1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5 * Copyright(c) 2016 Intel Deutschland GmbH
6 *
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
25 *
26 * Contact Information:
27 * Intel Linux Wireless <linuxwifi@intel.com>
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 *
30 *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39
40 /******************************************************************************
41 *
42 * RX path functions
43 *
44 ******************************************************************************/
45
46 /*
47 * Rx theory of operation
48 *
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
54 *
55 * Rx Queue Indexes
56 * The host/firmware share two index registers for managing the Rx buffers.
57 *
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
60 * good data.
61 * The READ index is managed by the firmware once the card is enabled.
62 *
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
65 *
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * WRITE = READ.
68 *
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
71 *
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
76 *
77 * The management in the driver is as follows:
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
86 * eight buffers.
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * until ready.
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
100 * + If there are no allocated buffers in iwl->rxq->rx_free,
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
103 *
104 *
105 * Driver sequence:
106 *
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
112 * queue, updates firmware pointers, and updates
113 * the WRITE index.
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
115 *
116 * -- enable interrupts --
117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
120 * Posts and claims requests to the allocator.
121 * Calls iwl_pcie_rxq_restock to refill any empty
122 * slots.
123 *
124 * RBD life-cycle:
125 *
126 * Init:
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128 *
129 * Regular Receive interrupt:
130 * Page Stolen:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * Page not Stolen:
134 * rxq.queue -> rxq.rx_free -> rxq.queue
135 * ...
136 *
137 */
138
139 /*
140 * iwl_rxq_space - Return number of free slots available in queue.
141 */
iwl_rxq_space(const struct iwl_rxq * rxq)142 static int iwl_rxq_space(const struct iwl_rxq *rxq)
143 {
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
146
147 /*
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
152 */
153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
154 }
155
156 /*
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158 */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)159 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160 {
161 return cpu_to_le32((u32)(dma_addr >> 8));
162 }
163
164 /*
165 * iwl_pcie_rx_stop - stops the Rx DMA
166 */
iwl_pcie_rx_stop(struct iwl_trans * trans)167 int iwl_pcie_rx_stop(struct iwl_trans *trans)
168 {
169 if (trans->cfg->mq_rx_supported) {
170 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
171 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
172 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
173 } else {
174 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
175 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
176 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
177 1000);
178 }
179 }
180
181 /*
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
183 */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans,struct iwl_rxq * rxq)184 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185 struct iwl_rxq *rxq)
186 {
187 u32 reg;
188
189 lockdep_assert_held(&rxq->lock);
190
191 /*
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
195 */
196 if (!trans->cfg->base_params->shadow_reg_enable &&
197 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202 reg);
203 iwl_set_bit(trans, CSR_GP_CNTRL,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
205 rxq->need_update = true;
206 return;
207 }
208 }
209
210 rxq->write_actual = round_down(rxq->write, 8);
211 if (trans->cfg->mq_rx_supported)
212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213 rxq->write_actual);
214 else
215 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
216 }
217
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)218 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
219 {
220 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
221 int i;
222
223 for (i = 0; i < trans->num_rx_queues; i++) {
224 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
225
226 if (!rxq->need_update)
227 continue;
228 spin_lock(&rxq->lock);
229 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230 rxq->need_update = false;
231 spin_unlock(&rxq->lock);
232 }
233 }
234
235 /*
236 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
237 */
iwl_pcie_rxmq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)238 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
239 struct iwl_rxq *rxq)
240 {
241 struct iwl_rx_mem_buffer *rxb;
242
243 /*
244 * If the device isn't enabled - no need to try to add buffers...
245 * This can happen when we stop the device and still have an interrupt
246 * pending. We stop the APM before we sync the interrupts because we
247 * have to (see comment there). On the other hand, since the APM is
248 * stopped, we cannot access the HW (in particular not prph).
249 * So don't try to restock if the APM has been already stopped.
250 */
251 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252 return;
253
254 spin_lock(&rxq->lock);
255 while (rxq->free_count) {
256 __le64 *bd = (__le64 *)rxq->bd;
257
258 /* Get next free Rx buffer, remove from free list */
259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260 list);
261 list_del(&rxb->list);
262 rxb->invalid = false;
263 /* 12 first bits are expected to be empty */
264 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265 /* Point to Rx buffer via next RBD in circular buffer */
266 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268 rxq->free_count--;
269 }
270 spin_unlock(&rxq->lock);
271
272 /*
273 * If we've added more space for the firmware to place data, tell it.
