• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15 
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20 
nicvf_get_page(struct nicvf * nic)21 static void nicvf_get_page(struct nicvf *nic)
22 {
23 	if (!nic->rb_pageref || !nic->rb_page)
24 		return;
25 
26 	page_ref_add(nic->rb_page, nic->rb_pageref);
27 	nic->rb_pageref = 0;
28 }
29 
30 /* Poll a register for a specific value */
nicvf_poll_reg(struct nicvf * nic,int qidx,u64 reg,int bit_pos,int bits,int val)31 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
32 			  u64 reg, int bit_pos, int bits, int val)
33 {
34 	u64 bit_mask;
35 	u64 reg_val;
36 	int timeout = 10;
37 
38 	bit_mask = (1ULL << bits) - 1;
39 	bit_mask = (bit_mask << bit_pos);
40 
41 	while (timeout) {
42 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
43 		if (((reg_val & bit_mask) >> bit_pos) == val)
44 			return 0;
45 		usleep_range(1000, 2000);
46 		timeout--;
47 	}
48 	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
49 	return 1;
50 }
51 
52 /* Allocate memory for a queue's descriptors */
nicvf_alloc_q_desc_mem(struct nicvf * nic,struct q_desc_mem * dmem,int q_len,int desc_size,int align_bytes)53 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
54 				  int q_len, int desc_size, int align_bytes)
55 {
56 	dmem->q_len = q_len;
57 	dmem->size = (desc_size * q_len) + align_bytes;
58 	/* Save address, need it while freeing */
59 	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
60 						&dmem->dma, GFP_KERNEL);
61 	if (!dmem->unalign_base)
62 		return -ENOMEM;
63 
64 	/* Align memory address for 'align_bytes' */
65 	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
66 	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
67 	return 0;
68 }
69 
70 /* Free queue's descriptor memory */
nicvf_free_q_desc_mem(struct nicvf * nic,struct q_desc_mem * dmem)71 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
72 {
73 	if (!dmem)
74 		return;
75 
76 	dma_free_coherent(&nic->pdev->dev, dmem->size,
77 			  dmem->unalign_base, dmem->dma);
78 	dmem->unalign_base = NULL;
79 	dmem->base = NULL;
80 }
81 
82 /* Allocate buffer for packet reception
83  * HW returns memory address where packet is DMA'ed but not a pointer
84  * into RBDR ring, so save buffer address at the start of fragment and
85  * align the start address to a cache aligned address
86  */
nicvf_alloc_rcv_buffer(struct nicvf * nic,gfp_t gfp,u32 buf_len,u64 ** rbuf)87 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
88 					 u32 buf_len, u64 **rbuf)
89 {
90 	int order = (PAGE_SIZE <= 4096) ?  PAGE_ALLOC_COSTLY_ORDER : 0;
91 
92 	/* Check if request can be accomodated in previous allocated page */
93 	if (nic->rb_page &&
94 	    ((nic->rb_page_offset + buf_len) < (PAGE_SIZE << order))) {
95 		nic->rb_pageref++;
96 		goto ret;
97 	}
98 
99 	nicvf_get_page(nic);
100 	nic->rb_page = NULL;
101 
102 	/* Allocate a new page */
103 	if (!nic->rb_page) {
104 		nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
105 					   order);
106 		if (!nic->rb_page) {
107 			this_cpu_inc(nic->pnicvf->drv_stats->
108 				     rcv_buffer_alloc_failures);
109 			return -ENOMEM;
110 		}
111 		nic->rb_page_offset = 0;
112 	}
113 
114 ret:
115 	*rbuf = (u64 *)((u64)page_address(nic->rb_page) + nic->rb_page_offset);
116 	nic->rb_page_offset += buf_len;
117 
118 	return 0;
119 }
120 
121 /* Build skb around receive buffer */
nicvf_rb_ptr_to_skb(struct nicvf * nic,u64 rb_ptr,int len)122 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
123 					   u64 rb_ptr, int len)
124 {
125 	void *data;
126 	struct sk_buff *skb;
127 
128 	data = phys_to_virt(rb_ptr);
129 
130 	/* Now build an skb to give to stack */
131 	skb = build_skb(data, RCV_FRAG_LEN);
132 	if (!skb) {
133 		put_page(virt_to_page(data));
134 		return NULL;
135 	}
136 
137 	prefetch(skb->data);
138 	return skb;
139 }
140 
141 /* Allocate RBDR ring and populate receive buffers */
nicvf_init_rbdr(struct nicvf * nic,struct rbdr * rbdr,int ring_len,int buf_size)142 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
143 			    int ring_len, int buf_size)
144 {
145 	int idx;
146 	u64 *rbuf;
147 	struct rbdr_entry_t *desc;
148 	int err;
149 
150 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
151 				     sizeof(struct rbdr_entry_t),
152 				     NICVF_RCV_BUF_ALIGN_BYTES);
153 	if (err)
154 		return err;
155 
156 	rbdr->desc = rbdr->dmem.base;
157 	/* Buffer size has to be in multiples of 128 bytes */
158 	rbdr->dma_size = buf_size;
159 	rbdr->enable = true;
160 	rbdr->thresh = RBDR_THRESH;
161 
162 	nic->rb_page = NULL;
163 	for (idx = 0; idx < ring_len; idx++) {
164 		err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
165 					     &rbuf);
166 		if (err)
167 			return err;
168 
169 		desc = GET_RBDR_DESC(rbdr, idx);
170 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
171 	}
172 
173 	nicvf_get_page(nic);
174 
175 	return 0;
176 }
177 
178 /* Free RBDR ring and its receive buffers */
nicvf_free_rbdr(struct nicvf * nic,struct rbdr * rbdr)179 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
180 {
181 	int head, tail;
182 	u64 buf_addr;
183 	struct rbdr_entry_t *desc;
184 
185 	if (!rbdr)
186 		return;
187 
188 	rbdr->enable = false;
189 	if (!rbdr->dmem.base)
190 		return;
191 
192 	head = rbdr->head;
193 	tail = rbdr->tail;
194 
195 	/* Free SKBs */
196 	while (head != tail) {
197 		desc = GET_RBDR_DESC(rbdr, head);
198 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
199 		put_page(virt_to_page(phys_to_virt(buf_addr)));
200 		head++;
201 		head &= (rbdr->dmem.q_len - 1);
202 	}
203 	/* Free SKB of tail desc */
204 	desc = GET_RBDR_DESC(rbdr, tail);
205 	buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
206 	put_page(virt_to_page(phys_to_virt(buf_addr)));
207 
208 	/* Free RBDR ring */
209 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
210 }
211 
212 /* Refill receive buffer descriptors with new buffers.
