• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = 0,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 	}, {
123 		/* sentinel */
124 	}
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127 
128 enum imx_fec_type {
129 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
130 	IMX27_FEC,	/* runs on i.mx27/35/51 */
131 	IMX28_FEC,
132 	IMX6Q_FEC,
133 	MVF600_FEC,
134 	IMX6SX_FEC,
135 	IMX6UL_FEC,
136 };
137 
138 static const struct of_device_id fec_dt_ids[] = {
139 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 	{ /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149 
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153 
154 #if defined(CONFIG_M5272)
155 /*
156  * Some hardware gets it MAC address out of local flash memory.
157  * if this is non-zero then assume it is the address to get MAC from.
158  */
159 #if defined(CONFIG_NETtel)
160 #define	FEC_FLASHMAC	0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define	FEC_FLASHMAC	0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define	FEC_FLASHMAC	0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define	FEC_FLASHMAC	(0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC	0xffc0406b
169 #else
170 #define	FEC_FLASHMAC	0
171 #endif
172 #endif /* CONFIG_M5272 */
173 
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175  *
176  * 2048 byte skbufs are allocated. However, alignment requirements
177  * varies between FEC variants. Worst case is 64, so round down by 64.
178  */
179 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
180 #define PKT_MINBUF_SIZE		64
181 
182 /* FEC receive acceleration */
183 #define FEC_RACC_IPDIS		(1 << 1)
184 #define FEC_RACC_PRODIS		(1 << 2)
185 #define FEC_RACC_SHIFT16	BIT(7)
186 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
187 
188 /*
189  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
190  * size bits. Other FEC hardware does not, so we need to take that into
191  * account when setting it.
192  */
193 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
194     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
195 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
196 #else
197 #define	OPT_FRAME_SIZE	0
198 #endif
199 
200 /* FEC MII MMFR bits definition */
201 #define FEC_MMFR_ST		(1 << 30)
202 #define FEC_MMFR_OP_READ	(2 << 28)
203 #define FEC_MMFR_OP_WRITE	(1 << 28)
204 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
205 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
206 #define FEC_MMFR_TA		(2 << 16)
207 #define FEC_MMFR_DATA(v)	(v & 0xffff)
208 /* FEC ECR bits definition */
209 #define FEC_ECR_MAGICEN		(1 << 2)
210 #define FEC_ECR_SLEEP		(1 << 3)
211 
212 #define FEC_MII_TIMEOUT		30000 /* us */
213 
214 /* Transmitter timeout */
215 #define TX_TIMEOUT (2 * HZ)
216 
217 #define FEC_PAUSE_FLAG_AUTONEG	0x1
218 #define FEC_PAUSE_FLAG_ENABLE	0x2
219 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
220 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
221 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
222 
223 #define COPYBREAK_DEFAULT	256
224 
225 #define TSO_HEADER_SIZE		128
226 /* Max number of allowed TCP segments for software TSO */
227 #define FEC_MAX_TSO_SEGS	100
228 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
229 
230 #define IS_TSO_HEADER(txq, addr) \
231 	((addr >= txq->tso_hdrs_dma) && \
232 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
233 
234 static int mii_cnt;
235 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)236 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
237 					     struct bufdesc_prop *bd)
238 {
239 	return (bdp >= bd->last) ? bd->base
240 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
241 }
242 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)243 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
244 					     struct bufdesc_prop *bd)
245 {
246 	return (bdp <= bd->base) ? bd->last
247 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
248 }
249 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)250 static int fec_enet_get_bd_index(struct bufdesc *bdp,
251 				 struct bufdesc_prop *bd)
252 {
253 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
254 }
255 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)256 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
257 {
258 	int entries;
259 
260 	entries = (((const char *)txq->dirty_tx -
261 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
262 
263 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
264 }
265 
swap_buffer(void * bufaddr,int len)266 static void swap_buffer(void *bufaddr, int len)
267 {
268 	int i;
269 	unsigned int *buf = bufaddr;
270 
271 	for (i = 0; i < len; i += 4, buf++)
272 		swab32s(buf);
273 }
274 
swap_buffer2(void * dst_buf,void * src_buf,int len)275 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
276 {
277 	int i;
278 	unsigned int *src = src_buf;
279 	unsigned int *dst = dst_buf;
280 
281 	for (i = 0; i < len; i += 4, src++, dst++)
282 		*dst = swab32p(src);
283 }
284 
fec_dump(struct net_device * ndev)285 static void fec_dump(struct net_device *ndev)
286 {
287 	struct fec_enet_private *fep = netdev_priv(ndev);
288 	struct bufdesc *bdp;
289 	struct fec_enet_priv_tx_q *txq;
290 	int index = 0;
291 
292 	netdev_info(ndev, "TX ring dump\n");
293 	pr_info("Nr     SC     addr       len  SKB\n");
294 
295 	txq = fep->tx_queue[0];
296 	bdp = txq->bd.base;
297 
298 	do {
299 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
300 			index,
301 			bdp == txq->bd.cur ? 'S' : ' ',
302 			bdp == txq->dirty_tx ? 'H' : ' ',
303 			fec16_to_cpu(bdp->cbd_sc),
304 			fec32_to_cpu(bdp->cbd_bufaddr),
305 			fec16_to_cpu(bdp->cbd_datlen),
306 			txq->tx_skbuff[index]);
307 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
308 		index++;
309 	} while (bdp != txq->bd.base);
310 }
311 
is_ipv4_pkt(struct sk_buff * skb)312 static inline bool is_ipv4_pkt(struct sk_buff *skb)
313 {
314 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
315 }
316 
317 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)318 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
319 {
320 	/* Only run for packets requiring a checksum. */
321 	if (skb->ip_summed != CHECKSUM_PARTIAL)
322 		return 0;
323 
324 	if (unlikely(skb_cow_head(skb, 0)))
325 		return -1;
326 
327 	if (is_ipv4_pkt(skb))
328 		ip_hdr(skb)->check = 0;
329 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
330 
331 	return 0;
332 }
333 
334 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)335 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
336 			     struct sk_buff *skb,
337 			     struct net_device *ndev)
338 {
339 	struct fec_enet_private *fep = netdev_priv(ndev);
340 	struct bufdesc *bdp = txq->bd.cur;
341 	struct bufdesc_ex *ebdp;
342 	int nr_frags = skb_shinfo(skb)->nr_frags;
343 	int frag, frag_len;
344 	unsigned short status;
345 	unsigned int estatus = 0;
346 	skb_frag_t *this_frag;
347 	unsigned int index;
348 	void *bufaddr;
349 	dma_addr_t addr;
350 	int i;
351 
352 	for (frag = 0; frag < nr_frags; frag++) {
353 		this_frag = &skb_shinfo(skb)->frags[frag];
354 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
355 		ebdp = (struct bufdesc_ex *)bdp;
356 
357 		status = fec16_to_cpu(bdp->cbd_sc);
358 		status &= ~BD_ENET_TX_STATS;
359 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
360 		frag_len = skb_shinfo(skb)->frags[frag].size;
361 
362 		/* Handle the last BD specially */
363 		if (frag == nr_frags - 1) {
364 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
365 			if (fep->bufdesc_ex) {
366 				estatus |= BD_ENET_TX_INT;
367 				if (unlikely(skb_shinfo(skb)->tx_flags &
368 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
369 					estatus |= BD_ENET_TX_TS;
370 			}
371 		}
372 
373 		if (fep->bufdesc_ex) {
374 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
375 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
376 			if (skb->ip_summed == CHECKSUM_PARTIAL)
377 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
378 			ebdp->cbd_bdu = 0;
379 			ebdp->cbd_esc = cpu_to_fec32(estatus);
380 		}
381 
382 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
383 
384 		index = fec_enet_get_bd_index(bdp, &txq->bd);
385 		if (((unsigned long) bufaddr) & fep->tx_align ||
386 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
387 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
388 			bufaddr = txq->tx_bounce[index];
389 
390 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
391 				swap_buffer(bufaddr, frag_len);
392 		}
393 
394 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
395 				      DMA_TO_DEVICE);
396 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
397 			if (net_ratelimit())
398 				netdev_err(ndev, "Tx DMA memory map failed\n");
399 			goto dma_mapping_error;
400 		}
401 
402 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
403 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
404 		/* Make sure the updates to rest of the descriptor are
405 		 * performed before transferring ownership.
406 		 */
407 		wmb();
408 		bdp->cbd_sc = cpu_to_fec16(status);
409 	}
410 
411 	return bdp;
412 dma_mapping_error:
413 	bdp = txq->bd.cur;
414 	for (i = 0; i < frag; i++) {
415 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
416 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
417 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
418 	}
419 	return ERR_PTR(-ENOMEM);
420 }
421 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)422 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
423 				   struct sk_buff *skb, struct net_device *ndev)
424 {
425 	struct fec_enet_private *fep = netdev_priv(ndev);
426 	int nr_frags = skb_shinfo(skb)->nr_frags;
427 	struct bufdesc *bdp, *last_bdp;
428 	void *bufaddr;
429 	dma_addr_t addr;
430 	unsigned short status;
431 	unsigned short buflen;
432 	unsigned int estatus = 0;
433 	unsigned int index;
434 	int entries_free;
435 
436 	entries_free = fec_enet_get_free_txdesc_num(txq);
437 	if (entries_free < MAX_SKB_FRAGS + 1) {
438 		dev_kfree_skb_any(skb);
439 		if (net_ratelimit())
440 			netdev_err(ndev, "NOT enough BD for SG!\n");
441 		return NETDEV_TX_OK;
442 	}
443 
444 	/* Protocol checksum off-load for TCP and UDP. */
445 	if (fec_enet_clear_csum(skb, ndev)) {
446 		dev_kfree_skb_any(skb);
447 		return NETDEV_TX_OK;
448 	}
449 
450 	/* Fill in a Tx ring entry */
451 	bdp = txq->bd.cur;
452 	last_bdp = bdp;
453 	status = fec16_to_cpu(bdp->cbd_sc);
454 	status &= ~BD_ENET_TX_STATS;
455 
456 	/* Set buffer length and buffer pointer */
457 	bufaddr = skb->data;
458 	buflen = skb_headlen(skb);
459 
460 	index = fec_enet_get_bd_index(bdp, &txq->bd);
461 	if (((unsigned long) bufaddr) & fep->tx_align ||
462 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
463 		memcpy(txq->tx_bounce[index], skb->data, buflen);
464 		bufaddr = txq->tx_bounce[index];
465 
466 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
467 			swap_buffer(bufaddr, buflen);
468 	}
469 
470 	/* Push the data cache so the CPM does not get stale memory data. */
471 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
472 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
473 		dev_kfree_skb_any(skb);
474 		if (net_ratelimit())
475 			netdev_err(ndev, "Tx DMA memory map failed\n");
476 		return NETDEV_TX_OK;
477 	}
478 
479 	if (nr_frags) {
480 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
481 		if (IS_ERR(last_bdp)) {
482 			dma_unmap_single(&fep->pdev->dev, addr,
483 					 buflen, DMA_TO_DEVICE);
484 			dev_kfree_skb_any(skb);
485 			return NETDEV_TX_OK;
486 		}
487 	} else {
488 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
489 		if (fep->bufdesc_ex) {
490 			estatus = BD_ENET_TX_INT;
491 			if (unlikely(skb_shinfo(skb)->tx_flags &
492 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
493 				estatus |= BD_ENET_TX_TS;
494 		}
495 	}
496 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
497 	bdp->cbd_datlen = cpu_to_fec16(buflen);
498 
499 	if (fep->bufdesc_ex) {
500 
501 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
502 
503 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
504 			fep->hwts_tx_en))
505 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
506 
507 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
508 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
509 
510 		if (skb->ip_summed == CHECKSUM_PARTIAL)
511 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
512 
513 		ebdp->cbd_bdu = 0;
514 		ebdp->cbd_esc = cpu_to_fec32(estatus);
515 	}
516 
517 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
518 	/* Save skb pointer */
519 	txq->tx_skbuff[index] = skb;
520 
521 	/* Make sure the updates to rest of the descriptor are performed before
522 	 * transferring ownership.
523 	 */
524 	wmb();
525 
526 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
527 	 * it's the last BD of the frame, and to put the CRC on the end.
528 	 */
529 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
530 	bdp->cbd_sc = cpu_to_fec16(status);
531 
532 	/* If this was the last BD in the ring, start at the beginning again. */
533 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
534 
535 	skb_tx_timestamp(skb);
536 
537 	/* Make sure the update to bdp and tx_skbuff are performed before
538 	 * txq->bd.cur.