274 * Increment device's write pointer in multiples of 8.
275 */
276 if (rxq->write_actual != (rxq->write & ~0x7)) {
277 spin_lock(&rxq->lock);
278 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279 spin_unlock(&rxq->lock);
280 }
281 }
282
283 /*
284 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
285 */
iwl_pcie_rxsq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)286 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
287 struct iwl_rxq *rxq)
288 {
289 struct iwl_rx_mem_buffer *rxb;
290
291 /*
292 * If the device isn't enabled - not need to try to add buffers...
293 * This can happen when we stop the device and still have an interrupt
294 * pending. We stop the APM before we sync the interrupts because we
295 * have to (see comment there). On the other hand, since the APM is
296 * stopped, we cannot access the HW (in particular not prph).
297 * So don't try to restock if the APM has been already stopped.
298 */
299 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
300 return;
301
302 spin_lock(&rxq->lock);
303 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
304 __le32 *bd = (__le32 *)rxq->bd;
305 /* The overwritten rxb must be a used one */
306 rxb = rxq->queue[rxq->write];
307 BUG_ON(rxb && rxb->page);
308
309 /* Get next free Rx buffer, remove from free list */
310 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311 list);
312 list_del(&rxb->list);
313 rxb->invalid = false;
314
315 /* Point to Rx buffer via next RBD in circular buffer */
316 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
317 rxq->queue[rxq->write] = rxb;
318 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
319 rxq->free_count--;
320 }
321 spin_unlock(&rxq->lock);
322
323 /* If we've added more space for the firmware to place data, tell it.
324 * Increment device's write pointer in multiples of 8. */
325 if (rxq->write_actual != (rxq->write & ~0x7)) {
326 spin_lock(&rxq->lock);
327 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
328 spin_unlock(&rxq->lock);
329 }
330 }
331
332 /*
333 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
334 *
335 * If there are slots in the RX queue that need to be restocked,
336 * and we have free pre-allocated buffers, fill the ranks as much
337 * as we can, pulling from rx_free.
338 *
339 * This moves the 'write' index forward to catch up with 'processed', and
340 * also updates the memory address in the firmware to reference the new
341 * target buffer.
342 */
343 static
iwl_pcie_rxq_restock(struct iwl_trans * trans,struct iwl_rxq * rxq)344 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
345 {
346 if (trans->cfg->mq_rx_supported)
347 iwl_pcie_rxmq_restock(trans, rxq);
348 else
349 iwl_pcie_rxsq_restock(trans, rxq);
350 }
351
352 /*
353 * iwl_pcie_rx_alloc_page - allocates and returns a page.
354 *
355 */
iwl_pcie_rx_alloc_page(struct iwl_trans * trans,gfp_t priority)356 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
357 gfp_t priority)
358 {
359 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
360 struct page *page;
361 gfp_t gfp_mask = priority;
362
363 if (trans_pcie->rx_page_order > 0)
364 gfp_mask |= __GFP_COMP;
365
366 /* Alloc a new receive buffer */
367 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
368 if (!page) {
369 if (net_ratelimit())
370 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
371 trans_pcie->rx_page_order);
372 /*
373 * Issue an error if we don't have enough pre-allocated
374 * buffers.
375 ` */
376 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
377 IWL_CRIT(trans,
378 "Failed to alloc_pages\n");
379 return NULL;
380 }
381 return page;
382 }
383
384 /*
385 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
386 *
387 * A used RBD is an Rx buffer that has been given to the stack. To use it again
388 * a page must be allocated and the RBD must point to the page. This function
389 * doesn't change the HW pointer but handles the list of pages that is used by
390 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
391 * allocated buffers.
