2;
207 if (mtd->size > mtd->writesize << 16)
208 adrbytes++;
209 }
210
211 cafe->data_pos = cafe->datalen = 0;
212
213 /* Set command valid bit, mask in the chip select bit */
214 ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
215
216 /* Set RD or WR bits as appropriate */
217 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
218 ctl1 |= (1<<26); /* rd */
219 /* Always 5 bytes, for now */
220 cafe->datalen = 4;
221 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
222 adrbytes = 1;
223 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
224 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
225 ctl1 |= 1<<26; /* rd */
226 /* For now, assume just read to end of page */
227 cafe->datalen = mtd->writesize + mtd->oobsize - column;
228 } else if (command == NAND_CMD_SEQIN)
229 ctl1 |= 1<<25; /* wr */
230
231 /* Set number of address bytes */
232 if (adrbytes)
233 ctl1 |= ((adrbytes-1)|8) << 27;
234
235 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
236 /* Ignore the first command of a pair; the hardware
237 deals with them both at once, later */
238 cafe->ctl1 = ctl1;
239 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
240 cafe->ctl1, cafe->datalen);
241 return;
242 }
243 /* RNDOUT and READ0 commands need a following byte */
244 if (command == NAND_CMD_RNDOUT)
245 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
246 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
247 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
248
249 do_command:
250 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
251 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
252
253 /* NB: The datasheet lies -- we really should be subtracting 1 here */
254 cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
255 cafe_writel(cafe, 0x90000000, NAND_IRQ);
256 if (usedma && (ctl1 & (3<<25))) {
257 uint32_t dmactl = 0xc0000000 + cafe->datalen;
258 /* If WR or RD bits set, set up DMA */
259 if (ctl1 & (1<<26)) {
260 /* It's a read */
261 dmactl |= (1<<29);
262 /* ... so it's done when the DMA is done, not just
263 the command. */
264 doneint = 0x10000000;
265 }
266 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
267 }
268 cafe->datalen = 0;
269
270 if (unlikely(regdebug)) {
271 int i;
272 printk("About to write command %08x to register 0\n", ctl1);
273 for (i=4; i< 0x5c; i+=4)
274 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
275 }
276
277 cafe_writel(cafe, ctl1, NAND_CTRL1);
278 /* Apply this short delay always to ensure that we do wait tWB in
279 * any case on any machine. */
280 ndelay(100);
281
282 if (1) {
283 int c;
284 uint32_t irqs;
285
286 for (c = 500000; c != 0; c--) {
287 irqs = cafe_readl(cafe, NAND_IRQ);
288 if (irqs & doneint)
289 break;
290 udelay(1);
291 if (!(c % 100000))
292 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
293 cpu_relax();
294 }
295 cafe_writel(cafe, doneint, NAND_IRQ);
296 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
297 command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
298 }
299
300 WARN_ON(cafe->ctl2 & (1<<30));
301
302 switch (command) {
303
304 case NAND_CMD_CACHEDPROG:
305 case NAND_CMD_PAGEPROG:
306 case NAND_CMD_ERASE1:
307 case NAND_CMD_ERASE2:
308 case NAND_CMD_SEQIN:
309 case NAND_CMD_RNDIN:
310 case NAND_CMD_STATUS:
311 case NAND_CMD_RNDOUT:
312 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
313 return;
314 }
315 nand_wait_ready(mtd);
316 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
317 }
318
cafe_select_chip(struct mtd_info * mtd,int chipnr)319 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
320 {
321 struct nand_chip *chip = mtd_to_nand(mtd);
322 struct cafe_priv *cafe = nand_get_controller_data(chip);
323
324 cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
325
326 /* Mask the appropriate bit into the stored value of ctl1
327 which will be used by cafe_nand_cmdfunc() */
328 if (chipnr)
329 cafe->ctl1 |= CTRL1_CHIPSELECT;
330 else
331 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
332 }
333
cafe_nand_interrupt(int irq,void * id)334 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
335 {
336 struct mtd_info *mtd = id;
337 struct nand_chip *chip = mtd_to_nand(mtd);
338 struct cafe_priv *cafe = nand_get_controller_data(chip);
339 uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340 cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341 if (!irqs)
342 return IRQ_NONE;
343
344 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345 return IRQ_HANDLED;
346 }
347
cafe_nand_bug(struct mtd_info * mtd)348 static void cafe_nand_bug(struct mtd_info *mtd)
349 {
350 BUG();
351 }
352
cafe_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354 struct nand_chip *chip, int page)
355 {
356 int status = 0;
357
358 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361 status = chip->waitfunc(mtd, chip);
362
363 return status & NAND_STATUS_FAIL ? -EIO : 0;
364 }
365
366 /* Don't use -- use nand_read_oob_std for now */
cafe_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368 int page)
369 {
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372 return 0;
373 }
374 /**
375 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
376 * @mtd: mtd info structure
377 * @chip: nand chip info structure
378 * @buf: buffer to store read data
379 * @oob_required: caller expects OOB data read to chip->oob_poi
380 *
381 * The hw generator calculates the error syndrome automatically. Therefore
382 * we need a special oob layout and handling.
