• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This code is derived from the VIA reference driver (copyright message
3  * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4  * addition to the Linux kernel.
5  *
6  * The code has been merged into one source file, cleaned up to follow
7  * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8  * for 64bit hardware platforms.
9  *
10  * TODO
11  *	rx_copybreak/alignment
12  *	More testing
13  *
14  * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15  * Additional fixes and clean up: Francois Romieu
16  *
17  * This source has not been verified for use in safety critical systems.
18  *
19  * Please direct queries about the revamped driver to the linux-kernel
20  * list not VIA.
21  *
22  * Original code:
23  *
24  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25  * All rights reserved.
26  *
27  * This software may be redistributed and/or modified under
28  * the terms of the GNU General Public License as published by the Free
29  * Software Foundation; either version 2 of the License, or
30  * any later version.
31  *
32  * This program is distributed in the hope that it will be useful, but
33  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35  * for more details.
36  *
37  * Author: Chuang Liang-Shing, AJ Jiang
38  *
39  * Date: Jan 24, 2003
40  *
41  * MODULE_LICENSE("GPL");
42  *
43  */
44 
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84 
85 #include "via-velocity.h"
86 
87 enum velocity_bus_type {
88 	BUS_PCI,
89 	BUS_PLATFORM,
90 };
91 
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94 
velocity_set_power_state(struct velocity_info * vptr,char state)95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 	void *addr = vptr->mac_regs;
98 
99 	if (vptr->pdev)
100 		pci_set_power_state(vptr->pdev, state);
101 	else
102 		writeb(state, addr + 0x154);
103 }
104 
105 /**
106  *	mac_get_cam_mask	-	Read a CAM mask
107  *	@regs: register block for this velocity
108  *	@mask: buffer to store mask
109  *
110  *	Fetch the mask bits of the selected CAM and store them into the
111  *	provided mask buffer.
112  */
mac_get_cam_mask(struct mac_regs __iomem * regs,u8 * mask)113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 	int i;
116 
117 	/* Select CAM mask */
118 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 
120 	writeb(0, &regs->CAMADDR);
121 
122 	/* read mask */
123 	for (i = 0; i < 8; i++)
124 		*mask++ = readb(&(regs->MARCAM[i]));
125 
126 	/* disable CAMEN */
127 	writeb(0, &regs->CAMADDR);
128 
129 	/* Select mar */
130 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132 
133 /**
134  *	mac_set_cam_mask	-	Set a CAM mask
135  *	@regs: register block for this velocity
136  *	@mask: CAM mask to load
137  *
138  *	Store a new mask into a CAM
139  */
mac_set_cam_mask(struct mac_regs __iomem * regs,u8 * mask)140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 	int i;
143 	/* Select CAM mask */
144 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145 
146 	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147 
148 	for (i = 0; i < 8; i++)
149 		writeb(*mask++, &(regs->MARCAM[i]));
150 
151 	/* disable CAMEN */
152 	writeb(0, &regs->CAMADDR);
153 
154 	/* Select mar */
155 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157 
mac_set_vlan_cam_mask(struct mac_regs __iomem * regs,u8 * mask)158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 	int i;
161 	/* Select CAM mask */
162 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 
164 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165 
166 	for (i = 0; i < 8; i++)
167 		writeb(*mask++, &(regs->MARCAM[i]));
168 
169 	/* disable CAMEN */
170 	writeb(0, &regs->CAMADDR);
171 
172 	/* Select mar */
173 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175 
176 /**
177  *	mac_set_cam	-	set CAM data
178  *	@regs: register block of this velocity
179  *	@idx: Cam index
180  *	@addr: 2 or 6 bytes of CAM data
181  *
182  *	Load an address or vlan tag into a CAM
183  */
mac_set_cam(struct mac_regs __iomem * regs,int idx,const u8 * addr)184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 	int i;
187 
188 	/* Select CAM mask */
189 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190 
191 	idx &= (64 - 1);
192 
193 	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194 
195 	for (i = 0; i < 6; i++)
196 		writeb(*addr++, &(regs->MARCAM[i]));
197 
198 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199 
200 	udelay(10);
201 
202 	writeb(0, &regs->CAMADDR);
203 
204 	/* Select mar */
205 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207 
mac_set_vlan_cam(struct mac_regs __iomem * regs,int idx,const u8 * addr)208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 			     const u8 *addr)
210 {
211 
212 	/* Select CAM mask */
213 	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214 
215 	idx &= (64 - 1);
216 
217 	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 	writew(*((u16 *) addr), &regs->MARCAM[0]);
219 
220 	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221 
222 	udelay(10);
223 
224 	writeb(0, &regs->CAMADDR);
225 
226 	/* Select mar */
227 	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229 
230 
231 /**
232  *	mac_wol_reset	-	reset WOL after exiting low power
233  *	@regs: register block of this velocity
234  *
235  *	Called after we drop out of wake on lan mode in order to
236  *	reset the Wake on lan features. This function doesn't restore
237  *	the rest of the logic from the result of sleep/wakeup
238  */
mac_wol_reset(struct mac_regs __iomem * regs)239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241 
242 	/* Turn off SWPTAG right after leaving power mode */
243 	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 	/* clear sticky bits */
245 	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246 
247 	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 	/* disable force PME-enable */
250 	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 	/* disable power-event config bit */
252 	writew(0xFFFF, &regs->WOLCRClr);
253 	/* clear power status */
254 	writew(0xFFFF, &regs->WOLSRClr);
255 }
256 
257 static const struct ethtool_ops velocity_ethtool_ops;
258 
259 /*
260     Define module options
261 */
262 
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266 
267 #define VELOCITY_PARAM(N, D) \
268 	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 	module_param_array(N, int, NULL, 0); \
270 	MODULE_PARM_DESC(N, D);
271 
272 #define RX_DESC_MIN     64
273 #define RX_DESC_MAX     255
274 #define RX_DESC_DEF     64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276 
277 #define TX_DESC_MIN     16
278 #define TX_DESC_MAX     256
279 #define TX_DESC_DEF     64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281 
282 #define RX_THRESH_MIN   0
283 #define RX_THRESH_MAX   3
284 #define RX_THRESH_DEF   0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286    0: indicate the rxfifo threshold is 128 bytes.
287    1: indicate the rxfifo threshold is 512 bytes.
288    2: indicate the rxfifo threshold is 1024 bytes.
289    3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292 
293 #define DMA_LENGTH_MIN  0
294 #define DMA_LENGTH_MAX  7
295 #define DMA_LENGTH_DEF  6
296 
297 /* DMA_length[] is used for controlling the DMA length
298    0: 8 DWORDs
299    1: 16 DWORDs
300    2: 32 DWORDs
301    3: 64 DWORDs
302    4: 128 DWORDs
303    5: 256 DWORDs
304    6: SF(flush till emply)
305    7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308 
309 #define IP_ALIG_DEF     0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311    0: indicate the IP header won't be DWORD byte aligned.(Default) .
312    1: indicate the IP header will be DWORD byte aligned.
313       In some environment, the IP header should be DWORD byte aligned,
314       or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317 
318 #define FLOW_CNTL_DEF   1
319 #define FLOW_CNTL_MIN   1
320 #define FLOW_CNTL_MAX   5
321 
322 /* flow_control[] is used for setting the flow control ability of NIC.
323    1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324    2: enable TX flow control.
325    3: enable RX flow control.
326    4: enable RX/TX flow control.
327    5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330 
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335    0: indicate autonegotiation for both speed and duplex mode
336    1: indicate 100Mbps half duplex mode
337    2: indicate 100Mbps full duplex mode
338    3: indicate 10Mbps half duplex mode
339    4: indicate 10Mbps full duplex mode
340    5: indicate 1000Mbps full duplex mode
341 
342    Note:
343    if EEPROM have been set to the force mode, this option is ignored
344    by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347 
348 #define WOL_OPT_DEF     0
349 #define WOL_OPT_MIN     0
350 #define WOL_OPT_MAX     7
351 /* wol_opts[] is used for controlling wake on lan behavior.
352    0: Wake up if recevied a magic packet. (Default)
353    1: Wake up if link status is on/off.
354    2: Wake up if recevied an arp packet.
355    4: Wake up if recevied any unicast packet.
356    Those value can be sumed up to support more than one option.
357 */
358 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
359 
360 static int rx_copybreak = 200;
361 module_param(rx_copybreak, int, 0644);
362 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
363 
364 /*
365  *	Internal board variants. At the moment we have only one
366  */
367 static struct velocity_info_tbl chip_info_table[] = {
368 	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
369 	{ }
370 };
371 
372 /*
373  *	Describe the PCI device identifiers that we support in this
374  *	device driver. Used for hotplug autoloading.
375  */
376 
377 static const struct pci_device_id velocity_pci_id_table[] = {
378 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
379 	{ }
380 };
381 
382 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
383 
384 /**
385  *	Describe the OF device identifiers that we support in this
386  *	device driver. Used for devicetree nodes.
387  */
388 static const struct of_device_id velocity_of_ids[] = {
389 	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
390 	{ /* Sentinel */ },
391 };
392 MODULE_DEVICE_TABLE(of, velocity_of_ids);
393 
394 /**
395  *	get_chip_name	- 	identifier to name
396  *	@id: chip identifier
397  *
398  *	Given a chip identifier return a suitable description. Returns
399  *	a pointer a static string valid while the driver is loaded.
400  */
get_chip_name(enum chip_type chip_id)401 static const char *get_chip_name(enum chip_type chip_id)
402 {
403 	int i;
404 	for (i = 0; chip_info_table[i].name != NULL; i++)
405 		if (chip_info_table[i].chip_id == chip_id)
406 			break;
407 	return chip_info_table[i].name;
408 }
409 
410 /**
411  *	velocity_set_int_opt	-	parser for integer options
412  *	@opt: pointer to option value
413  *	@val: value the user requested (or -1 for default)
414  *	@min: lowest value allowed
415  *	@max: highest value allowed
416  *	@def: default value
417  *	@name: property name
418  *	@dev: device name
419  *
420  *	Set an integer property in the module options. This function does
421  *	all the verification and checking as well as reporting so that
422  *	we don't duplicate code for each option.
423  */
velocity_set_int_opt(int * opt,int val,int min,int max,int def,char * name,const char * devname)424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 				 char *name, const char *devname)
426 {
427 	if (val == -1)
428 		*opt = def;
429 	else if (val < min || val > max) {
430 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 					devname, name, min, max);
432 		*opt = def;
433 	} else {
434 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 					devname, name, val);
436 		*opt = val;
437 	}
438 }
439 
440 /**
441  *	velocity_set_bool_opt	-	parser for boolean options
442  *	@opt: pointer to option value
443  *	@val: value the user requested (or -1 for default)
444  *	@def: default value (yes/no)
445  *	@flag: numeric value to set for true.
446  *	@name: property name
447  *	@dev: device name
448  *
449  *	Set a boolean property in the module options. This function does
450  *	all the verification and checking as well as reporting so that
451  *	we don't duplicate code for each option.
452  */
velocity_set_bool_opt(u32 * opt,int val,int def,u32 flag,char * name,const char * devname)453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 				  char *name, const char *devname)
455 {
456 	(*opt) &= (~flag);
457 	if (val == -1)
458 		*opt |= (def ? flag : 0);
459 	else if (val < 0 || val > 1) {
460 		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 			devname, name);
462 		*opt |= (def ? flag : 0);
463 	} else {
464 		printk(KERN_INFO "%s: set parameter %s to %s\n",
465 			devname, name, val ? "TRUE" : "FALSE");
466 		*opt |= (val ? flag : 0);
467 	}
468 }
469 
470 /**
471  *	velocity_get_options	-	set options on device
472  *	@opts: option structure for the device
473  *	@index: index of option to use in module options array
474  *	@devname: device name
475  *
476  *	Turn the module and command options into a single structure
477  *	for the current device
478  */
velocity_get_options(struct velocity_opt * opts,int index,const char * devname)479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 				 const char *devname)
481 {
482 
483 	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487 
488 	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
491 	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
492 	opts->numrx = (opts->numrx & ~3);
493 }
494 
495 /**
496  *	velocity_init_cam_filter	-	initialise CAM
497  *	@vptr: velocity to program
498  *
499  *	Initialize the content addressable memory used for filters. Load
500  *	appropriately according to the presence of VLAN
501  */
velocity_init_cam_filter(struct velocity_info * vptr)502 static void velocity_init_cam_filter(struct velocity_info *vptr)
503 {
504 	struct mac_regs __iomem *regs = vptr->mac_regs;
505 	unsigned int vid, i = 0;
506 
507 	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
508 	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
509 	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
510 
511 	/* Disable all CAMs */
512 	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
513 	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
514 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
515 	mac_set_cam_mask(regs, vptr->mCAMmask);
516 
517 	/* Enable VCAMs */
518 	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
519 		mac_set_vlan_cam(regs, i, (u8 *) &vid);
520 		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
521 		if (++i >= VCAM_SIZE)
522 			break;
523 	}
524 	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
525 }
526 
velocity_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)527 static int velocity_vlan_rx_add_vid(struct net_device *dev,
528 				    __be16 proto, u16 vid)
529 {
530 	struct velocity_info *vptr = netdev_priv(dev);
531 
532 	spin_lock_irq(&vptr->lock);
533 	set_bit(vid, vptr->active_vlans);
534 	velocity_init_cam_filter(vptr);
535 	spin_unlock_irq(&vptr->lock);
536 	return 0;
537 }
538 
velocity_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)539 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
540 				     __be16 proto, u16 vid)
541 {
542 	struct velocity_info *vptr = netdev_priv(dev);
543 
544 	spin_lock_irq(&vptr->lock);
545 	clear_bit(vid, vptr->active_vlans);
546 	velocity_init_cam_filter(vptr);
547 	spin_unlock_irq(&vptr->lock);
548 	return 0;
549 }
550 
velocity_init_rx_ring_indexes(struct velocity_info * vptr)551 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
552 {
553 	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
554 }
555 
556 /**
557  *	velocity_rx_reset	-	handle a receive reset
558  *	@vptr: velocity we are resetting
559  *
560  *	Reset the ownership and status for the receive ring side.
561  *	Hand all the receive queue to the NIC.
