1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb))
22
ath9k_check_auto_sleep(struct ath_softc * sc)23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 return sc->ps_enabled &&
26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28
29 /*
30 * Setup and link descriptors.
31 *
32 * 11N: we can no longer afford to self link the last descriptor.
33 * MAC acknowledges BA status as long as it copies frames to host
34 * buffer (or rx fifo). This can incorrectly acknowledge packets
35 * to a sender if last desc is self-linked.
36 */
ath_rx_buf_link(struct ath_softc * sc,struct ath_rxbuf * bf,bool flush)37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 bool flush)
39 {
40 struct ath_hw *ah = sc->sc_ah;
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath_desc *ds;
43 struct sk_buff *skb;
44
45 ds = bf->bf_desc;
46 ds->ds_link = 0; /* link to null */
47 ds->ds_data = bf->bf_buf_addr;
48
49 /* virtual addr of the beginning of the buffer. */
50 skb = bf->bf_mpdu;
51 BUG_ON(skb == NULL);
52 ds->ds_vdata = skb->data;
53
54 /*
55 * setup rx descriptors. The rx_bufsize here tells the hardware
56 * how much data it can DMA to us and that we are prepared
57 * to process
58 */
59 ath9k_hw_setuprxdesc(ah, ds,
60 common->rx_bufsize,
61 0);
62
63 if (sc->rx.rxlink)
64 *sc->rx.rxlink = bf->bf_daddr;
65 else if (!flush)
66 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67
68 sc->rx.rxlink = &ds->ds_link;
69 }
70
ath_rx_buf_relink(struct ath_softc * sc,struct ath_rxbuf * bf,bool flush)71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 bool flush)
73 {
74 if (sc->rx.buf_hold)
75 ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76
77 sc->rx.buf_hold = bf;
78 }
79
ath_setdefantenna(struct ath_softc * sc,u32 antenna)80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 /* XXX block beacon interrupts */
83 ath9k_hw_setantenna(sc->sc_ah, antenna);
84 sc->rx.defant = antenna;
85 sc->rx.rxotherant = 0;
86 }
87
ath_opmode_init(struct ath_softc * sc)88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 struct ath_hw *ah = sc->sc_ah;
91 struct ath_common *common = ath9k_hw_common(ah);
92
93 u32 rfilt, mfilt[2];
94
95 /* configure rx filter */
96 rfilt = ath_calcrxfilter(sc);
97 ath9k_hw_setrxfilter(ah, rfilt);
98
99 /* configure bssid mask */
100 ath_hw_setbssidmask(common);
101
102 /* configure operational mode */
103 ath9k_hw_setopmode(ah);
104
105 /* calculate and install multicast filter */
106 mfilt[0] = mfilt[1] = ~0;
107 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109
ath_rx_edma_buf_link(struct ath_softc * sc,enum ath9k_rx_qtype qtype)110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 enum ath9k_rx_qtype qtype)
112 {
113 struct ath_hw *ah = sc->sc_ah;
114 struct ath_rx_edma *rx_edma;
115 struct sk_buff *skb;
116 struct ath_rxbuf *bf;
117
118 rx_edma = &sc->rx.rx_edma[qtype];
119 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 return false;
121
122 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 list_del_init(&bf->list);
124
125 skb = bf->bf_mpdu;
126
127 memset(skb->data, 0, ah->caps.rx_status_len);
128 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 ah->caps.rx_status_len, DMA_TO_DEVICE);
130
131 SKB_CB_ATHBUF(skb) = bf;
132 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 __skb_queue_tail(&rx_edma->rx_fifo, skb);
134
135 return true;
136 }
137
ath_rx_addbuffer_edma(struct ath_softc * sc,enum ath9k_rx_qtype qtype)138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 enum ath9k_rx_qtype qtype)
140 {
141 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 struct ath_rxbuf *bf, *tbf;
143
144 if (list_empty(&sc->rx.rxbuf)) {
145 ath_dbg(common, QUEUE, "No free rx buf available\n");
146 return;
147 }
148
149 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 if (!ath_rx_edma_buf_link(sc, qtype))
151 break;
152
153 }
154
ath_rx_remove_buffer(struct ath_softc * sc,enum ath9k_rx_qtype qtype)155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 enum ath9k_rx_qtype qtype)
157 {
158 struct ath_rxbuf *bf;
159 struct ath_rx_edma *rx_edma;
160 struct sk_buff *skb;
161
162 rx_edma = &sc->rx.rx_edma[qtype];
163
