• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * e100net.c: A network driver for the ETRAX 100LX network controller.
3  *
4  * Copyright (c) 1998-2002 Axis Communications AB.
5  *
6  * The outline of this driver comes from skeleton.c.
7  *
8  */
9 
10 
11 #include <linux/module.h>
12 
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
20 #include <linux/in.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
26 
27 #include <linux/if.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
33 
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h>         /* CRIS_LED_* I/O functions */
36 #include <asm/irq.h>
37 #include <asm/dma.h>
38 #include <asm/ethernet.h>
39 #include <asm/cache.h>
40 #include <arch/io_interface_mux.h>
41 
42 //#define ETHDEBUG
43 #define D(x)
44 
45 /*
46  * The name of the card. Is used for messages and in the requests for
47  * io regions, irqs and dma channels
48  */
49 
50 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
51 
52 /* A default ethernet address. Highlevel SW will set the real one later */
53 
54 static struct sockaddr default_mac = {
55 	0,
56 	{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
57 };
58 
59 /* Information that need to be kept for each board. */
60 struct net_local {
61 	struct mii_if_info mii_if;
62 
63 	/* Tx control lock.  This protects the transmit buffer ring
64 	 * state along with the "tx full" state of the driver.  This
65 	 * means all netif_queue flow control actions are protected
66 	 * by this lock as well.
67 	 */
68 	spinlock_t lock;
69 
70 	spinlock_t led_lock; /* Protect LED state */
71 	spinlock_t transceiver_lock; /* Protect transceiver state. */
72 };
73 
74 typedef struct etrax_eth_descr
75 {
76 	etrax_dma_descr descr;
77 	struct sk_buff* skb;
78 } etrax_eth_descr;
79 
80 /* Some transceivers requires special handling */
81 struct transceiver_ops
82 {
83 	unsigned int oui;
84 	void (*check_speed)(struct net_device* dev);
85 	void (*check_duplex)(struct net_device* dev);
86 };
87 
88 /* Duplex settings */
89 enum duplex
90 {
91 	half,
92 	full,
93 	autoneg
94 };
95 
96 /* Dma descriptors etc. */
97 
98 #define MAX_MEDIA_DATA_SIZE 1522
99 
100 #define MIN_PACKET_LEN      46
101 #define ETHER_HEAD_LEN      14
102 
103 /*
104 ** MDIO constants.
105 */
106 #define MDIO_START                          0x1
107 #define MDIO_READ                           0x2
108 #define MDIO_WRITE                          0x1
109 #define MDIO_PREAMBLE              0xfffffffful
110 
111 /* Broadcom specific */
112 #define MDIO_AUX_CTRL_STATUS_REG           0x18
113 #define MDIO_BC_FULL_DUPLEX_IND             0x1
114 #define MDIO_BC_SPEED                       0x2
115 
116 /* TDK specific */
117 #define MDIO_TDK_DIAGNOSTIC_REG              18
118 #define MDIO_TDK_DIAGNOSTIC_RATE          0x400
119 #define MDIO_TDK_DIAGNOSTIC_DPLX          0x800
120 
121 /*Intel LXT972A specific*/
122 #define MDIO_INT_STATUS_REG_2			0x0011
123 #define MDIO_INT_FULL_DUPLEX_IND       (1 << 9)
124 #define MDIO_INT_SPEED                (1 << 14)
125 
126 /* Network flash constants */
127 #define NET_FLASH_TIME                  (HZ/50) /* 20 ms */
128 #define NET_FLASH_PAUSE                (HZ/100) /* 10 ms */
129 #define NET_LINK_UP_CHECK_INTERVAL       (2*HZ) /* 2 s   */
130 #define NET_DUPLEX_CHECK_INTERVAL        (2*HZ) /* 2 s   */
131 
132 #define NO_NETWORK_ACTIVITY 0
133 #define NETWORK_ACTIVITY    1
134 
135 #define NBR_OF_RX_DESC     32
136 #define NBR_OF_TX_DESC     16
137 
138 /* Large packets are sent directly to upper layers while small packets are */
139 /* copied (to reduce memory waste). The following constant decides the breakpoint */
140 #define RX_COPYBREAK 256
141 
142 /* Due to a chip bug we need to flush the cache when descriptors are returned */
143 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
144 /* The following constant determines the number of descriptors to return. */
145 #define RX_QUEUE_THRESHOLD  NBR_OF_RX_DESC/2
146 
147 #define GET_BIT(bit,val)   (((val) >> (bit)) & 0x01)
148 
149 /* Define some macros to access ETRAX 100 registers */
150 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
151 					  IO_FIELD_(reg##_, field##_, val)
152 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
153 					  IO_STATE_(reg##_, field##_, _##val)
154 
155 static etrax_eth_descr *myNextRxDesc;  /* Points to the next descriptor to
156                                           to be processed */
157 static etrax_eth_descr *myLastRxDesc;  /* The last processed descriptor */
158 
159 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
160 
161 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
162 static etrax_eth_descr* myLastTxDesc;  /* End of send queue */
163 static etrax_eth_descr* myNextTxDesc;  /* Next descriptor to use */
164 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
165 
166 static unsigned int network_rec_config_shadow = 0;
167 
168 static unsigned int network_tr_ctrl_shadow = 0;
169 
170 /* Network speed indication. */
171 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
172 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
173 static int current_speed; /* Speed read from transceiver */
174 static int current_speed_selection; /* Speed selected by user */
175 static unsigned long led_next_time;
176 static int led_active;
177 static int rx_queue_len;
178 
179 /* Duplex */
180 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
181 static int full_duplex;
182 static enum duplex current_duplex;
183 
184 /* Index to functions, as function prototypes. */
185 
186 static int etrax_ethernet_init(void);
187 
188 static int e100_open(struct net_device *dev);
189 static int e100_set_mac_address(struct net_device *dev, void *addr);
190 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
191 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
192 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
193 static void e100_rx(struct net_device *dev);
194 static int e100_close(struct net_device *dev);
195 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
196 static int e100_set_config(struct net_device* dev, struct ifmap* map);
197 static void e100_tx_timeout(struct net_device *dev);
198 static struct net_device_stats *e100_get_stats(struct net_device *dev);
199 static void set_multicast_list(struct net_device *dev);
200 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
201 static void update_rx_stats(struct net_device_stats *);
202 static void update_tx_stats(struct net_device_stats *);
203 static int e100_probe_transceiver(struct net_device* dev);
204 
205 static void e100_check_speed(unsigned long priv);
206 static void e100_set_speed(struct net_device* dev, unsigned long speed);
207 static void e100_check_duplex(unsigned long priv);
208 static void e100_set_duplex(struct net_device* dev, enum duplex);
209 static void e100_negotiate(struct net_device* dev);
210 
211 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
212 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
213 
214 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
215 static void e100_send_mdio_bit(unsigned char bit);
216 static unsigned char e100_receive_mdio_bit(void);