213  */
nicvf_refill_rbdr(struct nicvf * nic,gfp_t gfp)214 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
215 {
216 	struct queue_set *qs = nic->qs;
217 	int rbdr_idx = qs->rbdr_cnt;
218 	int tail, qcount;
219 	int refill_rb_cnt;
220 	struct rbdr *rbdr;
221 	struct rbdr_entry_t *desc;
222 	u64 *rbuf;
223 	int new_rb = 0;
224 
225 refill:
226 	if (!rbdr_idx)
227 		return;
228 	rbdr_idx--;
229 	rbdr = &qs->rbdr[rbdr_idx];
230 	/* Check if it's enabled */
231 	if (!rbdr->enable)
232 		goto next_rbdr;
233 
234 	/* Get no of desc's to be refilled */
235 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
236 	qcount &= 0x7FFFF;
237 	/* Doorbell can be ringed with a max of ring size minus 1 */
238 	if (qcount >= (qs->rbdr_len - 1))
239 		goto next_rbdr;
240 	else
241 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
242 
243 	/* Start filling descs from tail */
244 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
245 	while (refill_rb_cnt) {
246 		tail++;
247 		tail &= (rbdr->dmem.q_len - 1);
248 
249 		if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
250 			break;
251 
252 		desc = GET_RBDR_DESC(rbdr, tail);
253 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
254 		refill_rb_cnt--;
255 		new_rb++;
256 	}
257 
258 	nicvf_get_page(nic);
259 
260 	/* make sure all memory stores are done before ringing doorbell */
261 	smp_wmb();
262 
263 	/* Check if buffer allocation failed */
264 	if (refill_rb_cnt)
265 		nic->rb_alloc_fail = true;
266 	else
267 		nic->rb_alloc_fail = false;
268 
269 	/* Notify HW */
270 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
271 			      rbdr_idx, new_rb);
272 next_rbdr:
273 	/* Re-enable RBDR interrupts only if buffer allocation is success */
274 	if (!nic->rb_alloc_fail && rbdr->enable &&
275 	    netif_running(nic->pnicvf->netdev))
276 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
277 
278 	if (rbdr_idx)
279 		goto refill;
280 }
281 
282 /* Alloc rcv buffers in non-atomic mode for better success */
nicvf_rbdr_work(struct work_struct * work)283 void nicvf_rbdr_work(struct work_struct *work)
284 {
285 	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
286 
287 	nicvf_refill_rbdr(nic, GFP_KERNEL);
288 	if (nic->rb_alloc_fail)
289 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
290 	else
291 		nic->rb_work_scheduled = false;
292 }
293 
294 /* In Softirq context, alloc rcv buffers in atomic mode */
nicvf_rbdr_task(unsigned long data)295 void nicvf_rbdr_task(unsigned long data)
296 {
297 	struct nicvf *nic = (struct nicvf *)data;
298 
299 	nicvf_refill_rbdr(nic, GFP_ATOMIC);
300 	if (nic->rb_alloc_fail) {
301 		nic->rb_work_scheduled = true;
302 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
303 	}
304 }
305 
306 /* Initialize completion queue */
nicvf_init_cmp_queue(struct nicvf * nic,struct cmp_queue * cq,int q_len)307 static int nicvf_init_cmp_queue(struct nicvf *nic,
308 				struct cmp_queue *cq, int q_len)
309 {
310 	int err;
311 
312 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
313 				     NICVF_CQ_BASE_ALIGN_BYTES);
314 	if (err)
315 		return err;
316 
317 	cq->desc = cq->dmem.base;
318 	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
319 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
320 
321 	return 0;
322 }
323 
nicvf_free_cmp_queue(struct nicvf * nic,struct cmp_queue * cq)324 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
325 {
326 	if (!cq)
327 		return;
328 	if (!cq->dmem.base)
329 		return;
330 
331 	nicvf_free_q_desc_mem(nic, &cq->dmem);
332 }
333 
334 /* Initialize transmit queue */
nicvf_init_snd_queue(struct nicvf * nic,struct snd_queue * sq,int q_len)335 static int nicvf_init_snd_queue(struct nicvf *nic,
336 				struct snd_queue *sq, int q_len)
337 {
338 	int err;
339 
340 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
341 				     NICVF_SQ_BASE_ALIGN_BYTES);
342 	if (err)
343 		return err;
344 
345 	sq->desc = sq->dmem.base;
346 	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
347 	if (!sq->skbuff)
348 		return -ENOMEM;
349 	sq->head = 0;
350 	sq->tail = 0;
351 	atomic_set(&sq->free_cnt, q_len - 1);
352 	sq->thresh = SND_QUEUE_THRESH;
353 
354 	/* Preallocate memory for TSO segment's header */
355 	sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
356 					  q_len * TSO_HEADER_SIZE,
357 					  &sq->tso_hdrs_phys, GFP_KERNEL);
358 	if (!sq->tso_hdrs)
359 		return -ENOMEM;
360 
361 	return 0;
362 }
363 
nicvf_free_snd_queue(struct nicvf * nic,struct snd_queue * sq)364 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
365 {
366 	struct sk_buff *skb;
367 
368 	if (!sq)
369 		return;
370 	if (!sq->dmem.base)
371 		return;
372 
373 	if (sq->tso_hdrs)
374 		dma_free_coherent(&nic->pdev->dev,
375 				  sq->dmem.q_len * TSO_HEADER_SIZE,
376 				  sq->tso_hdrs, sq->tso_hdrs_phys);
377 
378 	/* Free pending skbs in the queue */
379 	smp_rmb();
380 	while (sq->head != sq->tail) {
381 		skb = (struct sk_buff *)sq->skbuff[sq->head];
382 		if (skb)
383 			dev_kfree_skb_any(skb);
384 		sq->head++;
385 		sq->head &= (sq->dmem.q_len - 1);
386 	}
387 	kfree(sq->skbuff);
388 	nicvf_free_q_desc_mem(nic, &sq->dmem);
389 }
390 
nicvf_reclaim_snd_queue(struct nicvf * nic,struct queue_set * qs,int qidx)391 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
392 				    struct queue_set *qs, int qidx)
393 {
394 	/* Disable send queue */
395 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
396 	/* Check if SQ is stopped */
397 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
398 		return;
399 	/* Reset send queue */
400 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
401 }
402 
nicvf_reclaim_rcv_queue(struct nicvf * nic,struct queue_set * qs,int qidx)403 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
404 				    struct queue_set *qs, int qidx)
405 {
406 	union nic_mbx mbx = {};
407 
408 	/* Make sure all packets in the pipeline are written back into mem */
409 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
410 	nicvf_send_msg_to_pf(nic, &mbx);
411 }
412 
nicvf_reclaim_cmp_queue(struct nicvf * nic,struct queue_set * qs,int qidx)413 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
414 				    struct queue_set *qs, int qidx)
415 {
416 	/* Disable timer threshold (doesn't get reset upon CQ reset */
417 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
418 	/* Disable completion queue */
419 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
420 	/* Reset completion queue */
421 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
422 }
423 
nicvf_reclaim_rbdr(struct nicvf * nic,struct rbdr * rbdr,int qidx)424 static void nicvf_reclaim_rbdr(struct nicvf *nic,
425 			       struct rbdr *rbdr, int qidx)
426 {
427 	u64 tmp, fifo_state;
428 	int timeout = 10;
429 
430 	/* Save head and tail pointers for feeing up buffers */
431 	rbdr->head = nicvf_queue_reg_read(nic,
432 					  NIC_QSET_RBDR_0_1_HEAD,
433 					  qidx) >> 3;
434 	rbdr->tail = nicvf_queue_reg_read(nic,
435 					  NIC_QSET_RBDR_0_1_TAIL,
436 					  qidx) >> 3;
437 
438 	/* If RBDR FIFO is in 'FAIL' state then do a reset first
439 	 * before relaiming.