164 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 bf = SKB_CB_ATHBUF(skb);
166 BUG_ON(!bf);
167 list_add_tail(&bf->list, &sc->rx.rxbuf);
168 }
169 }
170
ath_rx_edma_cleanup(struct ath_softc * sc)171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 struct ath_hw *ah = sc->sc_ah;
174 struct ath_common *common = ath9k_hw_common(ah);
175 struct ath_rxbuf *bf;
176
177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179
180 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 if (bf->bf_mpdu) {
182 dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 common->rx_bufsize,
184 DMA_BIDIRECTIONAL);
185 dev_kfree_skb_any(bf->bf_mpdu);
186 bf->bf_buf_addr = 0;
187 bf->bf_mpdu = NULL;
188 }
189 }
190 }
191
ath_rx_edma_init_queue(struct ath_rx_edma * rx_edma,int size)192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 __skb_queue_head_init(&rx_edma->rx_fifo);
195 rx_edma->rx_fifo_hwsize = size;
196 }
197
ath_rx_edma_init(struct ath_softc * sc,int nbufs)198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 struct ath_hw *ah = sc->sc_ah;
202 struct sk_buff *skb;
203 struct ath_rxbuf *bf;
204 int error = 0, i;
205 u32 size;
206
207 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 ah->caps.rx_status_len);
209
210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 ah->caps.rx_lp_qdepth);
212 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 ah->caps.rx_hp_qdepth);
214
215 size = sizeof(struct ath_rxbuf) * nbufs;
216 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 if (!bf)
218 return -ENOMEM;
219
220 INIT_LIST_HEAD(&sc->rx.rxbuf);
221
222 for (i = 0; i < nbufs; i++, bf++) {
223 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 if (!skb) {
225 error = -ENOMEM;
226 goto rx_init_fail;
227 }
228
229 memset(skb->data, 0, common->rx_bufsize);
230 bf->bf_mpdu = skb;
231
232 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 common->rx_bufsize,
234 DMA_BIDIRECTIONAL);
235 if (unlikely(dma_mapping_error(sc->dev,
236 bf->bf_buf_addr))) {
237 dev_kfree_skb_any(skb);
238 bf->bf_mpdu = NULL;
239 bf->bf_buf_addr = 0;
240 ath_err(common,
241 "dma_mapping_error() on RX init\n");
242 error = -ENOMEM;
243 goto rx_init_fail;
244 }
245
246 list_add_tail(&bf->list, &sc->rx.rxbuf);
247 }
248
249 return 0;
250
251 rx_init_fail:
252 ath_rx_edma_cleanup(sc);
253 return error;
254 }
255
ath_edma_start_recv(struct ath_softc * sc)256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 ath9k_hw_rxena(sc->sc_ah);
259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 ath_opmode_init(sc);
262 ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264
ath_edma_stop_recv(struct ath_softc * sc)265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270
ath_rx_init(struct ath_softc * sc,int nbufs)271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 struct sk_buff *skb;
275 struct ath_rxbuf *bf;
276 int error = 0;
277
278 spin_lock_init(&sc->sc_pcu_lock);
279
280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 sc->sc_ah->caps.rx_status_len;
282
283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 return ath_rx_edma_init(sc, nbufs);
285
286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 common->cachelsz, common->rx_bufsize);
288
289 /* Initialize rx descriptors */
290
291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 "rx", nbufs, 1, 0);
293 if (error != 0) {
294 ath_err(common,
295 "failed to allocate rx descriptors: %d\n",
296 error);
297 goto err;
298 }
299
300 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 GFP_KERNEL);
303 if (skb == NULL) {
304 error = -ENOMEM;
305 goto err;
306 }
307
308 bf->bf_mpdu = skb;
309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 common->rx_bufsize,
311 DMA_FROM_DEVICE);
312 if (unlikely(dma_mapping_error(sc->dev,
313 bf->bf_buf_addr))) {
314 dev_kfree_skb_any(skb);
315 bf->bf_mpdu = NULL;
316 bf->bf_buf_addr = 0;
317 ath_err(common,
318 "dma_mapping_error() on RX init\n");
319 error = -ENOMEM;
320 goto err;
321 }
322 }
323 sc->rx.rxlink = NULL;
324 err:
325 if (error)
326 ath_rx_cleanup(sc);
327
328 return error;
329 }
330
ath_rx_cleanup(struct ath_softc * sc)331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 struct ath_hw *ah = sc->sc_ah;