217 static void e100_reset_transceiver(struct net_device* net);
218 
219 static void e100_clear_network_leds(unsigned long dummy);
220 static void e100_set_network_leds(int active);
221 
222 static const struct ethtool_ops e100_ethtool_ops;
223 #if defined(CONFIG_ETRAX_NO_PHY)
224 static void dummy_check_speed(struct net_device* dev);
225 static void dummy_check_duplex(struct net_device* dev);
226 #else
227 static void broadcom_check_speed(struct net_device* dev);
228 static void broadcom_check_duplex(struct net_device* dev);
229 static void tdk_check_speed(struct net_device* dev);
230 static void tdk_check_duplex(struct net_device* dev);
231 static void intel_check_speed(struct net_device* dev);
232 static void intel_check_duplex(struct net_device* dev);
233 static void generic_check_speed(struct net_device* dev);
234 static void generic_check_duplex(struct net_device* dev);
235 #endif
236 #ifdef CONFIG_NET_POLL_CONTROLLER
237 static void e100_netpoll(struct net_device* dev);
238 #endif
239 
240 static int autoneg_normal = 1;
241 
242 struct transceiver_ops transceivers[] =
243 {
244 #if defined(CONFIG_ETRAX_NO_PHY)
245 	{0x0000, dummy_check_speed, dummy_check_duplex}        /* Dummy */
246 #else
247 	{0x1018, broadcom_check_speed, broadcom_check_duplex},  /* Broadcom */
248 	{0xC039, tdk_check_speed, tdk_check_duplex},            /* TDK 2120 */
249 	{0x039C, tdk_check_speed, tdk_check_duplex},            /* TDK 2120C */
250         {0x04de, intel_check_speed, intel_check_duplex},     	/* Intel LXT972A*/
251 	{0x0000, generic_check_speed, generic_check_duplex}     /* Generic, must be last */
252 #endif
253 };
254 
255 struct transceiver_ops* transceiver = &transceivers[0];
256 
257 static const struct net_device_ops e100_netdev_ops = {
258 	.ndo_open		= e100_open,
259 	.ndo_stop		= e100_close,
260 	.ndo_start_xmit		= e100_send_packet,
261 	.ndo_tx_timeout		= e100_tx_timeout,
262 	.ndo_get_stats		= e100_get_stats,
263 	.ndo_set_rx_mode	= set_multicast_list,
264 	.ndo_do_ioctl		= e100_ioctl,
265 	.ndo_set_mac_address	= e100_set_mac_address,
266 	.ndo_validate_addr	= eth_validate_addr,
267 	.ndo_change_mtu		= eth_change_mtu,
268 	.ndo_set_config		= e100_set_config,
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270 	.ndo_poll_controller	= e100_netpoll,
271 #endif
272 };
273 
274 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
275 
276 /*
277  * Check for a network adaptor of this type, and return '0' if one exists.
278  * If dev->base_addr == 0, probe all likely locations.
279  * If dev->base_addr == 1, always return failure.
280  * If dev->base_addr == 2, allocate space for the device and return success
281  * (detachable devices only).
282  */
283 
284 static int __init
etrax_ethernet_init(void)285 etrax_ethernet_init(void)
286 {
287 	struct net_device *dev;
288         struct net_local* np;
289 	int i, err;
290 
291 	printk(KERN_INFO
292 	       "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
293 
294 	if (cris_request_io_interface(if_eth, cardname)) {
295 		printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
296 		return -EBUSY;
297 	}
298 
299 	dev = alloc_etherdev(sizeof(struct net_local));
300 	if (!dev)
301 		return -ENOMEM;
302 
303 	np = netdev_priv(dev);
304 
305 	/* we do our own locking */
306 	dev->features |= NETIF_F_LLTX;
307 
308 	dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
309 
310 	/* now setup our etrax specific stuff */
311 
312 	dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
313 	dev->dma = NETWORK_RX_DMA_NBR;
314 
315 	/* fill in our handlers so the network layer can talk to us in the future */
316 
317 	dev->ethtool_ops	= &e100_ethtool_ops;
318 	dev->netdev_ops		= &e100_netdev_ops;
319 
320 	spin_lock_init(&np->lock);
321 	spin_lock_init(&np->led_lock);
322 	spin_lock_init(&np->transceiver_lock);
323 
324 	/* Initialise the list of Etrax DMA-descriptors */
325 
326 	/* Initialise receive descriptors */
327 
328 	for (i = 0; i < NBR_OF_RX_DESC; i++) {
329 		/* Allocate two extra cachelines to make sure that buffer used
330 		 * by DMA does not share cacheline with any other data (to
331 		 * avoid cache bug)
332 		 */
333 		RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
334 		if (!RxDescList[i].skb)
335 			return -ENOMEM;
336 		RxDescList[i].descr.ctrl   = 0;
337 		RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
338 		RxDescList[i].descr.next   = virt_to_phys(&RxDescList[i + 1]);
339 		RxDescList[i].descr.buf    = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
340 		RxDescList[i].descr.status = 0;
341 		RxDescList[i].descr.hw_len = 0;
342 		prepare_rx_descriptor(&RxDescList[i].descr);
343 	}
344 
345 	RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl   = d_eol;
346 	RxDescList[NBR_OF_RX_DESC - 1].descr.next   = virt_to_phys(&RxDescList[0]);
347 	rx_queue_len = 0;
348 
349 	/* Initialize transmit descriptors */
350 	for (i = 0; i < NBR_OF_TX_DESC; i++) {
351 		TxDescList[i].descr.ctrl   = 0;
352 		TxDescList[i].descr.sw_len = 0;
353 		TxDescList[i].descr.next   = virt_to_phys(&TxDescList[i + 1].descr);
354 		TxDescList[i].descr.buf    = 0;
355 		TxDescList[i].descr.status = 0;
356 		TxDescList[i].descr.hw_len = 0;
357 		TxDescList[i].skb = 0;
358 	}
359 
360 	TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl   = d_eol;
361 	TxDescList[NBR_OF_TX_DESC - 1].descr.next   = virt_to_phys(&TxDescList[0].descr);
362 
363 	/* Initialise initial pointers */
364 
365 	myNextRxDesc  = &RxDescList[0];
366 	myLastRxDesc  = &RxDescList[NBR_OF_RX_DESC - 1];
367 	myFirstTxDesc = &TxDescList[0];
368 	myNextTxDesc  = &TxDescList[0];
369 	myLastTxDesc  = &TxDescList[NBR_OF_TX_DESC - 1];
370 
371 	/* Register device */
372 	err = register_netdev(dev);
373 	if (err) {
374 		free_netdev(dev);
375 		return err;
376 	}
377 
378 	/* set the default MAC address */
379 
380 	e100_set_mac_address(dev, &default_mac);
381 
382 	/* Initialize speed indicator stuff. */
383 
384 	current_speed = 10;
385 	current_speed_selection = 0; /* Auto */
386 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
387 	speed_timer.data = (unsigned long)dev;
388 	speed_timer.function = e100_check_speed;
389 
390 	clear_led_timer.function = e100_clear_network_leds;
391 	clear_led_timer.data = (unsigned long)dev;
392 
393 	full_duplex = 0;
394 	current_duplex = autoneg;
395 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
396         duplex_timer.data = (unsigned long)dev;
397 	duplex_timer.function = e100_check_duplex;
398 
399         /* Initialize mii interface */
400 	np->mii_if.phy_id_mask = 0x1f;
401 	np->mii_if.reg_num_mask = 0x1f;
402 	np->mii_if.dev = dev;
403 	np->mii_if.mdio_read = e100_get_mdio_reg;
404 	np->mii_if.mdio_write = e100_set_mdio_reg;
405 
406 	/* Initialize group address registers to make sure that no */
407 	/* unwanted addresses are matched */
408 	*R_NETWORK_GA_0 = 0x00000000;
409 	*R_NETWORK_GA_1 = 0x00000000;
410 
411 	/* Initialize next time the led can flash */
412 	led_next_time = jiffies;
413 	return 0;
414 }
415 
416 /* set MAC address of the interface. called from the core after a
417  * SIOCSIFADDR ioctl, and from the bootup above.