562  */
velocity_rx_reset(struct velocity_info * vptr)563 static void velocity_rx_reset(struct velocity_info *vptr)
564 {
565 
566 	struct mac_regs __iomem *regs = vptr->mac_regs;
567 	int i;
568 
569 	velocity_init_rx_ring_indexes(vptr);
570 
571 	/*
572 	 *	Init state, all RD entries belong to the NIC
573 	 */
574 	for (i = 0; i < vptr->options.numrx; ++i)
575 		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
576 
577 	writew(vptr->options.numrx, &regs->RBRDU);
578 	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
579 	writew(0, &regs->RDIdx);
580 	writew(vptr->options.numrx - 1, &regs->RDCSize);
581 }
582 
583 /**
584  *	velocity_get_opt_media_mode	-	get media selection
585  *	@vptr: velocity adapter
586  *
587  *	Get the media mode stored in EEPROM or module options and load
588  *	mii_status accordingly. The requested link state information
589  *	is also returned.
590  */
velocity_get_opt_media_mode(struct velocity_info * vptr)591 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
592 {
593 	u32 status = 0;
594 
595 	switch (vptr->options.spd_dpx) {
596 	case SPD_DPX_AUTO:
597 		status = VELOCITY_AUTONEG_ENABLE;
598 		break;
599 	case SPD_DPX_100_FULL:
600 		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
601 		break;
602 	case SPD_DPX_10_FULL:
603 		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
604 		break;
605 	case SPD_DPX_100_HALF:
606 		status = VELOCITY_SPEED_100;
607 		break;
608 	case SPD_DPX_10_HALF:
609 		status = VELOCITY_SPEED_10;
610 		break;
611 	case SPD_DPX_1000_FULL:
612 		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
613 		break;
614 	}
615 	vptr->mii_status = status;
616 	return status;
617 }
618 
619 /**
620  *	safe_disable_mii_autopoll	-	autopoll off
621  *	@regs: velocity registers
622  *
623  *	Turn off the autopoll and wait for it to disable on the chip
624  */
safe_disable_mii_autopoll(struct mac_regs __iomem * regs)625 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
626 {
627 	u16 ww;
628 
629 	/*  turn off MAUTO */
630 	writeb(0, &regs->MIICR);
631 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
632 		udelay(1);
633 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
634 			break;
635 	}
636 }
637 
638 /**
639  *	enable_mii_autopoll	-	turn on autopolling
640  *	@regs: velocity registers
641  *
642  *	Enable the MII link status autopoll feature on the Velocity
643  *	hardware. Wait for it to enable.
644  */
enable_mii_autopoll(struct mac_regs __iomem * regs)645 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
646 {
647 	int ii;
648 
649 	writeb(0, &(regs->MIICR));
650 	writeb(MIIADR_SWMPL, &regs->MIIADR);
651 
652 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
653 		udelay(1);
654 		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
655 			break;
656 	}
657 
658 	writeb(MIICR_MAUTO, &regs->MIICR);
659 
660 	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 		udelay(1);
662 		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 			break;
664 	}
665 
666 }
667 
668 /**
669  *	velocity_mii_read	-	read MII data
670  *	@regs: velocity registers
671  *	@index: MII register index
672  *	@data: buffer for received data
673  *
674  *	Perform a single read of an MII 16bit register. Returns zero
675  *	on success or -ETIMEDOUT if the PHY did not respond.
676  */
velocity_mii_read(struct mac_regs __iomem * regs,u8 index,u16 * data)677 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
678 {
679 	u16 ww;
680 
681 	/*
682 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
683 	 */
684 	safe_disable_mii_autopoll(regs);
685 
686 	writeb(index, &regs->MIIADR);
687 
688 	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
689 
690 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
691 		if (!(readb(&regs->MIICR) & MIICR_RCMD))
692 			break;
693 	}
694 
695 	*data = readw(&regs->MIIDATA);
696 
697 	enable_mii_autopoll(regs);
698 	if (ww == W_MAX_TIMEOUT)
699 		return -ETIMEDOUT;
700 	return 0;
701 }
702 
703 /**
704  *	mii_check_media_mode	-	check media state
705  *	@regs: velocity registers
706  *
707  *	Check the current MII status and determine the link status
708  *	accordingly
709  */
mii_check_media_mode(struct mac_regs __iomem * regs)710 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
711 {
712 	u32 status = 0;
713 	u16 ANAR;
714 
715 	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
716 		status |= VELOCITY_LINK_FAIL;
717 
718 	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
719 		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
720 	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
721 		status |= (VELOCITY_SPEED_1000);
722 	else {
723 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
724 		if (ANAR & ADVERTISE_100FULL)
725 			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
726 		else if (ANAR & ADVERTISE_100HALF)
727 			status |= VELOCITY_SPEED_100;
728 		else if (ANAR & ADVERTISE_10FULL)
729 			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
730 		else
731 			status |= (VELOCITY_SPEED_10);
732 	}
733 
734 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
735 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
736 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
737 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
738 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
739 				status |= VELOCITY_AUTONEG_ENABLE;
740 		}
741 	}
742 
743 	return status;
744 }
745 
746 /**
747  *	velocity_mii_write	-	write MII data
748  *	@regs: velocity registers
749  *	@index: MII register index
750  *	@data: 16bit data for the MII register
751  *
752  *	Perform a single write to an MII 16bit register. Returns zero
753  *	on success or -ETIMEDOUT if the PHY did not respond.
754  */
velocity_mii_write(struct mac_regs __iomem * regs,u8 mii_addr,u16 data)755 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
756 {
757 	u16 ww;
758 
759 	/*
760 	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
761 	 */
762 	safe_disable_mii_autopoll(regs);
763 
764 	/* MII reg offset */
765 	writeb(mii_addr, &regs->MIIADR);
766 	/* set MII data */
767 	writew(data, &regs->MIIDATA);
768 
769 	/* turn on MIICR_WCMD */
770 	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
771 
772 	/* W_MAX_TIMEOUT is the timeout period */
773 	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
774 		udelay(5);
775 		if (!(readb(&regs->MIICR) & MIICR_WCMD))
776 			break;
777 	}
778 	enable_mii_autopoll(regs);
779 
780 	if (ww == W_MAX_TIMEOUT)
781 		return -ETIMEDOUT;
782 	return 0;
783 }
784 
785 /**
786  *	set_mii_flow_control	-	flow control setup
787  *	@vptr: velocity interface
788  *
789  *	Set up the flow control on this interface according to
790  *	the supplied user/eeprom options.
791  */
set_mii_flow_control(struct velocity_info * vptr)792 static void set_mii_flow_control(struct velocity_info *vptr)
793 {
794 	/*Enable or Disable PAUSE in ANAR */
795 	switch (vptr->options.flow_cntl) {
796 	case FLOW_CNTL_TX:
797 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
798 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
799 		break;
800 
801 	case FLOW_CNTL_RX:
802 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
803 		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
804 		break;
805 
806 	case FLOW_CNTL_TX_RX:
807 		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
808 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
809 		break;
810 
811 	case FLOW_CNTL_DISABLE:
812 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
813 		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
814 		break;
815 	default:
816 		break;
817 	}
818 }
819 
820 /**
821  *	mii_set_auto_on		-	autonegotiate on
822  *	@vptr: velocity
823  *
824  *	Enable autonegotation on this interface
825  */
mii_set_auto_on(struct velocity_info * vptr)826 static void mii_set_auto_on(struct velocity_info *vptr)
827 {
828 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
829 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
830 	else
831 		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
832 }
833 
check_connection_type(struct mac_regs __iomem * regs)834 static u32 check_connection_type(struct mac_regs __iomem *regs)
835 {
836 	u32 status = 0;
837 	u8 PHYSR0;
838 	u16 ANAR;
839 	PHYSR0 = readb(&regs->PHYSR0);
840 
841 	/*
842 	   if (!(PHYSR0 & PHYSR0_LINKGD))
843 	   status|=VELOCITY_LINK_FAIL;
844 	 */
845 
846 	if (PHYSR0 & PHYSR0_FDPX)
847 		status |= VELOCITY_DUPLEX_FULL;
848 
849 	if (PHYSR0 & PHYSR0_SPDG)
850 		status |= VELOCITY_SPEED_1000;
851 	else if (PHYSR0 & PHYSR0_SPD10)
852 		status |= VELOCITY_SPEED_10;
853 	else
854 		status |= VELOCITY_SPEED_100;
855 
856 	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
857 		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
858 		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
859 		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
860 			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
861 				status |= VELOCITY_AUTONEG_ENABLE;
862 		}
863 	}
864 
865 	return status;
866 }
867 
868 /**
869  *	velocity_set_media_mode		-	set media mode
870  *	@mii_status: old MII link state
871  *
872  *	Check the media link state and configure the flow control
873  *	PHY and also velocity hardware setup accordingly. In particular
874  *	we need to set up CD polling and frame bursting.
875  */
velocity_set_media_mode(struct velocity_info * vptr,u32 mii_status)876 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
877 {
878 	u32 curr_status;
879 	struct mac_regs __iomem *regs = vptr->mac_regs;
880 
881 	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
882 	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
883 
884 	/* Set mii link status */
885 	set_mii_flow_control(vptr);
886 
887 	/*
888 	   Check if new status is consistent with current status
889 	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
890 	       (mii_status==curr_status)) {
891 	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
892 	   vptr->mii_status=check_connection_type(vptr->mac_regs);
893 	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
894 	   return 0;
895 	   }
896 	 */
897 
898 	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
899 		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
900 
901 	/*
902 	 *	If connection type is AUTO
903 	 */
904 	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
905 		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
906 		/* clear force MAC mode bit */
907 		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
908 		/* set duplex mode of MAC according to duplex mode of MII */
909 		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
910 		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
911 		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
912 
913 		/* enable AUTO-NEGO mode */
914 		mii_set_auto_on(vptr);
915 	} else {
916 		u16 CTRL1000;
917 		u16 ANAR;
918 		u8 CHIPGCR;
919 
920 		/*
921 		 * 1. if it's 3119, disable frame bursting in halfduplex mode
922 		 *    and enable it in fullduplex mode
923 		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
924 		 * 3. only enable CD heart beat counter in 10HD mode
925 		 */
926 
927 		/* set force MAC mode bit */
928 		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
929 
930 		CHIPGCR = readb(&regs->CHIPGCR);
931 
932 		if (mii_status & VELOCITY_SPEED_1000)
933 			CHIPGCR |= CHIPGCR_FCGMII;
934 		else
935 			CHIPGCR &= ~CHIPGCR_FCGMII;
936 
937 		if (mii_status & VELOCITY_DUPLEX_FULL) {
938 			CHIPGCR |= CHIPGCR_FCFDX;
939 			writeb(CHIPGCR, &regs->CHIPGCR);
940 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
941 			if (vptr->rev_id < REV_ID_VT3216_A0)
942 				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
943 		} else {
944 			CHIPGCR &= ~CHIPGCR_FCFDX;
945 			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
946 			writeb(CHIPGCR, &regs->CHIPGCR);
947 			if (vptr->rev_id < REV_ID_VT3216_A0)
948 				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
949 		}
950 
951 		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
952 		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
953 		if ((mii_status & VELOCITY_SPEED_1000) &&
954 		    (mii_status & VELOCITY_DUPLEX_FULL)) {
955 			CTRL1000 |= ADVERTISE_1000FULL;
956 		}
957 		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
958 
959 		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
960 			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
961 		else
962 			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
963 
964 		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
965 		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
966 		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
967 		if (mii_status & VELOCITY_SPEED_100) {
968 			if (mii_status & VELOCITY_DUPLEX_FULL)
969 				ANAR |= ADVERTISE_100FULL;
970 			else
971 				ANAR |= ADVERTISE_100HALF;
972 		} else if (mii_status & VELOCITY_SPEED_10) {
973 			if (mii_status & VELOCITY_DUPLEX_FULL)
974 				ANAR |= ADVERTISE_10FULL;
975 			else
976 				ANAR |= ADVERTISE_10HALF;
977 		}
978 		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
979 		/* enable AUTO-NEGO mode */
980 		mii_set_auto_on(vptr);
981 		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
982 	}
983 	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
984 	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
985 	return VELOCITY_LINK_CHANGE;
986 }
987 
988 /**
989  *	velocity_print_link_status	-	link status reporting
990  *	@vptr: velocity to report on
991  *
992  *	Turn the link status of the velocity card into a kernel log
993  *	description of the new link state, detailing speed and duplex
994  *	status
995  */
velocity_print_link_status(struct velocity_info * vptr)996 static void velocity_print_link_status(struct velocity_info *vptr)
997 {
998 
999 	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1000 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1001 	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1002 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1003 
1004 		if (vptr->mii_status & VELOCITY_SPEED_1000)
1005 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1006 		else if (vptr->mii_status & VELOCITY_SPEED_100)
1007 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1008 		else
1009 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1010 
1011 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1012 			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1013 		else
1014 			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1015 	} else {
1016 		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1017 		switch (vptr->options.spd_dpx) {
1018 		case SPD_DPX_1000_FULL:
1019 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1020 			break;
1021 		case SPD_DPX_100_HALF:
1022 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1023 			break;
1024 		case SPD_DPX_100_FULL:
1025 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1026 			break;
1027 		case SPD_DPX_10_HALF:
1028 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1029 			break;
1030 		case SPD_DPX_10_FULL:
1031 			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1032 			break;
1033 		default:
1034 			break;
1035 		}
1036 	}
1037 }
1038 
1039 /**
1040  *	enable_flow_control_ability	-	flow control
1041  *	@vptr: veloity to configure
1042  *
1043  *	Set up flow control according to the flow control options
1044  *	determined by the eeprom/configuration.
1045  */
enable_flow_control_ability(struct velocity_info * vptr)1046 static void enable_flow_control_ability(struct velocity_info *vptr)
1047 {
1048 
1049 	struct mac_regs __iomem *regs = vptr->mac_regs;
1050 
1051 	switch (vptr->options.flow_cntl) {
1052 
1053 	case FLOW_CNTL_DEFAULT:
1054 		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1055 			writel(CR0_FDXRFCEN, &regs->CR0Set);
1056 		else
1057 			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1058 
1059 		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1060 			writel(CR0_FDXTFCEN, &regs->CR0Set);
1061 		else
1062 			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1063 		break;
1064 
1065 	case FLOW_CNTL_TX:
1066 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1067 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1068 		break;
1069 
1070 	case FLOW_CNTL_RX:
1071 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1072 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1073 		break;
1074 
1075 	case FLOW_CNTL_TX_RX:
1076 		writel(CR0_FDXTFCEN, &regs->CR0Set);
1077 		writel(CR0_FDXRFCEN, &regs->CR0Set);
1078 		break;
1079 
1080 	case FLOW_CNTL_DISABLE:
1081 		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1082 		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1083 		break;
1084 
1085 	default:
1086 		break;
1087 	}
1088 
1089 }
1090 
1091 /**
1092  *	velocity_soft_reset	-	soft reset
1093  *	@vptr: velocity to reset
1094  *
1095  *	Kick off a soft reset of the velocity adapter and then poll
1096  *	until the reset sequence has completed before returning.