539 	 */
540 	wmb();
541 	txq->bd.cur = bdp;
542 
543 	/* Trigger transmission start */
544 	writel(0, txq->bd.reg_desc_active);
545 
546 	return 0;
547 }
548 
549 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)550 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
551 			  struct net_device *ndev,
552 			  struct bufdesc *bdp, int index, char *data,
553 			  int size, bool last_tcp, bool is_last)
554 {
555 	struct fec_enet_private *fep = netdev_priv(ndev);
556 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
557 	unsigned short status;
558 	unsigned int estatus = 0;
559 	dma_addr_t addr;
560 
561 	status = fec16_to_cpu(bdp->cbd_sc);
562 	status &= ~BD_ENET_TX_STATS;
563 
564 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
565 
566 	if (((unsigned long) data) & fep->tx_align ||
567 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
568 		memcpy(txq->tx_bounce[index], data, size);
569 		data = txq->tx_bounce[index];
570 
571 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
572 			swap_buffer(data, size);
573 	}
574 
575 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
576 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
577 		dev_kfree_skb_any(skb);
578 		if (net_ratelimit())
579 			netdev_err(ndev, "Tx DMA memory map failed\n");
580 		return NETDEV_TX_BUSY;
581 	}
582 
583 	bdp->cbd_datlen = cpu_to_fec16(size);
584 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
585 
586 	if (fep->bufdesc_ex) {
587 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
588 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
589 		if (skb->ip_summed == CHECKSUM_PARTIAL)
590 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
591 		ebdp->cbd_bdu = 0;
592 		ebdp->cbd_esc = cpu_to_fec32(estatus);
593 	}
594 
595 	/* Handle the last BD specially */
596 	if (last_tcp)
597 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
598 	if (is_last) {
599 		status |= BD_ENET_TX_INTR;
600 		if (fep->bufdesc_ex)
601 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
602 	}
603 
604 	bdp->cbd_sc = cpu_to_fec16(status);
605 
606 	return 0;
607 }
608 
609 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)610 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
611 			 struct sk_buff *skb, struct net_device *ndev,
612 			 struct bufdesc *bdp, int index)
613 {
614 	struct fec_enet_private *fep = netdev_priv(ndev);
615 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
616 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
617 	void *bufaddr;
618 	unsigned long dmabuf;
619 	unsigned short status;
620 	unsigned int estatus = 0;
621 
622 	status = fec16_to_cpu(bdp->cbd_sc);
623 	status &= ~BD_ENET_TX_STATS;
624 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
625 
626 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
627 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
628 	if (((unsigned long)bufaddr) & fep->tx_align ||
629 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
630 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
631 		bufaddr = txq->tx_bounce[index];
632 
633 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
634 			swap_buffer(bufaddr, hdr_len);
635 
636 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
637 					hdr_len, DMA_TO_DEVICE);
638 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
639 			dev_kfree_skb_any(skb);
640 			if (net_ratelimit())
641 				netdev_err(ndev, "Tx DMA memory map failed\n");
642 			return NETDEV_TX_BUSY;
643 		}
644 	}
645 
646 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
647 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
648 
649 	if (fep->bufdesc_ex) {
650 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
651 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
652 		if (skb->ip_summed == CHECKSUM_PARTIAL)
653 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
654 		ebdp->cbd_bdu = 0;
655 		ebdp->cbd_esc = cpu_to_fec32(estatus);
656 	}
657 
658 	bdp->cbd_sc = cpu_to_fec16(status);
659 
660 	return 0;
661 }
662 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)663 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
664 				   struct sk_buff *skb,
665 				   struct net_device *ndev)
666 {
667 	struct fec_enet_private *fep = netdev_priv(ndev);
668 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
669 	int total_len, data_left;
670 	struct bufdesc *bdp = txq->bd.cur;
671 	struct tso_t tso;
672 	unsigned int index = 0;
673 	int ret;
674 
675 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
676 		dev_kfree_skb_any(skb);
677 		if (net_ratelimit())
678 			netdev_err(ndev, "NOT enough BD for TSO!\n");
679 		return NETDEV_TX_OK;
680 	}
681 
682 	/* Protocol checksum off-load for TCP and UDP. */
683 	if (fec_enet_clear_csum(skb, ndev)) {
684 		dev_kfree_skb_any(skb);
685 		return NETDEV_TX_OK;
686 	}
687 
688 	/* Initialize the TSO handler, and prepare the first payload */
689 	tso_start(skb, &tso);
690 
691 	total_len = skb->len - hdr_len;
692 	while (total_len > 0) {
693 		char *hdr;
694 
695 		index = fec_enet_get_bd_index(bdp, &txq->bd);
696 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
697 		total_len -= data_left;
698 
699 		/* prepare packet headers: MAC + IP + TCP */
700 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
701 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
702 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
703 		if (ret)
704 			goto err_release;
705 
706 		while (data_left > 0) {
707 			int size;
708 
709 			size = min_t(int, tso.size, data_left);
710 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
711 			index = fec_enet_get_bd_index(bdp, &txq->bd);
712 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
713 							bdp, index,
714 							tso.data, size,
715 							size == data_left,
716 							total_len == 0);
717 			if (ret)
718 				goto err_release;
719 
720 			data_left -= size;
721 			tso_build_data(skb, &tso, size);
722 		}
723 
724 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
725 	}
726 
727 	/* Save skb pointer */
728 	txq->tx_skbuff[index] = skb;
729 
730 	skb_tx_timestamp(skb);
731 	txq->bd.cur = bdp;
732 
733 	/* Trigger transmission start */
734 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
735 	    !readl(txq->bd.reg_desc_active) ||
736 	    !readl(txq->bd.reg_desc_active) ||
737 	    !readl(txq->bd.reg_desc_active) ||
738 	    !readl(txq->bd.reg_desc_active))
739 		writel(0, txq->bd.reg_desc_active);
740 
741 	return 0;
742 
743 err_release:
744 	/* TODO: Release all used data descriptors for TSO */
745 	return ret;
746 }
747 
748 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)749 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
750 {
751 	struct fec_enet_private *fep = netdev_priv(ndev);
752 	int entries_free;
753 	unsigned short queue;
754 	struct fec_enet_priv_tx_q *txq;
755 	struct netdev_queue *nq;
756 	int ret;
757 
758 	queue = skb_get_queue_mapping(skb);
759 	txq = fep->tx_queue[queue];
760 	nq = netdev_get_tx_queue(ndev, queue);
761 
762 	if (skb_is_gso(skb))
763 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
764 	else
765 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
766 	if (ret)
767 		return ret;
768 
769 	entries_free = fec_enet_get_free_txdesc_num(txq);
770 	if (entries_free <= txq->tx_stop_threshold)
771 		netif_tx_stop_queue(nq);
772 
773 	return NETDEV_TX_OK;
774 }
775 
776 /* Init RX & TX buffer descriptors
777  */
fec_enet_bd_init(struct net_device * dev)778 static void fec_enet_bd_init(struct net_device *dev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(dev);
781 	struct fec_enet_priv_tx_q *txq;
782 	struct fec_enet_priv_rx_q *rxq;
783 	struct bufdesc *bdp;
784 	unsigned int i;
785 	unsigned int q;
786 
787 	for (q = 0; q < fep->num_rx_queues; q++) {
788 		/* Initialize the receive buffer descriptors. */
789 		rxq = fep->rx_queue[q];
790 		bdp = rxq->bd.base;
791 
792 		for (i = 0; i < rxq->bd.ring_size; i++) {
793 
794 			/* Initialize the BD for every fragment in the page. */
795 			if (bdp->cbd_bufaddr)
796 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
797 			else
798 				bdp->cbd_sc = cpu_to_fec16(0);
799 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
800 		}
801 
802 		/* Set the last buffer to wrap */
803 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
804 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
805 
806 		rxq->bd.cur = rxq->bd.base;
807 	}
808 
809 	for (q = 0; q < fep->num_tx_queues; q++) {
810 		/* ...and the same for transmit */
811 		txq = fep->tx_queue[q];
812 		bdp = txq->bd.base;
813 		txq->bd.cur = bdp;
814 
815 		for (i = 0; i < txq->bd.ring_size; i++) {
816 			/* Initialize the BD for every fragment in the page. */
817 			bdp->cbd_sc = cpu_to_fec16(0);
818 			if (bdp->cbd_bufaddr &&
819 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
820 				dma_unmap_single(&fep->pdev->dev,
821 						 fec32_to_cpu(bdp->cbd_bufaddr),
822 						 fec16_to_cpu(bdp->cbd_datlen),
823 						 DMA_TO_DEVICE);
824 			if (txq->tx_skbuff[i]) {
825 				dev_kfree_skb_any(txq->tx_skbuff[i]);
826 				txq->tx_skbuff[i] = NULL;
827 			}
828 			bdp->cbd_bufaddr = cpu_to_fec32(0);
829 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
830 		}
831 
832 		/* Set the last buffer to wrap */
833 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
834 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
835 		txq->dirty_tx = bdp;
836 	}
837 }
838 
fec_enet_active_rxring(struct net_device * ndev)839 static void fec_enet_active_rxring(struct net_device *ndev)
840 {
841 	struct fec_enet_private *fep = netdev_priv(ndev);
842 	int i;
843 
844 	for (i = 0; i < fep->num_rx_queues; i++)
845 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
846 }
847 
fec_enet_enable_ring(struct net_device * ndev)848 static void fec_enet_enable_ring(struct net_device *ndev)
849 {
850 	struct fec_enet_private *fep = netdev_priv(ndev);
851 	struct fec_enet_priv_tx_q *txq;
852 	struct fec_enet_priv_rx_q *rxq;
853 	int i;
854 
855 	for (i = 0; i < fep->num_rx_queues; i++) {
856 		rxq = fep->rx_queue[i];
857 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
858 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
859 
860 		/* enable DMA1/2 */
861 		if (i)
862 			writel(RCMR_MATCHEN | RCMR_CMP(i),
863 			       fep->hwp + FEC_RCMR(i));
864 	}
865 
866 	for (i = 0; i < fep->num_tx_queues; i++) {
867 		txq = fep->tx_queue[i];
868 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
869 
870 		/* enable DMA1/2 */
871 		if (i)
872 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
873 			       fep->hwp + FEC_DMA_CFG(i));
874 	}
875 }
876 
fec_enet_reset_skb(struct net_device * ndev)877 static void fec_enet_reset_skb(struct net_device *ndev)
878 {
879 	struct fec_enet_private *fep = netdev_priv(ndev);
880 	struct fec_enet_priv_tx_q *txq;
881 	int i, j;
882 
883 	for (i = 0; i < fep->num_tx_queues; i++) {
884 		txq = fep->tx_queue[i];
885 
886 		for (j = 0; j < txq->bd.ring_size; j++) {
887 			if (txq->tx_skbuff[j]) {
888 				dev_kfree_skb_any(txq->tx_skbuff[j]);
889 				txq->tx_skbuff[j] = NULL;
890 			}
891 		}
892 	}
893 }
894 
895 /*
896  * This function is called to start or restart the FEC during a link
897  * change, transmit timeout, or to reconfigure the FEC.  The network
898  * packet processing for this device must be stopped before this call.
899  */
900 static void
fec_restart(struct net_device * ndev)901 fec_restart(struct net_device *ndev)
902 {
903 	struct fec_enet_private *fep = netdev_priv(ndev);
904 	u32 val;
905 	u32 temp_mac[2];
906 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
907 	u32 ecntl = 0x2; /* ETHEREN */
908 
909 	/* Whack a reset.  We should wait for this.
910 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
911 	 * instead of reset MAC itself.
912 	 */
913 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
914 		writel(0, fep->hwp + FEC_ECNTRL);
915 	} else {
916 		writel(1, fep->hwp + FEC_ECNTRL);
917 		udelay(10);
918 	}
919 
920 	/*
921 	 * enet-mac reset will reset mac address registers too,
922 	 * so need to reconfigure it.
923 	 */
924 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
925 	writel((__force u32)cpu_to_be32(temp_mac[0]),
926 	       fep->hwp + FEC_ADDR_LOW);
927 	writel((__force u32)cpu_to_be32(temp_mac[1]),
928 	       fep->hwp + FEC_ADDR_HIGH);
929 
930 	/* Clear any outstanding interrupt. */
931 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
932 
933 	fec_enet_bd_init(ndev);
934 
935 	fec_enet_enable_ring(ndev);
936 
937 	/* Reset tx SKB buffers. */
938 	fec_enet_reset_skb(ndev);
939 
940 	/* Enable MII mode */
941 	if (fep->full_duplex == DUPLEX_FULL) {
942 		/* FD enable */
943 		writel(0x04, fep->hwp + FEC_X_CNTRL);
944 	} else {
945 		/* No Rcv on Xmit */
946 		rcntl |= 0x02;
947 		writel(0x0, fep->hwp + FEC_X_CNTRL);
948 	}
949 
950 	/* Set MII speed */
951 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
952 
953 #if !defined(CONFIG_M5272)
954 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
955 		val = readl(fep->hwp + FEC_RACC);
956 		/* align IP header */
957 		val |= FEC_RACC_SHIFT16;
958 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
959 			/* set RX checksum */
960 			val |= FEC_RACC_OPTIONS;
961 		else
962 			val &= ~FEC_RACC_OPTIONS;
963 		writel(val, fep->hwp + FEC_RACC);
964 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
965 	}
966 #endif
967 
968 	/*
969 	 * The phy interface and speed need to get configured
970 	 * differently on enet-mac.
971 	 */
972 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
973 		/* Enable flow control and length check */
974 		rcntl |= 0x40000000 | 0x00000020;
975 
976 		/* RGMII, RMII or MII */
977 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
978 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
979 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
980 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
981 			rcntl |= (1 << 6);
982 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
983 			rcntl |= (1 << 8);
984 		else
985 			rcntl &= ~(1 << 8);
986 
987 		/* 1G, 100M or 10M */
988 		if (ndev->phydev) {
989 			if (ndev->phydev->speed == SPEED_1000)
990 				ecntl |= (1 << 5);
991 			else if (ndev->phydev->speed == SPEED_100)
992 				rcntl &= ~(1 << 9);
993 			else
994 				rcntl |= (1 << 9);
995 		}
996 	} else {
997 #ifdef FEC_MIIGSK_ENR
998 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
999 			u32 cfgr;
1000 			/* disable the gasket and wait */
1001 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1002 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1003 				udelay(1);
1004 
1005 			/*
1006 			 * configure the gasket:
1007 			 *   RMII, 50 MHz, no loopback, no echo
1008 			 *   MII, 25 MHz, no loopback, no echo
1009 			 */
1010 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1011 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1012 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1013 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1014 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1015 
1016 			/* re-enable the gasket */
1017 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1018 		}
1019 #endif
1020 	}
1021 
1022 #if !defined(CONFIG_M5272)
1023 	/* enable pause frame*/
1024 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1025 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1026 	     ndev->phydev && ndev->phydev->pause)) {
1027 		rcntl |= FEC_ENET_FCE;
1028 
1029 		/* set FIFO threshold parameter to reduce overrun */
1030 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1031 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1032 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1033 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1034 
1035 		/* OPD */
1036 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1037 	} else {
1038 		rcntl &= ~FEC_ENET_FCE;
1039 	}
1040 #endif /* !defined(CONFIG_M5272) */
1041 
1042 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1043 
1044 	/* Setup multicast filter. */
1045 	set_multicast_list(ndev);
1046 #ifndef CONFIG_M5272
1047 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1048 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1049 #endif
1050 
1051 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1052 		/* enable ENET endian swap */
1053 		ecntl |= (1 << 8);
1054 		/* enable ENET store and forward mode */
1055 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1056 	}
1057 
1058 	if (fep->bufdesc_ex)
1059 		ecntl |= (1 << 4);
1060 
1061 #ifndef CONFIG_M5272
1062 	/* Enable the MIB statistic event counters */
1063 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1064 #endif
1065 
1066 	/* And last, enable the transmit and receive processing */
1067 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1068 	fec_enet_active_rxring(ndev);
1069 
1070 	if (fep->bufdesc_ex)
1071 		fec_ptp_start_cyclecounter(ndev);
1072 
1073 	/* Enable interrupts we wish to service */
1074 	if (fep->link)
1075 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1076 	else
1077 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1078 
1079 	/* Init the interrupt coalescing */
1080 	fec_enet_itr_coal_init(ndev);
1081 
1082 }
1083 
1084 static void
fec_stop(struct net_device * ndev)1085 fec_stop(struct net_device *ndev)
1086 {
1087 	struct fec_enet_private *fep = netdev_priv(ndev);
1088 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1089 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1090 	u32 val;
1091 
1092 	/* We cannot expect a graceful transmit stop without link !!! */
1093 	if (fep->link) {
1094 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1095 		udelay(10);
1096 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1097 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1098 	}
1099 
1100 	/* Whack a reset.  We should wait for this.