334 struct ath_common *common = ath9k_hw_common(ah);
335 struct sk_buff *skb;
336 struct ath_rxbuf *bf;
337
338 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 ath_rx_edma_cleanup(sc);
340 return;
341 }
342
343 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 skb = bf->bf_mpdu;
345 if (skb) {
346 dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 common->rx_bufsize,
348 DMA_FROM_DEVICE);
349 dev_kfree_skb(skb);
350 bf->bf_buf_addr = 0;
351 bf->bf_mpdu = NULL;
352 }
353 }
354 }
355
356 /*
357 * Calculate the receive filter according to the
358 * operating mode and state:
359 *
360 * o always accept unicast, broadcast, and multicast traffic
361 * o maintain current state of phy error reception (the hal
362 * may enable phy error frames for noise immunity work)
363 * o probe request frames are accepted only when operating in
364 * hostap, adhoc, or monitor modes
365 * o enable promiscuous mode according to the interface state
366 * o accept beacons:
367 * - when operating in adhoc mode so the 802.11 layer creates
368 * node table entries for peers,
369 * - when operating in station mode for collecting rssi data when
370 * the station is otherwise quiet, or
371 * - when operating as a repeater so we see repeater-sta beacons
372 * - when scanning
373 */
374
ath_calcrxfilter(struct ath_softc * sc)375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378 u32 rfilt;
379
380 if (IS_ENABLED(CONFIG_ATH9K_TX99))
381 return 0;
382
383 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384 | ATH9K_RX_FILTER_MCAST;
385
386 /* if operating on a DFS channel, enable radar pulse detection */
387 if (sc->hw->conf.radar_enabled)
388 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389
390 spin_lock_bh(&sc->chan_lock);
391
392 if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394
395 if (sc->sc_ah->is_monitoring)
396 rfilt |= ATH9K_RX_FILTER_PROM;
397
398 if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399 sc->sc_ah->dynack.enabled)
400 rfilt |= ATH9K_RX_FILTER_CONTROL;
401
402 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403 (sc->cur_chan->nvifs <= 1) &&
404 !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405 rfilt |= ATH9K_RX_FILTER_MYBEACON;
406 else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
407 rfilt |= ATH9K_RX_FILTER_BEACON;
408
409 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410 (sc->cur_chan->rxfilter & FIF_PSPOLL))
411 rfilt |= ATH9K_RX_FILTER_PSPOLL;
412
413 if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415
416 if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
417 /* This is needed for older chips */
418 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
419 rfilt |= ATH9K_RX_FILTER_PROM;
420 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
421 }
422
423 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
424 AR_SREV_9561(sc->sc_ah))
425 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
426
427 if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
428 rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
429
430 if (ath9k_is_chanctx_enabled() &&
431 test_bit(ATH_OP_SCANNING, &common->op_flags))
432 rfilt |= ATH9K_RX_FILTER_BEACON;
433
434 spin_unlock_bh(&sc->chan_lock);
435
436 return rfilt;
437
438 }
439
ath_startrecv(struct ath_softc * sc)440 void ath_startrecv(struct ath_softc *sc)
441 {
442 struct ath_hw *ah = sc->sc_ah;
443 struct ath_rxbuf *bf, *tbf;
444
445 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
446 ath_edma_start_recv(sc);
447 return;
448 }
449
450 if (list_empty(&sc->rx.rxbuf))
451 goto start_recv;
452
453 sc->rx.buf_hold = NULL;
454 sc->rx.rxlink = NULL;
455 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
456 ath_rx_buf_link(sc, bf, false);
457 }
458
459 /* We could have deleted elements so the list may be empty now */
460 if (list_empty(&sc->rx.rxbuf))
461 goto start_recv;
462
463 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
464 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
465 ath9k_hw_rxena(ah);
466
467 start_recv:
468 ath_opmode_init(sc);
469 ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