1097  */
velocity_soft_reset(struct velocity_info * vptr)1098 static int velocity_soft_reset(struct velocity_info *vptr)
1099 {
1100 	struct mac_regs __iomem *regs = vptr->mac_regs;
1101 	int i = 0;
1102 
1103 	writel(CR0_SFRST, &regs->CR0Set);
1104 
1105 	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1106 		udelay(5);
1107 		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1108 			break;
1109 	}
1110 
1111 	if (i == W_MAX_TIMEOUT) {
1112 		writel(CR0_FORSRST, &regs->CR0Set);
1113 		/* FIXME: PCI POSTING */
1114 		/* delay 2ms */
1115 		mdelay(2);
1116 	}
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	velocity_set_multi	-	filter list change callback
1122  *	@dev: network device
1123  *
1124  *	Called by the network layer when the filter lists need to change
1125  *	for a velocity adapter. Reload the CAMs with the new address
1126  *	filter ruleset.
1127  */
velocity_set_multi(struct net_device * dev)1128 static void velocity_set_multi(struct net_device *dev)
1129 {
1130 	struct velocity_info *vptr = netdev_priv(dev);
1131 	struct mac_regs __iomem *regs = vptr->mac_regs;
1132 	u8 rx_mode;
1133 	int i;
1134 	struct netdev_hw_addr *ha;
1135 
1136 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1137 		writel(0xffffffff, &regs->MARCAM[0]);
1138 		writel(0xffffffff, &regs->MARCAM[4]);
1139 		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1140 	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1141 		   (dev->flags & IFF_ALLMULTI)) {
1142 		writel(0xffffffff, &regs->MARCAM[0]);
1143 		writel(0xffffffff, &regs->MARCAM[4]);
1144 		rx_mode = (RCR_AM | RCR_AB);
1145 	} else {
1146 		int offset = MCAM_SIZE - vptr->multicast_limit;
1147 		mac_get_cam_mask(regs, vptr->mCAMmask);
1148 
1149 		i = 0;
1150 		netdev_for_each_mc_addr(ha, dev) {
1151 			mac_set_cam(regs, i + offset, ha->addr);
1152 			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1153 			i++;
1154 		}
1155 
1156 		mac_set_cam_mask(regs, vptr->mCAMmask);
1157 		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1158 	}
1159 	if (dev->mtu > 1500)
1160 		rx_mode |= RCR_AL;
1161 
1162 	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163 
1164 }
1165 
1166 /*
1167  * MII access , media link mode setting functions
1168  */
1169 
1170 /**
1171  *	mii_init	-	set up MII
1172  *	@vptr: velocity adapter
1173  *	@mii_status:  links tatus
1174  *
1175  *	Set up the PHY for the current link state.
1176  */
mii_init(struct velocity_info * vptr,u32 mii_status)1177 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1178 {
1179 	u16 BMCR;
1180 
1181 	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1182 	case PHYID_ICPLUS_IP101A:
1183 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1184 						MII_ADVERTISE, vptr->mac_regs);
1185 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1187 								vptr->mac_regs);
1188 		else
1189 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1190 								vptr->mac_regs);
1191 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1192 		break;
1193 	case PHYID_CICADA_CS8201:
1194 		/*
1195 		 *	Reset to hardware default
1196 		 */
1197 		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1198 		/*
1199 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1200 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1201 		 *	legacy-forced issue.
1202 		 */
1203 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1204 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1205 		else
1206 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207 		/*
1208 		 *	Turn on Link/Activity LED enable bit for CIS8201
1209 		 */
1210 		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1211 		break;
1212 	case PHYID_VT3216_32BIT:
1213 	case PHYID_VT3216_64BIT:
1214 		/*
1215 		 *	Reset to hardware default
1216 		 */
1217 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1218 		/*
1219 		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1220 		 *	off it in NWay-forced half mode for NWay-forced v.s.
1221 		 *	legacy-forced issue
1222 		 */
1223 		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1224 			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1225 		else
1226 			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227 		break;
1228 
1229 	case PHYID_MARVELL_1000:
1230 	case PHYID_MARVELL_1000S:
1231 		/*
1232 		 *	Assert CRS on Transmit
1233 		 */
1234 		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1235 		/*
1236 		 *	Reset to hardware default
1237 		 */
1238 		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1239 		break;
1240 	default:
1241 		;
1242 	}
1243 	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1244 	if (BMCR & BMCR_ISOLATE) {
1245 		BMCR &= ~BMCR_ISOLATE;
1246 		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1247 	}
1248 }
1249 
1250 /**
1251  * setup_queue_timers	-	Setup interrupt timers
1252  *
1253  * Setup interrupt frequency during suppression (timeout if the frame
1254  * count isn't filled).
1255  */
setup_queue_timers(struct velocity_info * vptr)1256 static void setup_queue_timers(struct velocity_info *vptr)
1257 {
1258 	/* Only for newer revisions */
1259 	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1260 		u8 txqueue_timer = 0;
1261 		u8 rxqueue_timer = 0;
1262 
1263 		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1264 				VELOCITY_SPEED_100)) {
1265 			txqueue_timer = vptr->options.txqueue_timer;
1266 			rxqueue_timer = vptr->options.rxqueue_timer;
1267 		}
1268 
1269 		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1270 		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1271 	}
1272 }
1273 
1274 /**
1275  * setup_adaptive_interrupts  -  Setup interrupt suppression
1276  *
1277  * @vptr velocity adapter
1278  *
1279  * The velocity is able to suppress interrupt during high interrupt load.
1280  * This function turns on that feature.
1281  */
setup_adaptive_interrupts(struct velocity_info * vptr)1282 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1283 {
1284 	struct mac_regs __iomem *regs = vptr->mac_regs;
1285 	u16 tx_intsup = vptr->options.tx_intsup;
1286 	u16 rx_intsup = vptr->options.rx_intsup;
1287 
1288 	/* Setup default interrupt mask (will be changed below) */
1289 	vptr->int_mask = INT_MASK_DEF;
1290 
1291 	/* Set Tx Interrupt Suppression Threshold */
1292 	writeb(CAMCR_PS0, &regs->CAMCR);
1293 	if (tx_intsup != 0) {
1294 		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1295 				ISR_PTX2I | ISR_PTX3I);
1296 		writew(tx_intsup, &regs->ISRCTL);
1297 	} else
1298 		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1299 
1300 	/* Set Rx Interrupt Suppression Threshold */
1301 	writeb(CAMCR_PS1, &regs->CAMCR);
1302 	if (rx_intsup != 0) {
1303 		vptr->int_mask &= ~ISR_PRXI;
1304 		writew(rx_intsup, &regs->ISRCTL);
1305 	} else
1306 		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1307 
1308 	/* Select page to interrupt hold timer */
1309 	writeb(0, &regs->CAMCR);
1310 }
1311 
1312 /**
1313  *	velocity_init_registers	-	initialise MAC registers
1314  *	@vptr: velocity to init
1315  *	@type: type of initialisation (hot or cold)
1316  *
1317  *	Initialise the MAC on a reset or on first set up on the
1318  *	hardware.
1319  */
velocity_init_registers(struct velocity_info * vptr,enum velocity_init_type type)1320 static void velocity_init_registers(struct velocity_info *vptr,
1321 				    enum velocity_init_type type)
1322 {
1323 	struct mac_regs __iomem *regs = vptr->mac_regs;
1324 	struct net_device *netdev = vptr->netdev;
1325 	int i, mii_status;
1326 
1327 	mac_wol_reset(regs);
1328 
1329 	switch (type) {
1330 	case VELOCITY_INIT_RESET:
1331 	case VELOCITY_INIT_WOL:
1332 
1333 		netif_stop_queue(netdev);
1334 
1335 		/*
1336 		 *	Reset RX to prevent RX pointer not on the 4X location
1337 		 */
1338 		velocity_rx_reset(vptr);
1339 		mac_rx_queue_run(regs);
1340 		mac_rx_queue_wake(regs);
1341 
1342 		mii_status = velocity_get_opt_media_mode(vptr);
1343 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344 			velocity_print_link_status(vptr);
1345 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346 				netif_wake_queue(netdev);
1347 		}
1348 
1349 		enable_flow_control_ability(vptr);
1350 
1351 		mac_clear_isr(regs);
1352 		writel(CR0_STOP, &regs->CR0Clr);
1353 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354 							&regs->CR0Set);
1355 
1356 		break;
1357 
1358 	case VELOCITY_INIT_COLD:
1359 	default:
1360 		/*
1361 		 *	Do reset
1362 		 */
1363 		velocity_soft_reset(vptr);
1364 		mdelay(5);
1365 
1366 		if (!vptr->no_eeprom) {
1367 			mac_eeprom_reload(regs);
1368 			for (i = 0; i < 6; i++)
1369 				writeb(netdev->dev_addr[i], regs->PAR + i);
1370 		}
1371 
1372 		/*
1373 		 *	clear Pre_ACPI bit.
1374 		 */
1375 		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1376 		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1377 		mac_set_dma_length(regs, vptr->options.DMA_length);
1378 
1379 		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1380 		/*
1381 		 *	Back off algorithm use original IEEE standard
1382 		 */
1383 		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384 
1385 		/*
1386 		 *	Init CAM filter
1387 		 */
1388 		velocity_init_cam_filter(vptr);
1389 
1390 		/*
1391 		 *	Set packet filter: Receive directed and broadcast address
1392 		 */
1393 		velocity_set_multi(netdev);
1394 
1395 		/*
1396 		 *	Enable MII auto-polling
1397 		 */
1398 		enable_mii_autopoll(regs);
1399 
1400 		setup_adaptive_interrupts(vptr);
1401 
1402 		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1403 		writew(vptr->options.numrx - 1, &regs->RDCSize);
1404 		mac_rx_queue_run(regs);
1405 		mac_rx_queue_wake(regs);
1406 
1407 		writew(vptr->options.numtx - 1, &regs->TDCSize);
1408 
1409 		for (i = 0; i < vptr->tx.numq; i++) {
1410 			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1411 			mac_tx_queue_run(regs, i);
1412 		}
1413 
1414 		init_flow_control_register(vptr);
1415 
1416 		writel(CR0_STOP, &regs->CR0Clr);
1417 		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1418 
1419 		mii_status = velocity_get_opt_media_mode(vptr);
1420 		netif_stop_queue(netdev);
1421 
1422 		mii_init(vptr, mii_status);
1423 
1424 		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1425 			velocity_print_link_status(vptr);
1426 			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1427 				netif_wake_queue(netdev);
1428 		}
1429 
1430 		enable_flow_control_ability(vptr);
1431 		mac_hw_mibs_init(regs);
1432 		mac_write_int_mask(vptr->int_mask, regs);
1433 		mac_clear_isr(regs);
1434 
1435 	}
1436 }
1437 
velocity_give_many_rx_descs(struct velocity_info * vptr)1438 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1439 {
1440 	struct mac_regs __iomem *regs = vptr->mac_regs;
1441 	int avail, dirty, unusable;
1442 
1443 	/*
1444 	 * RD number must be equal to 4X per hardware spec
1445 	 * (programming guide rev 1.20, p.13)
1446 	 */
1447 	if (vptr->rx.filled < 4)
1448 		return;
1449 
1450 	wmb();
1451 
1452 	unusable = vptr->rx.filled & 0x0003;
1453 	dirty = vptr->rx.dirty - unusable;
1454 	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1455 		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1456 		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457 	}
1458 
1459 	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1460 	vptr->rx.filled = unusable;
1461 }
1462 
1463 /**
1464  *	velocity_init_dma_rings	-	set up DMA rings
1465  *	@vptr: Velocity to set up
1466  *
1467  *	Allocate PCI mapped DMA rings for the receive and transmit layer
1468  *	to use.
1469  */
velocity_init_dma_rings(struct velocity_info * vptr)1470 static int velocity_init_dma_rings(struct velocity_info *vptr)
1471 {
1472 	struct velocity_opt *opt = &vptr->options;
1473 	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1474 	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1475 	dma_addr_t pool_dma;
1476 	void *pool;
1477 	unsigned int i;
1478 
1479 	/*
1480 	 * Allocate all RD/TD rings a single pool.
1481 	 *
1482 	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1483 	 * alignment
1484 	 */
1485 	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1486 				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1487 	if (!pool) {
1488 		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1489 			vptr->netdev->name);
1490 		return -ENOMEM;
1491 	}
1492 
1493 	vptr->rx.ring = pool;
1494 	vptr->rx.pool_dma = pool_dma;
1495 
1496 	pool += rx_ring_size;
1497 	pool_dma += rx_ring_size;
1498 
1499 	for (i = 0; i < vptr->tx.numq; i++) {
1500 		vptr->tx.rings[i] = pool;
1501 		vptr->tx.pool_dma[i] = pool_dma;
1502 		pool += tx_ring_size;
1503 		pool_dma += tx_ring_size;
1504 	}
1505 
1506 	return 0;
1507 }
1508 
velocity_set_rxbufsize(struct velocity_info * vptr,int mtu)1509 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510 {
1511 	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1512 }
1513 
1514 /**
1515  *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1516  *	@vptr: velocity
1517  *	@idx: ring index
1518  *
1519  *	Allocate a new full sized buffer for the reception of a frame and
1520  *	map it into PCI space for the hardware to use. The hardware
1521  *	requires *64* byte alignment of the buffer which makes life
1522  *	less fun than would be ideal.
1523  */
velocity_alloc_rx_buf(struct velocity_info * vptr,int idx)1524 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525 {
1526 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528 
1529 	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1530 	if (rd_info->skb == NULL)
1531 		return -ENOMEM;
1532 
1533 	/*
1534 	 *	Do the gymnastics to get the buffer head for data at
1535 	 *	64byte alignment.