418  */
419 
420 static int
e100_set_mac_address(struct net_device * dev,void * p)421 e100_set_mac_address(struct net_device *dev, void *p)
422 {
423 	struct net_local *np = netdev_priv(dev);
424 	struct sockaddr *addr = p;
425 
426 	spin_lock(&np->lock); /* preemption protection */
427 
428 	/* remember it */
429 
430 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
431 
432 	/* Write it to the hardware.
433 	 * Note the way the address is wrapped:
434 	 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
435 	 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
436 	 */
437 
438 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
439 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
440 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
441 	*R_NETWORK_SA_2 = 0;
442 
443 	/* show it in the log as well */
444 
445 	printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
446 
447 	spin_unlock(&np->lock);
448 
449 	return 0;
450 }
451 
452 /*
453  * Open/initialize the board. This is called (in the current kernel)
454  * sometime after booting when the 'ifconfig' program is run.
455  *
456  * This routine should set everything up anew at each open, even
457  * registers that "should" only need to be set once at boot, so that
458  * there is non-reboot way to recover if something goes wrong.
459  */
460 
461 static int
e100_open(struct net_device * dev)462 e100_open(struct net_device *dev)
463 {
464 	unsigned long flags;
465 
466 	/* enable the MDIO output pin */
467 
468 	*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
469 
470 	*R_IRQ_MASK0_CLR =
471 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
472 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
473 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
474 
475 	/* clear dma0 and 1 eop and descr irq masks */
476 	*R_IRQ_MASK2_CLR =
477 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
478 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
479 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
480 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
481 
482 	/* Reset and wait for the DMA channels */
483 
484 	RESET_DMA(NETWORK_TX_DMA_NBR);
485 	RESET_DMA(NETWORK_RX_DMA_NBR);
486 	WAIT_DMA(NETWORK_TX_DMA_NBR);
487 	WAIT_DMA(NETWORK_RX_DMA_NBR);
488 
489 	/* Initialise the etrax network controller */
490 
491 	/* allocate the irq corresponding to the receiving DMA */
492 
493 	if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
494 			(void *)dev)) {
495 		goto grace_exit0;
496 	}
497 
498 	/* allocate the irq corresponding to the transmitting DMA */
499 
500 	if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
501 			cardname, (void *)dev)) {
502 		goto grace_exit1;
503 	}
504 
505 	/* allocate the irq corresponding to the network errors etc */
506 
507 	if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
508 			cardname, (void *)dev)) {
509 		goto grace_exit2;
510 	}
511 
512 	/*
513 	 * Always allocate the DMA channels after the IRQ,
514 	 * and clean up on failure.
515 	 */
516 
517 	if (cris_request_dma(NETWORK_TX_DMA_NBR,
518 	                     cardname,
519 	                     DMA_VERBOSE_ON_ERROR,
520 	                     dma_eth)) {
521 		goto grace_exit3;
522         }
523 
524 	if (cris_request_dma(NETWORK_RX_DMA_NBR,
525 	                     cardname,
526 	                     DMA_VERBOSE_ON_ERROR,
527 	                     dma_eth)) {
528 		goto grace_exit4;
529         }
530 
531 	/* give the HW an idea of what MAC address we want */
532 
533 	*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
534 		(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
535 	*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
536 	*R_NETWORK_SA_2 = 0;
537 
538 #if 0
539 	/* use promiscuous mode for testing */
540 	*R_NETWORK_GA_0 = 0xffffffff;
541 	*R_NETWORK_GA_1 = 0xffffffff;
542 
543 	*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
544 #else
545 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
546 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
547 	SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
548 	SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
549 	*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
550 #endif
551 
552 	*R_NETWORK_GEN_CONFIG =
553 		IO_STATE(R_NETWORK_GEN_CONFIG, phy,    mii_clk) |
554 		IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
555 
556 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
557 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
558 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
559 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
560 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
561 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
562 	SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
563 	*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
564 
565 	local_irq_save(flags);
566 
567 	/* enable the irq's for ethernet DMA */
568 
569 	*R_IRQ_MASK2_SET =
570 		IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
571 		IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
572 
573 	*R_IRQ_MASK0_SET =
574 		IO_STATE(R_IRQ_MASK0_SET, overrun,       set) |
575 		IO_STATE(R_IRQ_MASK0_SET, underrun,      set) |
576 		IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
577 
578 	/* make sure the irqs are cleared */
579 
580 	*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
581 	*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
582 
583 	/* make sure the rec and transmit error counters are cleared */
584 
585 	(void)*R_REC_COUNTERS;  /* dummy read */
586 	(void)*R_TR_COUNTERS;   /* dummy read */
587 
588 	/* start the receiving DMA channel so we can receive packets from now on */
589 
590 	*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
591 	*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
592 
593 	/* Set up transmit DMA channel so it can be restarted later */
594 
595 	*R_DMA_CH0_FIRST = 0;
596 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
597 	netif_start_queue(dev);
598 
599 	local_irq_restore(flags);
600 
601 	/* Probe for transceiver */
602 	if (e100_probe_transceiver(dev))
603 		goto grace_exit5;
604 
605 	/* Start duplex/speed timers */
606 	add_timer(&speed_timer);
607 	add_timer(&duplex_timer);
608 
609 	/* We are now ready to accept transmit requeusts from
610 	 * the queueing layer of the networking.