1101 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1102 	 * instead of reset MAC itself.
1103 	 */
1104 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1105 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1106 			writel(0, fep->hwp + FEC_ECNTRL);
1107 		} else {
1108 			writel(1, fep->hwp + FEC_ECNTRL);
1109 			udelay(10);
1110 		}
1111 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1112 	} else {
1113 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1114 		val = readl(fep->hwp + FEC_ECNTRL);
1115 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1116 		writel(val, fep->hwp + FEC_ECNTRL);
1117 
1118 		if (pdata && pdata->sleep_mode_enable)
1119 			pdata->sleep_mode_enable(true);
1120 	}
1121 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1122 
1123 	/* We have to keep ENET enabled to have MII interrupt stay working */
1124 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1125 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1126 		writel(2, fep->hwp + FEC_ECNTRL);
1127 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1128 	}
1129 }
1130 
1131 
1132 static void
fec_timeout(struct net_device * ndev)1133 fec_timeout(struct net_device *ndev)
1134 {
1135 	struct fec_enet_private *fep = netdev_priv(ndev);
1136 
1137 	fec_dump(ndev);
1138 
1139 	ndev->stats.tx_errors++;
1140 
1141 	schedule_work(&fep->tx_timeout_work);
1142 }
1143 
fec_enet_timeout_work(struct work_struct * work)1144 static void fec_enet_timeout_work(struct work_struct *work)
1145 {
1146 	struct fec_enet_private *fep =
1147 		container_of(work, struct fec_enet_private, tx_timeout_work);
1148 	struct net_device *ndev = fep->netdev;
1149 
1150 	rtnl_lock();
1151 	if (netif_device_present(ndev) || netif_running(ndev)) {
1152 		napi_disable(&fep->napi);
1153 		netif_tx_lock_bh(ndev);
1154 		fec_restart(ndev);
1155 		netif_wake_queue(ndev);
1156 		netif_tx_unlock_bh(ndev);
1157 		napi_enable(&fep->napi);
1158 	}
1159 	rtnl_unlock();
1160 }
1161 
1162 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1163 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1164 	struct skb_shared_hwtstamps *hwtstamps)
1165 {
1166 	unsigned long flags;
1167 	u64 ns;
1168 
1169 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1170 	ns = timecounter_cyc2time(&fep->tc, ts);
1171 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1172 
1173 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1174 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1175 }
1176 
1177 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id)1178 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1179 {
1180 	struct	fec_enet_private *fep;
1181 	struct bufdesc *bdp;
1182 	unsigned short status;
1183 	struct	sk_buff	*skb;
1184 	struct fec_enet_priv_tx_q *txq;
1185 	struct netdev_queue *nq;
1186 	int	index = 0;
1187 	int	entries_free;
1188 
1189 	fep = netdev_priv(ndev);
1190 
1191 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1192 
1193 	txq = fep->tx_queue[queue_id];
1194 	/* get next bdp of dirty_tx */
1195 	nq = netdev_get_tx_queue(ndev, queue_id);
1196 	bdp = txq->dirty_tx;
1197 
1198 	/* get next bdp of dirty_tx */
1199 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1200 
1201 	while (bdp != READ_ONCE(txq->bd.cur)) {
1202 		/* Order the load of bd.cur and cbd_sc */
1203 		rmb();
1204 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1205 		if (status & BD_ENET_TX_READY)
1206 			break;
1207 
1208 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1209 
1210 		skb = txq->tx_skbuff[index];
1211 		txq->tx_skbuff[index] = NULL;
1212 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1213 			dma_unmap_single(&fep->pdev->dev,
1214 					 fec32_to_cpu(bdp->cbd_bufaddr),
1215 					 fec16_to_cpu(bdp->cbd_datlen),
1216 					 DMA_TO_DEVICE);
1217 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1218 		if (!skb)
1219 			goto skb_done;
1220 
1221 		/* Check for errors. */
1222 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1223 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1224 				   BD_ENET_TX_CSL)) {
1225 			ndev->stats.tx_errors++;
1226 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1227 				ndev->stats.tx_heartbeat_errors++;
1228 			if (status & BD_ENET_TX_LC)  /* Late collision */
1229 				ndev->stats.tx_window_errors++;
1230 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1231 				ndev->stats.tx_aborted_errors++;
1232 			if (status & BD_ENET_TX_UN)  /* Underrun */
1233 				ndev->stats.tx_fifo_errors++;
1234 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1235 				ndev->stats.tx_carrier_errors++;
1236 		} else {
1237 			ndev->stats.tx_packets++;
1238 			ndev->stats.tx_bytes += skb->len;
1239 		}
1240 
1241 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1242 			fep->bufdesc_ex) {
1243 			struct skb_shared_hwtstamps shhwtstamps;
1244 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1245 
1246 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1247 			skb_tstamp_tx(skb, &shhwtstamps);
1248 		}
1249 
1250 		/* Deferred means some collisions occurred during transmit,
1251 		 * but we eventually sent the packet OK.
1252 		 */
1253 		if (status & BD_ENET_TX_DEF)
1254 			ndev->stats.collisions++;
1255 
1256 		/* Free the sk buffer associated with this last transmit */
1257 		dev_kfree_skb_any(skb);
1258 skb_done:
1259 		/* Make sure the update to bdp and tx_skbuff are performed
1260 		 * before dirty_tx
1261 		 */
1262 		wmb();
1263 		txq->dirty_tx = bdp;
1264 
1265 		/* Update pointer to next buffer descriptor to be transmitted */
1266 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1267 
1268 		/* Since we have freed up a buffer, the ring is no longer full
1269 		 */
1270 		if (netif_queue_stopped(ndev)) {
1271 			entries_free = fec_enet_get_free_txdesc_num(txq);
1272 			if (entries_free >= txq->tx_wake_threshold)
1273 				netif_tx_wake_queue(nq);
1274 		}
1275 	}
1276 
1277 	/* ERR006538: Keep the transmitter going */
1278 	if (bdp != txq->bd.cur &&
1279 	    readl(txq->bd.reg_desc_active) == 0)
1280 		writel(0, txq->bd.reg_desc_active);
1281 }
1282 
1283 static void
fec_enet_tx(struct net_device * ndev)1284 fec_enet_tx(struct net_device *ndev)
1285 {
1286 	struct fec_enet_private *fep = netdev_priv(ndev);
1287 	u16 queue_id;
1288 	/* First process class A queue, then Class B and Best Effort queue */
1289 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1290 		clear_bit(queue_id, &fep->work_tx);
1291 		fec_enet_tx_queue(ndev, queue_id);
1292 	}
1293 	return;
1294 }
1295 
1296 static int
fec_enet_new_rxbdp(struct net_device * ndev,struct bufdesc * bdp,struct sk_buff * skb)1297 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1298 {
1299 	struct  fec_enet_private *fep = netdev_priv(ndev);
1300 	int off;
1301 
1302 	off = ((unsigned long)skb->data) & fep->rx_align;
1303 	if (off)
1304 		skb_reserve(skb, fep->rx_align + 1 - off);
1305 
1306 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1307 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1308 		if (net_ratelimit())
1309 			netdev_err(ndev, "Rx DMA memory map failed\n");
1310 		return -ENOMEM;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
fec_enet_copybreak(struct net_device * ndev,struct sk_buff ** skb,struct bufdesc * bdp,u32 length,bool swap)1316 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1317 			       struct bufdesc *bdp, u32 length, bool swap)
1318 {
1319 	struct  fec_enet_private *fep = netdev_priv(ndev);
1320 	struct sk_buff *new_skb;
1321 
1322 	if (length > fep->rx_copybreak)
1323 		return false;
1324 
1325 	new_skb = netdev_alloc_skb(ndev, length);
1326 	if (!new_skb)
1327 		return false;
1328 
1329 	dma_sync_single_for_cpu(&fep->pdev->dev,
1330 				fec32_to_cpu(bdp->cbd_bufaddr),
1331 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1332 				DMA_FROM_DEVICE);
1333 	if (!swap)
1334 		memcpy(new_skb->data, (*skb)->data, length);
1335 	else
1336 		swap_buffer2(new_skb->data, (*skb)->data, length);
1337 	*skb = new_skb;
1338 
1339 	return true;
1340 }
1341 
1342 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1343  * When we update through the ring, if the next incoming buffer has
1344  * not been given to the system, we just set the empty indicator,
1345  * effectively tossing the packet.
1346  */
1347 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1348 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1349 {
1350 	struct fec_enet_private *fep = netdev_priv(ndev);
1351 	struct fec_enet_priv_rx_q *rxq;
1352 	struct bufdesc *bdp;
1353 	unsigned short status;
1354 	struct  sk_buff *skb_new = NULL;
1355 	struct  sk_buff *skb;
1356 	ushort	pkt_len;
1357 	__u8 *data;
1358 	int	pkt_received = 0;
1359 	struct	bufdesc_ex *ebdp = NULL;
1360 	bool	vlan_packet_rcvd = false;
1361 	u16	vlan_tag;
1362 	int	index = 0;
1363 	bool	is_copybreak;
1364 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1365 
1366 #ifdef CONFIG_M532x
1367 	flush_cache_all();
1368 #endif
1369 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1370 	rxq = fep->rx_queue[queue_id];
1371 
1372 	/* First, grab all of the stats for the incoming packet.
1373 	 * These get messed up if we get called due to a busy condition.
1374 	 */
1375 	bdp = rxq->bd.cur;
1376 
1377 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1378 
1379 		if (pkt_received >= budget)
1380 			break;
1381 		pkt_received++;
1382 
1383 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1384 
1385 		/* Check for errors. */
1386 		status ^= BD_ENET_RX_LAST;
1387 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1388 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1389 			   BD_ENET_RX_CL)) {
1390 			ndev->stats.rx_errors++;
1391 			if (status & BD_ENET_RX_OV) {
1392 				/* FIFO overrun */
1393 				ndev->stats.rx_fifo_errors++;
1394 				goto rx_processing_done;
1395 			}
1396 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1397 						| BD_ENET_RX_LAST)) {
1398 				/* Frame too long or too short. */
1399 				ndev->stats.rx_length_errors++;
1400 				if (status & BD_ENET_RX_LAST)
1401 					netdev_err(ndev, "rcv is not +last\n");
1402 			}
1403 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1404 				ndev->stats.rx_crc_errors++;
1405 			/* Report late collisions as a frame error. */
1406 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1407 				ndev->stats.rx_frame_errors++;
1408 			goto rx_processing_done;
1409 		}
1410 
1411 		/* Process the incoming frame. */
1412 		ndev->stats.rx_packets++;
1413 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1414 		ndev->stats.rx_bytes += pkt_len;
1415 
1416 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1417 		skb = rxq->rx_skbuff[index];
1418 
1419 		/* The packet length includes FCS, but we don't want to
1420 		 * include that when passing upstream as it messes up
1421 		 * bridging applications.