383 */
cafe_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)384 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385 uint8_t *buf, int oob_required, int page)
386 {
387 struct cafe_priv *cafe = nand_get_controller_data(chip);
388 unsigned int max_bitflips = 0;
389
390 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
391 cafe_readl(cafe, NAND_ECC_RESULT),
392 cafe_readl(cafe, NAND_ECC_SYN01));
393
394 chip->read_buf(mtd, buf, mtd->writesize);
395 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
396
397 if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
398 unsigned short syn[8], pat[4];
399 int pos[4];
400 u8 *oob = chip->oob_poi;
401 int i, n;
402
403 for (i=0; i<8; i+=2) {
404 uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
405 syn[i] = cafe->rs->index_of[tmp & 0xfff];
406 syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
407 }
408
409 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
410 pat);
411
412 for (i = 0; i < n; i++) {
413 int p = pos[i];
414
415 /* The 12-bit symbols are mapped to bytes here */
416
417 if (p > 1374) {
418 /* out of range */
419 n = -1374;
420 } else if (p == 0) {
421 /* high four bits do not correspond to data */
422 if (pat[i] > 0xff)
423 n = -2048;
424 else
425 buf[0] ^= pat[i];
426 } else if (p == 1365) {
427 buf[2047] ^= pat[i] >> 4;
428 oob[0] ^= pat[i] << 4;
429 } else if (p > 1365) {
430 if ((p & 1) == 1) {
431 oob[3*p/2 - 2048] ^= pat[i] >> 4;
432 oob[3*p/2 - 2047] ^= pat[i] << 4;
433 } else {
434 oob[3*p/2 - 2049] ^= pat[i] >> 8;
435 oob[3*p/2 - 2048] ^= pat[i];
436 }
437 } else if ((p & 1) == 1) {
438 buf[3*p/2] ^= pat[i] >> 4;
439 buf[3*p/2 + 1] ^= pat[i] << 4;
440 } else {
441 buf[3*p/2 - 1] ^= pat[i] >> 8;
442 buf[3*p/2] ^= pat[i];
443 }
444 }
445
446 if (n < 0) {
447 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
448 cafe_readl(cafe, NAND_ADDR2) * 2048);
449 for (i = 0; i < 0x5c; i += 4)
450 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
451 mtd->ecc_stats.failed++;
452 } else {
453 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
454 mtd->ecc_stats.corrected += n;
455 max_bitflips = max_t(unsigned int, max_bitflips, n);
456 }
457 }
458
459 return max_bitflips;
460 }
461
cafe_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)462 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
463 struct mtd_oob_region *oobregion)
464 {
465 struct nand_chip *chip = mtd_to_nand(mtd);
466
467 if (section)
468 return -ERANGE;
469
470 oobregion->offset = 0;
471 oobregion->length = chip->ecc.total;
472
473 return 0;
474 }
475
cafe_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)476 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
477 struct mtd_oob_region *oobregion)
478 {
479 struct nand_chip *chip = mtd_to_nand(mtd);
480
481 if (section)
482 return -ERANGE;
483
484 oobregion->offset = chip->ecc.total;
485 oobregion->length = mtd->oobsize - chip->ecc.total;
486
487 return 0;
488 }
489
490 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
491 .ecc = cafe_ooblayout_ecc,
492 .free = cafe_ooblayout_free,
493 };
494
495 /* Ick. The BBT code really ought to be able to work this bit out
496 for itself from the above, at least for the 2KiB case */
497 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
498 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
499
500 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
501 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
502
503
504 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
505 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
506 | NAND_BBT_2BIT | NAND_BBT_VERSION,
507 .offs = 14,
508 .len = 4,
509 .veroffs = 18,
510 .maxblocks = 4,
511 .pattern = cafe_bbt_pattern_2048
512 };
513
514 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
515 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
516 | NAND_BBT_2BIT | NAND_BBT_VERSION,
517 .offs = 14,