470 }
471
ath_flushrecv(struct ath_softc * sc)472 static void ath_flushrecv(struct ath_softc *sc)
473 {
474 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
475 ath_rx_tasklet(sc, 1, true);
476 ath_rx_tasklet(sc, 1, false);
477 }
478
ath_stoprecv(struct ath_softc * sc)479 bool ath_stoprecv(struct ath_softc *sc)
480 {
481 struct ath_hw *ah = sc->sc_ah;
482 bool stopped, reset = false;
483
484 ath9k_hw_abortpcurecv(ah);
485 ath9k_hw_setrxfilter(ah, 0);
486 stopped = ath9k_hw_stopdmarecv(ah, &reset);
487
488 ath_flushrecv(sc);
489
490 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
491 ath_edma_stop_recv(sc);
492 else
493 sc->rx.rxlink = NULL;
494
495 if (!(ah->ah_flags & AH_UNPLUGGED) &&
496 unlikely(!stopped)) {
497 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
498 "Failed to stop Rx DMA\n");
499 RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
500 }
501 return stopped && !reset;
502 }
503
ath_beacon_dtim_pending_cab(struct sk_buff * skb)504 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
505 {
506 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
507 struct ieee80211_mgmt *mgmt;
508 u8 *pos, *end, id, elen;
509 struct ieee80211_tim_ie *tim;
510
511 mgmt = (struct ieee80211_mgmt *)skb->data;
512 pos = mgmt->u.beacon.variable;
513 end = skb->data + skb->len;
514
515 while (pos + 2 < end) {
516 id = *pos++;
517 elen = *pos++;
518 if (pos + elen > end)
519 break;
520
521 if (id == WLAN_EID_TIM) {
522 if (elen < sizeof(*tim))
523 break;
524 tim = (struct ieee80211_tim_ie *) pos;
525 if (tim->dtim_count != 0)
526 break;
527 return tim->bitmap_ctrl & 0x01;
528 }
529
530 pos += elen;
531 }
532
533 return false;
534 }
535
ath_rx_ps_beacon(struct ath_softc * sc,struct sk_buff * skb)536 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
537 {
538 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
539 bool skip_beacon = false;
540
541 if (skb->len < 24 + 8 + 2 + 2)
542 return;
543
544 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
545
546 if (sc->ps_flags & PS_BEACON_SYNC) {
547 sc->ps_flags &= ~PS_BEACON_SYNC;
548 ath_dbg(common, PS,
549 "Reconfigure beacon timers based on synchronized timestamp\n");
550
551 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
552 if (ath9k_is_chanctx_enabled()) {
553 if (sc->cur_chan == &sc->offchannel.chan)
554 skip_beacon = true;
555 }
556 #endif
557
558 if (!skip_beacon &&
559 !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
560 ath9k_set_beacon(sc);
561
562 ath9k_p2p_beacon_sync(sc);
563 }
564
565 if (ath_beacon_dtim_pending_cab(skb)) {
566 /*
567 * Remain awake waiting for buffered broadcast/multicast
568 * frames. If the last broadcast/multicast frame is not
569 * received properly, the next beacon frame will work as
570 * a backup trigger for returning into NETWORK SLEEP state,
571 * so we are waiting for it as well.
572 */
573 ath_dbg(common, PS,
574 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
575 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
576 return;
577 }
578
579 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
580 /*
581 * This can happen if a broadcast frame is dropped or the AP
582 * fails to send a frame indicating that all CAB frames have
583 * been delivered.
584 */
585 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
586 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
587 }
588 }
589
ath_rx_ps(struct ath_softc * sc,struct sk_buff * skb,bool mybeacon)590 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
591 {
592 struct ieee80211_hdr *hdr;
593 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
594
595 hdr = (struct ieee80211_hdr *)skb->data;
596
597 /* Process Beacon and CAB receive in PS state */
598 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
599 && mybeacon) {
600 ath_rx_ps_beacon(sc, skb);
601 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
602 (ieee80211_is_data(hdr->frame_control) ||
603 ieee80211_is_action(hdr->frame_control)) &&
604 is_multicast_ether_addr(hdr->addr1) &&
605 !ieee80211_has_moredata(hdr->frame_control)) {
606 /*
607 * No more broadcast/multicast frames to be received at this
608 * point.