1422 		 */
1423 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1424 						  need_swap);
1425 		if (!is_copybreak) {
1426 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1427 			if (unlikely(!skb_new)) {
1428 				ndev->stats.rx_dropped++;
1429 				goto rx_processing_done;
1430 			}
1431 			dma_unmap_single(&fep->pdev->dev,
1432 					 fec32_to_cpu(bdp->cbd_bufaddr),
1433 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1434 					 DMA_FROM_DEVICE);
1435 		}
1436 
1437 		prefetch(skb->data - NET_IP_ALIGN);
1438 		skb_put(skb, pkt_len - 4);
1439 		data = skb->data;
1440 
1441 		if (!is_copybreak && need_swap)
1442 			swap_buffer(data, pkt_len);
1443 
1444 #if !defined(CONFIG_M5272)
1445 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1446 			data = skb_pull_inline(skb, 2);
1447 #endif
1448 
1449 		/* Extract the enhanced buffer descriptor */
1450 		ebdp = NULL;
1451 		if (fep->bufdesc_ex)
1452 			ebdp = (struct bufdesc_ex *)bdp;
1453 
1454 		/* If this is a VLAN packet remove the VLAN Tag */
1455 		vlan_packet_rcvd = false;
1456 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1457 		    fep->bufdesc_ex &&
1458 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1459 			/* Push and remove the vlan tag */
1460 			struct vlan_hdr *vlan_header =
1461 					(struct vlan_hdr *) (data + ETH_HLEN);
1462 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1463 
1464 			vlan_packet_rcvd = true;
1465 
1466 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1467 			skb_pull(skb, VLAN_HLEN);
1468 		}
1469 
1470 		skb->protocol = eth_type_trans(skb, ndev);
1471 
1472 		/* Get receive timestamp from the skb */
1473 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1474 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1475 					  skb_hwtstamps(skb));
1476 
1477 		if (fep->bufdesc_ex &&
1478 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1479 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1480 				/* don't check it */
1481 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1482 			} else {
1483 				skb_checksum_none_assert(skb);
1484 			}
1485 		}
1486 
1487 		/* Handle received VLAN packets */
1488 		if (vlan_packet_rcvd)
1489 			__vlan_hwaccel_put_tag(skb,
1490 					       htons(ETH_P_8021Q),
1491 					       vlan_tag);
1492 
1493 		napi_gro_receive(&fep->napi, skb);
1494 
1495 		if (is_copybreak) {
1496 			dma_sync_single_for_device(&fep->pdev->dev,
1497 						   fec32_to_cpu(bdp->cbd_bufaddr),
1498 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1499 						   DMA_FROM_DEVICE);
1500 		} else {
1501 			rxq->rx_skbuff[index] = skb_new;
1502 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1503 		}
1504 
1505 rx_processing_done:
1506 		/* Clear the status flags for this buffer */
1507 		status &= ~BD_ENET_RX_STATS;
1508 
1509 		/* Mark the buffer empty */
1510 		status |= BD_ENET_RX_EMPTY;
1511 
1512 		if (fep->bufdesc_ex) {
1513 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1514 
1515 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1516 			ebdp->cbd_prot = 0;
1517 			ebdp->cbd_bdu = 0;
1518 		}
1519 		/* Make sure the updates to rest of the descriptor are
1520 		 * performed before transferring ownership.
1521 		 */
1522 		wmb();
1523 		bdp->cbd_sc = cpu_to_fec16(status);
1524 
1525 		/* Update BD pointer to next entry */
1526 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1527 
1528 		/* Doing this here will keep the FEC running while we process
1529 		 * incoming frames.  On a heavily loaded network, we should be
1530 		 * able to keep up at the expense of system resources.
1531 		 */
1532 		writel(0, rxq->bd.reg_desc_active);
1533 	}
1534 	rxq->bd.cur = bdp;
1535 	return pkt_received;
1536 }
1537 
1538 static int
fec_enet_rx(struct net_device * ndev,int budget)1539 fec_enet_rx(struct net_device *ndev, int budget)
1540 {
1541 	int     pkt_received = 0;
1542 	u16	queue_id;
1543 	struct fec_enet_private *fep = netdev_priv(ndev);
1544 
1545 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1546 		int ret;
1547 
1548 		ret = fec_enet_rx_queue(ndev,
1549 					budget - pkt_received, queue_id);
1550 
1551 		if (ret < budget - pkt_received)
1552 			clear_bit(queue_id, &fep->work_rx);
1553 
1554 		pkt_received += ret;
1555 	}
1556 	return pkt_received;
1557 }
1558 
1559 static bool
fec_enet_collect_events(struct fec_enet_private * fep,uint int_events)1560 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1561 {
1562 	if (int_events == 0)
1563 		return false;
1564 
1565 	if (int_events & FEC_ENET_RXF)
1566 		fep->work_rx |= (1 << 2);
1567 	if (int_events & FEC_ENET_RXF_1)
1568 		fep->work_rx |= (1 << 0);
1569 	if (int_events & FEC_ENET_RXF_2)
1570 		fep->work_rx |= (1 << 1);
1571 
1572 	if (int_events & FEC_ENET_TXF)
1573 		fep->work_tx |= (1 << 2);
1574 	if (int_events & FEC_ENET_TXF_1)
1575 		fep->work_tx |= (1 << 0);
1576 	if (int_events & FEC_ENET_TXF_2)
1577 		fep->work_tx |= (1 << 1);
1578 
1579 	return true;
1580 }
1581 
1582 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1583 fec_enet_interrupt(int irq, void *dev_id)
1584 {
1585 	struct net_device *ndev = dev_id;
1586 	struct fec_enet_private *fep = netdev_priv(ndev);
1587 	uint int_events;
1588 	irqreturn_t ret = IRQ_NONE;
1589 
1590 	int_events = readl(fep->hwp + FEC_IEVENT);
1591 	writel(int_events, fep->hwp + FEC_IEVENT);
1592 	fec_enet_collect_events(fep, int_events);
1593 
1594 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1595 		ret = IRQ_HANDLED;
1596 
1597 		if (napi_schedule_prep(&fep->napi)) {
1598 			/* Disable the NAPI interrupts */
1599 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1600 			__napi_schedule(&fep->napi);
1601 		}
1602 	}
1603 
1604 	if (int_events & FEC_ENET_MII) {
1605 		ret = IRQ_HANDLED;
1606 		complete(&fep->mdio_done);
1607 	}
1608 
1609 	if (fep->ptp_clock)
1610 		fec_ptp_check_pps_event(fep);
1611 
1612 	return ret;
1613 }
1614 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1615 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1616 {
1617 	struct net_device *ndev = napi->dev;
1618 	struct fec_enet_private *fep = netdev_priv(ndev);
1619 	int pkts;
1620 
1621 	pkts = fec_enet_rx(ndev, budget);
1622 
1623 	fec_enet_tx(ndev);
1624 
1625 	if (pkts < budget) {
1626 		napi_complete(napi);
1627 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1628 	}
1629 	return pkts;
1630 }
1631 
1632 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1633 static void fec_get_mac(struct net_device *ndev)
1634 {
1635 	struct fec_enet_private *fep = netdev_priv(ndev);
1636 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1637 	unsigned char *iap, tmpaddr[ETH_ALEN];
1638 
1639 	/*
1640 	 * try to get mac address in following order:
1641 	 *
1642 	 * 1) module parameter via kernel command line in form
1643 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1644 	 */
1645 	iap = macaddr;
1646 
1647 	/*
1648 	 * 2) from device tree data
1649 	 */
1650 	if (!is_valid_ether_addr(iap)) {
1651 		struct device_node *np = fep->pdev->dev.of_node;
1652 		if (np) {
1653 			const char *mac = of_get_mac_address(np);
1654 			if (mac)
1655 				iap = (unsigned char *) mac;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * 3) from flash or fuse (via platform data)
1661 	 */
1662 	if (!is_valid_ether_addr(iap)) {
1663 #ifdef CONFIG_M5272
1664 		if (FEC_FLASHMAC)
1665 			iap = (unsigned char *)FEC_FLASHMAC;
1666 #else
1667 		if (pdata)
1668 			iap = (unsigned char *)&pdata->mac;
1669 #endif
1670 	}
1671 
1672 	/*
1673 	 * 4) FEC mac registers set by bootloader
1674 	 */
1675 	if (!is_valid_ether_addr(iap)) {
1676 		*((__be32 *) &tmpaddr[0]) =
1677 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1678 		*((__be16 *) &tmpaddr[4]) =
1679 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1680 		iap = &tmpaddr[0];
1681 	}
1682 
1683 	/*
1684 	 * 5) random mac address
1685 	 */
1686 	if (!is_valid_ether_addr(iap)) {
1687 		/* Report it and use a random ethernet address instead */
1688 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1689 		eth_hw_addr_random(ndev);
1690 		netdev_info(ndev, "Using random MAC address: %pM\n",
1691 			    ndev->dev_addr);
1692 		return;
1693 	}
1694 
1695 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1696 
1697 	/* Adjust MAC if using macaddr */
1698 	if (iap == macaddr)
1699 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1700 }
1701 
1702 /* ------------------------------------------------------------------------- */
1703 
1704 /*
1705  * Phy section
1706  */
fec_enet_adjust_link(struct net_device * ndev)1707 static void fec_enet_adjust_link(struct net_device *ndev)
1708 {
1709 	struct fec_enet_private *fep = netdev_priv(ndev);
1710 	struct phy_device *phy_dev = ndev->phydev;
1711 	int status_change = 0;
1712 
1713 	/* Prevent a state halted on mii error */
1714 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1715 		phy_dev->state = PHY_RESUMING;
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * If the netdev is down, or is going down, we're not interested
1721 	 * in link state events, so just mark our idea of the link as down
1722 	 * and ignore the event.
1723 	 */
1724 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1725 		fep->link = 0;
1726 	} else if (phy_dev->link) {
1727 		if (!fep->link) {
1728 			fep->link = phy_dev->link;
1729 			status_change = 1;
1730 		}
1731 
1732 		if (fep->full_duplex != phy_dev->duplex) {
1733 			fep->full_duplex = phy_dev->duplex;
1734 			status_change = 1;
1735 		}
1736 
1737 		if (phy_dev->speed != fep->speed) {
1738 			fep->speed = phy_dev->speed;
1739 			status_change = 1;
1740 		}
1741 
1742 		/* if any of the above changed restart the FEC */
1743 		if (status_change) {
1744 			napi_disable(&fep->napi);
1745 			netif_tx_lock_bh(ndev);
1746 			fec_restart(ndev);
1747 			netif_wake_queue(ndev);
1748 			netif_tx_unlock_bh(ndev);
1749 			napi_enable(&fep->napi);
1750 		}
1751 	} else {
1752 		if (fep->link) {
1753 			napi_disable(&fep->napi);
1754 			netif_tx_lock_bh(ndev);
1755 			fec_stop(ndev);
1756 			netif_tx_unlock_bh(ndev);
1757 			napi_enable(&fep->napi);
1758 			fep->link = phy_dev->link;
1759 			status_change = 1;
1760 		}
1761 	}
1762 
1763 	if (status_change)
1764 		phy_print_status(phy_dev);
1765 }
1766 
fec_enet_mdio_read(struct mii_bus * bus,int mii_id,int regnum)1767 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1768 {
1769 	struct fec_enet_private *fep = bus->priv;
1770 	struct device *dev = &fep->pdev->dev;
1771 	unsigned long time_left;
1772 	int ret = 0;
1773 
1774 	ret = pm_runtime_get_sync(dev);
1775 	if (ret < 0)
1776 		return ret;
1777 
1778 	fep->mii_timeout = 0;
1779 	reinit_completion(&fep->mdio_done);
1780 
1781 	/* start a read op */
1782 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1783 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1785 
1786 	/* wait for end of transfer */
1787 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1788 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1789 	if (time_left == 0) {
1790 		fep->mii_timeout = 1;
1791 		netdev_err(fep->netdev, "MDIO read timeout\n");
1792 		ret = -ETIMEDOUT;
1793 		goto out;
1794 	}
1795 
1796 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1797 
1798 out:
1799 	pm_runtime_mark_last_busy(dev);
1800 	pm_runtime_put_autosuspend(dev);
1801 
1802 	return ret;
1803 }
1804 
fec_enet_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)1805 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1806 			   u16 value)
1807 {
1808 	struct fec_enet_private *fep = bus->priv;
1809 	struct device *dev = &fep->pdev->dev;
1810 	unsigned long time_left;
1811 	int ret;
1812 
1813 	ret = pm_runtime_get_sync(dev);
1814 	if (ret < 0)
1815 		return ret;
1816 	else
1817 		ret = 0;
1818 
1819 	fep->mii_timeout = 0;
1820 	reinit_completion(&fep->mdio_done);
1821 
1822 	/* start a write op */
1823 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1824 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1825 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1826 		fep->hwp + FEC_MII_DATA);
1827 
1828 	/* wait for end of transfer */
1829 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1830 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1831 	if (time_left == 0) {
1832 		fep->mii_timeout = 1;
1833 		netdev_err(fep->netdev, "MDIO write timeout\n");
1834 		ret  = -ETIMEDOUT;
1835 	}
1836 
1837 	pm_runtime_mark_last_busy(dev);
1838 	pm_runtime_put_autosuspend(dev);
1839 
1840 	return ret;
1841 }
1842 
fec_enet_clk_enable(struct net_device * ndev,bool enable)1843 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1844 {
1845 	struct fec_enet_private *fep = netdev_priv(ndev);
1846 	int ret;
1847 
1848 	if (enable) {
1849 		ret = clk_prepare_enable(fep->clk_ahb);
1850 		if (ret)
1851 			return ret;
1852 		if (fep->clk_enet_out) {
1853 			ret = clk_prepare_enable(fep->clk_enet_out);
1854 			if (ret)
1855 				goto failed_clk_enet_out;
1856 		}
1857 		if (fep->clk_ptp) {
1858 			mutex_lock(&fep->ptp_clk_mutex);
1859 			ret = clk_prepare_enable(fep->clk_ptp);
1860 			if (ret) {
1861 				mutex_unlock(&fep->ptp_clk_mutex);
1862 				goto failed_clk_ptp;
1863 			} else {
1864 				fep->ptp_clk_on = true;
1865 			}
1866 			mutex_unlock(&fep->ptp_clk_mutex);
1867 		}
1868 		if (fep->clk_ref) {
1869 			ret = clk_prepare_enable(fep->clk_ref);
1870 			if (ret)
1871 				goto failed_clk_ref;
1872 		}
1873 	} else {
1874 		clk_disable_unprepare(fep->clk_ahb);
1875 		if (fep->clk_enet_out)
1876 			clk_disable_unprepare(fep->clk_enet_out);
1877 		if (fep->clk_ptp) {
1878 			mutex_lock(&fep->ptp_clk_mutex);
1879 			clk_disable_unprepare(fep->clk_ptp);
1880 			fep->ptp_clk_on = false;
1881 			mutex_unlock(&fep->ptp_clk_mutex);
1882 		}
1883 		if (fep->clk_ref)
1884 			clk_disable_unprepare(fep->clk_ref);
1885 	}
1886 
1887 	return 0;
1888 
1889 failed_clk_ref:
1890 	if (fep->clk_ref)
1891 		clk_disable_unprepare(fep->clk_ref);
1892 failed_clk_ptp:
1893 	if (fep->clk_enet_out)
1894 		clk_disable_unprepare(fep->clk_enet_out);
1895 failed_clk_enet_out:
1896 		clk_disable_unprepare(fep->clk_ahb);
1897 
1898 	return ret;
1899 }
1900 
fec_enet_mii_probe(struct net_device * ndev)1901 static int fec_enet_mii_probe(struct net_device *ndev)
1902 {
1903 	struct fec_enet_private *fep = netdev_priv(ndev);
1904 	struct phy_device *phy_dev = NULL;
1905 	char mdio_bus_id[MII_BUS_ID_SIZE];
1906 	char phy_name[MII_BUS_ID_SIZE + 3];
1907 	int phy_id;
1908 	int dev_id = fep->dev_id;
1909 
1910 	if (fep->phy_node) {
1911 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1912 					 &fec_enet_adjust_link, 0,
1913 					 fep->phy_interface);
1914 		if (!phy_dev)
1915 			return -ENODEV;
1916 	} else {
1917 		/* check for attached phy */
1918 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1919 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1920 				continue;
1921 			if (dev_id--)
1922 				continue;
1923 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1924 			break;
1925 		}
1926 
1927 		if (phy_id >= PHY_MAX_ADDR) {
1928 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1929 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1930 			phy_id = 0;
1931 		}
1932 
1933 		snprintf(phy_name, sizeof(phy_name),
1934 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1935 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1936 				      fep->phy_interface);
1937 	}
1938 
1939 	if (IS_ERR(phy_dev)) {
1940 		netdev_err(ndev, "could not attach to PHY\n");
1941 		return PTR_ERR(phy_dev);
1942 	}
1943 
1944 	/* mask with MAC supported features */
1945 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1946 		phy_dev->supported &= PHY_GBIT_FEATURES;
1947 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1948 #if !defined(CONFIG_M5272)
1949 		phy_dev->supported |= SUPPORTED_Pause;
1950 #endif
1951 	}
1952 	else
1953 		phy_dev->supported &= PHY_BASIC_FEATURES;
1954 
1955 	phy_dev->advertising = phy_dev->supported;
1956 
1957 	fep->link = 0;
1958 	fep->full_duplex = 0;
1959 
1960 	phy_attached_info(phy_dev);
1961 
1962 	return 0;
1963 }
1964 
fec_enet_mii_init(struct platform_device * pdev)1965 static int fec_enet_mii_init(struct platform_device *pdev)
1966 {
1967 	static struct mii_bus *fec0_mii_bus;
1968 	struct net_device *ndev = platform_get_drvdata(pdev);
1969 	struct fec_enet_private *fep = netdev_priv(ndev);
1970 	struct device_node *node;
1971 	int err = -ENXIO;
1972 	u32 mii_speed, holdtime;
1973 
1974 	/*
1975 	 * The i.MX28 dual fec interfaces are not equal.