440 	 */
441 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
442 	if (((fifo_state >> 62) & 0x03) == 0x3)
443 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
444 				      qidx, NICVF_RBDR_RESET);
445 
446 	/* Disable RBDR */
447 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
448 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
449 		return;
450 	while (1) {
451 		tmp = nicvf_queue_reg_read(nic,
452 					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
453 					   qidx);
454 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
455 			break;
456 		usleep_range(1000, 2000);
457 		timeout--;
458 		if (!timeout) {
459 			netdev_err(nic->netdev,
460 				   "Failed polling on prefetch status\n");
461 			return;
462 		}
463 	}
464 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
465 			      qidx, NICVF_RBDR_RESET);
466 
467 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
468 		return;
469 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
470 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
471 		return;
472 }
473 
nicvf_config_vlan_stripping(struct nicvf * nic,netdev_features_t features)474 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
475 {
476 	u64 rq_cfg;
477 	int sqs;
478 
479 	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
480 
481 	/* Enable first VLAN stripping */
482 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
483 		rq_cfg |= (1ULL << 25);
484 	else
485 		rq_cfg &= ~(1ULL << 25);
486 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
487 
488 	/* Configure Secondary Qsets, if any */
489 	for (sqs = 0; sqs < nic->sqs_count; sqs++)
490 		if (nic->snicvf[sqs])
491 			nicvf_queue_reg_write(nic->snicvf[sqs],
492 					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
493 }
494 
nicvf_reset_rcv_queue_stats(struct nicvf * nic)495 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
496 {
497 	union nic_mbx mbx = {};
498 
499 	/* Reset all RQ/SQ and VF stats */
500 	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
501 	mbx.reset_stat.rx_stat_mask = 0x3FFF;
502 	mbx.reset_stat.tx_stat_mask = 0x1F;
503 	mbx.reset_stat.rq_stat_mask = 0xFFFF;
504 	mbx.reset_stat.sq_stat_mask = 0xFFFF;
505 	nicvf_send_msg_to_pf(nic, &mbx);
506 }
507 
508 /* Configures receive queue */
nicvf_rcv_queue_config(struct nicvf * nic,struct queue_set * qs,int qidx,bool enable)509 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
510 				   int qidx, bool enable)
511 {
512 	union nic_mbx mbx = {};
513 	struct rcv_queue *rq;
514 	struct rq_cfg rq_cfg;
515 
516 	rq = &qs->rq[qidx];
517 	rq->enable = enable;
518 
519 	/* Disable receive queue */
520 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
521 
522 	if (!rq->enable) {
523 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
524 		return;
525 	}
526 
527 	rq->cq_qs = qs->vnic_id;
528 	rq->cq_idx = qidx;
529 	rq->start_rbdr_qs = qs->vnic_id;
530 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
531 	rq->cont_rbdr_qs = qs->vnic_id;
532 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
533 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
534 	rq->caching = 1;
535 
536 	/* Send a mailbox msg to PF to config RQ */
537 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
538 	mbx.rq.qs_num = qs->vnic_id;
539 	mbx.rq.rq_num = qidx;
540 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
541 			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
542 			  (rq->cont_qs_rbdr_idx << 8) |
543 			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
544 	nicvf_send_msg_to_pf(nic, &mbx);
545 
546 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
547 	mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
548 	nicvf_send_msg_to_pf(nic, &mbx);
549 
550 	/* RQ drop config
551 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
552 	 */
553 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
554 	mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
555 	nicvf_send_msg_to_pf(nic, &mbx);
556 
557 	if (!nic->sqs_mode && (qidx == 0)) {
558 		/* Enable checking L3/L4 length and TCP/UDP checksums */
559 		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
560 				      (BIT(24) | BIT(23) | BIT(21)));
561 		nicvf_config_vlan_stripping(nic, nic->netdev->features);
562 	}
563 
564 	/* Enable Receive queue */
565 	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
566 	rq_cfg.ena = 1;
567 	rq_cfg.tcp_ena = 0;
568 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
569 }
570 
571 /* Configures completion queue */
nicvf_cmp_queue_config(struct nicvf * nic,struct queue_set * qs,int qidx,bool enable)572 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
573 			    int qidx, bool enable)
574 {
575 	struct cmp_queue *cq;
576 	struct cq_cfg cq_cfg;
577 
578 	cq = &qs->cq[qidx];
579 	cq->enable = enable;
580 
581 	if (!cq->enable) {
582 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
583 		return;
584 	}
585 
586 	/* Reset completion queue */
587 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
588 
589 	if (!cq->enable)
590 		return;
591 
592 	spin_lock_init(&cq->lock);
593 	/* Set completion queue base address */
594 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
595 			      qidx, (u64)(cq->dmem.phys_base));
596 
597 	/* Enable Completion queue */
598 	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
599 	cq_cfg.ena = 1;
600 	cq_cfg.reset = 0;
601 	cq_cfg.caching = 0;
602 	cq_cfg.qsize = CMP_QSIZE;
603 	cq_cfg.avg_con = 0;
604 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
605 
606 	/* Set threshold value for interrupt generation */
607 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
608 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
609 			      qidx, CMP_QUEUE_TIMER_THRESH);
610 }
611 
612 /* Configures transmit queue */
nicvf_snd_queue_config(struct nicvf * nic,struct queue_set * qs,int qidx,bool enable)613 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
614 				   int qidx, bool enable)
615 {
616 	union nic_mbx mbx = {};
617 	struct snd_queue *sq;
618 	struct sq_cfg sq_cfg;
619 
620 	sq = &qs->sq[qidx];
621 	sq->enable = enable;
622 
623 	if (!sq->enable) {
624 		nicvf_reclaim_snd_queue(nic, qs, qidx);
625 		return;
626 	}
627 
628 	/* Reset send queue */
629 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
630 
631 	sq->cq_qs = qs->vnic_id;
632 	sq->cq_idx = qidx;
633 
634 	/* Send a mailbox msg to PF to config SQ */
635 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
636 	mbx.sq.qs_num = qs->vnic_id;
637 	mbx.sq.sq_num = qidx;
638 	mbx.sq.sqs_mode = nic->sqs_mode;
639 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