609 */
610 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
611 ath_dbg(common, PS,
612 "All PS CAB frames received, back to sleep\n");
613 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
614 !is_multicast_ether_addr(hdr->addr1) &&
615 !ieee80211_has_morefrags(hdr->frame_control)) {
616 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
617 ath_dbg(common, PS,
618 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
619 sc->ps_flags & (PS_WAIT_FOR_BEACON |
620 PS_WAIT_FOR_CAB |
621 PS_WAIT_FOR_PSPOLL_DATA |
622 PS_WAIT_FOR_TX_ACK));
623 }
624 }
625
ath_edma_get_buffers(struct ath_softc * sc,enum ath9k_rx_qtype qtype,struct ath_rx_status * rs,struct ath_rxbuf ** dest)626 static bool ath_edma_get_buffers(struct ath_softc *sc,
627 enum ath9k_rx_qtype qtype,
628 struct ath_rx_status *rs,
629 struct ath_rxbuf **dest)
630 {
631 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
632 struct ath_hw *ah = sc->sc_ah;
633 struct ath_common *common = ath9k_hw_common(ah);
634 struct sk_buff *skb;
635 struct ath_rxbuf *bf;
636 int ret;
637
638 skb = skb_peek(&rx_edma->rx_fifo);
639 if (!skb)
640 return false;
641
642 bf = SKB_CB_ATHBUF(skb);
643 BUG_ON(!bf);
644
645 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
646 common->rx_bufsize, DMA_FROM_DEVICE);
647
648 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
649 if (ret == -EINPROGRESS) {
650 /*let device gain the buffer again*/
651 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
652 common->rx_bufsize, DMA_FROM_DEVICE);
653 return false;
654 }
655
656 __skb_unlink(skb, &rx_edma->rx_fifo);
657 if (ret == -EINVAL) {
658 /* corrupt descriptor, skip this one and the following one */
659 list_add_tail(&bf->list, &sc->rx.rxbuf);
660 ath_rx_edma_buf_link(sc, qtype);
661
662 skb = skb_peek(&rx_edma->rx_fifo);
663 if (skb) {
664 bf = SKB_CB_ATHBUF(skb);
665 BUG_ON(!bf);
666
667 __skb_unlink(skb, &rx_edma->rx_fifo);
668 list_add_tail(&bf->list, &sc->rx.rxbuf);
669 ath_rx_edma_buf_link(sc, qtype);
670 }
671
672 bf = NULL;
673 }
674
675 *dest = bf;
676 return true;
677 }
678
ath_edma_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs,enum ath9k_rx_qtype qtype)679 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
680 struct ath_rx_status *rs,
681 enum ath9k_rx_qtype qtype)
682 {
683 struct ath_rxbuf *bf = NULL;
684
685 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
686 if (!bf)
687 continue;
688
689 return bf;
690 }
691 return NULL;
692 }
693
ath_get_next_rx_buf(struct ath_softc * sc,struct ath_rx_status * rs)694 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
695 struct ath_rx_status *rs)
696 {
697 struct ath_hw *ah = sc->sc_ah;
698 struct ath_common *common = ath9k_hw_common(ah);
699 struct ath_desc *ds;
700 struct ath_rxbuf *bf;
701 int ret;
702
703 if (list_empty(&sc->rx.rxbuf)) {
704 sc->rx.rxlink = NULL;
705 return NULL;
706 }
707
708 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
709 if (bf == sc->rx.buf_hold)
710 return NULL;
711
712 ds = bf->bf_desc;
713
714 /*
715 * Must provide the virtual address of the current
716 * descriptor, the physical address, and the virtual
717 * address of the next descriptor in the h/w chain.
718 * This allows the HAL to look ahead to see if the
719 * hardware is done with a descriptor by checking the
720 * done bit in the following descriptor and the address
721 * of the current descriptor the DMA engine is working
722 * on. All this is necessary because of our use of
723 * a self-linked list to avoid rx overruns.
724 */
725 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
726 if (ret == -EINPROGRESS) {
727 struct ath_rx_status trs;
728 struct ath_rxbuf *tbf;
729 struct ath_desc *tds;
730
731 memset(&trs, 0, sizeof(trs));
732 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
733 sc->rx.rxlink = NULL;
734 return NULL;
735 }
736
737 tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
738
739 /*
740 * On some hardware the descriptor status words could
741 * get corrupted, including the done bit. Because of
742 * this, check if the next descriptor's done bit is
743 * set or not.
744 *
745 * If the next descriptor's done bit is set, the current
746 * descriptor has been corrupted. Force s/w to discard
747 * this descriptor and continue...
748 */
749
750 tds = tbf->bf_desc;
751 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
752 if (ret == -EINPROGRESS)
753 return NULL;
754
755 /*
756 * Re-check previous descriptor, in case it has been filled
757 * in the mean time.