518 .len = 4,
519 .veroffs = 18,
520 .maxblocks = 4,
521 .pattern = cafe_mirror_pattern_2048
522 };
523
524 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
525 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
526 | NAND_BBT_2BIT | NAND_BBT_VERSION,
527 .offs = 14,
528 .len = 1,
529 .veroffs = 15,
530 .maxblocks = 4,
531 .pattern = cafe_bbt_pattern_512
532 };
533
534 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
535 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
536 | NAND_BBT_2BIT | NAND_BBT_VERSION,
537 .offs = 14,
538 .len = 1,
539 .veroffs = 15,
540 .maxblocks = 4,
541 .pattern = cafe_mirror_pattern_512
542 };
543
544
cafe_nand_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)545 static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
546 struct nand_chip *chip,
547 const uint8_t *buf, int oob_required,
548 int page)
549 {
550 struct cafe_priv *cafe = nand_get_controller_data(chip);
551
552 chip->write_buf(mtd, buf, mtd->writesize);
553 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
554
555 /* Set up ECC autogeneration */
556 cafe->ctl2 |= (1<<30);
557
558 return 0;
559 }
560
cafe_nand_block_bad(struct mtd_info * mtd,loff_t ofs)561 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
562 {
563 return 0;
564 }
565
566 /* F_2[X]/(X**6+X+1) */
gf64_mul(u8 a,u8 b)567 static unsigned short gf64_mul(u8 a, u8 b)
568 {
569 u8 c;
570 unsigned int i;
571
572 c = 0;
573 for (i = 0; i < 6; i++) {
574 if (a & 1)
575 c ^= b;
576 a >>= 1;
577 b <<= 1;
578 if ((b & 0x40) != 0)
579 b ^= 0x43;
580 }
581
582 return c;
583 }
584
585 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
gf4096_mul(u16 a,u16 b)586 static u16 gf4096_mul(u16 a, u16 b)
587 {
588 u8 ah, al, bh, bl, ch, cl;
589
590 ah = a >> 6;
591 al = a & 0x3f;
592 bh = b >> 6;
593 bl = b & 0x3f;
594
595 ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
596 cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
597
598 return (ch << 6) ^ cl;
599 }
600
cafe_mul(int x)601 static int cafe_mul(int x)
602 {
603 if (x == 0)
604 return 1;
605 return gf4096_mul(x, 0xe01);
606 }
607
cafe_nand_probe(struct pci_dev * pdev,const struct pci_device_id * ent)608 static int cafe_nand_probe(struct pci_dev *pdev,
609 const struct pci_device_id *ent)
610 {
611 struct mtd_info *mtd;
612 struct cafe_priv *cafe;
613 uint32_t ctrl;
614 int err = 0;
615 int old_dma;
616 struct nand_buffers *nbuf;
617
618 /* Very old versions shared the same PCI ident for all three
619 functions on the chip. Verify the class too... */
620 if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
621 return -ENODEV;
622
623 err = pci_enable_device(pdev);
624 if (err)
625 return err;
626
627 pci_set_master(pdev);
628
629 cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
630 if (!cafe)
631 return -ENOMEM;
632
633 mtd = nand_to_mtd(&cafe->nand);
634 mtd->dev.parent = &pdev->dev;
635 nand_set_controller_data(&cafe->nand, cafe);
636
637 cafe->pdev = pdev;
638 cafe->mmio = pci_iomap(pdev, 0, 0);
639 if (!cafe->mmio) {
640 dev_warn(&pdev->dev, "failed to iomap\n");
641 err = -ENOMEM;
642 goto out_free_mtd;
643 }
644
645 cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
646 if (!cafe->rs) {
647 err = -ENOMEM;
648 goto out_ior;
649 }
650
651 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
652 cafe->nand.dev_ready = cafe_device_ready;
653 cafe->nand.read_byte = cafe_read_byte;
654 cafe->nand.read_buf = cafe_read_buf;
655 cafe->nand.write_buf = cafe_write_buf;
656 cafe->nand.select_chip = cafe_select_chip;
657
658 cafe->nand.chip_delay = 0;
659
660 /* Enable the following for a flash based bad block table */
661 cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
662 cafe->nand.options = NAND_OWN_BUFFERS;
663
664 if (skipbbt) {
665 cafe->nand.options |= NAND_SKIP_BBTSCAN;
666 cafe->nand.block_bad = cafe_nand_block_bad;
667 }
668
669 if (numtimings && numtimings != 3) {