640 	nicvf_send_msg_to_pf(nic, &mbx);
641 
642 	/* Set queue base address */
643 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
644 			      qidx, (u64)(sq->dmem.phys_base));
645 
646 	/* Enable send queue  & set queue size */
647 	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
648 	sq_cfg.ena = 1;
649 	sq_cfg.reset = 0;
650 	sq_cfg.ldwb = 0;
651 	sq_cfg.qsize = SND_QSIZE;
652 	sq_cfg.tstmp_bgx_intf = 0;
653 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
654 
655 	/* Set threshold value for interrupt generation */
656 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
657 
658 	/* Set queue:cpu affinity for better load distribution */
659 	if (cpu_online(qidx)) {
660 		cpumask_set_cpu(qidx, &sq->affinity_mask);
661 		netif_set_xps_queue(nic->netdev,
662 				    &sq->affinity_mask, qidx);
663 	}
664 }
665 
666 /* Configures receive buffer descriptor ring */
nicvf_rbdr_config(struct nicvf * nic,struct queue_set * qs,int qidx,bool enable)667 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
668 			      int qidx, bool enable)
669 {
670 	struct rbdr *rbdr;
671 	struct rbdr_cfg rbdr_cfg;
672 
673 	rbdr = &qs->rbdr[qidx];
674 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
675 	if (!enable)
676 		return;
677 
678 	/* Set descriptor base address */
679 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
680 			      qidx, (u64)(rbdr->dmem.phys_base));
681 
682 	/* Enable RBDR  & set queue size */
683 	/* Buffer size should be in multiples of 128 bytes */
684 	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
685 	rbdr_cfg.ena = 1;
686 	rbdr_cfg.reset = 0;
687 	rbdr_cfg.ldwb = 0;
688 	rbdr_cfg.qsize = RBDR_SIZE;
689 	rbdr_cfg.avg_con = 0;
690 	rbdr_cfg.lines = rbdr->dma_size / 128;
691 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
692 			      qidx, *(u64 *)&rbdr_cfg);
693 
694 	/* Notify HW */
695 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
696 			      qidx, qs->rbdr_len - 1);
697 
698 	/* Set threshold value for interrupt generation */
699 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
700 			      qidx, rbdr->thresh - 1);
701 }
702 
703 /* Requests PF to assign and enable Qset */
nicvf_qset_config(struct nicvf * nic,bool enable)704 void nicvf_qset_config(struct nicvf *nic, bool enable)
705 {
706 	union nic_mbx mbx = {};
707 	struct queue_set *qs = nic->qs;
708 	struct qs_cfg *qs_cfg;
709 
710 	if (!qs) {
711 		netdev_warn(nic->netdev,
712 			    "Qset is still not allocated, don't init queues\n");
713 		return;
714 	}
715 
716 	qs->enable = enable;
717 	qs->vnic_id = nic->vf_id;
718 
719 	/* Send a mailbox msg to PF to config Qset */
720 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
721 	mbx.qs.num = qs->vnic_id;
722 	mbx.qs.sqs_count = nic->sqs_count;
723 
724 	mbx.qs.cfg = 0;
725 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
726 	if (qs->enable) {
727 		qs_cfg->ena = 1;
728 #ifdef __BIG_ENDIAN
729 		qs_cfg->be = 1;
730 #endif
731 		qs_cfg->vnic = qs->vnic_id;
732 	}
733 	nicvf_send_msg_to_pf(nic, &mbx);
734 }
735 
nicvf_free_resources(struct nicvf * nic)736 static void nicvf_free_resources(struct nicvf *nic)
737 {
738 	int qidx;
739 	struct queue_set *qs = nic->qs;
740 
741 	/* Free receive buffer descriptor ring */
742 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
743 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
744 
745 	/* Free completion queue */
746 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
747 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
748 
749 	/* Free send queue */
750 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
751 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
752 }
753 
nicvf_alloc_resources(struct nicvf * nic)754 static int nicvf_alloc_resources(struct nicvf *nic)
755 {
756 	int qidx;
757 	struct queue_set *qs = nic->qs;
758 
759 	/* Alloc receive buffer descriptor ring */
760 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
761 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
762 				    DMA_BUFFER_LEN))
763 			goto alloc_fail;
764 	}
765 
766 	/* Alloc send queue */
767 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
768 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
769 			goto alloc_fail;
770 	}
771 
772 	/* Alloc completion queue */
773 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
774 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
775 			goto alloc_fail;
776 	}
777 
778 	return 0;
779 alloc_fail:
780 	nicvf_free_resources(nic);
781 	return -ENOMEM;
782 }
783 
nicvf_set_qset_resources(struct nicvf * nic)784 int nicvf_set_qset_resources(struct nicvf *nic)
785 {
786 	struct queue_set *qs;
787 
788 	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
789 	if (!qs)
790 		return -ENOMEM;
791 	nic->qs = qs;
792 
793 	/* Set count of each queue */
794 	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
795 	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
796 	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
797 	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
798 
799 	/* Set queue lengths */
800 	qs->rbdr_len = RCV_BUF_COUNT;
801 	qs->sq_len = SND_QUEUE_LEN;
802 	qs->cq_len = CMP_QUEUE_LEN;
803 
804 	nic->rx_queues = qs->rq_cnt;
805 	nic->tx_queues = qs->sq_cnt;
806 
807 	return 0;
808 }
809 
nicvf_config_data_transfer(struct nicvf * nic,bool enable)810 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
811 {
812 	bool disable = false;
813 	struct queue_set *qs = nic->qs;
814 	int qidx;
815 
816 	if (!qs)
817 		return 0;
818 
819 	if (enable) {
820 		if (nicvf_alloc_resources(nic))
821 			return -ENOMEM;
822 
823 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
824 			nicvf_snd_queue_config(nic, qs, qidx, enable);
825 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
826 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
827 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
828 			nicvf_rbdr_config(nic, qs, qidx, enable);
829 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
830 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
831 	} else {
832 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
833 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
834 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
835 			nicvf_rbdr_config(nic, qs, qidx, disable);
836 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
837 			nicvf_snd_queue_config(nic, qs, qidx, disable);
838 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
839 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
840 
841 		nicvf_free_resources(nic);
842 	}
843 
844 	/* Reset RXQ's stats.