758 */
759 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
760 if (ret == -EINPROGRESS) {
761 /*
762 * mark descriptor as zero-length and set the 'more'
763 * flag to ensure that both buffers get discarded
764 */
765 rs->rs_datalen = 0;
766 rs->rs_more = true;
767 }
768 }
769
770 list_del(&bf->list);
771 if (!bf->bf_mpdu)
772 return bf;
773
774 /*
775 * Synchronize the DMA transfer with CPU before
776 * 1. accessing the frame
777 * 2. requeueing the same buffer to h/w
778 */
779 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
780 common->rx_bufsize,
781 DMA_FROM_DEVICE);
782
783 return bf;
784 }
785
ath9k_process_tsf(struct ath_rx_status * rs,struct ieee80211_rx_status * rxs,u64 tsf)786 static void ath9k_process_tsf(struct ath_rx_status *rs,
787 struct ieee80211_rx_status *rxs,
788 u64 tsf)
789 {
790 u32 tsf_lower = tsf & 0xffffffff;
791
792 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
793 if (rs->rs_tstamp > tsf_lower &&
794 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
795 rxs->mactime -= 0x100000000ULL;
796
797 if (rs->rs_tstamp < tsf_lower &&
798 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
799 rxs->mactime += 0x100000000ULL;
800 }
801
802 /*
803 * For Decrypt or Demic errors, we only mark packet status here and always push
804 * up the frame up to let mac80211 handle the actual error case, be it no
805 * decryption key or real decryption error. This let us keep statistics there.
806 */
ath9k_rx_skb_preprocess(struct ath_softc * sc,struct sk_buff * skb,struct ath_rx_status * rx_stats,struct ieee80211_rx_status * rx_status,bool * decrypt_error,u64 tsf)807 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
808 struct sk_buff *skb,
809 struct ath_rx_status *rx_stats,
810 struct ieee80211_rx_status *rx_status,
811 bool *decrypt_error, u64 tsf)
812 {
813 struct ieee80211_hw *hw = sc->hw;
814 struct ath_hw *ah = sc->sc_ah;
815 struct ath_common *common = ath9k_hw_common(ah);
816 struct ieee80211_hdr *hdr;
817 bool discard_current = sc->rx.discard_next;
818
819 /*
820 * Discard corrupt descriptors which are marked in
821 * ath_get_next_rx_buf().
822 */
823 if (discard_current)
824 goto corrupt;
825
826 sc->rx.discard_next = false;
827
828 /*
829 * Discard zero-length packets.
830 */
831 if (!rx_stats->rs_datalen) {
832 RX_STAT_INC(rx_len_err);
833 goto corrupt;
834 }
835
836 /*
837 * rs_status follows rs_datalen so if rs_datalen is too large
838 * we can take a hint that hardware corrupted it, so ignore
839 * those frames.
840 */
841 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
842 RX_STAT_INC(rx_len_err);
843 goto corrupt;
844 }
845
846 /* Only use status info from the last fragment */
847 if (rx_stats->rs_more)
848 return 0;
849
850 /*
851 * Return immediately if the RX descriptor has been marked
852 * as corrupt based on the various error bits.
853 *
854 * This is different from the other corrupt descriptor
855 * condition handled above.
856 */
857 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
858 goto corrupt;
859
860 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
861
862 ath9k_process_tsf(rx_stats, rx_status, tsf);
863 ath_debug_stat_rx(sc, rx_stats);
864
865 /*
866 * Process PHY errors and return so that the packet
867 * can be dropped.
868 */
869 if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
870 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
871 if (ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, rx_status->mactime))
872 RX_STAT_INC(rx_spectral);
873
874 return -EINVAL;
875 }
876
877 /*
878 * everything but the rate is checked here, the rate check is done
879 * separately to avoid doing two lookups for a rate for each frame.
880 */
881 spin_lock_bh(&sc->chan_lock);
882 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
883 sc->cur_chan->rxfilter)) {
884 spin_unlock_bh(&sc->chan_lock);
885 return -EINVAL;
886 }
887 spin_unlock_bh(&sc->chan_lock);
888
889 if (ath_is_mybeacon(common, hdr)) {
890 RX_STAT_INC(rx_beacons);
891 rx_stats->is_mybeacon = true;
892 }
893
894 /*
895 * This shouldn't happen, but have a safety check anyway.