1536 	 */
1537 	skb_reserve(rd_info->skb,
1538 			64 - ((unsigned long) rd_info->skb->data & 63));
1539 	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1540 					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1541 
1542 	/*
1543 	 *	Fill in the descriptor to match
1544 	 */
1545 
1546 	*((u32 *) & (rd->rdesc0)) = 0;
1547 	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1548 	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1549 	rd->pa_high = 0;
1550 	return 0;
1551 }
1552 
1553 
velocity_rx_refill(struct velocity_info * vptr)1554 static int velocity_rx_refill(struct velocity_info *vptr)
1555 {
1556 	int dirty = vptr->rx.dirty, done = 0;
1557 
1558 	do {
1559 		struct rx_desc *rd = vptr->rx.ring + dirty;
1560 
1561 		/* Fine for an all zero Rx desc at init time as well */
1562 		if (rd->rdesc0.len & OWNED_BY_NIC)
1563 			break;
1564 
1565 		if (!vptr->rx.info[dirty].skb) {
1566 			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1567 				break;
1568 		}
1569 		done++;
1570 		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1571 	} while (dirty != vptr->rx.curr);
1572 
1573 	if (done) {
1574 		vptr->rx.dirty = dirty;
1575 		vptr->rx.filled += done;
1576 	}
1577 
1578 	return done;
1579 }
1580 
1581 /**
1582  *	velocity_free_rd_ring	-	free receive ring
1583  *	@vptr: velocity to clean up
1584  *
1585  *	Free the receive buffers for each ring slot and any
1586  *	attached socket buffers that need to go away.
1587  */
velocity_free_rd_ring(struct velocity_info * vptr)1588 static void velocity_free_rd_ring(struct velocity_info *vptr)
1589 {
1590 	int i;
1591 
1592 	if (vptr->rx.info == NULL)
1593 		return;
1594 
1595 	for (i = 0; i < vptr->options.numrx; i++) {
1596 		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1597 		struct rx_desc *rd = vptr->rx.ring + i;
1598 
1599 		memset(rd, 0, sizeof(*rd));
1600 
1601 		if (!rd_info->skb)
1602 			continue;
1603 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1604 				 DMA_FROM_DEVICE);
1605 		rd_info->skb_dma = 0;
1606 
1607 		dev_kfree_skb(rd_info->skb);
1608 		rd_info->skb = NULL;
1609 	}
1610 
1611 	kfree(vptr->rx.info);
1612 	vptr->rx.info = NULL;
1613 }
1614 
1615 /**
1616  *	velocity_init_rd_ring	-	set up receive ring
1617  *	@vptr: velocity to configure
1618  *
1619  *	Allocate and set up the receive buffers for each ring slot and
1620  *	assign them to the network adapter.
1621  */
velocity_init_rd_ring(struct velocity_info * vptr)1622 static int velocity_init_rd_ring(struct velocity_info *vptr)
1623 {
1624 	int ret = -ENOMEM;
1625 
1626 	vptr->rx.info = kcalloc(vptr->options.numrx,
1627 				sizeof(struct velocity_rd_info), GFP_KERNEL);
1628 	if (!vptr->rx.info)
1629 		goto out;
1630 
1631 	velocity_init_rx_ring_indexes(vptr);
1632 
1633 	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1634 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1635 			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1636 		velocity_free_rd_ring(vptr);
1637 		goto out;
1638 	}
1639 
1640 	ret = 0;
1641 out:
1642 	return ret;
1643 }
1644 
1645 /**
1646  *	velocity_init_td_ring	-	set up transmit ring
1647  *	@vptr:	velocity
1648  *
1649  *	Set up the transmit ring and chain the ring pointers together.
1650  *	Returns zero on success or a negative posix errno code for
1651  *	failure.
1652  */
velocity_init_td_ring(struct velocity_info * vptr)1653 static int velocity_init_td_ring(struct velocity_info *vptr)
1654 {
1655 	int j;
1656 
1657 	/* Init the TD ring entries */
1658 	for (j = 0; j < vptr->tx.numq; j++) {
1659 
1660 		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1661 					    sizeof(struct velocity_td_info),
1662 					    GFP_KERNEL);
1663 		if (!vptr->tx.infos[j])	{
1664 			while (--j >= 0)
1665 				kfree(vptr->tx.infos[j]);
1666 			return -ENOMEM;
1667 		}
1668 
1669 		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1670 	}
1671 	return 0;
1672 }
1673 
1674 /**
1675  *	velocity_free_dma_rings	-	free PCI ring pointers
1676  *	@vptr: Velocity to free from
1677  *
1678  *	Clean up the PCI ring buffers allocated to this velocity.
1679  */
velocity_free_dma_rings(struct velocity_info * vptr)1680 static void velocity_free_dma_rings(struct velocity_info *vptr)
1681 {
1682 	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1683 		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1684 
1685 	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1686 }
1687 
velocity_init_rings(struct velocity_info * vptr,int mtu)1688 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1689 {
1690 	int ret;
1691 
1692 	velocity_set_rxbufsize(vptr, mtu);
1693 
1694 	ret = velocity_init_dma_rings(vptr);
1695 	if (ret < 0)
1696 		goto out;
1697 
1698 	ret = velocity_init_rd_ring(vptr);
1699 	if (ret < 0)
1700 		goto err_free_dma_rings_0;
1701 
1702 	ret = velocity_init_td_ring(vptr);
1703 	if (ret < 0)
1704 		goto err_free_rd_ring_1;
1705 out:
1706 	return ret;
1707 
1708 err_free_rd_ring_1:
1709 	velocity_free_rd_ring(vptr);
1710 err_free_dma_rings_0:
1711 	velocity_free_dma_rings(vptr);
1712 	goto out;
1713 }
1714 
1715 /**
1716  *	velocity_free_tx_buf	-	free transmit buffer
1717  *	@vptr: velocity
1718  *	@tdinfo: buffer
1719  *
1720  *	Release an transmit buffer. If the buffer was preallocated then
1721  *	recycle it, if not then unmap the buffer.
1722  */
velocity_free_tx_buf(struct velocity_info * vptr,struct velocity_td_info * tdinfo,struct tx_desc * td)1723 static void velocity_free_tx_buf(struct velocity_info *vptr,
1724 		struct velocity_td_info *tdinfo, struct tx_desc *td)
1725 {
1726 	struct sk_buff *skb = tdinfo->skb;
1727 	int i;
1728 
1729 	/*
1730 	 *	Don't unmap the pre-allocated tx_bufs
1731 	 */
1732 	for (i = 0; i < tdinfo->nskb_dma; i++) {
1733 		size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1734 
1735 		/* For scatter-gather */
1736 		if (skb_shinfo(skb)->nr_frags > 0)
1737 			pktlen = max_t(size_t, pktlen,
1738 				       td->td_buf[i].size & ~TD_QUEUE);
1739 
1740 		dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1741 				 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1742 	}
1743 	dev_kfree_skb_irq(skb);
1744 	tdinfo->skb = NULL;
1745 }
1746 
1747 /*
1748  *	FIXME: could we merge this with velocity_free_tx_buf ?
1749  */
velocity_free_td_ring_entry(struct velocity_info * vptr,int q,int n)1750 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1751 							 int q, int n)
1752 {
1753 	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1754 	int i;
1755 
1756 	if (td_info == NULL)
1757 		return;
1758 
1759 	if (td_info->skb) {
1760 		for (i = 0; i < td_info->nskb_dma; i++) {
1761 			if (td_info->skb_dma[i]) {
1762 				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1763 					td_info->skb->len, DMA_TO_DEVICE);
1764 				td_info->skb_dma[i] = 0;
1765 			}
1766 		}
1767 		dev_kfree_skb(td_info->skb);
1768 		td_info->skb = NULL;
1769 	}
1770 }
1771 
1772 /**
1773  *	velocity_free_td_ring	-	free td ring
1774  *	@vptr: velocity
1775  *
1776  *	Free up the transmit ring for this particular velocity adapter.
1777  *	We free the ring contents but not the ring itself.
1778  */
velocity_free_td_ring(struct velocity_info * vptr)1779 static void velocity_free_td_ring(struct velocity_info *vptr)
1780 {
1781 	int i, j;
1782 
1783 	for (j = 0; j < vptr->tx.numq; j++) {
1784 		if (vptr->tx.infos[j] == NULL)
1785 			continue;
1786 		for (i = 0; i < vptr->options.numtx; i++)
1787 			velocity_free_td_ring_entry(vptr, j, i);
1788 
1789 		kfree(vptr->tx.infos[j]);
1790 		vptr->tx.infos[j] = NULL;
1791 	}
1792 }
1793 
velocity_free_rings(struct velocity_info * vptr)1794 static void velocity_free_rings(struct velocity_info *vptr)
1795 {
1796 	velocity_free_td_ring(vptr);
1797 	velocity_free_rd_ring(vptr);
1798 	velocity_free_dma_rings(vptr);
1799 }
1800 
1801 /**
1802  *	velocity_error	-	handle error from controller
1803  *	@vptr: velocity
1804  *	@status: card status
1805  *
1806  *	Process an error report from the hardware and attempt to recover
1807  *	the card itself. At the moment we cannot recover from some
1808  *	theoretically impossible errors but this could be fixed using
1809  *	the pci_device_failed logic to bounce the hardware
1810  *
1811  */
velocity_error(struct velocity_info * vptr,int status)1812 static void velocity_error(struct velocity_info *vptr, int status)
1813 {
1814 
1815 	if (status & ISR_TXSTLI) {
1816 		struct mac_regs __iomem *regs = vptr->mac_regs;
1817 
1818 		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1819 		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1820 		writew(TRDCSR_RUN, &regs->TDCSRClr);
1821 		netif_stop_queue(vptr->netdev);
1822 
1823 		/* FIXME: port over the pci_device_failed code and use it
1824 		   here */
1825 	}
1826 
1827 	if (status & ISR_SRCI) {
1828 		struct mac_regs __iomem *regs = vptr->mac_regs;
1829 		int linked;
1830 
1831 		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1832 			vptr->mii_status = check_connection_type(regs);
1833 
1834 			/*
1835 			 *	If it is a 3119, disable frame bursting in
1836 			 *	halfduplex mode and enable it in fullduplex
1837 			 *	 mode
1838 			 */
1839 			if (vptr->rev_id < REV_ID_VT3216_A0) {
1840 				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1841 					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1842 				else
1843 					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1844 			}
1845 			/*
1846 			 *	Only enable CD heart beat counter in 10HD mode
1847 			 */
1848 			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1849 				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1850 			else
1851 				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1852 
1853 			setup_queue_timers(vptr);
1854 		}
1855 		/*
1856 		 *	Get link status from PHYSR0
1857 		 */
1858 		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1859 
1860 		if (linked) {
1861 			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1862 			netif_carrier_on(vptr->netdev);
1863 		} else {
1864 			vptr->mii_status |= VELOCITY_LINK_FAIL;
1865 			netif_carrier_off(vptr->netdev);
1866 		}
1867 
1868 		velocity_print_link_status(vptr);
1869 		enable_flow_control_ability(vptr);
1870 
1871 		/*
1872 		 *	Re-enable auto-polling because SRCI will disable
1873 		 *	auto-polling
1874 		 */
1875 
1876 		enable_mii_autopoll(regs);
1877 
1878 		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1879 			netif_stop_queue(vptr->netdev);
1880 		else
1881 			netif_wake_queue(vptr->netdev);
1882 
1883 	}
1884 	if (status & ISR_MIBFI)
1885 		velocity_update_hw_mibs(vptr);
1886 	if (status & ISR_LSTEI)
1887 		mac_rx_queue_wake(vptr->mac_regs);
1888 }
1889 
1890 /**
1891  *	tx_srv		-	transmit interrupt service
1892  *	@vptr; Velocity
1893  *
1894  *	Scan the queues looking for transmitted packets that
1895  *	we can complete and clean up. Update any statistics as
1896  *	necessary/
1897  */
velocity_tx_srv(struct velocity_info * vptr)1898 static int velocity_tx_srv(struct velocity_info *vptr)
1899 {
1900 	struct tx_desc *td;
1901 	int qnum;
1902 	int full = 0;
1903 	int idx;
1904 	int works = 0;
1905 	struct velocity_td_info *tdinfo;
1906 	struct net_device_stats *stats = &vptr->netdev->stats;
1907 
1908 	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1909 		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1910 			idx = (idx + 1) % vptr->options.numtx) {
1911 
1912 			/*
1913 			 *	Get Tx Descriptor
1914 			 */
1915 			td = &(vptr->tx.rings[qnum][idx]);
1916 			tdinfo = &(vptr->tx.infos[qnum][idx]);
1917 
1918 			if (td->tdesc0.len & OWNED_BY_NIC)
1919 				break;
1920 
1921 			if ((works++ > 15))
1922 				break;
1923 
1924 			if (td->tdesc0.TSR & TSR0_TERR) {
1925 				stats->tx_errors++;
1926 				stats->tx_dropped++;
1927 				if (td->tdesc0.TSR & TSR0_CDH)
1928 					stats->tx_heartbeat_errors++;
1929 				if (td->tdesc0.TSR & TSR0_CRS)
1930 					stats->tx_carrier_errors++;
1931 				if (td->tdesc0.TSR & TSR0_ABT)
1932 					stats->tx_aborted_errors++;
1933 				if (td->tdesc0.TSR & TSR0_OWC)
1934 					stats->tx_window_errors++;
1935 			} else {
1936 				stats->tx_packets++;
1937 				stats->tx_bytes += tdinfo->skb->len;
1938 			}
1939 			velocity_free_tx_buf(vptr, tdinfo, td);
1940 			vptr->tx.used[qnum]--;
1941 		}
1942 		vptr->tx.tail[qnum] = idx;
1943 
1944 		if (AVAIL_TD(vptr, qnum) < 1)
1945 			full = 1;
1946 	}
1947 	/*
1948 	 *	Look to see if we should kick the transmit network
1949 	 *	layer for more work.
1950 	 */
1951 	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1952 	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1953 		netif_wake_queue(vptr->netdev);
1954 	}
1955 	return works;
1956 }
1957 
1958 /**
1959  *	velocity_rx_csum	-	checksum process
1960  *	@rd: receive packet descriptor
1961  *	@skb: network layer packet buffer
1962  *
1963  *	Process the status bits for the received packet and determine
1964  *	if the checksum was computed and verified by the hardware
1965  */
velocity_rx_csum(struct rx_desc * rd,struct sk_buff * skb)1966 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1967 {
1968 	skb_checksum_none_assert(skb);
1969 
1970 	if (rd->rdesc1.CSM & CSM_IPKT) {
1971 		if (rd->rdesc1.CSM & CSM_IPOK) {
1972 			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1973 					(rd->rdesc1.CSM & CSM_UDPKT)) {
1974 				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1975 					return;
1976 			}
1977 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1978 		}
1979 	}
1980 }
1981 
1982 /**
1983  *	velocity_rx_copy	-	in place Rx copy for small packets
1984  *	@rx_skb: network layer packet buffer candidate
1985  *	@pkt_size: received data size
1986  *	@rd: receive packet descriptor
1987  *	@dev: network device
1988  *
1989  *	Replace the current skb that is scheduled for Rx processing by a
1990  *	shorter, immediately allocated skb, if the received packet is small
1991  *	enough. This function returns a negative value if the received
1992  *	packet is too big or if memory is exhausted.