392 */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority,struct iwl_rxq * rxq)393 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
394 struct iwl_rxq *rxq)
395 {
396 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
397 struct iwl_rx_mem_buffer *rxb;
398 struct page *page;
399
400 while (1) {
401 spin_lock(&rxq->lock);
402 if (list_empty(&rxq->rx_used)) {
403 spin_unlock(&rxq->lock);
404 return;
405 }
406 spin_unlock(&rxq->lock);
407
408 /* Alloc a new receive buffer */
409 page = iwl_pcie_rx_alloc_page(trans, priority);
410 if (!page)
411 return;
412
413 spin_lock(&rxq->lock);
414
415 if (list_empty(&rxq->rx_used)) {
416 spin_unlock(&rxq->lock);
417 __free_pages(page, trans_pcie->rx_page_order);
418 return;
419 }
420 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
421 list);
422 list_del(&rxb->list);
423 spin_unlock(&rxq->lock);
424
425 BUG_ON(rxb->page);
426 rxb->page = page;
427 /* Get physical address of the RB */
428 rxb->page_dma =
429 dma_map_page(trans->dev, page, 0,
430 PAGE_SIZE << trans_pcie->rx_page_order,
431 DMA_FROM_DEVICE);
432 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
433 rxb->page = NULL;
434 spin_lock(&rxq->lock);
435 list_add(&rxb->list, &rxq->rx_used);
436 spin_unlock(&rxq->lock);
437 __free_pages(page, trans_pcie->rx_page_order);
438 return;
439 }
440
441 spin_lock(&rxq->lock);
442
443 list_add_tail(&rxb->list, &rxq->rx_free);
444 rxq->free_count++;
445
446 spin_unlock(&rxq->lock);
447 }
448 }
449
iwl_pcie_free_rbs_pool(struct iwl_trans * trans)450 static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
451 {
452 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
453 int i;
454
455 for (i = 0; i < RX_POOL_SIZE; i++) {
456 if (!trans_pcie->rx_pool[i].page)
457 continue;
458 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
459 PAGE_SIZE << trans_pcie->rx_page_order,
460 DMA_FROM_DEVICE);
461 __free_pages(trans_pcie->rx_pool[i].page,
462 trans_pcie->rx_page_order);
463 trans_pcie->rx_pool[i].page = NULL;
464 }
465 }
466
467 /*
468 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
469 *
470 * Allocates for each received request 8 pages
471 * Called as a scheduled work item.
472 */
iwl_pcie_rx_allocator(struct iwl_trans * trans)473 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
474 {
475 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
476 struct iwl_rb_allocator *rba = &trans_pcie->rba;
477 struct list_head local_empty;
478 int pending = atomic_xchg(&rba->req_pending, 0);
479
480 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
481
482 /* If we were scheduled - there is at least one request */
483 spin_lock(&rba->lock);
484 /* swap out the rba->rbd_empty to a local list */
485 list_replace_init(&rba->rbd_empty, &local_empty);
486 spin_unlock(&rba->lock);
487
488 while (pending) {
489 int i;
490 LIST_HEAD(local_allocated);
491 gfp_t gfp_mask = GFP_KERNEL;
492
493 /* Do not post a warning if there are only a few requests */
494 if (pending < RX_PENDING_WATERMARK)
495 gfp_mask |= __GFP_NOWARN;
496
497 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
498 struct iwl_rx_mem_buffer *rxb;
499 struct page *page;
500
501 /* List should never be empty - each reused RBD is
502 * returned to the list, and initial pool covers any
503 * possible gap between the time the page is allocated
504 * to the time the RBD is added.
505 */
506 BUG_ON(list_empty(&local_empty));
507 /* Get the first rxb from the rbd list */
508 rxb = list_first_entry(&local_empty,
509 struct iwl_rx_mem_buffer, list);
510 BUG_ON(rxb->page);
511
512 /* Alloc a new receive buffer */
513 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
514 if (!page)
515 continue;
516 rxb->page = page;
517
518 /* Get physical address of the RB */
519 rxb->page_dma = dma_map_page(trans->dev, page, 0,
520 PAGE_SIZE << trans_pcie->rx_page_order,
521 DMA_FROM_DEVICE);
522 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
523 rxb->page = NULL;
524 __free_pages(page, trans_pcie->rx_page_order);
525 continue;
526 }
527
528 /* move the allocated entry to the out list */
529 list_move(&rxb->list, &local_allocated);
530 i++;
531 }
532
533 pending--;
534 if (!pending) {
535 pending = atomic_xchg(&rba->req_pending, 0);
536 IWL_DEBUG_RX(trans,
537 "Pending allocation requests = %d\n",
538 pending);
539 }
540
541 spin_lock(&rba->lock);
542 /* add the allocated rbds to the allocator allocated list */
543 list_splice_tail(&local_allocated, &rba->rbd_allocated);
544 /* get more empty RBDs for current pending requests */
545 list_splice_tail_init(&rba->rbd_empty, &local_empty);
546 spin_unlock(&rba->lock);
547
548 atomic_inc(&rba->req_ready);
549 }
550
551 spin_lock(&rba->lock);
552 /* return unused rbds to the allocator empty list */
553 list_splice_tail(&local_empty, &rba->rbd_empty);
554 spin_unlock(&rba->lock);
555 }
556
557 /*
558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
559 .*
560 .* Called by queue when the queue posted allocation request and
561 * has freed 8 RBDs in order to restock itself.