1976 	 * Here are the differences:
1977 	 *
1978 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1979 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1980 	 *  - external phys can only be configured by fec0
1981 	 *
1982 	 * That is to say fec1 can not work independently. It only works
1983 	 * when fec0 is working. The reason behind this design is that the
1984 	 * second interface is added primarily for Switch mode.
1985 	 *
1986 	 * Because of the last point above, both phys are attached on fec0
1987 	 * mdio interface in board design, and need to be configured by
1988 	 * fec0 mii_bus.
1989 	 */
1990 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1991 		/* fec1 uses fec0 mii_bus */
1992 		if (mii_cnt && fec0_mii_bus) {
1993 			fep->mii_bus = fec0_mii_bus;
1994 			mii_cnt++;
1995 			return 0;
1996 		}
1997 		return -ENOENT;
1998 	}
1999 
2000 	fep->mii_timeout = 0;
2001 
2002 	/*
2003 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2004 	 *
2005 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2006 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2007 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2008 	 * document.
2009 	 */
2010 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2011 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2012 		mii_speed--;
2013 	if (mii_speed > 63) {
2014 		dev_err(&pdev->dev,
2015 			"fec clock (%lu) to fast to get right mii speed\n",
2016 			clk_get_rate(fep->clk_ipg));
2017 		err = -EINVAL;
2018 		goto err_out;
2019 	}
2020 
2021 	/*
2022 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2023 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2024 	 * versions are RAZ there, so just ignore the difference and write the
2025 	 * register always.
2026 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2027 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2028 	 * output.
2029 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2030 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2031 	 * holdtime cannot result in a value greater than 3.
2032 	 */
2033 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2034 
2035 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2036 
2037 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2038 
2039 	fep->mii_bus = mdiobus_alloc();
2040 	if (fep->mii_bus == NULL) {
2041 		err = -ENOMEM;
2042 		goto err_out;
2043 	}
2044 
2045 	fep->mii_bus->name = "fec_enet_mii_bus";
2046 	fep->mii_bus->read = fec_enet_mdio_read;
2047 	fep->mii_bus->write = fec_enet_mdio_write;
2048 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2049 		pdev->name, fep->dev_id + 1);
2050 	fep->mii_bus->priv = fep;
2051 	fep->mii_bus->parent = &pdev->dev;
2052 
2053 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2054 	if (node) {
2055 		err = of_mdiobus_register(fep->mii_bus, node);
2056 		of_node_put(node);
2057 	} else {
2058 		err = mdiobus_register(fep->mii_bus);
2059 	}
2060 
2061 	if (err)
2062 		goto err_out_free_mdiobus;
2063 
2064 	mii_cnt++;
2065 
2066 	/* save fec0 mii_bus */
2067 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2068 		fec0_mii_bus = fep->mii_bus;
2069 
2070 	return 0;
2071 
2072 err_out_free_mdiobus:
2073 	mdiobus_free(fep->mii_bus);
2074 err_out:
2075 	return err;
2076 }
2077 
fec_enet_mii_remove(struct fec_enet_private * fep)2078 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2079 {
2080 	if (--mii_cnt == 0) {
2081 		mdiobus_unregister(fep->mii_bus);
2082 		mdiobus_free(fep->mii_bus);
2083 	}
2084 }
2085 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2086 static void fec_enet_get_drvinfo(struct net_device *ndev,
2087 				 struct ethtool_drvinfo *info)
2088 {
2089 	struct fec_enet_private *fep = netdev_priv(ndev);
2090 
2091 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2092 		sizeof(info->driver));
2093 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2094 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2095 }
2096 
fec_enet_get_regs_len(struct net_device * ndev)2097 static int fec_enet_get_regs_len(struct net_device *ndev)
2098 {
2099 	struct fec_enet_private *fep = netdev_priv(ndev);
2100 	struct resource *r;
2101 	int s = 0;
2102 
2103 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2104 	if (r)
2105 		s = resource_size(r);
2106 
2107 	return s;
2108 }
2109 
2110 /* List of registers that can be safety be read to dump them with ethtool */
2111 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2112 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2113 static u32 fec_enet_register_offset[] = {
2114 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2115 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2116 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2117 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2118 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2119 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2120 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2121 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2122 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2123 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2124 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2125 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2126 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2127 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2128 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2129 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2130 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2131 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2132 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2133 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2134 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2135 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2136 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2137 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2138 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2139 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2140 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2141 };
2142 #else
2143 static u32 fec_enet_register_offset[] = {
2144 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2145 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2146 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2147 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2148 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2149 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2150 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2151 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2152 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2153 };
2154 #endif
2155 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2156 static void fec_enet_get_regs(struct net_device *ndev,
2157 			      struct ethtool_regs *regs, void *regbuf)
2158 {
2159 	struct fec_enet_private *fep = netdev_priv(ndev);
2160 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2161 	u32 *buf = (u32 *)regbuf;
2162 	u32 i, off;
2163 
2164 	memset(buf, 0, regs->len);
2165 
2166 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2167 		off = fec_enet_register_offset[i] / 4;
2168 		buf[off] = readl(&theregs[off]);
2169 	}
2170 }
2171 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2172 static int fec_enet_get_ts_info(struct net_device *ndev,
2173 				struct ethtool_ts_info *info)
2174 {
2175 	struct fec_enet_private *fep = netdev_priv(ndev);
2176 
2177 	if (fep->bufdesc_ex) {
2178 
2179 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2180 					SOF_TIMESTAMPING_RX_SOFTWARE |
2181 					SOF_TIMESTAMPING_SOFTWARE |
2182 					SOF_TIMESTAMPING_TX_HARDWARE |
2183 					SOF_TIMESTAMPING_RX_HARDWARE |
2184 					SOF_TIMESTAMPING_RAW_HARDWARE;
2185 		if (fep->ptp_clock)
2186 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2187 		else
2188 			info->phc_index = -1;
2189 
2190 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2191 				 (1 << HWTSTAMP_TX_ON);
2192 
2193 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2194 				   (1 << HWTSTAMP_FILTER_ALL);
2195 		return 0;
2196 	} else {
2197 		return ethtool_op_get_ts_info(ndev, info);
2198 	}
2199 }
2200 
2201 #if !defined(CONFIG_M5272)
2202 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2203 static void fec_enet_get_pauseparam(struct net_device *ndev,
2204 				    struct ethtool_pauseparam *pause)
2205 {
2206 	struct fec_enet_private *fep = netdev_priv(ndev);
2207 
2208 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2209 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2210 	pause->rx_pause = pause->tx_pause;
2211 }
2212 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2213 static int fec_enet_set_pauseparam(struct net_device *ndev,
2214 				   struct ethtool_pauseparam *pause)
2215 {
2216 	struct fec_enet_private *fep = netdev_priv(ndev);
2217 
2218 	if (!ndev->phydev)
2219 		return -ENODEV;
2220 
2221 	if (pause->tx_pause != pause->rx_pause) {
2222 		netdev_info(ndev,
2223 			"hardware only support enable/disable both tx and rx");
2224 		return -EINVAL;
2225 	}
2226 
2227 	fep->pause_flag = 0;
2228 
2229 	/* tx pause must be same as rx pause */
2230 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2231 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2232 
2233 	if (pause->rx_pause || pause->autoneg) {
2234 		ndev->phydev->supported |= ADVERTISED_Pause;
2235 		ndev->phydev->advertising |= ADVERTISED_Pause;
2236 	} else {
2237 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2238 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2239 	}
2240 
2241 	if (pause->autoneg) {
2242 		if (netif_running(ndev))
2243 			fec_stop(ndev);
2244 		phy_start_aneg(ndev->phydev);
2245 	}
2246 	if (netif_running(ndev)) {
2247 		napi_disable(&fep->napi);
2248 		netif_tx_lock_bh(ndev);
2249 		fec_restart(ndev);
2250 		netif_wake_queue(ndev);
2251 		netif_tx_unlock_bh(ndev);
2252 		napi_enable(&fep->napi);
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static const struct fec_stat {
2259 	char name[ETH_GSTRING_LEN];
2260 	u16 offset;
2261 } fec_stats[] = {
2262 	/* RMON TX */
2263 	{ "tx_dropped", RMON_T_DROP },
2264 	{ "tx_packets", RMON_T_PACKETS },
2265 	{ "tx_broadcast", RMON_T_BC_PKT },
2266 	{ "tx_multicast", RMON_T_MC_PKT },
2267 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2268 	{ "tx_undersize", RMON_T_UNDERSIZE },
2269 	{ "tx_oversize", RMON_T_OVERSIZE },
2270 	{ "tx_fragment", RMON_T_FRAG },
2271 	{ "tx_jabber", RMON_T_JAB },
2272 	{ "tx_collision", RMON_T_COL },
2273 	{ "tx_64byte", RMON_T_P64 },
2274 	{ "tx_65to127byte", RMON_T_P65TO127 },
2275 	{ "tx_128to255byte", RMON_T_P128TO255 },
2276 	{ "tx_256to511byte", RMON_T_P256TO511 },
2277 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2278 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2279 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2280 	{ "tx_octets", RMON_T_OCTETS },
2281 
2282 	/* IEEE TX */
2283 	{ "IEEE_tx_drop", IEEE_T_DROP },
2284 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2285 	{ "IEEE_tx_1col", IEEE_T_1COL },
2286 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2287 	{ "IEEE_tx_def", IEEE_T_DEF },
2288 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2289 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2290 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2291 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2292 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2293 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2294 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2295 
2296 	/* RMON RX */
2297 	{ "rx_packets", RMON_R_PACKETS },
2298 	{ "rx_broadcast", RMON_R_BC_PKT },
2299 	{ "rx_multicast", RMON_R_MC_PKT },
2300 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2301 	{ "rx_undersize", RMON_R_UNDERSIZE },
2302 	{ "rx_oversize", RMON_R_OVERSIZE },
2303 	{ "rx_fragment", RMON_R_FRAG },
2304 	{ "rx_jabber", RMON_R_JAB },
2305 	{ "rx_64byte", RMON_R_P64 },
2306 	{ "rx_65to127byte", RMON_R_P65TO127 },
2307 	{ "rx_128to255byte", RMON_R_P128TO255 },
2308 	{ "rx_256to511byte", RMON_R_P256TO511 },
2309 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2310 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2311 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2312 	{ "rx_octets", RMON_R_OCTETS },
2313 
2314 	/* IEEE RX */
2315 	{ "IEEE_rx_drop", IEEE_R_DROP },
2316 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2317 	{ "IEEE_rx_crc", IEEE_R_CRC },
2318 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2319 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2320 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2321 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2322 };
2323 
2324 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2325 
fec_enet_update_ethtool_stats(struct net_device * dev)2326 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2327 {
2328 	struct fec_enet_private *fep = netdev_priv(dev);
2329 	int i;
2330 
2331 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2332 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2333 }
2334 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2335 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2336 				       struct ethtool_stats *stats, u64 *data)
2337 {
2338 	struct fec_enet_private *fep = netdev_priv(dev);
2339 
2340 	if (netif_running(dev))
2341 		fec_enet_update_ethtool_stats(dev);
2342 
2343 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2344 }
2345 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2346 static void fec_enet_get_strings(struct net_device *netdev,
2347 	u32 stringset, u8 *data)
2348 {
2349 	int i;
2350 	switch (stringset) {
2351 	case ETH_SS_STATS:
2352 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2353 			memcpy(data + i * ETH_GSTRING_LEN,
2354 				fec_stats[i].name, ETH_GSTRING_LEN);
2355 		break;
2356 	}
2357 }
2358 
fec_enet_get_sset_count(struct net_device * dev,int sset)2359 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2360 {
2361 	switch (sset) {
2362 	case ETH_SS_STATS:
2363 		return ARRAY_SIZE(fec_stats);
2364 	default:
2365 		return -EOPNOTSUPP;
2366 	}
2367 }
2368 
2369 #else	/* !defined(CONFIG_M5272) */
2370 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)2371 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2372 {
2373 }
2374 
fec_enet_clear_ethtool_stats(struct net_device * dev)2375 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2376 {
2377 }
2378 #endif /* !defined(CONFIG_M5272) */
2379 
fec_enet_nway_reset(struct net_device * dev)2380 static int fec_enet_nway_reset(struct net_device *dev)
2381 {
2382 	struct phy_device *phydev = dev->phydev;
2383 
2384 	if (!phydev)
2385 		return -ENODEV;
2386 
2387 	return genphy_restart_aneg(phydev);
2388 }
2389 
2390 /* ITR clock source is enet system clock (clk_ahb).