670 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
671 }
672
673 if (numtimings == 3) {
674 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
675 timing[0], timing[1], timing[2]);
676 } else {
677 timing[0] = cafe_readl(cafe, NAND_TIMING1);
678 timing[1] = cafe_readl(cafe, NAND_TIMING2);
679 timing[2] = cafe_readl(cafe, NAND_TIMING3);
680
681 if (timing[0] | timing[1] | timing[2]) {
682 cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
683 timing[0], timing[1], timing[2]);
684 } else {
685 dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
686 timing[0] = timing[1] = timing[2] = 0xffffffff;
687 }
688 }
689
690 /* Start off by resetting the NAND controller completely */
691 cafe_writel(cafe, 1, NAND_RESET);
692 cafe_writel(cafe, 0, NAND_RESET);
693
694 cafe_writel(cafe, timing[0], NAND_TIMING1);
695 cafe_writel(cafe, timing[1], NAND_TIMING2);
696 cafe_writel(cafe, timing[2], NAND_TIMING3);
697
698 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
699 err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
700 "CAFE NAND", mtd);
701 if (err) {
702 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
703 goto out_ior;
704 }
705
706 /* Disable master reset, enable NAND clock */
707 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
708 ctrl &= 0xffffeff0;
709 ctrl |= 0x00007000;
710 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
711 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
712 cafe_writel(cafe, 0, NAND_DMA_CTRL);
713
714 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
715 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
716
717 /* Enable NAND IRQ in global IRQ mask register */
718 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
719 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
720 cafe_readl(cafe, GLOBAL_CTRL),
721 cafe_readl(cafe, GLOBAL_IRQ_MASK));
722
723 /* Do not use the DMA for the nand_scan_ident() */
724 old_dma = usedma;
725 usedma = 0;
726
727 /* Scan to find existence of the device */
728 if (nand_scan_ident(mtd, 2, NULL)) {
729 err = -ENXIO;
730 goto out_irq;
731 }
732
733 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
734 2112 + sizeof(struct nand_buffers) +
735 mtd->writesize + mtd->oobsize,
736 &cafe->dmaaddr, GFP_KERNEL);
737 if (!cafe->dmabuf) {
738 err = -ENOMEM;
739 goto out_irq;
740 }
741 cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
742
743 /* Set up DMA address */
744 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
745 if (sizeof(cafe->dmaaddr) > 4)
746 /* Shift in two parts to shut the compiler up */
747 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
748 else
749 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
750
751 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
752 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
753
754 /* this driver does not need the @ecccalc and @ecccode */
755 nbuf->ecccalc = NULL;
756 nbuf->ecccode = NULL;
757 nbuf->databuf = (uint8_t *)(nbuf + 1);
758
759 /* Restore the DMA flag */
760 usedma = old_dma;
761
762 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
763 if (mtd->writesize == 2048)
764 cafe->ctl2 |= 1<<29; /* 2KiB page size */
765
766 /* Set up ECC according to the type of chip we found */
767 mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
768 if (mtd->writesize == 2048) {
769 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
770 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
771 } else if (mtd->writesize == 512) {
772 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
773 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
774 } else {
775 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
776 mtd->writesize);
777 goto out_free_dma;
778 }
779 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
780 cafe->nand.ecc.size = mtd->writesize;
781 cafe->nand.ecc.bytes = 14;
782 cafe->nand.ecc.strength = 4;