611 	 */
612 	netif_carrier_on(dev);
613 
614 	return 0;
615 
616 grace_exit5:
617 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
618 grace_exit4:
619 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
620 grace_exit3:
621 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
622 grace_exit2:
623 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
624 grace_exit1:
625 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
626 grace_exit0:
627 	return -EAGAIN;
628 }
629 
630 #if defined(CONFIG_ETRAX_NO_PHY)
631 static void
dummy_check_speed(struct net_device * dev)632 dummy_check_speed(struct net_device* dev)
633 {
634 	current_speed = 100;
635 }
636 #else
637 static void
generic_check_speed(struct net_device * dev)638 generic_check_speed(struct net_device* dev)
639 {
640 	unsigned long data;
641 	struct net_local *np = netdev_priv(dev);
642 
643 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
644 	if ((data & ADVERTISE_100FULL) ||
645 	    (data & ADVERTISE_100HALF))
646 		current_speed = 100;
647 	else
648 		current_speed = 10;
649 }
650 
651 static void
tdk_check_speed(struct net_device * dev)652 tdk_check_speed(struct net_device* dev)
653 {
654 	unsigned long data;
655 	struct net_local *np = netdev_priv(dev);
656 
657 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
658 				 MDIO_TDK_DIAGNOSTIC_REG);
659 	current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
660 }
661 
662 static void
broadcom_check_speed(struct net_device * dev)663 broadcom_check_speed(struct net_device* dev)
664 {
665 	unsigned long data;
666 	struct net_local *np = netdev_priv(dev);
667 
668 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
669 				 MDIO_AUX_CTRL_STATUS_REG);
670 	current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
671 }
672 
673 static void
intel_check_speed(struct net_device * dev)674 intel_check_speed(struct net_device* dev)
675 {
676 	unsigned long data;
677 	struct net_local *np = netdev_priv(dev);
678 
679 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
680 				 MDIO_INT_STATUS_REG_2);
681 	current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
682 }
683 #endif
684 static void
e100_check_speed(unsigned long priv)685 e100_check_speed(unsigned long priv)
686 {
687 	struct net_device* dev = (struct net_device*)priv;
688 	struct net_local *np = netdev_priv(dev);
689 	static int led_initiated = 0;
690 	unsigned long data;
691 	int old_speed = current_speed;
692 
693 	spin_lock(&np->transceiver_lock);
694 
695 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
696 	if (!(data & BMSR_LSTATUS)) {
697 		current_speed = 0;
698 	} else {
699 		transceiver->check_speed(dev);
700 	}
701 
702 	spin_lock(&np->led_lock);
703 	if ((old_speed != current_speed) || !led_initiated) {
704 		led_initiated = 1;
705 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
706 		if (current_speed)
707 			netif_carrier_on(dev);
708 		else
709 			netif_carrier_off(dev);
710 	}
711 	spin_unlock(&np->led_lock);
712 
713 	/* Reinitialize the timer. */
714 	speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
715 	add_timer(&speed_timer);
716 
717 	spin_unlock(&np->transceiver_lock);
718 }
719 
720 static void
e100_negotiate(struct net_device * dev)721 e100_negotiate(struct net_device* dev)
722 {
723 	struct net_local *np = netdev_priv(dev);
724 	unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
725 						MII_ADVERTISE);
726 
727 	/* Discard old speed and duplex settings */
728 	data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
729 	          ADVERTISE_10HALF | ADVERTISE_10FULL);
730 
731 	switch (current_speed_selection) {
732 		case 10:
733 			if (current_duplex == full)
734 				data |= ADVERTISE_10FULL;
735 			else if (current_duplex == half)
736 				data |= ADVERTISE_10HALF;
737 			else
738 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
739 			break;
740 
741 		case 100:
742 			 if (current_duplex == full)
743 				data |= ADVERTISE_100FULL;
744 			else if (current_duplex == half)
745 				data |= ADVERTISE_100HALF;
746 			else
747 				data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
748 			break;
749 
750 		case 0: /* Auto */
751 			 if (current_duplex == full)
752 				data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
753 			else if (current_duplex == half)
754 				data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
755 			else
756 				data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
757 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
758 			break;
759 
760 		default: /* assume autoneg speed and duplex */
761 			data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
762 				  ADVERTISE_100HALF | ADVERTISE_100FULL;
763 			break;
764 	}
765 
766 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
767 
768 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
769 	if (autoneg_normal) {
770 		/* Renegotiate with link partner */
771 		data |= BMCR_ANENABLE | BMCR_ANRESTART;
772 	} else {
773 		/* Don't negotiate speed or duplex */
774 		data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
775 
776 		/* Set speed and duplex static */
777 		if (current_speed_selection == 10)
778 			data &= ~BMCR_SPEED100;
779 		else
780 			data |= BMCR_SPEED100;
781 
782 		if (current_duplex != full)
783 			data &= ~BMCR_FULLDPLX;
784 		else
785 			data |= BMCR_FULLDPLX;
786 	}
787 	e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
788 }
789 
790 static void
e100_set_speed(struct net_device * dev,unsigned long speed)791 e100_set_speed(struct net_device* dev, unsigned long speed)
792 {
793 	struct net_local *np = netdev_priv(dev);
794 
795 	spin_lock(&np->transceiver_lock);
796 	if (speed != current_speed_selection) {
797 		current_speed_selection = speed;
798 		e100_negotiate(dev);
799 	}
800 	spin_unlock(&np->transceiver_lock);
801 }
802 
803 static void
e100_check_duplex(unsigned long priv)804 e100_check_duplex(unsigned long priv)
805 {
806 	struct net_device *dev = (struct net_device *)priv;
807 	struct net_local *np = netdev_priv(dev);
808 	int old_duplex;
809 
810 	spin_lock(&np->transceiver_lock);
811 	old_duplex = full_duplex;
812 	transceiver->check_duplex(dev);
813 	if (old_duplex != full_duplex) {
814 		/* Duplex changed */
815 		SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
816 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
817 	}
818 
819 	/* Reinitialize the timer. */
820 	duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
821 	add_timer(&duplex_timer);
822 	np->mii_if.full_duplex = full_duplex;
823 	spin_unlock(&np->transceiver_lock);
824 }
825 #if defined(CONFIG_ETRAX_NO_PHY)
826 static void
dummy_check_duplex(struct net_device * dev)827 dummy_check_duplex(struct net_device* dev)
828 {
829 	full_duplex = 1;
830 }
831 #else
832 static void
generic_check_duplex(struct net_device * dev)833 generic_check_duplex(struct net_device* dev)
834 {
835 	unsigned long data;
836 	struct net_local *np = netdev_priv(dev);
837 
838 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
839 	if ((data & ADVERTISE_10FULL) ||
840 	    (data & ADVERTISE_100FULL))
841 		full_duplex = 1;
842 	else
843 		full_duplex = 0;
844 }
845 
846 static void
tdk_check_duplex(struct net_device * dev)847 tdk_check_duplex(struct net_device* dev)
848 {
849 	unsigned long data;
850 	struct net_local *np = netdev_priv(dev);
851 
852 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
853 				 MDIO_TDK_DIAGNOSTIC_REG);
854 	full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
855 }
856 
857 static void
broadcom_check_duplex(struct net_device * dev)858 broadcom_check_duplex(struct net_device* dev)
859 {
860 	unsigned long data;
861 	struct net_local *np = netdev_priv(dev);
862 
863 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
864 				 MDIO_AUX_CTRL_STATUS_REG);
865 	full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