2391  * TCTT unit is cycle_ns * 64 cycle
2392  * So, the ICTT value = X us / (cycle_ns * 64)
2393  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2394 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2395 {
2396 	struct fec_enet_private *fep = netdev_priv(ndev);
2397 
2398 	return us * (fep->itr_clk_rate / 64000) / 1000;
2399 }
2400 
2401 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2402 static void fec_enet_itr_coal_set(struct net_device *ndev)
2403 {
2404 	struct fec_enet_private *fep = netdev_priv(ndev);
2405 	int rx_itr, tx_itr;
2406 
2407 	/* Must be greater than zero to avoid unpredictable behavior */
2408 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2409 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2410 		return;
2411 
2412 	/* Select enet system clock as Interrupt Coalescing
2413 	 * timer Clock Source
2414 	 */
2415 	rx_itr = FEC_ITR_CLK_SEL;
2416 	tx_itr = FEC_ITR_CLK_SEL;
2417 
2418 	/* set ICFT and ICTT */
2419 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2420 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2421 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2422 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2423 
2424 	rx_itr |= FEC_ITR_EN;
2425 	tx_itr |= FEC_ITR_EN;
2426 
2427 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2428 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2429 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2430 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2431 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2432 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2433 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2434 	}
2435 }
2436 
2437 static int
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2438 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2439 {
2440 	struct fec_enet_private *fep = netdev_priv(ndev);
2441 
2442 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2443 		return -EOPNOTSUPP;
2444 
2445 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2446 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2447 
2448 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2449 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2450 
2451 	return 0;
2452 }
2453 
2454 static int
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2455 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2456 {
2457 	struct fec_enet_private *fep = netdev_priv(ndev);
2458 	unsigned int cycle;
2459 
2460 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2461 		return -EOPNOTSUPP;
2462 
2463 	if (ec->rx_max_coalesced_frames > 255) {
2464 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2465 		return -EINVAL;
2466 	}
2467 
2468 	if (ec->tx_max_coalesced_frames > 255) {
2469 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2470 		return -EINVAL;
2471 	}
2472 
2473 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2474 	if (cycle > 0xFFFF) {
2475 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2476 		return -EINVAL;
2477 	}
2478 
2479 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2480 	if (cycle > 0xFFFF) {
2481 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2482 		return -EINVAL;
2483 	}
2484 
2485 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2486 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2487 
2488 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2489 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2490 
2491 	fec_enet_itr_coal_set(ndev);
2492 
2493 	return 0;
2494 }
2495 
fec_enet_itr_coal_init(struct net_device * ndev)2496 static void fec_enet_itr_coal_init(struct net_device *ndev)
2497 {
2498 	struct ethtool_coalesce ec;
2499 
2500 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2501 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2502 
2503 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2504 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2505 
2506 	fec_enet_set_coalesce(ndev, &ec);
2507 }
2508 
fec_enet_get_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,void * data)2509 static int fec_enet_get_tunable(struct net_device *netdev,
2510 				const struct ethtool_tunable *tuna,
2511 				void *data)
2512 {
2513 	struct fec_enet_private *fep = netdev_priv(netdev);
2514 	int ret = 0;
2515 
2516 	switch (tuna->id) {
2517 	case ETHTOOL_RX_COPYBREAK:
2518 		*(u32 *)data = fep->rx_copybreak;
2519 		break;
2520 	default:
2521 		ret = -EINVAL;
2522 		break;
2523 	}
2524 
2525 	return ret;
2526 }
2527 
fec_enet_set_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,const void * data)2528 static int fec_enet_set_tunable(struct net_device *netdev,
2529 				const struct ethtool_tunable *tuna,
2530 				const void *data)
2531 {
2532 	struct fec_enet_private *fep = netdev_priv(netdev);
2533 	int ret = 0;
2534 
2535 	switch (tuna->id) {
2536 	case ETHTOOL_RX_COPYBREAK:
2537 		fep->rx_copybreak = *(u32 *)data;
2538 		break;
2539 	default:
2540 		ret = -EINVAL;
2541 		break;
2542 	}
2543 
2544 	return ret;
2545 }
2546 
2547 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2548 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2549 {
2550 	struct fec_enet_private *fep = netdev_priv(ndev);
2551 
2552 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2553 		wol->supported = WAKE_MAGIC;
2554 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2555 	} else {
2556 		wol->supported = wol->wolopts = 0;
2557 	}
2558 }
2559 
2560 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2561 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2562 {
2563 	struct fec_enet_private *fep = netdev_priv(ndev);
2564 
2565 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2566 		return -EINVAL;
2567 
2568 	if (wol->wolopts & ~WAKE_MAGIC)
2569 		return -EINVAL;
2570 
2571 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2572 	if (device_may_wakeup(&ndev->dev)) {
2573 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2574 		if (fep->irq[0] > 0)
2575 			enable_irq_wake(fep->irq[0]);
2576 	} else {
2577 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2578 		if (fep->irq[0] > 0)
2579 			disable_irq_wake(fep->irq[0]);
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static const struct ethtool_ops fec_enet_ethtool_ops = {
2586 	.get_drvinfo		= fec_enet_get_drvinfo,
2587 	.get_regs_len		= fec_enet_get_regs_len,
2588 	.get_regs		= fec_enet_get_regs,
2589 	.nway_reset		= fec_enet_nway_reset,
2590 	.get_link		= ethtool_op_get_link,
2591 	.get_coalesce		= fec_enet_get_coalesce,
2592 	.set_coalesce		= fec_enet_set_coalesce,
2593 #ifndef CONFIG_M5272
2594 	.get_pauseparam		= fec_enet_get_pauseparam,
2595 	.set_pauseparam		= fec_enet_set_pauseparam,
2596 	.get_strings		= fec_enet_get_strings,
2597 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2598 	.get_sset_count		= fec_enet_get_sset_count,
2599 #endif
2600 	.get_ts_info		= fec_enet_get_ts_info,
2601 	.get_tunable		= fec_enet_get_tunable,
2602 	.set_tunable		= fec_enet_set_tunable,
2603 	.get_wol		= fec_enet_get_wol,
2604 	.set_wol		= fec_enet_set_wol,
2605 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2606 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2607 };
2608 
fec_enet_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2609 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2610 {
2611 	struct fec_enet_private *fep = netdev_priv(ndev);
2612 	struct phy_device *phydev = ndev->phydev;
2613 
2614 	if (!netif_running(ndev))
2615 		return -EINVAL;
2616 
2617 	if (!phydev)
2618 		return -ENODEV;
2619 
2620 	if (fep->bufdesc_ex) {
2621 		if (cmd == SIOCSHWTSTAMP)
2622 			return fec_ptp_set(ndev, rq);
2623 		if (cmd == SIOCGHWTSTAMP)
2624 			return fec_ptp_get(ndev, rq);
2625 	}
2626 
2627 	return phy_mii_ioctl(phydev, rq, cmd);
2628 }
2629 
fec_enet_free_buffers(struct net_device * ndev)2630 static void fec_enet_free_buffers(struct net_device *ndev)
2631 {
2632 	struct fec_enet_private *fep = netdev_priv(ndev);
2633 	unsigned int i;
2634 	struct sk_buff *skb;
2635 	struct bufdesc	*bdp;
2636 	struct fec_enet_priv_tx_q *txq;
2637 	struct fec_enet_priv_rx_q *rxq;
2638 	unsigned int q;
2639 
2640 	for (q = 0; q < fep->num_rx_queues; q++) {
2641 		rxq = fep->rx_queue[q];
2642 		bdp = rxq->bd.base;
2643 		for (i = 0; i < rxq->bd.ring_size; i++) {
2644 			skb = rxq->rx_skbuff[i];
2645 			rxq->rx_skbuff[i] = NULL;
2646 			if (skb) {
2647 				dma_unmap_single(&fep->pdev->dev,
2648 						 fec32_to_cpu(bdp->cbd_bufaddr),
2649 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2650 						 DMA_FROM_DEVICE);
2651 				dev_kfree_skb(skb);
2652 			}
2653 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2654 		}
2655 	}
2656 
2657 	for (q = 0; q < fep->num_tx_queues; q++) {
2658 		txq = fep->tx_queue[q];
2659 		bdp = txq->bd.base;
2660 		for (i = 0; i < txq->bd.ring_size; i++) {
2661 			kfree(txq->tx_bounce[i]);
2662 			txq->tx_bounce[i] = NULL;
2663 			skb = txq->tx_skbuff[i];
2664 			txq->tx_skbuff[i] = NULL;
2665 			dev_kfree_skb(skb);
2666 		}
2667 	}
2668 }
2669 
fec_enet_free_queue(struct net_device * ndev)2670 static void fec_enet_free_queue(struct net_device *ndev)
2671 {
2672 	struct fec_enet_private *fep = netdev_priv(ndev);
2673 	int i;
2674 	struct fec_enet_priv_tx_q *txq;
2675 
2676 	for (i = 0; i < fep->num_tx_queues; i++)
2677 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2678 			txq = fep->tx_queue[i];
2679 			dma_free_coherent(NULL,
2680 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2681 					  txq->tso_hdrs,
2682 					  txq->tso_hdrs_dma);
2683 		}
2684 
2685 	for (i = 0; i < fep->num_rx_queues; i++)
2686 		kfree(fep->rx_queue[i]);
2687 	for (i = 0; i < fep->num_tx_queues; i++)
2688 		kfree(fep->tx_queue[i]);
2689 }
2690 
fec_enet_alloc_queue(struct net_device * ndev)2691 static int fec_enet_alloc_queue(struct net_device *ndev)
2692 {
2693 	struct fec_enet_private *fep = netdev_priv(ndev);
2694 	int i;
2695 	int ret = 0;
2696 	struct fec_enet_priv_tx_q *txq;
2697 
2698 	for (i = 0; i < fep->num_tx_queues; i++) {
2699 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2700 		if (!txq) {
2701 			ret = -ENOMEM;
2702 			goto alloc_failed;
2703 		}
2704 
2705 		fep->tx_queue[i] = txq;
2706 		txq->bd.ring_size = TX_RING_SIZE;
2707 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2708 
2709 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2710 		txq->tx_wake_threshold =
2711 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2712 
2713 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2714 					txq->bd.ring_size * TSO_HEADER_SIZE,
2715 					&txq->tso_hdrs_dma,
2716 					GFP_KERNEL);
2717 		if (!txq->tso_hdrs) {
2718 			ret = -ENOMEM;
2719 			goto alloc_failed;
2720 		}
2721 	}
2722 
2723 	for (i = 0; i < fep->num_rx_queues; i++) {
2724 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2725 					   GFP_KERNEL);
2726 		if (!fep->rx_queue[i]) {
2727 			ret = -ENOMEM;
2728 			goto alloc_failed;
2729 		}
2730 
2731 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2732 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2733 	}
2734 	return ret;
2735 
2736 alloc_failed:
2737 	fec_enet_free_queue(ndev);
2738 	return ret;
2739 }
2740 
2741 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)2742 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2743 {
2744 	struct fec_enet_private *fep = netdev_priv(ndev);
2745 	unsigned int i;
2746 	struct sk_buff *skb;
2747 	struct bufdesc	*bdp;
2748 	struct fec_enet_priv_rx_q *rxq;
2749 
2750 	rxq = fep->rx_queue[queue];
2751 	bdp = rxq->bd.base;
2752 	for (i = 0; i < rxq->bd.ring_size; i++) {
2753 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2754 		if (!skb)
2755 			goto err_alloc;
2756 
2757 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2758 			dev_kfree_skb(skb);
2759 			goto err_alloc;
2760 		}
2761 
2762 		rxq->rx_skbuff[i] = skb;
2763 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2764 
2765 		if (fep->bufdesc_ex) {
2766 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2767 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2768 		}
2769 
2770 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2771 	}
2772 
2773 	/* Set the last buffer to wrap. */
2774 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2775 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2776 	return 0;
2777 
2778  err_alloc:
2779 	fec_enet_free_buffers(ndev);
2780 	return -ENOMEM;
2781 }
2782 
2783 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)2784 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2785 {
2786 	struct fec_enet_private *fep = netdev_priv(ndev);
2787 	unsigned int i;
2788 	struct bufdesc  *bdp;
2789 	struct fec_enet_priv_tx_q *txq;
2790 
2791 	txq = fep->tx_queue[queue];
2792 	bdp = txq->bd.base;
2793 	for (i = 0; i < txq->bd.ring_size; i++) {
2794 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2795 		if (!txq->tx_bounce[i])
2796 			goto err_alloc;
2797 
2798 		bdp->cbd_sc = cpu_to_fec16(0);
2799 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2800 
2801 		if (fep->bufdesc_ex) {
2802 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2803 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2804 		}
2805 
2806 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2807 	}
2808 
2809 	/* Set the last buffer to wrap. */
2810 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2811 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2812 
2813 	return 0;
2814 
2815  err_alloc:
2816 	fec_enet_free_buffers(ndev);
2817 	return -ENOMEM;
2818 }
2819 
fec_enet_alloc_buffers(struct net_device * ndev)2820 static int fec_enet_alloc_buffers(struct net_device *ndev)
2821 {
2822 	struct fec_enet_private *fep = netdev_priv(ndev);
2823 	unsigned int i;
2824 
2825 	for (i = 0; i < fep->num_rx_queues; i++)
2826 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2827 			return -ENOMEM;
2828 
2829 	for (i = 0; i < fep->num_tx_queues; i++)
2830 		if (fec_enet_alloc_txq_buffers(ndev, i))
2831 			return -ENOMEM;
2832 	return 0;
2833 }
2834 
2835 static int
fec_enet_open(struct net_device * ndev)2836 fec_enet_open(struct net_device *ndev)
2837 {
2838 	struct fec_enet_private *fep = netdev_priv(ndev);
2839 	int ret;
2840 
2841 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2842 	if (ret < 0)
2843 		return ret;
2844 
2845 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2846 	ret = fec_enet_clk_enable(ndev, true);
2847 	if (ret)
2848 		goto clk_enable;
2849 
2850 	/* I should reset the ring buffers here, but I don't yet know
2851 	 * a simple way to do that.