562 * This function directly moves the allocated RBs to the queue's ownership
563 * and updates the relevant counters.
564 */
iwl_pcie_rx_allocator_get(struct iwl_trans * trans,struct iwl_rxq * rxq)565 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
566 struct iwl_rxq *rxq)
567 {
568 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
569 struct iwl_rb_allocator *rba = &trans_pcie->rba;
570 int i;
571
572 lockdep_assert_held(&rxq->lock);
573
574 /*
575 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
576 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
577 * function will return early, as there are no ready requests.
578 * atomic_dec_if_positive will perofrm the *actual* decrement only if
579 * req_ready > 0, i.e. - there are ready requests and the function
580 * hands one request to the caller.
581 */
582 if (atomic_dec_if_positive(&rba->req_ready) < 0)
583 return;
584
585 spin_lock(&rba->lock);
586 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
587 /* Get next free Rx buffer, remove it from free list */
588 struct iwl_rx_mem_buffer *rxb =
589 list_first_entry(&rba->rbd_allocated,
590 struct iwl_rx_mem_buffer, list);
591
592 list_move(&rxb->list, &rxq->rx_free);
593 }
594 spin_unlock(&rba->lock);
595
596 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
597 rxq->free_count += RX_CLAIM_REQ_ALLOC;
598 }
599
iwl_pcie_rx_allocator_work(struct work_struct * data)600 static void iwl_pcie_rx_allocator_work(struct work_struct *data)
601 {
602 struct iwl_rb_allocator *rba_p =
603 container_of(data, struct iwl_rb_allocator, rx_alloc);
604 struct iwl_trans_pcie *trans_pcie =
605 container_of(rba_p, struct iwl_trans_pcie, rba);
606
607 iwl_pcie_rx_allocator(trans_pcie->trans);
608 }
609
iwl_pcie_rx_alloc(struct iwl_trans * trans)610 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
611 {
612 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
613 struct iwl_rb_allocator *rba = &trans_pcie->rba;
614 struct device *dev = trans->dev;
615 int i;
616 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
617 sizeof(__le32);
618
619 if (WARN_ON(trans_pcie->rxq))
620 return -EINVAL;
621
622 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
623 GFP_KERNEL);
624 if (!trans_pcie->rxq)
625 return -EINVAL;
626
627 spin_lock_init(&rba->lock);
628
629 for (i = 0; i < trans->num_rx_queues; i++) {
630 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
631
632 spin_lock_init(&rxq->lock);
633 if (trans->cfg->mq_rx_supported)
634 rxq->queue_size = MQ_RX_TABLE_SIZE;
635 else
636 rxq->queue_size = RX_QUEUE_SIZE;
637
638 /*
639 * Allocate the circular buffer of Read Buffer Descriptors
640 * (RBDs)
641 */
642 rxq->bd = dma_zalloc_coherent(dev,
643 free_size * rxq->queue_size,
644 &rxq->bd_dma, GFP_KERNEL);
645 if (!rxq->bd)
646 goto err;
647
648 if (trans->cfg->mq_rx_supported) {
649 rxq->used_bd = dma_zalloc_coherent(dev,
650 sizeof(__le32) *
651 rxq->queue_size,
652 &rxq->used_bd_dma,
653 GFP_KERNEL);
654 if (!rxq->used_bd)
655 goto err;
656 }
657
658 /*Allocate the driver's pointer to receive buffer status */
659 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
660 &rxq->rb_stts_dma,
661 GFP_KERNEL);
662 if (!rxq->rb_stts)
663 goto err;
664 }
665 return 0;
666
667 err:
668 for (i = 0; i < trans->num_rx_queues; i++) {
669 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
670
671 if (rxq->bd)
672 dma_free_coherent(dev, free_size * rxq->queue_size,
673 rxq->bd, rxq->bd_dma);
674 rxq->bd_dma = 0;
675 rxq->bd = NULL;
676
677 if (rxq->rb_stts)
678 dma_free_coherent(trans->dev,
679 sizeof(struct iwl_rb_status),
680 rxq->rb_stts, rxq->rb_stts_dma);
681
682 if (rxq->used_bd)
683 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
684 rxq->used_bd, rxq->used_bd_dma);
685 rxq->used_bd_dma = 0;
686 rxq->used_bd = NULL;
687 }
688 kfree(trans_pcie->rxq);
689
690 return -ENOMEM;
691 }
692
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)693 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
694 {
695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
696 u32 rb_size;
697 unsigned long flags;
698 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
699
700 switch (trans_pcie->rx_buf_size) {
701 case IWL_AMSDU_4K:
702 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
703 break;
704 case IWL_AMSDU_8K:
705 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
706 break;
707 case IWL_AMSDU_12K:
708 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
709 break;
710 default:
711 WARN_ON(1);
712 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