1993  */
velocity_rx_copy(struct sk_buff ** rx_skb,int pkt_size,struct velocity_info * vptr)1994 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1995 			    struct velocity_info *vptr)
1996 {
1997 	int ret = -1;
1998 	if (pkt_size < rx_copybreak) {
1999 		struct sk_buff *new_skb;
2000 
2001 		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2002 		if (new_skb) {
2003 			new_skb->ip_summed = rx_skb[0]->ip_summed;
2004 			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2005 			*rx_skb = new_skb;
2006 			ret = 0;
2007 		}
2008 
2009 	}
2010 	return ret;
2011 }
2012 
2013 /**
2014  *	velocity_iph_realign	-	IP header alignment
2015  *	@vptr: velocity we are handling
2016  *	@skb: network layer packet buffer
2017  *	@pkt_size: received data size
2018  *
2019  *	Align IP header on a 2 bytes boundary. This behavior can be
2020  *	configured by the user.
2021  */
velocity_iph_realign(struct velocity_info * vptr,struct sk_buff * skb,int pkt_size)2022 static inline void velocity_iph_realign(struct velocity_info *vptr,
2023 					struct sk_buff *skb, int pkt_size)
2024 {
2025 	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2026 		memmove(skb->data + 2, skb->data, pkt_size);
2027 		skb_reserve(skb, 2);
2028 	}
2029 }
2030 
2031 /**
2032  *	velocity_receive_frame	-	received packet processor
2033  *	@vptr: velocity we are handling
2034  *	@idx: ring index
2035  *
2036  *	A packet has arrived. We process the packet and if appropriate
2037  *	pass the frame up the network stack
2038  */
velocity_receive_frame(struct velocity_info * vptr,int idx)2039 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2040 {
2041 	struct net_device_stats *stats = &vptr->netdev->stats;
2042 	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2043 	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2044 	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2045 	struct sk_buff *skb;
2046 
2047 	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2048 		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2049 			VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2050 		stats->rx_length_errors++;
2051 		return -EINVAL;
2052 	}
2053 
2054 	if (rd->rdesc0.RSR & RSR_MAR)
2055 		stats->multicast++;
2056 
2057 	skb = rd_info->skb;
2058 
2059 	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2060 				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2061 
2062 	velocity_rx_csum(rd, skb);
2063 
2064 	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2065 		velocity_iph_realign(vptr, skb, pkt_len);
2066 		rd_info->skb = NULL;
2067 		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2068 				 DMA_FROM_DEVICE);
2069 	} else {
2070 		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2071 					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2072 	}
2073 
2074 	skb_put(skb, pkt_len - 4);
2075 	skb->protocol = eth_type_trans(skb, vptr->netdev);
2076 
2077 	if (rd->rdesc0.RSR & RSR_DETAG) {
2078 		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2079 
2080 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2081 	}
2082 	netif_receive_skb(skb);
2083 
2084 	stats->rx_bytes += pkt_len;
2085 	stats->rx_packets++;
2086 
2087 	return 0;
2088 }
2089 
2090 /**
2091  *	velocity_rx_srv		-	service RX interrupt
2092  *	@vptr: velocity
2093  *
2094  *	Walk the receive ring of the velocity adapter and remove
2095  *	any received packets from the receive queue. Hand the ring
2096  *	slots back to the adapter for reuse.
2097  */
velocity_rx_srv(struct velocity_info * vptr,int budget_left)2098 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2099 {
2100 	struct net_device_stats *stats = &vptr->netdev->stats;
2101 	int rd_curr = vptr->rx.curr;
2102 	int works = 0;
2103 
2104 	while (works < budget_left) {
2105 		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2106 
2107 		if (!vptr->rx.info[rd_curr].skb)
2108 			break;
2109 
2110 		if (rd->rdesc0.len & OWNED_BY_NIC)
2111 			break;
2112 
2113 		rmb();
2114 
2115 		/*
2116 		 *	Don't drop CE or RL error frame although RXOK is off
2117 		 */
2118 		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2119 			if (velocity_receive_frame(vptr, rd_curr) < 0)
2120 				stats->rx_dropped++;
2121 		} else {
2122 			if (rd->rdesc0.RSR & RSR_CRC)
2123 				stats->rx_crc_errors++;
2124 			if (rd->rdesc0.RSR & RSR_FAE)
2125 				stats->rx_frame_errors++;
2126 
2127 			stats->rx_dropped++;
2128 		}
2129 
2130 		rd->size |= RX_INTEN;
2131 
2132 		rd_curr++;
2133 		if (rd_curr >= vptr->options.numrx)
2134 			rd_curr = 0;
2135 		works++;
2136 	}
2137 
2138 	vptr->rx.curr = rd_curr;
2139 
2140 	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2141 		velocity_give_many_rx_descs(vptr);
2142 
2143 	VAR_USED(stats);
2144 	return works;
2145 }
2146 
velocity_poll(struct napi_struct * napi,int budget)2147 static int velocity_poll(struct napi_struct *napi, int budget)
2148 {
2149 	struct velocity_info *vptr = container_of(napi,
2150 			struct velocity_info, napi);
2151 	unsigned int rx_done;
2152 	unsigned long flags;
2153 
2154 	/*
2155 	 * Do rx and tx twice for performance (taken from the VIA
2156 	 * out-of-tree driver).
2157 	 */
2158 	rx_done = velocity_rx_srv(vptr, budget);
2159 	spin_lock_irqsave(&vptr->lock, flags);
2160 	velocity_tx_srv(vptr);
2161 	/* If budget not fully consumed, exit the polling mode */
2162 	if (rx_done < budget) {
2163 		napi_complete(napi);
2164 		mac_enable_int(vptr->mac_regs);
2165 	}
2166 	spin_unlock_irqrestore(&vptr->lock, flags);
2167 
2168 	return rx_done;
2169 }
2170 
2171 /**
2172  *	velocity_intr		-	interrupt callback
2173  *	@irq: interrupt number
2174  *	@dev_instance: interrupting device
2175  *
2176  *	Called whenever an interrupt is generated by the velocity
2177  *	adapter IRQ line. We may not be the source of the interrupt
2178  *	and need to identify initially if we are, and if not exit as
2179  *	efficiently as possible.
2180  */
velocity_intr(int irq,void * dev_instance)2181 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2182 {
2183 	struct net_device *dev = dev_instance;
2184 	struct velocity_info *vptr = netdev_priv(dev);
2185 	u32 isr_status;
2186 
2187 	spin_lock(&vptr->lock);
2188 	isr_status = mac_read_isr(vptr->mac_regs);
2189 
2190 	/* Not us ? */
2191 	if (isr_status == 0) {
2192 		spin_unlock(&vptr->lock);
2193 		return IRQ_NONE;
2194 	}
2195 
2196 	/* Ack the interrupt */
2197 	mac_write_isr(vptr->mac_regs, isr_status);
2198 
2199 	if (likely(napi_schedule_prep(&vptr->napi))) {
2200 		mac_disable_int(vptr->mac_regs);
2201 		__napi_schedule(&vptr->napi);
2202 	}
2203 
2204 	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2205 		velocity_error(vptr, isr_status);
2206 
2207 	spin_unlock(&vptr->lock);
2208 
2209 	return IRQ_HANDLED;
2210 }
2211 
2212 /**
2213  *	velocity_open		-	interface activation callback
2214  *	@dev: network layer device to open
2215  *
2216  *	Called when the network layer brings the interface up. Returns
2217  *	a negative posix error code on failure, or zero on success.
2218  *
2219  *	All the ring allocation and set up is done on open for this
2220  *	adapter to minimise memory usage when inactive
2221  */
velocity_open(struct net_device * dev)2222 static int velocity_open(struct net_device *dev)
2223 {
2224 	struct velocity_info *vptr = netdev_priv(dev);
2225 	int ret;
2226 
2227 	ret = velocity_init_rings(vptr, dev->mtu);
2228 	if (ret < 0)
2229 		goto out;
2230 
2231 	/* Ensure chip is running */
2232 	velocity_set_power_state(vptr, PCI_D0);
2233 
2234 	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2235 
2236 	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2237 			  dev->name, dev);
2238 	if (ret < 0) {
2239 		/* Power down the chip */
2240 		velocity_set_power_state(vptr, PCI_D3hot);
2241 		velocity_free_rings(vptr);
2242 		goto out;
2243 	}
2244 
2245 	velocity_give_many_rx_descs(vptr);
2246 
2247 	mac_enable_int(vptr->mac_regs);
2248 	netif_start_queue(dev);
2249 	napi_enable(&vptr->napi);
2250 	vptr->flags |= VELOCITY_FLAGS_OPENED;
2251 out:
2252 	return ret;
2253 }
2254 
2255 /**
2256  *	velocity_shutdown	-	shut down the chip
2257  *	@vptr: velocity to deactivate
2258  *
2259  *	Shuts down the internal operations of the velocity and
2260  *	disables interrupts, autopolling, transmit and receive
2261  */
velocity_shutdown(struct velocity_info * vptr)2262 static void velocity_shutdown(struct velocity_info *vptr)
2263 {
2264 	struct mac_regs __iomem *regs = vptr->mac_regs;
2265 	mac_disable_int(regs);
2266 	writel(CR0_STOP, &regs->CR0Set);
2267 	writew(0xFFFF, &regs->TDCSRClr);
2268 	writeb(0xFF, &regs->RDCSRClr);
2269 	safe_disable_mii_autopoll(regs);
2270 	mac_clear_isr(regs);
2271 }
2272 
2273 /**
2274  *	velocity_change_mtu	-	MTU change callback
2275  *	@dev: network device
2276  *	@new_mtu: desired MTU
2277  *
2278  *	Handle requests from the networking layer for MTU change on
2279  *	this interface. It gets called on a change by the network layer.
2280  *	Return zero for success or negative posix error code.
2281  */
velocity_change_mtu(struct net_device * dev,int new_mtu)2282 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2283 {
2284 	struct velocity_info *vptr = netdev_priv(dev);
2285 	int ret = 0;
2286 
2287 	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2288 		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2289 				vptr->netdev->name);
2290 		ret = -EINVAL;
2291 		goto out_0;
2292 	}
2293 
2294 	if (!netif_running(dev)) {
2295 		dev->mtu = new_mtu;
2296 		goto out_0;
2297 	}
2298 
2299 	if (dev->mtu != new_mtu) {
2300 		struct velocity_info *tmp_vptr;
2301 		unsigned long flags;
2302 		struct rx_info rx;
2303 		struct tx_info tx;
2304 
2305 		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2306 		if (!tmp_vptr) {
2307 			ret = -ENOMEM;
2308 			goto out_0;
2309 		}
2310 
2311 		tmp_vptr->netdev = dev;
2312 		tmp_vptr->pdev = vptr->pdev;
2313 		tmp_vptr->dev = vptr->dev;
2314 		tmp_vptr->options = vptr->options;
2315 		tmp_vptr->tx.numq = vptr->tx.numq;
2316 
2317 		ret = velocity_init_rings(tmp_vptr, new_mtu);
2318 		if (ret < 0)
2319 			goto out_free_tmp_vptr_1;
2320 
2321 		napi_disable(&vptr->napi);
2322 
2323 		spin_lock_irqsave(&vptr->lock, flags);
2324 
2325 		netif_stop_queue(dev);
2326 		velocity_shutdown(vptr);
2327 
2328 		rx = vptr->rx;
2329 		tx = vptr->tx;
2330 
2331 		vptr->rx = tmp_vptr->rx;
2332 		vptr->tx = tmp_vptr->tx;
2333 
2334 		tmp_vptr->rx = rx;
2335 		tmp_vptr->tx = tx;
2336 
2337 		dev->mtu = new_mtu;
2338 
2339 		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2340 
2341 		velocity_give_many_rx_descs(vptr);
2342 
2343 		napi_enable(&vptr->napi);
2344 
2345 		mac_enable_int(vptr->mac_regs);
2346 		netif_start_queue(dev);
2347 
2348 		spin_unlock_irqrestore(&vptr->lock, flags);
2349 
2350 		velocity_free_rings(tmp_vptr);
2351 
2352 out_free_tmp_vptr_1:
2353 		kfree(tmp_vptr);
2354 	}
2355 out_0:
2356 	return ret;
2357 }
2358 
2359 #ifdef CONFIG_NET_POLL_CONTROLLER
2360 /**
2361  *  velocity_poll_controller		-	Velocity Poll controller function
2362  *  @dev: network device
2363  *
2364  *
2365  *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2366  *  with interrupts disabled.
2367  */
velocity_poll_controller(struct net_device * dev)2368 static void velocity_poll_controller(struct net_device *dev)
2369 {
2370 	disable_irq(dev->irq);
2371 	velocity_intr(dev->irq, dev);
2372 	enable_irq(dev->irq);
2373 }
2374 #endif
2375 
2376 /**
2377  *	velocity_mii_ioctl		-	MII ioctl handler
2378  *	@dev: network device
2379  *	@ifr: the ifreq block for the ioctl
2380  *	@cmd: the command
2381  *
2382  *	Process MII requests made via ioctl from the network layer. These
2383  *	are used by tools like kudzu to interrogate the link state of the
2384  *	hardware
2385  */
velocity_mii_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2386 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2387 {
2388 	struct velocity_info *vptr = netdev_priv(dev);
2389 	struct mac_regs __iomem *regs = vptr->mac_regs;
2390 	unsigned long flags;
2391 	struct mii_ioctl_data *miidata = if_mii(ifr);
2392 	int err;
2393 
2394 	switch (cmd) {
2395 	case SIOCGMIIPHY:
2396 		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2397 		break;
2398 	case SIOCGMIIREG:
2399 		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2400 			return -ETIMEDOUT;
2401 		break;
2402 	case SIOCSMIIREG:
2403 		spin_lock_irqsave(&vptr->lock, flags);
2404 		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2405 		spin_unlock_irqrestore(&vptr->lock, flags);
2406 		check_connection_type(vptr->mac_regs);
2407 		if (err)
2408 			return err;
2409 		break;
2410 	default:
2411 		return -EOPNOTSUPP;
2412 	}
2413 	return 0;
2414 }
2415 
2416 /**
2417  *	velocity_ioctl		-	ioctl entry point
2418  *	@dev: network device
2419  *	@rq: interface request ioctl
2420  *	@cmd: command code
2421  *
2422  *	Called when the user issues an ioctl request to the network
2423  *	device in question. The velocity interface supports MII.