2852 	 */
2853 
2854 	ret = fec_enet_alloc_buffers(ndev);
2855 	if (ret)
2856 		goto err_enet_alloc;
2857 
2858 	/* Init MAC prior to mii bus probe */
2859 	fec_restart(ndev);
2860 
2861 	/* Probe and connect to PHY when open the interface */
2862 	ret = fec_enet_mii_probe(ndev);
2863 	if (ret)
2864 		goto err_enet_mii_probe;
2865 
2866 	if (fep->quirks & FEC_QUIRK_ERR006687)
2867 		imx6q_cpuidle_fec_irqs_used();
2868 
2869 	napi_enable(&fep->napi);
2870 	phy_start(ndev->phydev);
2871 	netif_tx_start_all_queues(ndev);
2872 
2873 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2874 				 FEC_WOL_FLAG_ENABLE);
2875 
2876 	return 0;
2877 
2878 err_enet_mii_probe:
2879 	fec_enet_free_buffers(ndev);
2880 err_enet_alloc:
2881 	fec_enet_clk_enable(ndev, false);
2882 clk_enable:
2883 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2884 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2885 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2886 	return ret;
2887 }
2888 
2889 static int
fec_enet_close(struct net_device * ndev)2890 fec_enet_close(struct net_device *ndev)
2891 {
2892 	struct fec_enet_private *fep = netdev_priv(ndev);
2893 
2894 	phy_stop(ndev->phydev);
2895 
2896 	if (netif_device_present(ndev)) {
2897 		napi_disable(&fep->napi);
2898 		netif_tx_disable(ndev);
2899 		fec_stop(ndev);
2900 	}
2901 
2902 	phy_disconnect(ndev->phydev);
2903 
2904 	if (fep->quirks & FEC_QUIRK_ERR006687)
2905 		imx6q_cpuidle_fec_irqs_unused();
2906 
2907 	fec_enet_update_ethtool_stats(ndev);
2908 
2909 	fec_enet_clk_enable(ndev, false);
2910 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2911 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2912 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2913 
2914 	fec_enet_free_buffers(ndev);
2915 
2916 	return 0;
2917 }
2918 
2919 /* Set or clear the multicast filter for this adaptor.
2920  * Skeleton taken from sunlance driver.
2921  * The CPM Ethernet implementation allows Multicast as well as individual
2922  * MAC address filtering.  Some of the drivers check to make sure it is
2923  * a group multicast address, and discard those that are not.  I guess I
2924  * will do the same for now, but just remove the test if you want
2925  * individual filtering as well (do the upper net layers want or support
2926  * this kind of feature?).
2927  */
2928 
2929 #define FEC_HASH_BITS	6		/* #bits in hash */
2930 #define CRC32_POLY	0xEDB88320
2931 
set_multicast_list(struct net_device * ndev)2932 static void set_multicast_list(struct net_device *ndev)
2933 {
2934 	struct fec_enet_private *fep = netdev_priv(ndev);
2935 	struct netdev_hw_addr *ha;
2936 	unsigned int i, bit, data, crc, tmp;
2937 	unsigned char hash;
2938 	unsigned int hash_high = 0, hash_low = 0;
2939 
2940 	if (ndev->flags & IFF_PROMISC) {
2941 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2942 		tmp |= 0x8;
2943 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2944 		return;
2945 	}
2946 
2947 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2948 	tmp &= ~0x8;
2949 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2950 
2951 	if (ndev->flags & IFF_ALLMULTI) {
2952 		/* Catch all multicast addresses, so set the
2953 		 * filter to all 1's
2954 		 */
2955 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2956 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2957 
2958 		return;
2959 	}
2960 
2961 	/* Add the addresses in hash register */
2962 	netdev_for_each_mc_addr(ha, ndev) {
2963 		/* calculate crc32 value of mac address */
2964 		crc = 0xffffffff;
2965 
2966 		for (i = 0; i < ndev->addr_len; i++) {
2967 			data = ha->addr[i];
2968 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2969 				crc = (crc >> 1) ^
2970 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2971 			}
2972 		}
2973 
2974 		/* only upper 6 bits (FEC_HASH_BITS) are used
2975 		 * which point to specific bit in he hash registers
2976 		 */
2977 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2978 
2979 		if (hash > 31)
2980 			hash_high |= 1 << (hash - 32);
2981 		else
2982 			hash_low |= 1 << hash;
2983 	}
2984 
2985 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2986 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2987 }
2988 
2989 /* Set a MAC change in hardware. */
2990 static int
fec_set_mac_address(struct net_device * ndev,void * p)2991 fec_set_mac_address(struct net_device *ndev, void *p)
2992 {
2993 	struct fec_enet_private *fep = netdev_priv(ndev);
2994 	struct sockaddr *addr = p;
2995 
2996 	if (addr) {
2997 		if (!is_valid_ether_addr(addr->sa_data))
2998 			return -EADDRNOTAVAIL;
2999 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3000 	}
3001 
3002 	/* Add netif status check here to avoid system hang in below case:
3003 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3004 	 * After ethx down, fec all clocks are gated off and then register
3005 	 * access causes system hang.
3006 	 */
3007 	if (!netif_running(ndev))
3008 		return 0;
3009 
3010 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3011 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3012 		fep->hwp + FEC_ADDR_LOW);
3013 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3014 		fep->hwp + FEC_ADDR_HIGH);
3015 	return 0;
3016 }
3017 
3018 #ifdef CONFIG_NET_POLL_CONTROLLER
3019 /**
3020  * fec_poll_controller - FEC Poll controller function
3021  * @dev: The FEC network adapter
3022  *
3023  * Polled functionality used by netconsole and others in non interrupt mode
3024  *
3025  */
fec_poll_controller(struct net_device * dev)3026 static void fec_poll_controller(struct net_device *dev)
3027 {
3028 	int i;
3029 	struct fec_enet_private *fep = netdev_priv(dev);
3030 
3031 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3032 		if (fep->irq[i] > 0) {
3033 			disable_irq(fep->irq[i]);
3034 			fec_enet_interrupt(fep->irq[i], dev);
3035 			enable_irq(fep->irq[i]);
3036 		}
3037 	}
3038 }
3039 #endif
3040 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3041 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3042 	netdev_features_t features)
3043 {
3044 	struct fec_enet_private *fep = netdev_priv(netdev);
3045 	netdev_features_t changed = features ^ netdev->features;
3046 
3047 	netdev->features = features;
3048 
3049 	/* Receive checksum has been changed */
3050 	if (changed & NETIF_F_RXCSUM) {
3051 		if (features & NETIF_F_RXCSUM)
3052 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3053 		else
3054 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3055 	}
3056 }
3057 
fec_set_features(struct net_device * netdev,netdev_features_t features)3058 static int fec_set_features(struct net_device *netdev,
3059 	netdev_features_t features)
3060 {
3061 	struct fec_enet_private *fep = netdev_priv(netdev);
3062 	netdev_features_t changed = features ^ netdev->features;
3063 
3064 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3065 		napi_disable(&fep->napi);
3066 		netif_tx_lock_bh(netdev);
3067 		fec_stop(netdev);
3068 		fec_enet_set_netdev_features(netdev, features);
3069 		fec_restart(netdev);
3070 		netif_tx_wake_all_queues(netdev);
3071 		netif_tx_unlock_bh(netdev);
3072 		napi_enable(&fep->napi);
3073 	} else {
3074 		fec_enet_set_netdev_features(netdev, features);
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 static const struct net_device_ops fec_netdev_ops = {
3081 	.ndo_open		= fec_enet_open,
3082 	.ndo_stop		= fec_enet_close,
3083 	.ndo_start_xmit		= fec_enet_start_xmit,
3084 	.ndo_set_rx_mode	= set_multicast_list,
3085 	.ndo_change_mtu		= eth_change_mtu,
3086 	.ndo_validate_addr	= eth_validate_addr,
3087 	.ndo_tx_timeout		= fec_timeout,
3088 	.ndo_set_mac_address	= fec_set_mac_address,
3089 	.ndo_do_ioctl		= fec_enet_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091 	.ndo_poll_controller	= fec_poll_controller,
3092 #endif
3093 	.ndo_set_features	= fec_set_features,
3094 };
3095 
3096 static const unsigned short offset_des_active_rxq[] = {
3097 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3098 };
3099 
3100 static const unsigned short offset_des_active_txq[] = {
3101 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3102 };
3103 
3104  /*
3105   * XXX:  We need to clean up on failure exits here.
3106   *
3107   */
fec_enet_init(struct net_device * ndev)3108 static int fec_enet_init(struct net_device *ndev)
3109 {
3110 	struct fec_enet_private *fep = netdev_priv(ndev);
3111 	struct bufdesc *cbd_base;
3112 	dma_addr_t bd_dma;
3113 	int bd_size;
3114 	unsigned int i;
3115 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3116 			sizeof(struct bufdesc);
3117 	unsigned dsize_log2 = __fls(dsize);
3118 
3119 	WARN_ON(dsize != (1 << dsize_log2));
3120 #if defined(CONFIG_ARM)
3121 	fep->rx_align = 0xf;
3122 	fep->tx_align = 0xf;
3123 #else
3124 	fep->rx_align = 0x3;
3125 	fep->tx_align = 0x3;
3126 #endif
3127 
3128 	fec_enet_alloc_queue(ndev);
3129 
3130 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3131 
3132 	/* Allocate memory for buffer descriptors. */
3133 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3134 				       GFP_KERNEL);
3135 	if (!cbd_base) {
3136 		return -ENOMEM;
3137 	}
3138 
3139 	memset(cbd_base, 0, bd_size);
3140 
3141 	/* Get the Ethernet address */
3142 	fec_get_mac(ndev);
3143 	/* make sure MAC we just acquired is programmed into the hw */
3144 	fec_set_mac_address(ndev, NULL);
3145 
3146 	/* Set receive and transmit descriptor base. */
3147 	for (i = 0; i < fep->num_rx_queues; i++) {
3148 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3149 		unsigned size = dsize * rxq->bd.ring_size;
3150 
3151 		rxq->bd.qid = i;
3152 		rxq->bd.base = cbd_base;
3153 		rxq->bd.cur = cbd_base;
3154 		rxq->bd.dma = bd_dma;
3155 		rxq->bd.dsize = dsize;
3156 		rxq->bd.dsize_log2 = dsize_log2;
3157 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3158 		bd_dma += size;
3159 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3160 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3161 	}
3162 
3163 	for (i = 0; i < fep->num_tx_queues; i++) {
3164 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3165 		unsigned size = dsize * txq->bd.ring_size;
3166 
3167 		txq->bd.qid = i;
3168 		txq->bd.base = cbd_base;
3169 		txq->bd.cur = cbd_base;
3170 		txq->bd.dma = bd_dma;
3171 		txq->bd.dsize = dsize;
3172 		txq->bd.dsize_log2 = dsize_log2;
3173 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3174 		bd_dma += size;
3175 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3176 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3177 	}
3178 
3179 
3180 	/* The FEC Ethernet specific entries in the device structure */
3181 	ndev->watchdog_timeo = TX_TIMEOUT;
3182 	ndev->netdev_ops = &fec_netdev_ops;
3183 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3184 
3185 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3186 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3187 
3188 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3189 		/* enable hw VLAN support */
3190 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3191 
3192 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3193 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3194 
3195 		/* enable hw accelerator */
3196 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3197 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3198 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3199 	}
3200 
3201 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3202 		fep->tx_align = 0;
3203 		fep->rx_align = 0x3f;
3204 	}
3205 
3206 	ndev->hw_features = ndev->features;
3207 
3208 	fec_restart(ndev);
3209 
3210 	fec_enet_update_ethtool_stats(ndev);
3211 
3212 	return 0;
3213 }
3214 
3215 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)3216 static int fec_reset_phy(struct platform_device *pdev)
3217 {
3218 	int err, phy_reset;
3219 	bool active_high = false;
3220 	int msec = 1;
3221 	struct device_node *np = pdev->dev.of_node;
3222 
3223 	if (!np)
3224 		return 0;
3225 
3226 	of_property_read_u32(np, "phy-reset-duration", &msec);
3227 	/* A sane reset duration should not be longer than 1s */
3228 	if (msec > 1000)
3229 		msec = 1;
3230 
3231 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3232 	if (phy_reset == -EPROBE_DEFER)
3233 		return phy_reset;
3234 	else if (!gpio_is_valid(phy_reset))
3235 		return 0;
3236 
3237 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3238 
3239 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3240 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3241 			"phy-reset");
3242 	if (err) {
3243 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3244 		return err;
3245 	}
3246 
3247 	if (msec > 20)
3248 		msleep(msec);
3249 	else
3250 		usleep_range(msec * 1000, msec * 1000 + 1000);
3251 
3252 	gpio_set_value_cansleep(phy_reset, !active_high);
3253 
3254 	return 0;
3255 }
3256 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)3257 static int fec_reset_phy(struct platform_device *pdev)
3258 {
3259 	/*
3260 	 * In case of platform probe, the reset has been done
3261 	 * by machine code.