845 	 * SQ's stats will get reset automatically once SQ is reset.
846 	 */
847 	nicvf_reset_rcv_queue_stats(nic);
848 
849 	return 0;
850 }
851 
852 /* Get a free desc from SQ
853  * returns descriptor ponter & descriptor number
854  */
nicvf_get_sq_desc(struct snd_queue * sq,int desc_cnt)855 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
856 {
857 	int qentry;
858 
859 	qentry = sq->tail;
860 	atomic_sub(desc_cnt, &sq->free_cnt);
861 	sq->tail += desc_cnt;
862 	sq->tail &= (sq->dmem.q_len - 1);
863 
864 	return qentry;
865 }
866 
867 /* Free descriptor back to SQ for future use */
nicvf_put_sq_desc(struct snd_queue * sq,int desc_cnt)868 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
869 {
870 	atomic_add(desc_cnt, &sq->free_cnt);
871 	sq->head += desc_cnt;
872 	sq->head &= (sq->dmem.q_len - 1);
873 }
874 
nicvf_get_nxt_sqentry(struct snd_queue * sq,int qentry)875 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
876 {
877 	qentry++;
878 	qentry &= (sq->dmem.q_len - 1);
879 	return qentry;
880 }
881 
nicvf_sq_enable(struct nicvf * nic,struct snd_queue * sq,int qidx)882 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
883 {
884 	u64 sq_cfg;
885 
886 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
887 	sq_cfg |= NICVF_SQ_EN;
888 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
889 	/* Ring doorbell so that H/W restarts processing SQEs */
890 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
891 }
892 
nicvf_sq_disable(struct nicvf * nic,int qidx)893 void nicvf_sq_disable(struct nicvf *nic, int qidx)
894 {
895 	u64 sq_cfg;
896 
897 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
898 	sq_cfg &= ~NICVF_SQ_EN;
899 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
900 }
901 
nicvf_sq_free_used_descs(struct net_device * netdev,struct snd_queue * sq,int qidx)902 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
903 			      int qidx)
904 {
905 	u64 head, tail;
906 	struct sk_buff *skb;
907 	struct nicvf *nic = netdev_priv(netdev);
908 	struct sq_hdr_subdesc *hdr;
909 
910 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
911 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
912 	while (sq->head != head) {
913 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
914 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
915 			nicvf_put_sq_desc(sq, 1);
916 			continue;
917 		}
918 		skb = (struct sk_buff *)sq->skbuff[sq->head];
919 		if (skb)
920 			dev_kfree_skb_any(skb);
921 		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
922 		atomic64_add(hdr->tot_len,
923 			     (atomic64_t *)&netdev->stats.tx_bytes);
924 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
925 	}
926 }
927 
928 /* Calculate no of SQ subdescriptors needed to transmit all
929  * segments of this TSO packet.
930  * Taken from 'Tilera network driver' with a minor modification.
931  */
nicvf_tso_count_subdescs(struct sk_buff * skb)932 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
933 {
934 	struct skb_shared_info *sh = skb_shinfo(skb);
935 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
936 	unsigned int data_len = skb->len - sh_len;
937 	unsigned int p_len = sh->gso_size;
938 	long f_id = -1;    /* id of the current fragment */
939 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
940 	long f_used = 0;  /* bytes used from the current fragment */
941 	long n;            /* size of the current piece of payload */
942 	int num_edescs = 0;
943 	int segment;
944 
945 	for (segment = 0; segment < sh->gso_segs; segment++) {
946 		unsigned int p_used = 0;
947 
948 		/* One edesc for header and for each piece of the payload. */
949 		for (num_edescs++; p_used < p_len; num_edescs++) {
950 			/* Advance as needed. */
951 			while (f_used >= f_size) {
952 				f_id++;
953 				f_size = skb_frag_size(&sh->frags[f_id]);
954 				f_used = 0;
955 			}
956 
957 			/* Use bytes from the current fragment. */
958 			n = p_len - p_used;
959 			if (n > f_size - f_used)
960 				n = f_size - f_used;
961 			f_used += n;
962 			p_used += n;
963 		}
964 
965 		/* The last segment may be less than gso_size. */
966 		data_len -= p_len;
967 		if (data_len < p_len)
968 			p_len = data_len;
969 	}
970 
971 	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
972 	return num_edescs + sh->gso_segs;
973 }
974 
975 #define POST_CQE_DESC_COUNT 2
976 
977 /* Get the number of SQ descriptors needed to xmit this skb */
nicvf_sq_subdesc_required(struct nicvf * nic,struct sk_buff * skb)978 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
979 {
980 	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
981 
982 	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
983 		subdesc_cnt = nicvf_tso_count_subdescs(skb);
984 		return subdesc_cnt;
985 	}
986 
987 	/* Dummy descriptors to get TSO pkt completion notification */
988 	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
989 		subdesc_cnt += POST_CQE_DESC_COUNT;
990 
991 	if (skb_shinfo(skb)->nr_frags)
992 		subdesc_cnt += skb_shinfo(skb)->nr_frags;
993 
994 	return subdesc_cnt;
995 }
996 
997 /* Add SQ HEADER subdescriptor.