866 }
867 
868 static void
intel_check_duplex(struct net_device * dev)869 intel_check_duplex(struct net_device* dev)
870 {
871 	unsigned long data;
872 	struct net_local *np = netdev_priv(dev);
873 
874 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
875 				 MDIO_INT_STATUS_REG_2);
876 	full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
877 }
878 #endif
879 static void
e100_set_duplex(struct net_device * dev,enum duplex new_duplex)880 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
881 {
882 	struct net_local *np = netdev_priv(dev);
883 
884 	spin_lock(&np->transceiver_lock);
885 	if (new_duplex != current_duplex) {
886 		current_duplex = new_duplex;
887 		e100_negotiate(dev);
888 	}
889 	spin_unlock(&np->transceiver_lock);
890 }
891 
892 static int
e100_probe_transceiver(struct net_device * dev)893 e100_probe_transceiver(struct net_device* dev)
894 {
895 	int ret = 0;
896 
897 #if !defined(CONFIG_ETRAX_NO_PHY)
898 	unsigned int phyid_high;
899 	unsigned int phyid_low;
900 	unsigned int oui;
901 	struct transceiver_ops* ops = NULL;
902 	struct net_local *np = netdev_priv(dev);
903 
904 	spin_lock(&np->transceiver_lock);
905 
906 	/* Probe MDIO physical address */
907 	for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
908 	     np->mii_if.phy_id++) {
909 		if (e100_get_mdio_reg(dev,
910 				      np->mii_if.phy_id, MII_BMSR) != 0xffff)
911 			break;
912 	}
913 	if (np->mii_if.phy_id == 32) {
914 		ret = -ENODEV;
915 		goto out;
916 	}
917 
918 	/* Get manufacturer */
919 	phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
920 	phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
921 	oui = (phyid_high << 6) | (phyid_low >> 10);
922 
923 	for (ops = &transceivers[0]; ops->oui; ops++) {
924 		if (ops->oui == oui)
925 			break;
926 	}
927 	transceiver = ops;
928 out:
929 	spin_unlock(&np->transceiver_lock);
930 #endif
931 	return ret;
932 }
933 
934 static int
e100_get_mdio_reg(struct net_device * dev,int phy_id,int location)935 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
936 {
937 	unsigned short cmd;    /* Data to be sent on MDIO port */
938 	int data;   /* Data read from MDIO */
939 	int bitCounter;
940 
941 	/* Start of frame, OP Code, Physical Address, Register Address */
942 	cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
943 		(location << 2);
944 
945 	e100_send_mdio_cmd(cmd, 0);
946 
947 	data = 0;
948 
949 	/* Data... */
950 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
951 		data |= (e100_receive_mdio_bit() << bitCounter);
952 	}
953 
954 	return data;
955 }
956 
957 static void
e100_set_mdio_reg(struct net_device * dev,int phy_id,int location,int value)958 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
959 {
960 	int bitCounter;
961 	unsigned short cmd;
962 
963 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
964 	      (location << 2);
965 
966 	e100_send_mdio_cmd(cmd, 1);
967 
968 	/* Data... */
969 	for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
970 		e100_send_mdio_bit(GET_BIT(bitCounter, value));
971 	}
972 
973 }
974 
975 static void
e100_send_mdio_cmd(unsigned short cmd,int write_cmd)976 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
977 {
978 	int bitCounter;
979 	unsigned char data = 0x2;
980 
981 	/* Preamble */
982 	for (bitCounter = 31; bitCounter>= 0; bitCounter--)
983 		e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
984 
985 	for (bitCounter = 15; bitCounter >= 2; bitCounter--)
986 		e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
987 
988 	/* Turnaround */
989 	for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
990 		if (write_cmd)
991 			e100_send_mdio_bit(GET_BIT(bitCounter, data));
992 		else
993 			e100_receive_mdio_bit();
994 }
995 
996 static void
e100_send_mdio_bit(unsigned char bit)997 e100_send_mdio_bit(unsigned char bit)
998 {
999 	*R_NETWORK_MGM_CTRL =
1000 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1001 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1002 	udelay(1);
1003 	*R_NETWORK_MGM_CTRL =
1004 		IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1005 		IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1006 		IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1007 	udelay(1);
1008 }
1009 
1010 static unsigned char
e100_receive_mdio_bit(void)1011 e100_receive_mdio_bit(void)
1012 {
1013 	unsigned char bit;
1014 	*R_NETWORK_MGM_CTRL = 0;
1015 	bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1016 	udelay(1);
1017 	*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1018 	udelay(1);
1019 	return bit;
1020 }
1021 
1022 static void
e100_reset_transceiver(struct net_device * dev)1023 e100_reset_transceiver(struct net_device* dev)
1024 {
1025 	struct net_local *np = netdev_priv(dev);
1026 	unsigned short cmd;
1027 	unsigned short data;
1028 	int bitCounter;
1029 
1030 	data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1031 
1032 	cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1033 
1034 	e100_send_mdio_cmd(cmd, 1);
1035 
1036 	data |= 0x8000;
1037 
1038 	for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1039 		e100_send_mdio_bit(GET_BIT(bitCounter, data));
1040 	}
1041 }
1042 
1043 /* Called by upper layers if they decide it took too long to complete
1044  * sending a packet - we need to reset and stuff.
1045  */
1046 
1047 static void
e100_tx_timeout(struct net_device * dev)1048 e100_tx_timeout(struct net_device *dev)
1049 {
1050 	struct net_local *np = netdev_priv(dev);
1051 	unsigned long flags;
1052 
1053 	spin_lock_irqsave(&np->lock, flags);
1054 
1055 	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1056 	       tx_done(dev) ? "IRQ problem" : "network cable problem");
1057 
1058 	/* remember we got an error */
1059 
1060 	dev->stats.tx_errors++;
1061 
1062 	/* reset the TX DMA in case it has hung on something */
1063 
1064 	RESET_DMA(NETWORK_TX_DMA_NBR);
1065 	WAIT_DMA(NETWORK_TX_DMA_NBR);
1066 
1067 	/* Reset the transceiver. */
1068 
1069 	e100_reset_transceiver(dev);
1070 
1071 	/* and get rid of the packets that never got an interrupt */
1072 	while (myFirstTxDesc != myNextTxDesc) {
1073 		dev_kfree_skb(myFirstTxDesc->skb);
1074 		myFirstTxDesc->skb = 0;
1075 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1076 	}
1077 
1078 	/* Set up transmit DMA channel so it can be restarted later */
1079 	*R_DMA_CH0_FIRST = 0;
1080 	*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1081 
1082 	/* tell the upper layers we're ok again */
1083 
1084 	netif_wake_queue(dev);
1085 	spin_unlock_irqrestore(&np->lock, flags);
1086 }
1087 
1088 
1089 /* This will only be invoked if the driver is _not_ in XOFF state.
1090  * What this means is that we need not check it, and that this
1091  * invariant will hold if we make sure that the netif_*_queue()
1092  * calls are done at the proper times.
1093  */
1094 
1095 static int
e100_send_packet(struct sk_buff * skb,struct net_device * dev)1096 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1097 {
1098 	struct net_local *np = netdev_priv(dev);
1099 	unsigned char *buf = skb->data;
1100 	unsigned long flags;
1101 
1102 #ifdef ETHDEBUG
1103 	printk("send packet len %d\n", length);
1104 #endif
1105 	spin_lock_irqsave(&np->lock, flags);  /* protect from tx_interrupt and ourself */
1106 
1107 	myNextTxDesc->skb = skb;
1108 
1109 	netif_trans_update(dev); /* NETIF_F_LLTX driver :( */
1110 
1111 	e100_hardware_send_packet(np, buf, skb->len);
1112 
1113 	myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1114 
1115 	/* Stop queue if full */
1116 	if (myNextTxDesc == myFirstTxDesc) {
1117 		netif_stop_queue(dev);
1118 	}
1119 
1120 	spin_unlock_irqrestore(&np->lock, flags);
1121 
1122 	return NETDEV_TX_OK;
1123 }
1124 
1125 /*
1126  * The typical workload of the driver:
1127  *   Handle the network interface interrupts.