3262 	 */
3263 	return 0;
3264 }
3265 #endif /* CONFIG_OF */
3266 
3267 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)3268 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3269 {
3270 	struct device_node *np = pdev->dev.of_node;
3271 
3272 	*num_tx = *num_rx = 1;
3273 
3274 	if (!np || !of_device_is_available(np))
3275 		return;
3276 
3277 	/* parse the num of tx and rx queues */
3278 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3279 
3280 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3281 
3282 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3283 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3284 			 *num_tx);
3285 		*num_tx = 1;
3286 		return;
3287 	}
3288 
3289 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3290 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3291 			 *num_rx);
3292 		*num_rx = 1;
3293 		return;
3294 	}
3295 
3296 }
3297 
3298 static int
fec_probe(struct platform_device * pdev)3299 fec_probe(struct platform_device *pdev)
3300 {
3301 	struct fec_enet_private *fep;
3302 	struct fec_platform_data *pdata;
3303 	struct net_device *ndev;
3304 	int i, irq, ret = 0;
3305 	struct resource *r;
3306 	const struct of_device_id *of_id;
3307 	static int dev_id;
3308 	struct device_node *np = pdev->dev.of_node, *phy_node;
3309 	int num_tx_qs;
3310 	int num_rx_qs;
3311 
3312 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3313 
3314 	/* Init network device */
3315 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3316 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3317 	if (!ndev)
3318 		return -ENOMEM;
3319 
3320 	SET_NETDEV_DEV(ndev, &pdev->dev);
3321 
3322 	/* setup board info structure */
3323 	fep = netdev_priv(ndev);
3324 
3325 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3326 	if (of_id)
3327 		pdev->id_entry = of_id->data;
3328 	fep->quirks = pdev->id_entry->driver_data;
3329 
3330 	fep->netdev = ndev;
3331 	fep->num_rx_queues = num_rx_qs;
3332 	fep->num_tx_queues = num_tx_qs;
3333 
3334 #if !defined(CONFIG_M5272)
3335 	/* default enable pause frame auto negotiation */
3336 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3337 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3338 #endif
3339 
3340 	/* Select default pin state */
3341 	pinctrl_pm_select_default_state(&pdev->dev);
3342 
3343 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3344 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3345 	if (IS_ERR(fep->hwp)) {
3346 		ret = PTR_ERR(fep->hwp);
3347 		goto failed_ioremap;
3348 	}
3349 
3350 	fep->pdev = pdev;
3351 	fep->dev_id = dev_id++;
3352 
3353 	platform_set_drvdata(pdev, ndev);
3354 
3355 	if ((of_machine_is_compatible("fsl,imx6q") ||
3356 	     of_machine_is_compatible("fsl,imx6dl")) &&
3357 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3358 		fep->quirks |= FEC_QUIRK_ERR006687;
3359 
3360 	if (of_get_property(np, "fsl,magic-packet", NULL))
3361 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3362 
3363 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3364 	if (!phy_node && of_phy_is_fixed_link(np)) {
3365 		ret = of_phy_register_fixed_link(np);
3366 		if (ret < 0) {
3367 			dev_err(&pdev->dev,
3368 				"broken fixed-link specification\n");
3369 			goto failed_phy;
3370 		}
3371 		phy_node = of_node_get(np);
3372 	}
3373 	fep->phy_node = phy_node;
3374 
3375 	ret = of_get_phy_mode(pdev->dev.of_node);
3376 	if (ret < 0) {
3377 		pdata = dev_get_platdata(&pdev->dev);
3378 		if (pdata)
3379 			fep->phy_interface = pdata->phy;
3380 		else
3381 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3382 	} else {
3383 		fep->phy_interface = ret;
3384 	}
3385 
3386 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3387 	if (IS_ERR(fep->clk_ipg)) {
3388 		ret = PTR_ERR(fep->clk_ipg);
3389 		goto failed_clk;
3390 	}
3391 
3392 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3393 	if (IS_ERR(fep->clk_ahb)) {
3394 		ret = PTR_ERR(fep->clk_ahb);
3395 		goto failed_clk;
3396 	}
3397 
3398 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3399 
3400 	/* enet_out is optional, depends on board */
3401 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3402 	if (IS_ERR(fep->clk_enet_out))
3403 		fep->clk_enet_out = NULL;
3404 
3405 	fep->ptp_clk_on = false;
3406 	mutex_init(&fep->ptp_clk_mutex);
3407 
3408 	/* clk_ref is optional, depends on board */
3409 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3410 	if (IS_ERR(fep->clk_ref))
3411 		fep->clk_ref = NULL;
3412 
3413 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3414 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3415 	if (IS_ERR(fep->clk_ptp)) {
3416 		fep->clk_ptp = NULL;
3417 		fep->bufdesc_ex = false;
3418 	}
3419 
3420 	ret = fec_enet_clk_enable(ndev, true);
3421 	if (ret)
3422 		goto failed_clk;
3423 
3424 	ret = clk_prepare_enable(fep->clk_ipg);
3425 	if (ret)
3426 		goto failed_clk_ipg;
3427 
3428 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3429 	if (!IS_ERR(fep->reg_phy)) {
3430 		ret = regulator_enable(fep->reg_phy);
3431 		if (ret) {
3432 			dev_err(&pdev->dev,
3433 				"Failed to enable phy regulator: %d\n", ret);
3434 			clk_disable_unprepare(fep->clk_ipg);
3435 			goto failed_regulator;
3436 		}
3437 	} else {
3438 		fep->reg_phy = NULL;
3439 	}
3440 
3441 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3442 	pm_runtime_use_autosuspend(&pdev->dev);
3443 	pm_runtime_get_noresume(&pdev->dev);
3444 	pm_runtime_set_active(&pdev->dev);
3445 	pm_runtime_enable(&pdev->dev);
3446 
3447 	ret = fec_reset_phy(pdev);
3448 	if (ret)
3449 		goto failed_reset;
3450 
3451 	if (fep->bufdesc_ex)
3452 		fec_ptp_init(pdev);
3453 
3454 	ret = fec_enet_init(ndev);
3455 	if (ret)
3456 		goto failed_init;
3457 
3458 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3459 		irq = platform_get_irq(pdev, i);
3460 		if (irq < 0) {
3461 			if (i)
3462 				break;
3463 			ret = irq;
3464 			goto failed_irq;
3465 		}
3466 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3467 				       0, pdev->name, ndev);
3468 		if (ret)
3469 			goto failed_irq;
3470 
3471 		fep->irq[i] = irq;
3472 	}
3473 
3474 	init_completion(&fep->mdio_done);
3475 	ret = fec_enet_mii_init(pdev);
3476 	if (ret)
3477 		goto failed_mii_init;
3478 
3479 	/* Carrier starts down, phylib will bring it up */
3480 	netif_carrier_off(ndev);
3481 	fec_enet_clk_enable(ndev, false);
3482 	pinctrl_pm_select_sleep_state(&pdev->dev);
3483 
3484 	ret = register_netdev(ndev);
3485 	if (ret)
3486 		goto failed_register;
3487 
3488 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3489 			   FEC_WOL_HAS_MAGIC_PACKET);
3490 
3491 	if (fep->bufdesc_ex && fep->ptp_clock)
3492 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3493 
3494 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3495 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3496 
3497 	pm_runtime_mark_last_busy(&pdev->dev);
3498 	pm_runtime_put_autosuspend(&pdev->dev);
3499 
3500 	return 0;
3501 
3502 failed_register:
3503 	fec_enet_mii_remove(fep);
3504 failed_mii_init:
3505 failed_irq:
3506 failed_init:
3507 	fec_ptp_stop(pdev);
3508 	if (fep->reg_phy)
3509 		regulator_disable(fep->reg_phy);
3510 failed_reset:
3511 	pm_runtime_put(&pdev->dev);
3512 	pm_runtime_disable(&pdev->dev);
3513 failed_regulator:
3514 failed_clk_ipg:
3515 	fec_enet_clk_enable(ndev, false);
3516 failed_clk:
3517 	if (of_phy_is_fixed_link(np))
3518 		of_phy_deregister_fixed_link(np);
3519 failed_phy:
3520 	of_node_put(phy_node);
3521 failed_ioremap:
3522 	free_netdev(ndev);
3523 
3524 	return ret;
3525 }
3526 
3527 static int
fec_drv_remove(struct platform_device * pdev)3528 fec_drv_remove(struct platform_device *pdev)
3529 {
3530 	struct net_device *ndev = platform_get_drvdata(pdev);
3531 	struct fec_enet_private *fep = netdev_priv(ndev);
3532 	struct device_node *np = pdev->dev.of_node;
3533 
3534 	cancel_work_sync(&fep->tx_timeout_work);
3535 	fec_ptp_stop(pdev);
3536 	unregister_netdev(ndev);
3537 	fec_enet_mii_remove(fep);
3538 	if (fep->reg_phy)
3539 		regulator_disable(fep->reg_phy);
3540 	pm_runtime_put(&pdev->dev);
3541 	pm_runtime_disable(&pdev->dev);
3542 	if (of_phy_is_fixed_link(np))
3543 		of_phy_deregister_fixed_link(np);
3544 	of_node_put(fep->phy_node);
3545 	free_netdev(ndev);
3546 
3547 	return 0;
3548 }
3549 
fec_suspend(struct device * dev)3550 static int __maybe_unused fec_suspend(struct device *dev)
3551 {
3552 	struct net_device *ndev = dev_get_drvdata(dev);
3553 	struct fec_enet_private *fep = netdev_priv(ndev);
3554 
3555 	rtnl_lock();
3556 	if (netif_running(ndev)) {
3557 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3558 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3559 		phy_stop(ndev->phydev);
3560 		napi_disable(&fep->napi);
3561 		netif_tx_lock_bh(ndev);
3562 		netif_device_detach(ndev);
3563 		netif_tx_unlock_bh(ndev);
3564 		fec_stop(ndev);
3565 		fec_enet_clk_enable(ndev, false);
3566 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3567 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3568 	}
3569 	rtnl_unlock();
3570 
3571 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3572 		regulator_disable(fep->reg_phy);
3573 
3574 	/* SOC supply clock to phy, when clock is disabled, phy link down
3575 	 * SOC control phy regulator, when regulator is disabled, phy link down
3576 	 */
3577 	if (fep->clk_enet_out || fep->reg_phy)
3578 		fep->link = 0;
3579 
3580 	return 0;
3581 }
3582 
fec_resume(struct device * dev)3583 static int __maybe_unused fec_resume(struct device *dev)
3584 {
3585 	struct net_device *ndev = dev_get_drvdata(dev);
3586 	struct fec_enet_private *fep = netdev_priv(ndev);
3587 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3588 	int ret;
3589 	int val;
3590 
3591 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3592 		ret = regulator_enable(fep->reg_phy);
3593 		if (ret)
3594 			return ret;
3595 	}
3596 
3597 	rtnl_lock();
3598 	if (netif_running(ndev)) {
3599 		ret = fec_enet_clk_enable(ndev, true);
3600 		if (ret) {
3601 			rtnl_unlock();
3602 			goto failed_clk;
3603 		}
3604 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3605 			if (pdata && pdata->sleep_mode_enable)
3606 				pdata->sleep_mode_enable(false);
3607 			val = readl(fep->hwp + FEC_ECNTRL);
3608 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3609 			writel(val, fep->hwp + FEC_ECNTRL);
3610 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3611 		} else {
3612 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3613 		}
3614 		fec_restart(ndev);
3615 		netif_tx_lock_bh(ndev);
3616 		netif_device_attach(ndev);
3617 		netif_tx_unlock_bh(ndev);
3618 		napi_enable(&fep->napi);
3619 		phy_start(ndev->phydev);
3620 	}
3621 	rtnl_unlock();
3622 
3623 	return 0;
3624 
3625 failed_clk:
3626 	if (fep->reg_phy)
3627 		regulator_disable(fep->reg_phy);
3628 	return ret;
3629 }
3630 
fec_runtime_suspend(struct device * dev)3631 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3632 {
3633 	struct net_device *ndev = dev_get_drvdata(dev);
3634 	struct fec_enet_private *fep = netdev_priv(ndev);
3635 
3636 	clk_disable_unprepare(fep->clk_ipg);
3637 
3638 	return 0;
3639 }
3640 
fec_runtime_resume(struct device * dev)3641 static int __maybe_unused fec_runtime_resume(struct device *dev)
3642 {
3643 	struct net_device *ndev = dev_get_drvdata(dev);
3644 	struct fec_enet_private *fep = netdev_priv(ndev);
3645 
3646 	return clk_prepare_enable(fep->clk_ipg);
3647 }
3648 
3649 static const struct dev_pm_ops fec_pm_ops = {
3650 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3651 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3652 };
3653 
3654 static struct platform_driver fec_driver = {
3655 	.driver	= {
3656 		.name	= DRIVER_NAME,
3657 		.pm	= &fec_pm_ops,
3658 		.of_match_table = fec_dt_ids,
3659 	},
3660 	.id_table = fec_devtype,
3661 	.probe	= fec_probe,
3662 	.remove	= fec_drv_remove,
3663 };
3664 
3665 module_platform_driver(fec_driver);
3666 
3667 MODULE_ALIAS("platform:"DRIVER_NAME);
3668 MODULE_LICENSE("GPL");
3669