2424  */
velocity_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2425 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2426 {
2427 	struct velocity_info *vptr = netdev_priv(dev);
2428 	int ret;
2429 
2430 	/* If we are asked for information and the device is power
2431 	   saving then we need to bring the device back up to talk to it */
2432 
2433 	if (!netif_running(dev))
2434 		velocity_set_power_state(vptr, PCI_D0);
2435 
2436 	switch (cmd) {
2437 	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2438 	case SIOCGMIIREG:	/* Read MII PHY register. */
2439 	case SIOCSMIIREG:	/* Write to MII PHY register. */
2440 		ret = velocity_mii_ioctl(dev, rq, cmd);
2441 		break;
2442 
2443 	default:
2444 		ret = -EOPNOTSUPP;
2445 	}
2446 	if (!netif_running(dev))
2447 		velocity_set_power_state(vptr, PCI_D3hot);
2448 
2449 
2450 	return ret;
2451 }
2452 
2453 /**
2454  *	velocity_get_status	-	statistics callback
2455  *	@dev: network device
2456  *
2457  *	Callback from the network layer to allow driver statistics
2458  *	to be resynchronized with hardware collected state. In the
2459  *	case of the velocity we need to pull the MIB counters from
2460  *	the hardware into the counters before letting the network
2461  *	layer display them.
2462  */
velocity_get_stats(struct net_device * dev)2463 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2464 {
2465 	struct velocity_info *vptr = netdev_priv(dev);
2466 
2467 	/* If the hardware is down, don't touch MII */
2468 	if (!netif_running(dev))
2469 		return &dev->stats;
2470 
2471 	spin_lock_irq(&vptr->lock);
2472 	velocity_update_hw_mibs(vptr);
2473 	spin_unlock_irq(&vptr->lock);
2474 
2475 	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2476 	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2477 	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2478 
2479 //  unsigned long   rx_dropped;     /* no space in linux buffers    */
2480 	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2481 	/* detailed rx_errors: */
2482 //  unsigned long   rx_length_errors;
2483 //  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2484 	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2485 //  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2486 //  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2487 //  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2488 
2489 	/* detailed tx_errors */
2490 //  unsigned long   tx_fifo_errors;
2491 
2492 	return &dev->stats;
2493 }
2494 
2495 /**
2496  *	velocity_close		-	close adapter callback
2497  *	@dev: network device
2498  *
2499  *	Callback from the network layer when the velocity is being
2500  *	deactivated by the network layer
2501  */
velocity_close(struct net_device * dev)2502 static int velocity_close(struct net_device *dev)
2503 {
2504 	struct velocity_info *vptr = netdev_priv(dev);
2505 
2506 	napi_disable(&vptr->napi);
2507 	netif_stop_queue(dev);
2508 	velocity_shutdown(vptr);
2509 
2510 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2511 		velocity_get_ip(vptr);
2512 
2513 	free_irq(dev->irq, dev);
2514 
2515 	velocity_free_rings(vptr);
2516 
2517 	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2518 	return 0;
2519 }
2520 
2521 /**
2522  *	velocity_xmit		-	transmit packet callback
2523  *	@skb: buffer to transmit
2524  *	@dev: network device
2525  *
2526  *	Called by the networ layer to request a packet is queued to
2527  *	the velocity. Returns zero on success.
2528  */
velocity_xmit(struct sk_buff * skb,struct net_device * dev)2529 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2530 				 struct net_device *dev)
2531 {
2532 	struct velocity_info *vptr = netdev_priv(dev);
2533 	int qnum = 0;
2534 	struct tx_desc *td_ptr;
2535 	struct velocity_td_info *tdinfo;
2536 	unsigned long flags;
2537 	int pktlen;
2538 	int index, prev;
2539 	int i = 0;
2540 
2541 	if (skb_padto(skb, ETH_ZLEN))
2542 		goto out;
2543 
2544 	/* The hardware can handle at most 7 memory segments, so merge
2545 	 * the skb if there are more */
2546 	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2547 		dev_kfree_skb_any(skb);
2548 		return NETDEV_TX_OK;
2549 	}
2550 
2551 	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2552 			max_t(unsigned int, skb->len, ETH_ZLEN) :
2553 				skb_headlen(skb);
2554 
2555 	spin_lock_irqsave(&vptr->lock, flags);
2556 
2557 	index = vptr->tx.curr[qnum];
2558 	td_ptr = &(vptr->tx.rings[qnum][index]);
2559 	tdinfo = &(vptr->tx.infos[qnum][index]);
2560 
2561 	td_ptr->tdesc1.TCR = TCR0_TIC;
2562 	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2563 
2564 	/*
2565 	 *	Map the linear network buffer into PCI space and
2566 	 *	add it to the transmit ring.
2567 	 */
2568 	tdinfo->skb = skb;
2569 	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2570 								DMA_TO_DEVICE);
2571 	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2572 	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2573 	td_ptr->td_buf[0].pa_high = 0;
2574 	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2575 
2576 	/* Handle fragments */
2577 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2578 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2579 
2580 		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2581 							  frag, 0,
2582 							  skb_frag_size(frag),
2583 							  DMA_TO_DEVICE);
2584 
2585 		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2586 		td_ptr->td_buf[i + 1].pa_high = 0;
2587 		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2588 	}
2589 	tdinfo->nskb_dma = i + 1;
2590 
2591 	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2592 
2593 	if (skb_vlan_tag_present(skb)) {
2594 		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2595 		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2596 	}
2597 
2598 	/*
2599 	 *	Handle hardware checksum
2600 	 */
2601 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2602 		const struct iphdr *ip = ip_hdr(skb);
2603 		if (ip->protocol == IPPROTO_TCP)
2604 			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2605 		else if (ip->protocol == IPPROTO_UDP)
2606 			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2607 		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2608 	}
2609 
2610 	prev = index - 1;
2611 	if (prev < 0)
2612 		prev = vptr->options.numtx - 1;
2613 	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2614 	vptr->tx.used[qnum]++;
2615 	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2616 
2617 	if (AVAIL_TD(vptr, qnum) < 1)
2618 		netif_stop_queue(dev);
2619 
2620 	td_ptr = &(vptr->tx.rings[qnum][prev]);
2621 	td_ptr->td_buf[0].size |= TD_QUEUE;
2622 	mac_tx_queue_wake(vptr->mac_regs, qnum);
2623 
2624 	spin_unlock_irqrestore(&vptr->lock, flags);
2625 out:
2626 	return NETDEV_TX_OK;
2627 }
2628 
2629 static const struct net_device_ops velocity_netdev_ops = {
2630 	.ndo_open		= velocity_open,
2631 	.ndo_stop		= velocity_close,
2632 	.ndo_start_xmit		= velocity_xmit,
2633 	.ndo_get_stats		= velocity_get_stats,
2634 	.ndo_validate_addr	= eth_validate_addr,
2635 	.ndo_set_mac_address	= eth_mac_addr,
2636 	.ndo_set_rx_mode	= velocity_set_multi,
2637 	.ndo_change_mtu		= velocity_change_mtu,
2638 	.ndo_do_ioctl		= velocity_ioctl,
2639 	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2640 	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2641 #ifdef CONFIG_NET_POLL_CONTROLLER
2642 	.ndo_poll_controller = velocity_poll_controller,
2643 #endif
2644 };
2645 
2646 /**
2647  *	velocity_init_info	-	init private data
2648  *	@pdev: PCI device
2649  *	@vptr: Velocity info
2650  *	@info: Board type
2651  *
2652  *	Set up the initial velocity_info struct for the device that has been
2653  *	discovered.
2654  */
velocity_init_info(struct velocity_info * vptr,const struct velocity_info_tbl * info)2655 static void velocity_init_info(struct velocity_info *vptr,
2656 				const struct velocity_info_tbl *info)
2657 {
2658 	vptr->chip_id = info->chip_id;
2659 	vptr->tx.numq = info->txqueue;
2660 	vptr->multicast_limit = MCAM_SIZE;
2661 	spin_lock_init(&vptr->lock);
2662 }
2663 
2664 /**
2665  *	velocity_get_pci_info	-	retrieve PCI info for device
2666  *	@vptr: velocity device
2667  *	@pdev: PCI device it matches
2668  *
2669  *	Retrieve the PCI configuration space data that interests us from
2670  *	the kernel PCI layer
2671  */
velocity_get_pci_info(struct velocity_info * vptr)2672 static int velocity_get_pci_info(struct velocity_info *vptr)
2673 {
2674 	struct pci_dev *pdev = vptr->pdev;
2675 
2676 	pci_set_master(pdev);
2677 
2678 	vptr->ioaddr = pci_resource_start(pdev, 0);
2679 	vptr->memaddr = pci_resource_start(pdev, 1);
2680 
2681 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 		dev_err(&pdev->dev,
2683 			   "region #0 is not an I/O resource, aborting.\n");
2684 		return -EINVAL;
2685 	}
2686 
2687 	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 		dev_err(&pdev->dev,
2689 			   "region #1 is an I/O resource, aborting.\n");
2690 		return -EINVAL;
2691 	}
2692 
2693 	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 		dev_err(&pdev->dev, "region #1 is too small.\n");
2695 		return -EINVAL;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  *	velocity_get_platform_info - retrieve platform info for device
2703  *	@vptr: velocity device
2704  *	@pdev: platform device it matches
2705  *
2706  *	Retrieve the Platform configuration data that interests us
2707  */
velocity_get_platform_info(struct velocity_info * vptr)2708 static int velocity_get_platform_info(struct velocity_info *vptr)
2709 {
2710 	struct resource res;
2711 	int ret;
2712 
2713 	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2714 		vptr->no_eeprom = 1;
2715 
2716 	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2717 	if (ret) {
2718 		dev_err(vptr->dev, "unable to find memory address\n");
2719 		return ret;
2720 	}
2721 
2722 	vptr->memaddr = res.start;
2723 
2724 	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2725 		dev_err(vptr->dev, "memory region is too small.\n");
2726 		return -EINVAL;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  *	velocity_print_info	-	per driver data
2734  *	@vptr: velocity
2735  *
2736  *	Print per driver data as the kernel driver finds Velocity
2737  *	hardware
2738  */
velocity_print_info(struct velocity_info * vptr)2739 static void velocity_print_info(struct velocity_info *vptr)
2740 {
2741 	struct net_device *dev = vptr->netdev;
2742 
2743 	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2744 	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2745 		dev->name, dev->dev_addr);
2746 }
2747 
velocity_get_link(struct net_device * dev)2748 static u32 velocity_get_link(struct net_device *dev)
2749 {
2750 	struct velocity_info *vptr = netdev_priv(dev);
2751 	struct mac_regs __iomem *regs = vptr->mac_regs;
2752 	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2753 }
2754 
2755 /**
2756  *	velocity_probe - set up discovered velocity device
2757  *	@pdev: PCI device
2758  *	@ent: PCI device table entry that matched
2759  *	@bustype: bus that device is connected to
2760  *
2761  *	Configure a discovered adapter from scratch. Return a negative
2762  *	errno error code on failure paths.
2763  */
velocity_probe(struct device * dev,int irq,const struct velocity_info_tbl * info,enum velocity_bus_type bustype)2764 static int velocity_probe(struct device *dev, int irq,
2765 			   const struct velocity_info_tbl *info,
2766 			   enum velocity_bus_type bustype)
2767 {
2768 	static int first = 1;
2769 	struct net_device *netdev;
2770 	int i;
2771 	const char *drv_string;
2772 	struct velocity_info *vptr;
2773 	struct mac_regs __iomem *regs;
2774 	int ret = -ENOMEM;
2775 
2776 	/* FIXME: this driver, like almost all other ethernet drivers,
2777 	 * can support more than MAX_UNITS.