1128  */
1129 
1130 static irqreturn_t
e100rxtx_interrupt(int irq,void * dev_id)1131 e100rxtx_interrupt(int irq, void *dev_id)
1132 {
1133 	struct net_device *dev = (struct net_device *)dev_id;
1134 	unsigned long irqbits;
1135 
1136 	/*
1137 	 * Note that both rx and tx interrupts are blocked at this point,
1138 	 * regardless of which got us here.
1139 	 */
1140 
1141 	irqbits = *R_IRQ_MASK2_RD;
1142 
1143 	/* Handle received packets */
1144 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1145 		/* acknowledge the eop interrupt */
1146 
1147 		*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1148 
1149 		/* check if one or more complete packets were indeed received */
1150 
1151 		while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1152 		       (myNextRxDesc != myLastRxDesc)) {
1153 			/* Take out the buffer and give it to the OS, then
1154 			 * allocate a new buffer to put a packet in.
1155 			 */
1156 			e100_rx(dev);
1157 			dev->stats.rx_packets++;
1158 			/* restart/continue on the channel, for safety */
1159 			*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1160 			/* clear dma channel 1 eop/descr irq bits */
1161 			*R_DMA_CH1_CLR_INTR =
1162 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1163 				IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1164 
1165 			/* now, we might have gotten another packet
1166 			   so we have to loop back and check if so */
1167 		}
1168 	}
1169 
1170 	/* Report any packets that have been sent */
1171 	while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1172 	       (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1173 		dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1174 		dev->stats.tx_packets++;
1175 
1176 		/* dma is ready with the transmission of the data in tx_skb, so now
1177 		   we can release the skb memory */
1178 		dev_kfree_skb_irq(myFirstTxDesc->skb);
1179 		myFirstTxDesc->skb = 0;
1180 		myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1181                 /* Wake up queue. */
1182 		netif_wake_queue(dev);
1183 	}
1184 
1185 	if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1186 		/* acknowledge the eop interrupt. */
1187 		*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1188 	}
1189 
1190 	return IRQ_HANDLED;
1191 }
1192 
1193 static irqreturn_t
e100nw_interrupt(int irq,void * dev_id)1194 e100nw_interrupt(int irq, void *dev_id)
1195 {
1196 	struct net_device *dev = (struct net_device *)dev_id;
1197 	unsigned long irqbits = *R_IRQ_MASK0_RD;
1198 
1199 	/* check for underrun irq */
1200 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1201 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1202 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1203 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1204 		dev->stats.tx_errors++;
1205 		D(printk("ethernet receiver underrun!\n"));
1206 	}
1207 
1208 	/* check for overrun irq */
1209 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1210 		update_rx_stats(&dev->stats); /* this will ack the irq */
1211 		D(printk("ethernet receiver overrun!\n"));
1212 	}
1213 	/* check for excessive collision irq */
1214 	if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1215 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1216 		*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1217 		SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1218 		dev->stats.tx_errors++;
1219 		D(printk("ethernet excessive collisions!\n"));
1220 	}
1221 	return IRQ_HANDLED;
1222 }
1223 
1224 /* We have a good packet(s), get it/them out of the buffers. */
1225 static void
e100_rx(struct net_device * dev)1226 e100_rx(struct net_device *dev)
1227 {
1228 	struct sk_buff *skb;
1229 	int length = 0;
1230 	struct net_local *np = netdev_priv(dev);
1231 	unsigned char *skb_data_ptr;
1232 #ifdef ETHDEBUG
1233 	int i;
1234 #endif
1235 	etrax_eth_descr *prevRxDesc;  /* The descriptor right before myNextRxDesc */
1236 	spin_lock(&np->led_lock);
1237 	if (!led_active && time_after(jiffies, led_next_time)) {
1238 		/* light the network leds depending on the current speed. */
1239 		e100_set_network_leds(NETWORK_ACTIVITY);
1240 
1241 		/* Set the earliest time we may clear the LED */
1242 		led_next_time = jiffies + NET_FLASH_TIME;
1243 		led_active = 1;
1244 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1245 	}
1246 	spin_unlock(&np->led_lock);
1247 
1248 	length = myNextRxDesc->descr.hw_len - 4;
1249 	dev->stats.rx_bytes += length;
1250 
1251 #ifdef ETHDEBUG
1252 	printk("Got a packet of length %d:\n", length);
1253 	/* dump the first bytes in the packet */
1254 	skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1255 	for (i = 0; i < 8; i++) {
1256 		printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1257 		       skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1258 		       skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1259 		skb_data_ptr += 8;
1260 	}
1261 #endif
1262 
1263 	if (length < RX_COPYBREAK) {
1264 		/* Small packet, copy data */
1265 		skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1266 		if (!skb) {
1267 			dev->stats.rx_errors++;
1268 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1269 			goto update_nextrxdesc;
1270 		}
1271 
1272 		skb_put(skb, length - ETHER_HEAD_LEN);        /* allocate room for the packet body */
1273 		skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1274 
1275 #ifdef ETHDEBUG
1276 		printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1277 		       skb->head, skb->data, skb_tail_pointer(skb),
1278 		       skb_end_pointer(skb));
1279 		printk("copying packet to 0x%x.\n", skb_data_ptr);
1280 #endif
1281 
1282 		memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1283 	}
1284 	else {
1285 		/* Large packet, send directly to upper layers and allocate new
1286 		 * memory (aligned to cache line boundary to avoid bug).
1287 		 * Before sending the skb to upper layers we must make sure
1288 		 * that skb->data points to the aligned start of the packet.