998  * First subdescriptor for every send descriptor.
999  */
1000 static inline void
nicvf_sq_add_hdr_subdesc(struct nicvf * nic,struct snd_queue * sq,int qentry,int subdesc_cnt,struct sk_buff * skb,int len)1001 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1002 			 int subdesc_cnt, struct sk_buff *skb, int len)
1003 {
1004 	int proto;
1005 	struct sq_hdr_subdesc *hdr;
1006 
1007 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1008 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1009 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1010 
1011 	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1012 		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
1013 		 * segment transmitted on 88xx.
1014 		 */
1015 		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1016 	} else {
1017 		sq->skbuff[qentry] = (u64)skb;
1018 		/* Enable notification via CQE after processing SQE */
1019 		hdr->post_cqe = 1;
1020 		/* No of subdescriptors following this */
1021 		hdr->subdesc_cnt = subdesc_cnt;
1022 	}
1023 	hdr->tot_len = len;
1024 
1025 	/* Offload checksum calculation to HW */
1026 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1027 		hdr->csum_l3 = 1; /* Enable IP csum calculation */
1028 		hdr->l3_offset = skb_network_offset(skb);
1029 		hdr->l4_offset = skb_transport_offset(skb);
1030 
1031 		proto = ip_hdr(skb)->protocol;
1032 		switch (proto) {
1033 		case IPPROTO_TCP:
1034 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1035 			break;
1036 		case IPPROTO_UDP:
1037 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1038 			break;
1039 		case IPPROTO_SCTP:
1040 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1041 			break;
1042 		}
1043 	}
1044 
1045 	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1046 		hdr->tso = 1;
1047 		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1048 		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1049 		/* For non-tunneled pkts, point this to L2 ethertype */
1050 		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1051 		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1052 	}
1053 }
1054 
1055 /* SQ GATHER subdescriptor
1056  * Must follow HDR descriptor
1057  */
nicvf_sq_add_gather_subdesc(struct snd_queue * sq,int qentry,int size,u64 data)1058 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1059 					       int size, u64 data)
1060 {
1061 	struct sq_gather_subdesc *gather;
1062 
1063 	qentry &= (sq->dmem.q_len - 1);
1064 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1065 
1066 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1067 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1068 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1069 	gather->size = size;
1070 	gather->addr = data;
1071 }
1072 
1073 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1074  * packet so that a CQE is posted as a notifation for transmission of
1075  * TSO packet.
1076  */
nicvf_sq_add_cqe_subdesc(struct snd_queue * sq,int qentry,int tso_sqe,struct sk_buff * skb)1077 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1078 					    int tso_sqe, struct sk_buff *skb)
1079 {
1080 	struct sq_imm_subdesc *imm;
1081 	struct sq_hdr_subdesc *hdr;
1082 
1083 	sq->skbuff[qentry] = (u64)skb;
1084 
1085 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1086 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1087 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1088 	/* Enable notification via CQE after processing SQE */
1089 	hdr->post_cqe = 1;
1090 	/* There is no packet to transmit here */
1091 	hdr->dont_send = 1;
1092 	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1093 	hdr->tot_len = 1;
1094 	/* Actual TSO header SQE index, needed for cleanup */
1095 	hdr->rsvd2 = tso_sqe;
1096 
1097 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1098 	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1099 	memset(imm, 0, SND_QUEUE_DESC_SIZE);
1100 	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1101 	imm->len = 1;
1102 }
1103 
nicvf_sq_doorbell(struct nicvf * nic,struct sk_buff * skb,int sq_num,int desc_cnt)1104 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1105 				     int sq_num, int desc_cnt)
1106 {
1107 	struct netdev_queue *txq;
1108 
1109 	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1110 				  skb_get_queue_mapping(skb));
1111 
1112 	netdev_tx_sent_queue(txq, skb->len);
1113 
1114 	/* make sure all memory stores are done before ringing doorbell */
1115 	smp_wmb();
1116 
1117 	/* Inform HW to xmit all TSO segments */
1118 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1119 			      sq_num, desc_cnt);
1120 }
1121 
1122 /* Segment a TSO packet into 'gso_size' segments and append
1123  * them to SQ for transfer
1124  */
nicvf_sq_append_tso(struct nicvf * nic,struct snd_queue * sq,int sq_num,int qentry,struct sk_buff * skb)1125 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1126 			       int sq_num, int qentry, struct sk_buff *skb)
1127 {
1128 	struct tso_t tso;
1129 	int seg_subdescs = 0, desc_cnt = 0;
1130 	int seg_len, total_len, data_left;
1131 	int hdr_qentry = qentry;
1132 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1133 
1134 	tso_start(skb, &tso);
1135 	total_len = skb->len - hdr_len;
1136 	while (total_len > 0) {
1137 		char *hdr;
1138 
1139 		/* Save Qentry for adding HDR_SUBDESC at the end */
1140 		hdr_qentry = qentry;
1141 
1142 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1143 		total_len -= data_left;
1144 
1145 		/* Add segment's header */
1146 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1147 		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1148 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1149 		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1150 					    sq->tso_hdrs_phys +
1151 					    qentry * TSO_HEADER_SIZE);
1152 		/* HDR_SUDESC + GATHER */
1153 		seg_subdescs = 2;
1154 		seg_len = hdr_len;
1155 
1156 		/* Add segment's payload fragments */
1157 		while (data_left > 0) {
1158 			int size;
1159 
1160 			size = min_t(int, tso.size, data_left);
1161 
1162 			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1163 			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1164 						    virt_to_phys(tso.data));
1165 			seg_subdescs++;
1166 			seg_len += size;
1167 
1168 			data_left -= size;
1169 			tso_build_data(skb, &tso, size);
1170 		}
1171 		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1172 					 seg_subdescs - 1, skb, seg_len);
1173 		sq->skbuff[hdr_qentry] = (u64)NULL;
1174 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1175 
1176 		desc_cnt += seg_subdescs;
1177 	}
1178 	/* Save SKB in the last segment for freeing */
1179 	sq->skbuff[hdr_qentry] = (u64)skb;
1180 