783 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
784 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
785 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
786 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
787 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
788 cafe->nand.ecc.read_page = cafe_nand_read_page;
789 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
790
791 err = nand_scan_tail(mtd);
792 if (err)
793 goto out_free_dma;
794
795 pci_set_drvdata(pdev, mtd);
796
797 mtd->name = "cafe_nand";
798 mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
799
800 goto out;
801
802 out_free_dma:
803 dma_free_coherent(&cafe->pdev->dev,
804 2112 + sizeof(struct nand_buffers) +
805 mtd->writesize + mtd->oobsize,
806 cafe->dmabuf, cafe->dmaaddr);
807 out_irq:
808 /* Disable NAND IRQ in global IRQ mask register */
809 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
810 free_irq(pdev->irq, mtd);
811 out_ior:
812 pci_iounmap(pdev, cafe->mmio);
813 out_free_mtd:
814 kfree(cafe);
815 out:
816 return err;
817 }
818
cafe_nand_remove(struct pci_dev * pdev)819 static void cafe_nand_remove(struct pci_dev *pdev)
820 {
821 struct mtd_info *mtd = pci_get_drvdata(pdev);
822 struct nand_chip *chip = mtd_to_nand(mtd);
823 struct cafe_priv *cafe = nand_get_controller_data(chip);
824
825 /* Disable NAND IRQ in global IRQ mask register */
826 cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
827 free_irq(pdev->irq, mtd);
828 nand_release(mtd);
829 free_rs(cafe->rs);
830 pci_iounmap(pdev, cafe->mmio);
831 dma_free_coherent(&cafe->pdev->dev,
832 2112 + sizeof(struct nand_buffers) +
833 mtd->writesize + mtd->oobsize,
834 cafe->dmabuf, cafe->dmaaddr);
835 kfree(cafe);
836 }
837
838 static const struct pci_device_id cafe_nand_tbl[] = {
839 { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
840 PCI_ANY_ID, PCI_ANY_ID },
841 { }
842 };
843
844 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
845
cafe_nand_resume(struct pci_dev * pdev)846 static int cafe_nand_resume(struct pci_dev *pdev)
847 {
848 uint32_t ctrl;
849 struct mtd_info *mtd = pci_get_drvdata(pdev);
850 struct nand_chip *chip = mtd_to_nand(mtd);
851 struct cafe_priv *cafe = nand_get_controller_data(chip);
852
853 /* Start off by resetting the NAND controller completely */
854 cafe_writel(cafe, 1, NAND_RESET);
855 cafe_writel(cafe, 0, NAND_RESET);
856 cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
857
858 /* Restore timing configuration */
859 cafe_writel(cafe, timing[0], NAND_TIMING1);
860 cafe_writel(cafe, timing[1], NAND_TIMING2);
861 cafe_writel(cafe, timing[2], NAND_TIMING3);
862
863 /* Disable master reset, enable NAND clock */
864 ctrl = cafe_readl(cafe, GLOBAL_CTRL);
865 ctrl &= 0xffffeff0;
866 ctrl |= 0x00007000;
867 cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
868 cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
869 cafe_writel(cafe, 0, NAND_DMA_CTRL);
870 cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
871 cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
872
873 /* Set up DMA address */
874 cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
875 if (sizeof(cafe->dmaaddr) > 4)
876 /* Shift in two parts to shut the compiler up */
877 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
878 else
879 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
880
881 /* Enable NAND IRQ in global IRQ mask register */
882 cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
883 return 0;
884 }
885
886 static struct pci_driver cafe_nand_pci_driver = {
887 .name = "CAFÉ NAND",
888 .id_table = cafe_nand_tbl,
889 .probe = cafe_nand_probe,
890 .remove = cafe_nand_remove,
891 .resume = cafe_nand_resume,
892 };
893
894 module_pci_driver(cafe_nand_pci_driver);
895
896 MODULE_LICENSE("GPL");
897 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
898 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
899