713 }
714
715 if (!iwl_trans_grab_nic_access(trans, &flags))
716 return;
717
718 /* Stop Rx DMA */
719 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
720 /* reset and flush pointers */
721 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
722 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
723 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
724
725 /* Reset driver's Rx queue write index */
726 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
727
728 /* Tell device where to find RBD circular buffer in DRAM */
729 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
730 (u32)(rxq->bd_dma >> 8));
731
732 /* Tell device where in DRAM to update its Rx status */
733 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
734 rxq->rb_stts_dma >> 4);
735
736 /* Enable Rx DMA
737 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
738 * the credit mechanism in 5000 HW RX FIFO
739 * Direct rx interrupts to hosts
740 * Rx buffer size 4 or 8k or 12k
741 * RB timeout 0x10
742 * 256 RBDs
743 */
744 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
745 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
746 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
747 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
748 rb_size |
749 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
750 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
751
752 iwl_trans_release_nic_access(trans, &flags);
753
754 /* Set interrupt coalescing timer to default (2048 usecs) */
755 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
756
757 /* W/A for interrupt coalescing bug in 7260 and 3160 */
758 if (trans->cfg->host_interrupt_operation_mode)
759 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
760 }
761
iwl_pcie_enable_rx_wake(struct iwl_trans * trans,bool enable)762 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
763 {
764 /*
765 * Turn on the chicken-bits that cause MAC wakeup for RX-related
766 * values.
767 * This costs some power, but needed for W/A 9000 integrated A-step
768 * bug where shadow registers are not in the retention list and their
769 * value is lost when NIC powers down
770 */
771 if (trans->cfg->integrated) {
772 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
773 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
774 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
775 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
776 }
777 }
778
iwl_pcie_rx_mq_hw_init(struct iwl_trans * trans)779 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
780 {
781 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
782 u32 rb_size, enabled = 0;
783 unsigned long flags;
784 int i;
785
786 switch (trans_pcie->rx_buf_size) {
787 case IWL_AMSDU_4K:
788 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
789 break;
790 case IWL_AMSDU_8K:
791 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
792 break;
793 case IWL_AMSDU_12K:
794 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
795 break;
796 default:
797 WARN_ON(1);
798 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
799 }
800
801 if (!iwl_trans_grab_nic_access(trans, &flags))
802 return;
803
804 /* Stop Rx DMA */
805 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
806 /* disable free amd used rx queue operation */
807 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
808
809 for (i = 0; i < trans->num_rx_queues; i++) {
810 /* Tell device where to find RBD free table in DRAM */
811 iwl_write_prph64_no_grab(trans,
812 RFH_Q_FRBDCB_BA_LSB(i),
813 trans_pcie->rxq[i].bd_dma);
814 /* Tell device where to find RBD used table in DRAM */
815 iwl_write_prph64_no_grab(trans,
816 RFH_Q_URBDCB_BA_LSB(i),
817 trans_pcie->rxq[i].used_bd_dma);
818 /* Tell device where in DRAM to update its Rx status */
819 iwl_write_prph64_no_grab(trans,
820 RFH_Q_URBD_STTS_WPTR_LSB(i),
821 trans_pcie->rxq[i].rb_stts_dma);
822 /* Reset device indice tables */
823 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
824 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
825 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
826
827 enabled |= BIT(i) | BIT(i + 16);
828 }
829
830 /*
831 * Enable Rx DMA
832 * Rx buffer size 4 or 8k or 12k
833 * Min RB size 4 or 8
834 * Drop frames that exceed RB size
835 * 512 RBDs
836 */
837 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
838 RFH_DMA_EN_ENABLE_VAL | rb_size |
839 RFH_RXF_DMA_MIN_RB_4_8 |
840 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
841 RFH_RXF_DMA_RBDCB_SIZE_512);
842
843 /*
844 * Activate DMA snooping.