1181 	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1182 
1183 	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1184 	return 1;
1185 }
1186 
1187 /* Append an skb to a SQ for packet transfer. */
nicvf_sq_append_skb(struct nicvf * nic,struct sk_buff * skb)1188 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1189 {
1190 	int i, size;
1191 	int subdesc_cnt, tso_sqe = 0;
1192 	int sq_num, qentry;
1193 	struct queue_set *qs;
1194 	struct snd_queue *sq;
1195 
1196 	sq_num = skb_get_queue_mapping(skb);
1197 	if (sq_num >= MAX_SND_QUEUES_PER_QS) {
1198 		/* Get secondary Qset's SQ structure */
1199 		i = sq_num / MAX_SND_QUEUES_PER_QS;
1200 		if (!nic->snicvf[i - 1]) {
1201 			netdev_warn(nic->netdev,
1202 				    "Secondary Qset#%d's ptr not initialized\n",
1203 				    i - 1);
1204 			return 1;
1205 		}
1206 		nic = (struct nicvf *)nic->snicvf[i - 1];
1207 		sq_num = sq_num % MAX_SND_QUEUES_PER_QS;
1208 	}
1209 
1210 	qs = nic->qs;
1211 	sq = &qs->sq[sq_num];
1212 
1213 	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1214 	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1215 		goto append_fail;
1216 
1217 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1218 
1219 	/* Check if its a TSO packet */
1220 	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1221 		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1222 
1223 	/* Add SQ header subdesc */
1224 	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1225 				 skb, skb->len);
1226 	tso_sqe = qentry;
1227 
1228 	/* Add SQ gather subdescs */
1229 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1230 	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1231 	nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1232 
1233 	/* Check for scattered buffer */
1234 	if (!skb_is_nonlinear(skb))
1235 		goto doorbell;
1236 
1237 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1238 		const struct skb_frag_struct *frag;
1239 
1240 		frag = &skb_shinfo(skb)->frags[i];
1241 
1242 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1243 		size = skb_frag_size(frag);
1244 		nicvf_sq_add_gather_subdesc(sq, qentry, size,
1245 					    virt_to_phys(
1246 					    skb_frag_address(frag)));
1247 	}
1248 
1249 doorbell:
1250 	if (nic->t88 && skb_shinfo(skb)->gso_size) {
1251 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1252 		nicvf_sq_add_cqe_subdesc(sq, qentry, tso_sqe, skb);
1253 	}
1254 
1255 	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1256 
1257 	return 1;
1258 
1259 append_fail:
1260 	/* Use original PCI dev for debug log */
1261 	nic = nic->pnicvf;
1262 	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1263 	return 0;
1264 }
1265 
frag_num(unsigned i)1266 static inline unsigned frag_num(unsigned i)
1267 {
1268 #ifdef __BIG_ENDIAN
1269 	return (i & ~3) + 3 - (i & 3);
1270 #else
1271 	return i;
1272 #endif
1273 }
1274 
1275 /* Returns SKB for a received packet */
nicvf_get_rcv_skb(struct nicvf * nic,struct cqe_rx_t * cqe_rx)1276 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1277 {
1278 	int frag;
1279 	int payload_len = 0;
1280 	struct sk_buff *skb = NULL;
1281 	struct page *page;
1282 	int offset;
1283 	u16 *rb_lens = NULL;
1284 	u64 *rb_ptrs = NULL;
1285 
1286 	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1287 	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1288 	 * CQE_RX at word6, hence buffer pointers move by word
1289 	 *
1290 	 * Use existing 'hw_tso' flag which will be set for all chips
1291 	 * except 88xx pass1 instead of a additional cache line
1292 	 * access (or miss) by using pci dev's revision.
1293 	 */
1294 	if (!nic->hw_tso)
1295 		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1296 	else
1297 		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1298 
1299 	netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1300 		   __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1301 
1302 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1303 		payload_len = rb_lens[frag_num(frag)];
1304 		if (!frag) {
1305 			/* First fragment */
1306 			skb = nicvf_rb_ptr_to_skb(nic,
1307 						  *rb_ptrs - cqe_rx->align_pad,
1308 						  payload_len);
1309 			if (!skb)
1310 				return NULL;
1311 			skb_reserve(skb, cqe_rx->align_pad);
1312 			skb_put(skb, payload_len);
1313 		} else {
1314 			/* Add fragments */
1315 			page = virt_to_page(phys_to_virt(*rb_ptrs));
1316 			offset = phys_to_virt(*rb_ptrs) - page_address(page);
1317 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1318 					offset, payload_len, RCV_FRAG_LEN);
1319 		}
1320 		/* Next buffer pointer */
1321 		rb_ptrs++;
1322 	}
1323 	return skb;
1324 }
1325 
nicvf_int_type_to_mask(int int_type,int q_idx)1326 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1327 {
1328 	u64 reg_val;
1329 
1330 	switch (int_type) {
1331 	case NICVF_INTR_CQ:
1332 		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1333 		break;
1334 	case NICVF_INTR_SQ:
1335 		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1336 		break;
1337 	case NICVF_INTR_RBDR:
1338 		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1339 		break;
1340 	case NICVF_INTR_PKT_DROP:
1341 		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1342 		break;
1343 	case NICVF_INTR_TCP_TIMER:
1344 		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1345 		break;
1346 	case NICVF_INTR_MBOX:
1347 		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1348 		break;
1349 	case NICVF_INTR_QS_ERR:
1350 		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1351 		break;
1352 	default:
1353 		reg_val = 0;
1354 	}
1355 
1356 	return reg_val;
1357 }
1358 
1359 /* Enable interrupt */
nicvf_enable_intr(struct nicvf * nic,int int_type,int q_idx)1360 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1361 {
1362 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1363 
1364 	if (!mask) {
1365 		netdev_dbg(nic->netdev,
1366 			   "Failed to enable interrupt: unknown type\n");
1367 		return;
1368 	}
1369 	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1370 			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1371 }
1372 
1373 /* Disable interrupt */
nicvf_disable_intr(struct nicvf * nic,int int_type,int q_idx)1374 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1375 {
1376 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1377 
1378 	if (!mask) {
1379 		netdev_dbg(nic->netdev,
1380 			   "Failed to disable interrupt: unknown type\n");
1381 		return;
1382 	}
1383 
1384 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1385 }
1386 
1387 /* Clear interrupt */
nicvf_clear_intr(struct nicvf * nic,int int_type,int q_idx)1388 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1389 {
1390 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1391 