2778 	 */
2779 	if (velocity_nics >= MAX_UNITS) {
2780 		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2781 		return -ENODEV;
2782 	}
2783 
2784 	netdev = alloc_etherdev(sizeof(struct velocity_info));
2785 	if (!netdev)
2786 		goto out;
2787 
2788 	/* Chain it all together */
2789 
2790 	SET_NETDEV_DEV(netdev, dev);
2791 	vptr = netdev_priv(netdev);
2792 
2793 	if (first) {
2794 		printk(KERN_INFO "%s Ver. %s\n",
2795 			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2796 		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2797 		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2798 		first = 0;
2799 	}
2800 
2801 	netdev->irq = irq;
2802 	vptr->netdev = netdev;
2803 	vptr->dev = dev;
2804 
2805 	velocity_init_info(vptr, info);
2806 
2807 	if (bustype == BUS_PCI) {
2808 		vptr->pdev = to_pci_dev(dev);
2809 
2810 		ret = velocity_get_pci_info(vptr);
2811 		if (ret < 0)
2812 			goto err_free_dev;
2813 	} else {
2814 		vptr->pdev = NULL;
2815 		ret = velocity_get_platform_info(vptr);
2816 		if (ret < 0)
2817 			goto err_free_dev;
2818 	}
2819 
2820 	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2821 	if (regs == NULL) {
2822 		ret = -EIO;
2823 		goto err_free_dev;
2824 	}
2825 
2826 	vptr->mac_regs = regs;
2827 	vptr->rev_id = readb(&regs->rev_id);
2828 
2829 	mac_wol_reset(regs);
2830 
2831 	for (i = 0; i < 6; i++)
2832 		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2833 
2834 
2835 	drv_string = dev_driver_string(dev);
2836 
2837 	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2838 
2839 	/*
2840 	 *	Mask out the options cannot be set to the chip
2841 	 */
2842 
2843 	vptr->options.flags &= info->flags;
2844 
2845 	/*
2846 	 *	Enable the chip specified capbilities
2847 	 */
2848 
2849 	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2850 
2851 	vptr->wol_opts = vptr->options.wol_opts;
2852 	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2853 
2854 	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2855 
2856 	netdev->netdev_ops = &velocity_netdev_ops;
2857 	netdev->ethtool_ops = &velocity_ethtool_ops;
2858 	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2859 							VELOCITY_NAPI_WEIGHT);
2860 
2861 	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2862 			   NETIF_F_HW_VLAN_CTAG_TX;
2863 	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2864 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2865 			NETIF_F_IP_CSUM;
2866 
2867 	ret = register_netdev(netdev);
2868 	if (ret < 0)
2869 		goto err_iounmap;
2870 
2871 	if (!velocity_get_link(netdev)) {
2872 		netif_carrier_off(netdev);
2873 		vptr->mii_status |= VELOCITY_LINK_FAIL;
2874 	}
2875 
2876 	velocity_print_info(vptr);
2877 	dev_set_drvdata(vptr->dev, netdev);
2878 
2879 	/* and leave the chip powered down */
2880 
2881 	velocity_set_power_state(vptr, PCI_D3hot);
2882 	velocity_nics++;
2883 out:
2884 	return ret;
2885 
2886 err_iounmap:
2887 	netif_napi_del(&vptr->napi);
2888 	iounmap(regs);
2889 err_free_dev:
2890 	free_netdev(netdev);
2891 	goto out;
2892 }
2893 
2894 /**
2895  *	velocity_remove	- device unplug
2896  *	@dev: device being removed
2897  *
2898  *	Device unload callback. Called on an unplug or on module
2899  *	unload for each active device that is present. Disconnects
2900  *	the device from the network layer and frees all the resources
2901  */
velocity_remove(struct device * dev)2902 static int velocity_remove(struct device *dev)
2903 {
2904 	struct net_device *netdev = dev_get_drvdata(dev);
2905 	struct velocity_info *vptr = netdev_priv(netdev);
2906 
2907 	unregister_netdev(netdev);
2908 	netif_napi_del(&vptr->napi);
2909 	iounmap(vptr->mac_regs);
2910 	free_netdev(netdev);
2911 	velocity_nics--;
2912 
2913 	return 0;
2914 }
2915 
velocity_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2916 static int velocity_pci_probe(struct pci_dev *pdev,
2917 			       const struct pci_device_id *ent)
2918 {
2919 	const struct velocity_info_tbl *info =
2920 					&chip_info_table[ent->driver_data];
2921 	int ret;
2922 
2923 	ret = pci_enable_device(pdev);
2924 	if (ret < 0)
2925 		return ret;
2926 
2927 	ret = pci_request_regions(pdev, VELOCITY_NAME);
2928 	if (ret < 0) {
2929 		dev_err(&pdev->dev, "No PCI resources.\n");
2930 		goto fail1;
2931 	}
2932 
2933 	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2934 	if (ret == 0)
2935 		return 0;
2936 
2937 	pci_release_regions(pdev);
2938 fail1:
2939 	pci_disable_device(pdev);
2940 	return ret;
2941 }
2942 
velocity_pci_remove(struct pci_dev * pdev)2943 static void velocity_pci_remove(struct pci_dev *pdev)
2944 {
2945 	velocity_remove(&pdev->dev);
2946 
2947 	pci_release_regions(pdev);
2948 	pci_disable_device(pdev);
2949 }
2950 
velocity_platform_probe(struct platform_device * pdev)2951 static int velocity_platform_probe(struct platform_device *pdev)
2952 {
2953 	const struct of_device_id *of_id;
2954 	const struct velocity_info_tbl *info;
2955 	int irq;
2956 
2957 	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2958 	if (!of_id)
2959 		return -EINVAL;
2960 	info = of_id->data;
2961 
2962 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2963 	if (!irq)
2964 		return -EINVAL;
2965 
2966 	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2967 }
2968 
velocity_platform_remove(struct platform_device * pdev)2969 static int velocity_platform_remove(struct platform_device *pdev)
2970 {
2971 	velocity_remove(&pdev->dev);
2972 
2973 	return 0;
2974 }
2975 
2976 #ifdef CONFIG_PM_SLEEP
2977 /**
2978  *	wol_calc_crc		-	WOL CRC
2979  *	@pattern: data pattern
2980  *	@mask_pattern: mask
2981  *
2982  *	Compute the wake on lan crc hashes for the packet header
2983  *	we are interested in.
2984  */
wol_calc_crc(int size,u8 * pattern,u8 * mask_pattern)2985 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2986 {
2987 	u16 crc = 0xFFFF;
2988 	u8 mask;
2989 	int i, j;
2990 
2991 	for (i = 0; i < size; i++) {
2992 		mask = mask_pattern[i];
2993 
2994 		/* Skip this loop if the mask equals to zero */
2995 		if (mask == 0x00)
2996 			continue;
2997 
2998 		for (j = 0; j < 8; j++) {
2999 			if ((mask & 0x01) == 0) {
3000 				mask >>= 1;
3001 				continue;
3002 			}
3003 			mask >>= 1;
3004 			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3005 		}
3006 	}
3007 	/*	Finally, invert the result once to get the correct data */
3008 	crc = ~crc;
3009 	return bitrev32(crc) >> 16;
3010 }
3011 
3012 /**
3013  *	velocity_set_wol	-	set up for wake on lan
3014  *	@vptr: velocity to set WOL status on
3015  *
3016  *	Set a card up for wake on lan either by unicast or by
3017  *	ARP packet.
3018  *
3019  *	FIXME: check static buffer is safe here
3020  */
velocity_set_wol(struct velocity_info * vptr)3021 static int velocity_set_wol(struct velocity_info *vptr)
3022 {
3023 	struct mac_regs __iomem *regs = vptr->mac_regs;
3024 	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3025 	static u8 buf[256];
3026 	int i;
3027 
3028 	static u32 mask_pattern[2][4] = {
3029 		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3030 		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3031 	};
3032 
3033 	writew(0xFFFF, &regs->WOLCRClr);
3034 	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3035 	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3036 
3037 	/*
3038 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3039 	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3040 	 */
3041 
3042 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3043 		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3044 
3045 	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3046 		struct arp_packet *arp = (struct arp_packet *) buf;
3047 		u16 crc;
3048 		memset(buf, 0, sizeof(struct arp_packet) + 7);
3049 
3050 		for (i = 0; i < 4; i++)
3051 			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3052 
3053 		arp->type = htons(ETH_P_ARP);
3054 		arp->ar_op = htons(1);
3055 
3056 		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3057 
3058 		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3059 				(u8 *) & mask_pattern[0][0]);
3060 
3061 		writew(crc, &regs->PatternCRC[0]);
3062 		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3063 	}
3064 
3065 	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3066 	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3067 
3068 	writew(0x0FFF, &regs->WOLSRClr);
3069 
3070 	if (spd_dpx == SPD_DPX_1000_FULL)
3071 		goto mac_done;
3072 
3073 	if (spd_dpx != SPD_DPX_AUTO)
3074 		goto advertise_done;
3075 
3076 	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3077 		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3078 			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3079 
3080 		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3081 	}
3082 
3083 	if (vptr->mii_status & VELOCITY_SPEED_1000)
3084 		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3085 
3086 advertise_done:
3087 	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3088 
3089 	{
3090 		u8 GCR;
3091 		GCR = readb(&regs->CHIPGCR);
3092 		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3093 		writeb(GCR, &regs->CHIPGCR);
3094 	}
3095 
3096 mac_done:
3097 	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3098 	/* Turn on SWPTAG just before entering power mode */
3099 	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3100 	/* Go to bed ..... */
3101 	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3102 
3103 	return 0;
3104 }
3105 
3106 /**
3107  *	velocity_save_context	-	save registers
3108  *	@vptr: velocity
3109  *	@context: buffer for stored context
3110  *
3111  *	Retrieve the current configuration from the velocity hardware
3112  *	and stash it in the context structure, for use by the context
3113  *	restore functions. This allows us to save things we need across
3114  *	power down states
3115  */
velocity_save_context(struct velocity_info * vptr,struct velocity_context * context)3116 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3117 {
3118 	struct mac_regs __iomem *regs = vptr->mac_regs;
3119 	u16 i;
3120 	u8 __iomem *ptr = (u8 __iomem *)regs;
3121 
3122 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3123 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124 
3125 	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3126 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127 
3128 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3129 		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130 
3131 }
3132 
velocity_suspend(struct device * dev)3133 static int velocity_suspend(struct device *dev)
3134 {
3135 	struct net_device *netdev = dev_get_drvdata(dev);
3136 	struct velocity_info *vptr = netdev_priv(netdev);
3137 	unsigned long flags;
3138 
3139 	if (!netif_running(vptr->netdev))
3140 		return 0;
3141 
3142 	netif_device_detach(vptr->netdev);
3143 
3144 	spin_lock_irqsave(&vptr->lock, flags);
3145 	if (vptr->pdev)
3146 		pci_save_state(vptr->pdev);
3147 
3148 	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3149 		velocity_get_ip(vptr);
3150 		velocity_save_context(vptr, &vptr->context);
3151 		velocity_shutdown(vptr);
3152 		velocity_set_wol(vptr);
3153 		if (vptr->pdev)
3154 			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3155 		velocity_set_power_state(vptr, PCI_D3hot);
3156 	} else {
3157 		velocity_save_context(vptr, &vptr->context);
3158 		velocity_shutdown(vptr);
3159 		if (vptr->pdev)
3160 			pci_disable_device(vptr->pdev);
3161 		velocity_set_power_state(vptr, PCI_D3hot);
3162 	}
3163 
3164 	spin_unlock_irqrestore(&vptr->lock, flags);
3165 	return 0;
3166 }
3167 
3168 /**
3169  *	velocity_restore_context	-	restore registers
3170  *	@vptr: velocity
3171  *	@context: buffer for stored context
3172  *
3173  *	Reload the register configuration from the velocity context
3174  *	created by velocity_save_context.
3175  */
velocity_restore_context(struct velocity_info * vptr,struct velocity_context * context)3176 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3177 {
3178 	struct mac_regs __iomem *regs = vptr->mac_regs;
3179 	int i;
3180 	u8 __iomem *ptr = (u8 __iomem *)regs;
3181 
3182 	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3183 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3184 
3185 	/* Just skip cr0 */
3186 	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3187 		/* Clear */
3188 		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3189 		/* Set */
3190 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3191 	}
3192 
3193 	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3194 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3195 
3196 	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3197 		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198 
3199 	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3200 		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3201 }
3202 
velocity_resume(struct device * dev)3203 static int velocity_resume(struct device *dev)
3204 {
3205 	struct net_device *netdev = dev_get_drvdata(dev);
3206 	struct velocity_info *vptr = netdev_priv(netdev);
3207 	unsigned long flags;
3208 	int i;
3209 
3210 	if (!netif_running(vptr->netdev))
3211 		return 0;
3212 
3213 	velocity_set_power_state(vptr, PCI_D0);
3214 
3215 	if (vptr->pdev) {
3216 		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3217 		pci_restore_state(vptr->pdev);
3218 	}
3219 
3220 	mac_wol_reset(vptr->mac_regs);
3221 
3222 	spin_lock_irqsave(&vptr->lock, flags);
3223 	velocity_restore_context(vptr, &vptr->context);
3224 	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3225 	mac_disable_int(vptr->mac_regs);
3226 
3227 	velocity_tx_srv(vptr);
3228 
3229 	for (i = 0; i < vptr->tx.numq; i++) {
3230 		if (vptr->tx.used[i])
3231 			mac_tx_queue_wake(vptr->mac_regs, i);
3232 	}
3233 
3234 	mac_enable_int(vptr->mac_regs);
3235 	spin_unlock_irqrestore(&vptr->lock, flags);
3236 	netif_device_attach(vptr->netdev);
3237 
3238 	return 0;
3239 }
3240 #endif	/* CONFIG_PM_SLEEP */
3241 
3242 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3243 
3244 /*
3245  *	Definition for our device driver. The PCI layer interface
3246  *	uses this to handle all our card discover and plugging
3247  */
3248 static struct pci_driver velocity_pci_driver = {
3249 	.name		= VELOCITY_NAME,
3250 	.id_table	= velocity_pci_id_table,
3251 	.probe		= velocity_pci_probe,
3252 	.remove		= velocity_pci_remove,
3253 	.driver = {
3254 		.pm = &velocity_pm_ops,
3255 	},
3256 };
3257 
3258 static struct platform_driver velocity_platform_driver = {
3259 	.probe		= velocity_platform_probe,
3260 	.remove		= velocity_platform_remove,
3261 	.driver = {
3262 		.name = "via-velocity",
3263 		.of_match_table = velocity_of_ids,
3264 		.pm = &velocity_pm_ops,
3265 	},
3266 };
3267 
3268 /**
3269  *	velocity_ethtool_up	-	pre hook for ethtool
3270  *	@dev: network device
3271  *
3272  *	Called before an ethtool operation. We need to make sure the
3273  *	chip is out of D3 state before we poke at it.
3274  */
velocity_ethtool_up(struct net_device * dev)3275 static int velocity_ethtool_up(struct net_device *dev)
3276 {
3277 	struct velocity_info *vptr = netdev_priv(dev);
3278 	if (!netif_running(dev))
3279 		velocity_set_power_state(vptr, PCI_D0);
3280 	return 0;
3281 }
3282 
3283 /**
3284  *	velocity_ethtool_down	-	post hook for ethtool
3285  *	@dev: network device
3286  *
3287  *	Called after an ethtool operation. Restore the chip back to D3
3288  *	state if it isn't running.