845 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
846 * Default queue is 0
847 */
848 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
849 (DEFAULT_RXQ_NUM <<
850 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
851 RFH_GEN_CFG_SERVICE_DMA_SNOOP |
852 (trans->cfg->integrated ?
853 RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
854 RFH_GEN_CFG_RB_CHUNK_SIZE_128) <<
855 RFH_GEN_CFG_RB_CHUNK_SIZE_POS);
856 /* Enable the relevant rx queues */
857 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
858
859 iwl_trans_release_nic_access(trans, &flags);
860
861 /* Set interrupt coalescing timer to default (2048 usecs) */
862 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
863
864 iwl_pcie_enable_rx_wake(trans, true);
865 }
866
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)867 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
868 {
869 lockdep_assert_held(&rxq->lock);
870
871 INIT_LIST_HEAD(&rxq->rx_free);
872 INIT_LIST_HEAD(&rxq->rx_used);
873 rxq->free_count = 0;
874 rxq->used_count = 0;
875 }
876
iwl_pcie_dummy_napi_poll(struct napi_struct * napi,int budget)877 static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
878 {
879 WARN_ON(1);
880 return 0;
881 }
882
iwl_pcie_rx_init(struct iwl_trans * trans)883 int iwl_pcie_rx_init(struct iwl_trans *trans)
884 {
885 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
886 struct iwl_rxq *def_rxq;
887 struct iwl_rb_allocator *rba = &trans_pcie->rba;
888 int i, err, queue_size, allocator_pool_size, num_alloc;
889
890 if (!trans_pcie->rxq) {
891 err = iwl_pcie_rx_alloc(trans);
892 if (err)
893 return err;
894 }
895 def_rxq = trans_pcie->rxq;
896 if (!rba->alloc_wq)
897 rba->alloc_wq = alloc_workqueue("rb_allocator",
898 WQ_HIGHPRI | WQ_UNBOUND, 1);
899 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
900
901 spin_lock(&rba->lock);
902 atomic_set(&rba->req_pending, 0);
903 atomic_set(&rba->req_ready, 0);
904 INIT_LIST_HEAD(&rba->rbd_allocated);
905 INIT_LIST_HEAD(&rba->rbd_empty);
906 spin_unlock(&rba->lock);
907
908 /* free all first - we might be reconfigured for a different size */
909 iwl_pcie_free_rbs_pool(trans);
910
911 for (i = 0; i < RX_QUEUE_SIZE; i++)
912 def_rxq->queue[i] = NULL;
913
914 for (i = 0; i < trans->num_rx_queues; i++) {
915 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
916
917 rxq->id = i;
918
919 spin_lock(&rxq->lock);
920 /*
921 * Set read write pointer to reflect that we have processed
922 * and used all buffers, but have not restocked the Rx queue
923 * with fresh buffers
924 */
925 rxq->read = 0;
926 rxq->write = 0;
927 rxq->write_actual = 0;
928 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
929
930 iwl_pcie_rx_init_rxb_lists(rxq);
931
932 if (!rxq->napi.poll)
933 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
934 iwl_pcie_dummy_napi_poll, 64);
935
936 spin_unlock(&rxq->lock);
937 }
938
939 /* move the pool to the default queue and allocator ownerships */
940 queue_size = trans->cfg->mq_rx_supported ?