896 */
897 if (WARN_ON(!ah->curchan))
898 return -EINVAL;
899
900 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
901 /*
902 * No valid hardware bitrate found -- we should not get here
903 * because hardware has already validated this frame as OK.
904 */
905 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
906 rx_stats->rs_rate);
907 RX_STAT_INC(rx_rate_err);
908 return -EINVAL;
909 }
910
911 if (ath9k_is_chanctx_enabled()) {
912 if (rx_stats->is_mybeacon)
913 ath_chanctx_beacon_recv_ev(sc,
914 ATH_CHANCTX_EVENT_BEACON_RECEIVED);
915 }
916
917 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
918
919 rx_status->band = ah->curchan->chan->band;
920 rx_status->freq = ah->curchan->chan->center_freq;
921 rx_status->antenna = rx_stats->rs_antenna;
922 rx_status->flag |= RX_FLAG_MACTIME_END;
923
924 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
925 if (ieee80211_is_data_present(hdr->frame_control) &&
926 !ieee80211_is_qos_nullfunc(hdr->frame_control))
927 sc->rx.num_pkts++;
928 #endif
929
930 return 0;
931
932 corrupt:
933 sc->rx.discard_next = rx_stats->rs_more;
934 return -EINVAL;
935 }
936
937 /*
938 * Run the LNA combining algorithm only in these cases:
939 *
940 * Standalone WLAN cards with both LNA/Antenna diversity
941 * enabled in the EEPROM.
942 *
943 * WLAN+BT cards which are in the supported card list
944 * in ath_pci_id_table and the user has loaded the
945 * driver with "bt_ant_diversity" set to true.
946 */
ath9k_antenna_check(struct ath_softc * sc,struct ath_rx_status * rs)947 static void ath9k_antenna_check(struct ath_softc *sc,
948 struct ath_rx_status *rs)
949 {
950 struct ath_hw *ah = sc->sc_ah;
951 struct ath9k_hw_capabilities *pCap = &ah->caps;
952 struct ath_common *common = ath9k_hw_common(ah);
953
954 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
955 return;
956
957 /*
958 * Change the default rx antenna if rx diversity
959 * chooses the other antenna 3 times in a row.
960 */
961 if (sc->rx.defant != rs->rs_antenna) {
962 if (++sc->rx.rxotherant >= 3)
963 ath_setdefantenna(sc, rs->rs_antenna);
964 } else {
965 sc->rx.rxotherant = 0;
966 }
967
968 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
969 if (common->bt_ant_diversity)
970 ath_ant_comb_scan(sc, rs);
971 } else {
972 ath_ant_comb_scan(sc, rs);
973 }
974 }
975
ath9k_apply_ampdu_details(struct ath_softc * sc,struct ath_rx_status * rs,struct ieee80211_rx_status * rxs)976 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
977 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
978 {
979 if (rs->rs_isaggr) {
980 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
981
982 rxs->ampdu_reference = sc->rx.ampdu_ref;
983
984 if (!rs->rs_moreaggr) {
985 rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
986 sc->rx.ampdu_ref++;
987 }
988
989 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
990 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
991 }
992 }
993
ath_rx_tasklet(struct ath_softc * sc,int flush,bool hp)994 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
995 {
996 struct ath_rxbuf *bf;
997 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
998 struct ieee80211_rx_status *rxs;
999 struct ath_hw *ah = sc->sc_ah;
1000 struct ath_common *common = ath9k_hw_common(ah);
1001 struct ieee80211_hw *hw = sc->hw;
1002 int retval;
1003 struct ath_rx_status rs;
1004 enum ath9k_rx_qtype qtype;
1005 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1006 int dma_type;
1007 u64 tsf = 0;
1008 unsigned long flags;
1009 dma_addr_t new_buf_addr;
1010 unsigned int budget = 512;
1011 struct ieee80211_hdr *hdr;
1012
1013 if (edma)
1014 dma_type = DMA_BIDIRECTIONAL;
1015 else
1016 dma_type = DMA_FROM_DEVICE;
1017
1018 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1019
1020 tsf = ath9k_hw_gettsf64(ah);
1021
1022 do {
1023 bool decrypt_error = false;
1024
1025 memset(&rs, 0, sizeof(rs));
1026 if (edma)
1027 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1028 else
1029 bf = ath_get_next_rx_buf(sc, &rs);
1030
1031 if (!bf)
1032 break;
1033
1034 skb = bf->bf_mpdu;
1035 if (!skb)
1036 continue;
1037
1038 /*
1039 * Take frame header from the first fragment and RX status from
1040 * the last one.