1289 		 */
1290 		int align;
1291 		struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1292 		if (!new_skb) {
1293 			dev->stats.rx_errors++;
1294 			printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1295 			goto update_nextrxdesc;
1296 		}
1297 		skb = myNextRxDesc->skb;
1298 		align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1299 		skb_put(skb, length + align);
1300 		skb_pull(skb, align); /* Remove alignment bytes */
1301 		myNextRxDesc->skb = new_skb;
1302 		myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1303 	}
1304 
1305 	skb->protocol = eth_type_trans(skb, dev);
1306 
1307 	/* Send the packet to the upper layers */
1308 	netif_rx(skb);
1309 
1310   update_nextrxdesc:
1311 	/* Prepare for next packet */
1312 	myNextRxDesc->descr.status = 0;
1313 	prevRxDesc = myNextRxDesc;
1314 	myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1315 
1316 	rx_queue_len++;
1317 
1318 	/* Check if descriptors should be returned */
1319 	if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1320 		flush_etrax_cache();
1321 		prevRxDesc->descr.ctrl |= d_eol;
1322 		myLastRxDesc->descr.ctrl &= ~d_eol;
1323 		myLastRxDesc = prevRxDesc;
1324 		rx_queue_len = 0;
1325 	}
1326 }
1327 
1328 /* The inverse routine to net_open(). */
1329 static int
e100_close(struct net_device * dev)1330 e100_close(struct net_device *dev)
1331 {
1332 	printk(KERN_INFO "Closing %s.\n", dev->name);
1333 
1334 	netif_stop_queue(dev);
1335 
1336 	*R_IRQ_MASK0_CLR =
1337 		IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1338 		IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1339 		IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1340 
1341 	*R_IRQ_MASK2_CLR =
1342 		IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1343 		IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1344 		IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1345 		IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1346 
1347 	/* Stop the receiver and the transmitter */
1348 
1349 	RESET_DMA(NETWORK_TX_DMA_NBR);
1350 	RESET_DMA(NETWORK_RX_DMA_NBR);
1351 
1352 	/* Flush the Tx and disable Rx here. */
1353 
1354 	free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1355 	free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1356 	free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1357 
1358 	cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1359 	cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1360 
1361 	/* Update the statistics here. */
1362 
1363 	update_rx_stats(&dev->stats);
1364 	update_tx_stats(&dev->stats);
1365 
1366 	/* Stop speed/duplex timers */
1367 	del_timer(&speed_timer);
1368 	del_timer(&duplex_timer);
1369 
1370 	return 0;
1371 }
1372 
1373 static int
e100_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1374 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1375 {
1376 	struct mii_ioctl_data *data = if_mii(ifr);
1377 	struct net_local *np = netdev_priv(dev);
1378 	int rc = 0;
1379         int old_autoneg;
1380 
1381 	spin_lock(&np->lock); /* Preempt protection */
1382 	switch (cmd) {
1383 		/* The ioctls below should be considered obsolete but are */
1384 		/* still present for compatibility with old scripts/apps  */
1385 		case SET_ETH_SPEED_10:                  /* 10 Mbps */
1386 			e100_set_speed(dev, 10);
1387 			break;
1388 		case SET_ETH_SPEED_100:                /* 100 Mbps */
1389 			e100_set_speed(dev, 100);
1390 			break;
1391 		case SET_ETH_SPEED_AUTO:        /* Auto-negotiate speed */
1392 			e100_set_speed(dev, 0);
1393 			break;
1394 		case SET_ETH_DUPLEX_HALF:       /* Half duplex */
1395 			e100_set_duplex(dev, half);
1396 			break;
1397 		case SET_ETH_DUPLEX_FULL:       /* Full duplex */
1398 			e100_set_duplex(dev, full);
1399 			break;
1400 		case SET_ETH_DUPLEX_AUTO:       /* Auto-negotiate duplex */
1401 			e100_set_duplex(dev, autoneg);
1402 			break;
1403 	        case SET_ETH_AUTONEG:
1404 			old_autoneg = autoneg_normal;
1405 		        autoneg_normal = *(int*)data;
1406 			if (autoneg_normal != old_autoneg)
1407 				e100_negotiate(dev);
1408 			break;
1409 		default:
1410 			rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1411 						cmd, NULL);
1412 			break;
1413 	}
1414 	spin_unlock(&np->lock);
1415 	return rc;
1416 }
1417 
e100_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1418 static int e100_get_settings(struct net_device *dev,
1419 			     struct ethtool_cmd *cmd)
1420 {
1421 	struct net_local *np = netdev_priv(dev);
1422 	int err;
1423 
1424 	spin_lock_irq(&np->lock);
1425 	err = mii_ethtool_gset(&np->mii_if, cmd);
1426 	spin_unlock_irq(&np->lock);
1427 
1428 	/* The PHY may support 1000baseT, but the Etrax100 does not.  */
1429 	cmd->supported &= ~(SUPPORTED_1000baseT_Half
1430 			    | SUPPORTED_1000baseT_Full);
1431 	return err;
1432 }
1433 
e100_set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1434 static int e100_set_settings(struct net_device *dev,
1435 			     struct ethtool_cmd *ecmd)
1436 {
1437 	if (ecmd->autoneg == AUTONEG_ENABLE) {
1438 		e100_set_duplex(dev, autoneg);
1439 		e100_set_speed(dev, 0);
1440 	} else {
1441 		e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1442 		e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1443 	}
1444 
1445 	return 0;
1446 }
1447 
e100_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1448 static void e100_get_drvinfo(struct net_device *dev,
1449 			     struct ethtool_drvinfo *info)
1450 {
1451 	strlcpy(info->driver, "ETRAX 100LX", sizeof(info->driver));
1452 	strlcpy(info->version, "$Revision: 1.31 $", sizeof(info->version));
1453 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1454 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1455 }
1456 
e100_nway_reset(struct net_device * dev)1457 static int e100_nway_reset(struct net_device *dev)
1458 {
1459 	if (current_duplex == autoneg && current_speed_selection == 0)
1460 		e100_negotiate(dev);
1461 	return 0;
1462 }
1463 
1464 static const struct ethtool_ops e100_ethtool_ops = {
1465 	.get_settings	= e100_get_settings,
1466 	.set_settings	= e100_set_settings,
1467 	.get_drvinfo	= e100_get_drvinfo,
1468 	.nway_reset	= e100_nway_reset,
1469 	.get_link	= ethtool_op_get_link,
1470 };
1471 
1472 static int
e100_set_config(struct net_device * dev,struct ifmap * map)1473 e100_set_config(struct net_device *dev, struct ifmap *map)
1474 {
1475 	struct net_local *np = netdev_priv(dev);
1476 
1477 	spin_lock(&np->lock); /* Preempt protection */
1478 
1479 	switch(map->port) {
1480 		case IF_PORT_UNKNOWN:
1481 			/* Use autoneg */
1482 			e100_set_speed(dev, 0);
1483 			e100_set_duplex(dev, autoneg);
1484 			break;
1485 		case IF_PORT_10BASET:
1486 			e100_set_speed(dev, 10);
1487 			e100_set_duplex(dev, autoneg);
1488 			break;
1489 		case IF_PORT_100BASET:
1490 		case IF_PORT_100BASETX:
1491 			e100_set_speed(dev, 100);
1492 			e100_set_duplex(dev, autoneg);
1493 			break;
1494 		case IF_PORT_100BASEFX:
1495 		case IF_PORT_10BASE2:
1496 		case IF_PORT_AUI:
1497 			spin_unlock(&np->lock);
1498 			return -EOPNOTSUPP;
1499 		default:
1500 			printk(KERN_ERR "%s: Invalid media selected", dev->name);
1501 			spin_unlock(&np->lock);
1502 			return -EINVAL;
1503 	}
1504 	spin_unlock(&np->lock);
1505 	return 0;
1506 }
1507 
1508 static void
update_rx_stats(struct net_device_stats * es)1509 update_rx_stats(struct net_device_stats *es)
1510 {
1511 	unsigned long r = *R_REC_COUNTERS;
1512 	/* update stats relevant to reception errors */
1513 	es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1514 	es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1515 	es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1516 	es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1517 }
1518 
1519 static void
update_tx_stats(struct net_device_stats * es)1520 update_tx_stats(struct net_device_stats *es)
1521 {
1522 	unsigned long r = *R_TR_COUNTERS;
1523 	/* update stats relevant to transmission errors */
1524 	es->collisions +=
1525 		IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1526 		IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1527 }
1528 
1529 /*
1530  * Get the current statistics.
1531  * This may be called with the card open or closed.
1532  */
1533 static struct net_device_stats *
e100_get_stats(struct net_device * dev)1534 e100_get_stats(struct net_device *dev)
1535 {
1536 	struct net_local *lp = netdev_priv(dev);
1537 	unsigned long flags;
1538 
1539 	spin_lock_irqsave(&lp->lock, flags);
1540 
1541 	update_rx_stats(&dev->stats);
1542 	update_tx_stats(&dev->stats);
1543 
1544 	spin_unlock_irqrestore(&lp->lock, flags);
1545 	return &dev->stats;
1546 }
1547 
1548 /*
1549  * Set or clear the multicast filter for this adaptor.