941 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
942 allocator_pool_size = trans->num_rx_queues *
943 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
944 num_alloc = queue_size + allocator_pool_size;
945 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
946 ARRAY_SIZE(trans_pcie->rx_pool));
947 for (i = 0; i < num_alloc; i++) {
948 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
949
950 if (i < allocator_pool_size)
951 list_add(&rxb->list, &rba->rbd_empty);
952 else
953 list_add(&rxb->list, &def_rxq->rx_used);
954 trans_pcie->global_table[i] = rxb;
955 rxb->vid = (u16)(i + 1);
956 rxb->invalid = true;
957 }
958
959 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
960
961 if (trans->cfg->mq_rx_supported)
962 iwl_pcie_rx_mq_hw_init(trans);
963 else
964 iwl_pcie_rx_hw_init(trans, def_rxq);
965
966 iwl_pcie_rxq_restock(trans, def_rxq);
967
968 spin_lock(&def_rxq->lock);
969 iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
970 spin_unlock(&def_rxq->lock);
971
972 return 0;
973 }
974
iwl_pcie_rx_free(struct iwl_trans * trans)975 void iwl_pcie_rx_free(struct iwl_trans *trans)
976 {
977 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
978 struct iwl_rb_allocator *rba = &trans_pcie->rba;
979 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
980 sizeof(__le32);
981 int i;
982
983 /*
984 * if rxq is NULL, it means that nothing has been allocated,
985 * exit now
986 */
987 if (!trans_pcie->rxq) {
988 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
989 return;
990 }
991
992 cancel_work_sync(&rba->rx_alloc);
993 if (rba->alloc_wq) {
994 destroy_workqueue(rba->alloc_wq);
995 rba->alloc_wq = NULL;
996 }
997
998 iwl_pcie_free_rbs_pool(trans);
999
1000 for (i = 0; i < trans->num_rx_queues; i++) {
1001 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1002
1003 if (rxq->bd)
1004 dma_free_coherent(trans->dev,
1005 free_size * rxq->queue_size,
1006 rxq->bd, rxq->bd_dma);
1007 rxq->bd_dma = 0;
1008 rxq->bd = NULL;
1009
1010 if (rxq->rb_stts)
1011 dma_free_coherent(trans->dev,
1012 sizeof(struct iwl_rb_status),
1013 rxq->rb_stts, rxq->rb_stts_dma);
1014 else
1015 IWL_DEBUG_INFO(trans,
1016 "Free rxq->rb_stts which is NULL\n");
1017
1018 if (rxq->used_bd)
1019 dma_free_coherent(trans->dev,
1020 sizeof(__le32) * rxq->queue_size,
1021 rxq->used_bd, rxq->used_bd_dma);
1022 rxq->used_bd_dma = 0;
1023 rxq->used_bd = NULL;
1024
1025 if (rxq->napi.poll)
1026 netif_napi_del(&rxq->napi);
1027 }
1028 kfree(trans_pcie->rxq);
1029 }
1030
1031 /*
1032 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1033 *
1034 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1035 * When there are 2 empty RBDs - a request for allocation is posted
1036 */
iwl_pcie_rx_reuse_rbd(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb,struct iwl_rxq * rxq,bool emergency)1037 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1038 struct iwl_rx_mem_buffer *rxb,
1039 struct iwl_rxq *rxq, bool emergency)
1040 {
1041 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1042 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1043
1044 /* Move the RBD to the used list, will be moved to allocator in batches
1045 * before claiming or posting a request*/
1046 list_add_tail(&rxb->list, &rxq->rx_used);
1047
1048 if (unlikely(emergency))
1049 return;
1050
1051 /* Count the allocator owned RBDs */
1052 rxq->used_count++;
1053
1054 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1055 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1056 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1057 * after but we still need to post another request.
1058 */
1059 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1060 /* Move the 2 RBDs to the allocator ownership.