1392 	if (!mask) {
1393 		netdev_dbg(nic->netdev,
1394 			   "Failed to clear interrupt: unknown type\n");
1395 		return;
1396 	}
1397 
1398 	nicvf_reg_write(nic, NIC_VF_INT, mask);
1399 }
1400 
1401 /* Check if interrupt is enabled */
nicvf_is_intr_enabled(struct nicvf * nic,int int_type,int q_idx)1402 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1403 {
1404 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1405 	/* If interrupt type is unknown, we treat it disabled. */
1406 	if (!mask) {
1407 		netdev_dbg(nic->netdev,
1408 			   "Failed to check interrupt enable: unknown type\n");
1409 		return 0;
1410 	}
1411 
1412 	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1413 }
1414 
nicvf_update_rq_stats(struct nicvf * nic,int rq_idx)1415 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1416 {
1417 	struct rcv_queue *rq;
1418 
1419 #define GET_RQ_STATS(reg) \
1420 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1421 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1422 
1423 	rq = &nic->qs->rq[rq_idx];
1424 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1425 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1426 }
1427 
nicvf_update_sq_stats(struct nicvf * nic,int sq_idx)1428 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1429 {
1430 	struct snd_queue *sq;
1431 
1432 #define GET_SQ_STATS(reg) \
1433 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1434 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1435 
1436 	sq = &nic->qs->sq[sq_idx];
1437 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1438 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1439 }
1440 
1441 /* Check for errors in the receive cmp.queue entry */
nicvf_check_cqe_rx_errs(struct nicvf * nic,struct cqe_rx_t * cqe_rx)1442 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1443 {
1444 	if (!cqe_rx->err_level && !cqe_rx->err_opcode)
1445 		return 0;
1446 
1447 	if (netif_msg_rx_err(nic))
1448 		netdev_err(nic->netdev,
1449 			   "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1450 			   nic->netdev->name,
1451 			   cqe_rx->err_level, cqe_rx->err_opcode);
1452 
1453 	switch (cqe_rx->err_opcode) {
1454 	case CQ_RX_ERROP_RE_PARTIAL:
1455 		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1456 		break;
1457 	case CQ_RX_ERROP_RE_JABBER:
1458 		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1459 		break;
1460 	case CQ_RX_ERROP_RE_FCS:
1461 		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1462 		break;
1463 	case CQ_RX_ERROP_RE_RX_CTL:
1464 		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1465 		break;
1466 	case CQ_RX_ERROP_PREL2_ERR:
1467 		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1468 		break;
1469 	case CQ_RX_ERROP_L2_MAL:
1470 		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1471 		break;
1472 	case CQ_RX_ERROP_L2_OVERSIZE:
1473 		this_cpu_inc(nic->drv_stats->rx_oversize);
1474 		break;
1475 	case CQ_RX_ERROP_L2_UNDERSIZE:
1476 		this_cpu_inc(nic->drv_stats->rx_undersize);
1477 		break;
1478 	case CQ_RX_ERROP_L2_LENMISM:
1479 		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1480 		break;
1481 	case CQ_RX_ERROP_L2_PCLP:
1482 		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1483 		break;
1484 	case CQ_RX_ERROP_IP_NOT:
1485 		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1486 		break;
1487 	case CQ_RX_ERROP_IP_CSUM_ERR:
1488 		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1489 		break;
1490 	case CQ_RX_ERROP_IP_MAL:
1491 		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1492 		break;
1493 	case CQ_RX_ERROP_IP_MALD:
1494 		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1495 		break;
1496 	case CQ_RX_ERROP_IP_HOP:
1497 		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1498 		break;
1499 	case CQ_RX_ERROP_L3_PCLP:
1500 		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1501 		break;
1502 	case CQ_RX_ERROP_L4_MAL:
1503 		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1504 		break;
1505 	case CQ_RX_ERROP_L4_CHK:
1506 		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1507 		break;
1508 	case CQ_RX_ERROP_UDP_LEN:
1509 		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1510 		break;
1511 	case CQ_RX_ERROP_L4_PORT:
1512 		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1513 		break;
1514 	case CQ_RX_ERROP_TCP_FLAG:
1515 		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1516 		break;
1517 	case CQ_RX_ERROP_TCP_OFFSET:
1518 		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1519 		break;
1520 	case CQ_RX_ERROP_L4_PCLP:
1521 		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1522 		break;
1523 	case CQ_RX_ERROP_RBDR_TRUNC:
1524 		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1525 		break;
1526 	}
1527 
1528 	return 1;
1529 }
1530 
1531 /* Check for errors in the send cmp.queue entry */
nicvf_check_cqe_tx_errs(struct nicvf * nic,struct cqe_send_t * cqe_tx)1532 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1533 {
1534 	switch (cqe_tx->send_status) {
1535 	case CQ_TX_ERROP_GOOD:
1536 		return 0;
1537 	case CQ_TX_ERROP_DESC_FAULT:
1538 		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1539 		break;
1540 	case CQ_TX_ERROP_HDR_CONS_ERR:
1541 		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1542 		break;
1543 	case CQ_TX_ERROP_SUBDC_ERR:
1544 		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1545 		break;
1546 	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1547 		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1548 		break;
1549 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1550 		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1551 		break;
1552 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1553 		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1554 		break;
1555 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1556 		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1557 		break;
1558 	case CQ_TX_ERROP_LOCK_VIOL:
1559 		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1560 		break;
1561 	case CQ_TX_ERROP_DATA_FAULT:
1562 		this_cpu_inc(nic->drv_stats->tx_data_fault);
1563 		break;
1564 	case CQ_TX_ERROP_TSTMP_CONFLICT:
1565 		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1566 		break;
1567 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1568 		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1569 		break;
1570 	case CQ_TX_ERROP_MEM_FAULT:
1571 		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1572 		break;
1573 	case CQ_TX_ERROP_CK_OVERLAP:
1574 		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1575 		break;
1576 	case CQ_TX_ERROP_CK_OFLOW:
1577 		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1578 		break;
1579 	}
1580 
1581 	return 1;
1582 }
1583