1550  * num_addrs == -1	Promiscuous mode, receive all packets
1551  * num_addrs == 0	Normal mode, clear multicast list
1552  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1553  *			and do best-effort filtering.
1554  */
1555 static void
set_multicast_list(struct net_device * dev)1556 set_multicast_list(struct net_device *dev)
1557 {
1558 	struct net_local *lp = netdev_priv(dev);
1559 	int num_addr = netdev_mc_count(dev);
1560 	unsigned long int lo_bits;
1561 	unsigned long int hi_bits;
1562 
1563 	spin_lock(&lp->lock);
1564 	if (dev->flags & IFF_PROMISC) {
1565 		/* promiscuous mode */
1566 		lo_bits = 0xfffffffful;
1567 		hi_bits = 0xfffffffful;
1568 
1569 		/* Enable individual receive */
1570 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1571 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1572 	} else if (dev->flags & IFF_ALLMULTI) {
1573 		/* enable all multicasts */
1574 		lo_bits = 0xfffffffful;
1575 		hi_bits = 0xfffffffful;
1576 
1577 		/* Disable individual receive */
1578 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1579 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1580 	} else if (num_addr == 0) {
1581 		/* Normal, clear the mc list */
1582 		lo_bits = 0x00000000ul;
1583 		hi_bits = 0x00000000ul;
1584 
1585 		/* Disable individual receive */
1586 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1587 		*R_NETWORK_REC_CONFIG =  network_rec_config_shadow;
1588 	} else {
1589 		/* MC mode, receive normal and MC packets */
1590 		char hash_ix;
1591 		struct netdev_hw_addr *ha;
1592 		char *baddr;
1593 
1594 		lo_bits = 0x00000000ul;
1595 		hi_bits = 0x00000000ul;
1596 		netdev_for_each_mc_addr(ha, dev) {
1597 			/* Calculate the hash index for the GA registers */
1598 
1599 			hash_ix = 0;
1600 			baddr = ha->addr;
1601 			hash_ix ^= (*baddr) & 0x3f;
1602 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1603 			++baddr;
1604 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1605 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1606 			++baddr;
1607 			hash_ix ^= ((*baddr) << 4) & 0x30;
1608 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1609 			++baddr;
1610 			hash_ix ^= (*baddr) & 0x3f;
1611 			hash_ix ^= ((*baddr) >> 6) & 0x03;
1612 			++baddr;
1613 			hash_ix ^= ((*baddr) << 2) & 0x03c;
1614 			hash_ix ^= ((*baddr) >> 4) & 0xf;
1615 			++baddr;
1616 			hash_ix ^= ((*baddr) << 4) & 0x30;
1617 			hash_ix ^= ((*baddr) >> 2) & 0x3f;
1618 
1619 			hash_ix &= 0x3f;
1620 
1621 			if (hash_ix >= 32) {
1622 				hi_bits |= (1 << (hash_ix-32));
1623 			} else {
1624 				lo_bits |= (1 << hash_ix);
1625 			}
1626 		}
1627 		/* Disable individual receive */
1628 		SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1629 		*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1630 	}
1631 	*R_NETWORK_GA_0 = lo_bits;
1632 	*R_NETWORK_GA_1 = hi_bits;
1633 	spin_unlock(&lp->lock);
1634 }
1635 
1636 void
e100_hardware_send_packet(struct net_local * np,char * buf,int length)1637 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1638 {
1639 	D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1640 
1641 	spin_lock(&np->led_lock);
1642 	if (!led_active && time_after(jiffies, led_next_time)) {
1643 		/* light the network leds depending on the current speed. */
1644 		e100_set_network_leds(NETWORK_ACTIVITY);
1645 
1646 		/* Set the earliest time we may clear the LED */
1647 		led_next_time = jiffies + NET_FLASH_TIME;
1648 		led_active = 1;
1649 		mod_timer(&clear_led_timer, jiffies + HZ/10);
1650 	}
1651 	spin_unlock(&np->led_lock);
1652 
1653 	/* configure the tx dma descriptor */
1654 	myNextTxDesc->descr.sw_len = length;
1655 	myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1656 	myNextTxDesc->descr.buf = virt_to_phys(buf);
1657 
1658         /* Move end of list */
1659         myLastTxDesc->descr.ctrl &= ~d_eol;
1660         myLastTxDesc = myNextTxDesc;
1661 
1662 	/* Restart DMA channel */
1663 	*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1664 }
1665 
1666 static void
e100_clear_network_leds(unsigned long dummy)1667 e100_clear_network_leds(unsigned long dummy)
1668 {
1669 	struct net_device *dev = (struct net_device *)dummy;
1670 	struct net_local *np = netdev_priv(dev);
1671 
1672 	spin_lock(&np->led_lock);
1673 
1674 	if (led_active && time_after(jiffies, led_next_time)) {
1675 		e100_set_network_leds(NO_NETWORK_ACTIVITY);
1676 
1677 		/* Set the earliest time we may set the LED */
1678 		led_next_time = jiffies + NET_FLASH_PAUSE;
1679 		led_active = 0;
1680 	}
1681 
1682 	spin_unlock(&np->led_lock);
1683 }
1684 
1685 static void
e100_set_network_leds(int active)1686 e100_set_network_leds(int active)
1687 {
1688 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1689 	int light_leds = (active == NO_NETWORK_ACTIVITY);
1690 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1691 	int light_leds = (active == NETWORK_ACTIVITY);
1692 #else
1693 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1694 #endif
1695 
1696 	if (!current_speed) {
1697 		/* Make LED red, link is down */
1698 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1699 	} else if (light_leds) {
1700 		if (current_speed == 10) {
1701 			CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1702 		} else {
1703 			CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1704 		}
1705 	} else {
1706 		CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1707 	}
1708 }
1709 
1710 #ifdef CONFIG_NET_POLL_CONTROLLER
1711 static void
e100_netpoll(struct net_device * netdev)1712 e100_netpoll(struct net_device* netdev)
1713 {
1714 	e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev);
1715 }
1716 #endif
1717 
1718 static int
etrax_init_module(void)1719 etrax_init_module(void)
1720 {
1721 	return etrax_ethernet_init();
1722 }
1723 
1724 static int __init
e100_boot_setup(char * str)1725 e100_boot_setup(char* str)
1726 {
1727 	struct sockaddr sa = {0};
1728 	int i;
1729 
1730 	/* Parse the colon separated Ethernet station address */
1731 	for (i = 0; i <  ETH_ALEN; i++) {
1732 		unsigned int tmp;
1733 		if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1734 			printk(KERN_WARNING "Malformed station address");
1735 			return 0;
1736 		}
1737 		sa.sa_data[i] = (char)tmp;
1738 	}
1739 
1740 	default_mac = sa;
1741 	return 1;
1742 }
1743 
1744 __setup("etrax100_eth=", e100_boot_setup);
1745 
1746 module_init(etrax_init_module);
1747