3289  */
velocity_ethtool_down(struct net_device * dev)3290 static void velocity_ethtool_down(struct net_device *dev)
3291 {
3292 	struct velocity_info *vptr = netdev_priv(dev);
3293 	if (!netif_running(dev))
3294 		velocity_set_power_state(vptr, PCI_D3hot);
3295 }
3296 
velocity_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)3297 static int velocity_get_settings(struct net_device *dev,
3298 				 struct ethtool_cmd *cmd)
3299 {
3300 	struct velocity_info *vptr = netdev_priv(dev);
3301 	struct mac_regs __iomem *regs = vptr->mac_regs;
3302 	u32 status;
3303 	status = check_connection_type(vptr->mac_regs);
3304 
3305 	cmd->supported = SUPPORTED_TP |
3306 			SUPPORTED_Autoneg |
3307 			SUPPORTED_10baseT_Half |
3308 			SUPPORTED_10baseT_Full |
3309 			SUPPORTED_100baseT_Half |
3310 			SUPPORTED_100baseT_Full |
3311 			SUPPORTED_1000baseT_Half |
3312 			SUPPORTED_1000baseT_Full;
3313 
3314 	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3315 	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3316 		cmd->advertising |=
3317 			ADVERTISED_10baseT_Half |
3318 			ADVERTISED_10baseT_Full |
3319 			ADVERTISED_100baseT_Half |
3320 			ADVERTISED_100baseT_Full |
3321 			ADVERTISED_1000baseT_Half |
3322 			ADVERTISED_1000baseT_Full;
3323 	} else {
3324 		switch (vptr->options.spd_dpx) {
3325 		case SPD_DPX_1000_FULL:
3326 			cmd->advertising |= ADVERTISED_1000baseT_Full;
3327 			break;
3328 		case SPD_DPX_100_HALF:
3329 			cmd->advertising |= ADVERTISED_100baseT_Half;
3330 			break;
3331 		case SPD_DPX_100_FULL:
3332 			cmd->advertising |= ADVERTISED_100baseT_Full;
3333 			break;
3334 		case SPD_DPX_10_HALF:
3335 			cmd->advertising |= ADVERTISED_10baseT_Half;
3336 			break;
3337 		case SPD_DPX_10_FULL:
3338 			cmd->advertising |= ADVERTISED_10baseT_Full;
3339 			break;
3340 		default:
3341 			break;
3342 		}
3343 	}
3344 
3345 	if (status & VELOCITY_SPEED_1000)
3346 		ethtool_cmd_speed_set(cmd, SPEED_1000);
3347 	else if (status & VELOCITY_SPEED_100)
3348 		ethtool_cmd_speed_set(cmd, SPEED_100);
3349 	else
3350 		ethtool_cmd_speed_set(cmd, SPEED_10);
3351 
3352 	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3353 	cmd->port = PORT_TP;
3354 	cmd->transceiver = XCVR_INTERNAL;
3355 	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3356 
3357 	if (status & VELOCITY_DUPLEX_FULL)
3358 		cmd->duplex = DUPLEX_FULL;
3359 	else
3360 		cmd->duplex = DUPLEX_HALF;
3361 
3362 	return 0;
3363 }
3364 
velocity_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)3365 static int velocity_set_settings(struct net_device *dev,
3366 				 struct ethtool_cmd *cmd)
3367 {
3368 	struct velocity_info *vptr = netdev_priv(dev);
3369 	u32 speed = ethtool_cmd_speed(cmd);
3370 	u32 curr_status;
3371 	u32 new_status = 0;
3372 	int ret = 0;
3373 
3374 	curr_status = check_connection_type(vptr->mac_regs);
3375 	curr_status &= (~VELOCITY_LINK_FAIL);
3376 
3377 	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3378 	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3379 	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3380 	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3381 	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3382 
3383 	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3384 	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3385 		ret = -EINVAL;
3386 	} else {
3387 		enum speed_opt spd_dpx;
3388 
3389 		if (new_status & VELOCITY_AUTONEG_ENABLE)
3390 			spd_dpx = SPD_DPX_AUTO;
3391 		else if ((new_status & VELOCITY_SPEED_1000) &&
3392 			 (new_status & VELOCITY_DUPLEX_FULL)) {
3393 			spd_dpx = SPD_DPX_1000_FULL;
3394 		} else if (new_status & VELOCITY_SPEED_100)
3395 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3396 				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3397 		else if (new_status & VELOCITY_SPEED_10)
3398 			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3399 				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3400 		else
3401 			return -EOPNOTSUPP;
3402 
3403 		vptr->options.spd_dpx = spd_dpx;
3404 
3405 		velocity_set_media_mode(vptr, new_status);
3406 	}
3407 
3408 	return ret;
3409 }
3410 
velocity_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3411 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3412 {
3413 	struct velocity_info *vptr = netdev_priv(dev);
3414 
3415 	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3416 	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3417 	if (vptr->pdev)
3418 		strlcpy(info->bus_info, pci_name(vptr->pdev),
3419 						sizeof(info->bus_info));
3420 	else
3421 		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3422 }
3423 
velocity_ethtool_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3424 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3425 {
3426 	struct velocity_info *vptr = netdev_priv(dev);
3427 	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3428 	wol->wolopts |= WAKE_MAGIC;
3429 	/*
3430 	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3431 		   wol.wolopts|=WAKE_PHY;
3432 			 */
3433 	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3434 		wol->wolopts |= WAKE_UCAST;
3435 	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3436 		wol->wolopts |= WAKE_ARP;
3437 	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3438 }
3439 
velocity_ethtool_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)3440 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3441 {
3442 	struct velocity_info *vptr = netdev_priv(dev);
3443 
3444 	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3445 		return -EFAULT;
3446 	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3447 
3448 	/*
3449 	   if (wol.wolopts & WAKE_PHY) {
3450 	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3451 	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3452 	   }
3453 	 */
3454 
3455 	if (wol->wolopts & WAKE_MAGIC) {
3456 		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3457 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3458 	}
3459 	if (wol->wolopts & WAKE_UCAST) {
3460 		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3461 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3462 	}
3463 	if (wol->wolopts & WAKE_ARP) {
3464 		vptr->wol_opts |= VELOCITY_WOL_ARP;
3465 		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3466 	}
3467 	memcpy(vptr->wol_passwd, wol->sopass, 6);
3468 	return 0;
3469 }
3470 
velocity_get_msglevel(struct net_device * dev)3471 static u32 velocity_get_msglevel(struct net_device *dev)
3472 {
3473 	return msglevel;
3474 }
3475 
velocity_set_msglevel(struct net_device * dev,u32 value)3476 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3477 {
3478 	 msglevel = value;
3479 }
3480 
get_pending_timer_val(int val)3481 static int get_pending_timer_val(int val)
3482 {
3483 	int mult_bits = val >> 6;
3484 	int mult = 1;
3485 
3486 	switch (mult_bits)
3487 	{
3488 	case 1:
3489 		mult = 4; break;
3490 	case 2:
3491 		mult = 16; break;
3492 	case 3:
3493 		mult = 64; break;
3494 	case 0:
3495 	default:
3496 		break;
3497 	}
3498 
3499 	return (val & 0x3f) * mult;
3500 }
3501 
set_pending_timer_val(int * val,u32 us)3502 static void set_pending_timer_val(int *val, u32 us)
3503 {
3504 	u8 mult = 0;
3505 	u8 shift = 0;
3506 
3507 	if (us >= 0x3f) {
3508 		mult = 1; /* mult with 4 */
3509 		shift = 2;
3510 	}
3511 	if (us >= 0x3f * 4) {
3512 		mult = 2; /* mult with 16 */
3513 		shift = 4;
3514 	}
3515 	if (us >= 0x3f * 16) {
3516 		mult = 3; /* mult with 64 */
3517 		shift = 6;
3518 	}
3519 
3520 	*val = (mult << 6) | ((us >> shift) & 0x3f);
3521 }
3522 
3523 
velocity_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd)3524 static int velocity_get_coalesce(struct net_device *dev,
3525 		struct ethtool_coalesce *ecmd)
3526 {
3527 	struct velocity_info *vptr = netdev_priv(dev);
3528 
3529 	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3530 	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3531 
3532 	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3533 	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3534 
3535 	return 0;
3536 }
3537 
velocity_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd)3538 static int velocity_set_coalesce(struct net_device *dev,
3539 		struct ethtool_coalesce *ecmd)
3540 {
3541 	struct velocity_info *vptr = netdev_priv(dev);
3542 	int max_us = 0x3f * 64;
3543 	unsigned long flags;
3544 
3545 	/* 6 bits of  */
3546 	if (ecmd->tx_coalesce_usecs > max_us)
3547 		return -EINVAL;
3548 	if (ecmd->rx_coalesce_usecs > max_us)
3549 		return -EINVAL;
3550 
3551 	if (ecmd->tx_max_coalesced_frames > 0xff)
3552 		return -EINVAL;
3553 	if (ecmd->rx_max_coalesced_frames > 0xff)
3554 		return -EINVAL;
3555 
3556 	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3557 	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3558 
3559 	set_pending_timer_val(&vptr->options.rxqueue_timer,
3560 			ecmd->rx_coalesce_usecs);
3561 	set_pending_timer_val(&vptr->options.txqueue_timer,
3562 			ecmd->tx_coalesce_usecs);
3563 
3564 	/* Setup the interrupt suppression and queue timers */
3565 	spin_lock_irqsave(&vptr->lock, flags);
3566 	mac_disable_int(vptr->mac_regs);
3567 	setup_adaptive_interrupts(vptr);
3568 	setup_queue_timers(vptr);
3569 
3570 	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3571 	mac_clear_isr(vptr->mac_regs);
3572 	mac_enable_int(vptr->mac_regs);
3573 	spin_unlock_irqrestore(&vptr->lock, flags);
3574 
3575 	return 0;
3576 }
3577 
3578 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3579 	"rx_all",
3580 	"rx_ok",
3581 	"tx_ok",
3582 	"rx_error",
3583 	"rx_runt_ok",
3584 	"rx_runt_err",
3585 	"rx_64",
3586 	"tx_64",
3587 	"rx_65_to_127",
3588 	"tx_65_to_127",
3589 	"rx_128_to_255",
3590 	"tx_128_to_255",
3591 	"rx_256_to_511",
3592 	"tx_256_to_511",
3593 	"rx_512_to_1023",
3594 	"tx_512_to_1023",
3595 	"rx_1024_to_1518",
3596 	"tx_1024_to_1518",
3597 	"tx_ether_collisions",
3598 	"rx_crc_errors",
3599 	"rx_jumbo",
3600 	"tx_jumbo",
3601 	"rx_mac_control_frames",
3602 	"tx_mac_control_frames",
3603 	"rx_frame_alignement_errors",
3604 	"rx_long_ok",
3605 	"rx_long_err",
3606 	"tx_sqe_errors",
3607 	"rx_no_buf",
3608 	"rx_symbol_errors",
3609 	"in_range_length_errors",
3610 	"late_collisions"
3611 };
3612 
velocity_get_strings(struct net_device * dev,u32 sset,u8 * data)3613 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3614 {
3615 	switch (sset) {
3616 	case ETH_SS_STATS:
3617 		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3618 		break;
3619 	}
3620 }
3621 
velocity_get_sset_count(struct net_device * dev,int sset)3622 static int velocity_get_sset_count(struct net_device *dev, int sset)
3623 {
3624 	switch (sset) {
3625 	case ETH_SS_STATS:
3626 		return ARRAY_SIZE(velocity_gstrings);
3627 	default:
3628 		return -EOPNOTSUPP;
3629 	}
3630 }
3631 
velocity_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)3632 static void velocity_get_ethtool_stats(struct net_device *dev,
3633 				       struct ethtool_stats *stats, u64 *data)
3634 {
3635 	if (netif_running(dev)) {
3636 		struct velocity_info *vptr = netdev_priv(dev);
3637 		u32 *p = vptr->mib_counter;
3638 		int i;
3639 
3640 		spin_lock_irq(&vptr->lock);
3641 		velocity_update_hw_mibs(vptr);
3642 		spin_unlock_irq(&vptr->lock);
3643 
3644 		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3645 			*data++ = *p++;
3646 	}
3647 }
3648 
3649 static const struct ethtool_ops velocity_ethtool_ops = {
3650 	.get_settings		= velocity_get_settings,
3651 	.set_settings		= velocity_set_settings,
3652 	.get_drvinfo		= velocity_get_drvinfo,
3653 	.get_wol		= velocity_ethtool_get_wol,
3654 	.set_wol		= velocity_ethtool_set_wol,
3655 	.get_msglevel		= velocity_get_msglevel,
3656 	.set_msglevel		= velocity_set_msglevel,
3657 	.get_link		= velocity_get_link,
3658 	.get_strings		= velocity_get_strings,
3659 	.get_sset_count		= velocity_get_sset_count,
3660 	.get_ethtool_stats	= velocity_get_ethtool_stats,
3661 	.get_coalesce		= velocity_get_coalesce,
3662 	.set_coalesce		= velocity_set_coalesce,
3663 	.begin			= velocity_ethtool_up,
3664 	.complete		= velocity_ethtool_down
3665 };
3666 
3667 #if defined(CONFIG_PM) && defined(CONFIG_INET)
velocity_netdev_event(struct notifier_block * nb,unsigned long notification,void * ptr)3668 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3669 {
3670 	struct in_ifaddr *ifa = ptr;
3671 	struct net_device *dev = ifa->ifa_dev->dev;
3672 
3673 	if (dev_net(dev) == &init_net &&
3674 	    dev->netdev_ops == &velocity_netdev_ops)
3675 		velocity_get_ip(netdev_priv(dev));
3676 
3677 	return NOTIFY_DONE;
3678 }
3679 
3680 static struct notifier_block velocity_inetaddr_notifier = {
3681 	.notifier_call	= velocity_netdev_event,
3682 };
3683 
velocity_register_notifier(void)3684 static void velocity_register_notifier(void)
3685 {
3686 	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3687 }
3688 
velocity_unregister_notifier(void)3689 static void velocity_unregister_notifier(void)
3690 {
3691 	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3692 }
3693 
3694 #else
3695 
3696 #define velocity_register_notifier()	do {} while (0)
3697 #define velocity_unregister_notifier()	do {} while (0)
3698 
3699 #endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3700 
3701 /**
3702  *	velocity_init_module	-	load time function
3703  *
3704  *	Called when the velocity module is loaded. The PCI driver
3705  *	is registered with the PCI layer, and in turn will call
3706  *	the probe functions for each velocity adapter installed
3707  *	in the system.
3708  */
velocity_init_module(void)3709 static int __init velocity_init_module(void)
3710 {
3711 	int ret_pci, ret_platform;
3712 
3713 	velocity_register_notifier();
3714 
3715 	ret_pci = pci_register_driver(&velocity_pci_driver);
3716 	ret_platform = platform_driver_register(&velocity_platform_driver);
3717 
3718 	/* if both_registers failed, remove the notifier */
3719 	if ((ret_pci < 0) && (ret_platform < 0)) {
3720 		velocity_unregister_notifier();
3721 		return ret_pci;
3722 	}
3723 
3724 	return 0;
3725 }
3726 
3727 /**
3728  *	velocity_cleanup	-	module unload
3729  *
3730  *	When the velocity hardware is unloaded this function is called.
3731  *	It will clean up the notifiers and the unregister the PCI
3732  *	driver interface for this hardware. This in turn cleans up
3733  *	all discovered interfaces before returning from the function
3734  */
velocity_cleanup_module(void)3735 static void __exit velocity_cleanup_module(void)
3736 {
3737 	velocity_unregister_notifier();
3738 
3739 	pci_unregister_driver(&velocity_pci_driver);
3740 	platform_driver_unregister(&velocity_platform_driver);
3741 }
3742 
3743 module_init(velocity_init_module);
3744 module_exit(velocity_cleanup_module);
3745