1041 */
1042 if (sc->rx.frag)
1043 hdr_skb = sc->rx.frag;
1044 else
1045 hdr_skb = skb;
1046
1047 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1048 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1049
1050 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1051 &decrypt_error, tsf);
1052 if (retval)
1053 goto requeue_drop_frag;
1054
1055 /* Ensure we always have an skb to requeue once we are done
1056 * processing the current buffer's skb */
1057 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1058
1059 /* If there is no memory we ignore the current RX'd frame,
1060 * tell hardware it can give us a new frame using the old
1061 * skb and put it at the tail of the sc->rx.rxbuf list for
1062 * processing. */
1063 if (!requeue_skb) {
1064 RX_STAT_INC(rx_oom_err);
1065 goto requeue_drop_frag;
1066 }
1067
1068 /* We will now give hardware our shiny new allocated skb */
1069 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1070 common->rx_bufsize, dma_type);
1071 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1072 dev_kfree_skb_any(requeue_skb);
1073 goto requeue_drop_frag;
1074 }
1075
1076 /* Unmap the frame */
1077 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1078 common->rx_bufsize, dma_type);
1079
1080 bf->bf_mpdu = requeue_skb;
1081 bf->bf_buf_addr = new_buf_addr;
1082
1083 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1084 if (ah->caps.rx_status_len)
1085 skb_pull(skb, ah->caps.rx_status_len);
1086
1087 if (!rs.rs_more)
1088 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1089 rxs, decrypt_error);
1090
1091 if (rs.rs_more) {
1092 RX_STAT_INC(rx_frags);
1093 /*
1094 * rs_more indicates chained descriptors which can be
1095 * used to link buffers together for a sort of
1096 * scatter-gather operation.
1097 */
1098 if (sc->rx.frag) {
1099 /* too many fragments - cannot handle frame */
1100 dev_kfree_skb_any(sc->rx.frag);
1101 dev_kfree_skb_any(skb);
1102 RX_STAT_INC(rx_too_many_frags_err);
1103 skb = NULL;
1104 }
1105 sc->rx.frag = skb;
1106 goto requeue;
1107 }
1108
1109 if (sc->rx.frag) {
1110 int space = skb->len - skb_tailroom(hdr_skb);
1111
1112 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1113 dev_kfree_skb(skb);
1114 RX_STAT_INC(rx_oom_err);
1115 goto requeue_drop_frag;
1116 }
1117
1118 sc->rx.frag = NULL;
1119
1120 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1121 skb->len);
1122 dev_kfree_skb_any(skb);
1123 skb = hdr_skb;
1124 }
1125
1126 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1127 skb_trim(skb, skb->len - 8);
1128
1129 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1130 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1131 PS_WAIT_FOR_CAB |
1132 PS_WAIT_FOR_PSPOLL_DATA)) ||
1133 ath9k_check_auto_sleep(sc))
1134 ath_rx_ps(sc, skb, rs.is_mybeacon);
1135 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1136
1137 ath9k_antenna_check(sc, &rs);
1138 ath9k_apply_ampdu_details(sc, &rs, rxs);
1139 ath_debug_rate_stats(sc, &rs, skb);
1140
1141 hdr = (struct ieee80211_hdr *)skb->data;
1142 if (ieee80211_is_ack(hdr->frame_control))
1143 ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1144
1145 ieee80211_rx(hw, skb);
1146
1147 requeue_drop_frag:
1148 if (sc->rx.frag) {
1149 dev_kfree_skb_any(sc->rx.frag);
1150 sc->rx.frag = NULL;
1151 }
1152 requeue:
1153 list_add_tail(&bf->list, &sc->rx.rxbuf);
1154
1155 if (!edma) {
1156 ath_rx_buf_relink(sc, bf, flush);
1157 if (!flush)
1158 ath9k_hw_rxena(ah);
1159 } else if (!flush) {
1160 ath_rx_edma_buf_link(sc, qtype);
1161 }
1162
1163 if (!budget--)
1164 break;
1165 } while (1);
1166
1167 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1168 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1169 ath9k_hw_set_interrupts(ah);
1170 }
1171
1172 return 0;
1173 }
1174