1061 Allocator has another 6 from pool for the request completion*/
1062 spin_lock(&rba->lock);
1063 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1064 spin_unlock(&rba->lock);
1065
1066 atomic_inc(&rba->req_pending);
1067 queue_work(rba->alloc_wq, &rba->rx_alloc);
1068 }
1069 }
1070
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rxq * rxq,struct iwl_rx_mem_buffer * rxb,bool emergency)1071 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1072 struct iwl_rxq *rxq,
1073 struct iwl_rx_mem_buffer *rxb,
1074 bool emergency)
1075 {
1076 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1077 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1078 bool page_stolen = false;
1079 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1080 u32 offset = 0;
1081
1082 if (WARN_ON(!rxb))
1083 return;
1084
1085 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1086
1087 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1088 struct iwl_rx_packet *pkt;
1089 u16 sequence;
1090 bool reclaim;
1091 int index, cmd_index, len;
1092 struct iwl_rx_cmd_buffer rxcb = {
1093 ._offset = offset,
1094 ._rx_page_order = trans_pcie->rx_page_order,
1095 ._page = rxb->page,
1096 ._page_stolen = false,
1097 .truesize = max_len,
1098 };
1099
1100 pkt = rxb_addr(&rxcb);
1101
1102 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1103 break;
1104
1105 WARN_ON((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1106 FH_RSCSR_RXQ_POS != rxq->id);
1107
1108 IWL_DEBUG_RX(trans,
1109 "cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1110 rxcb._offset,
1111 iwl_get_cmd_string(trans,
1112 iwl_cmd_id(pkt->hdr.cmd,
1113 pkt->hdr.group_id,
1114 0)),
1115 pkt->hdr.group_id, pkt->hdr.cmd,
1116 le16_to_cpu(pkt->hdr.sequence));
1117
1118 len = iwl_rx_packet_len(pkt);
1119 len += sizeof(u32); /* account for status word */
1120 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1121 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1122
1123 /* Reclaim a command buffer only if this packet is a response
1124 * to a (driver-originated) command.
1125 * If the packet (e.g. Rx frame) originated from uCode,
1126 * there is no command buffer to reclaim.
1127 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1128 * but apparently a few don't get set; catch them here. */
1129 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1130 if (reclaim) {
1131 int i;
1132
1133 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1134 if (trans_pcie->no_reclaim_cmds[i] ==
1135 pkt->hdr.cmd) {
1136 reclaim = false;
1137 break;
1138 }
1139 }
1140 }
1141
1142 sequence = le16_to_cpu(pkt->hdr.sequence);
1143 index = SEQ_TO_INDEX(sequence);
1144 cmd_index = get_cmd_index(txq, index);
1145
1146 if (rxq->id == 0)
1147 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1148 &rxcb);
1149 else
1150 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1151 &rxcb, rxq->id);
1152
1153 if (reclaim) {
1154 kzfree(txq->entries[cmd_index].free_buf);
1155 txq->entries[cmd_index].free_buf = NULL;
1156 }
1157
1158 /*
1159 * After here, we should always check rxcb._page_stolen,
1160 * if it is true then one of the handlers took the page.
1161 */
1162
1163 if (reclaim) {
1164 /* Invoke any callbacks, transfer the buffer to caller,
1165 * and fire off the (possibly) blocking
1166 * iwl_trans_send_cmd()
1167 * as we reclaim the driver command queue */
1168 if (!rxcb._page_stolen)
1169 iwl_pcie_hcmd_complete(trans, &rxcb);
1170 else
1171 IWL_WARN(trans, "Claim null rxb?\n");
1172 }
1173
1174 page_stolen |= rxcb._page_stolen;
1175 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1176 }
1177
1178 /* page was stolen from us -- free our reference */
1179 if (page_stolen) {
1180 __free_pages(rxb->page, trans_pcie->rx_page_order);
1181 rxb->page = NULL;
1182 }
1183
1184 /* Reuse the page if possible. For notification packets and
1185 * SKBs that fail to Rx correctly, add them back into the
1186 * rx_free list for reuse later. */
1187 if (rxb->page != NULL) {
1188 rxb->page_dma =
1189 dma_map_page(trans->dev, rxb->page, 0,
1190 PAGE_SIZE << trans_pcie->rx_page_order,
1191 DMA_FROM_DEVICE);
1192 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1193 /*
1194 * free the page(s) as well to not break
1195 * the invariant that the items on the used
1196 * list have no page(s)
1197 */
1198 __free_pages(rxb->page, trans_pcie->rx_page_order);
1199 rxb->page = NULL;
1200 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1201 } else {
1202 list_add_tail(&rxb->list, &rxq->rx_free);
1203 rxq->free_count++;
1204 }
1205 } else
1206 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1207 }
1208
1209 /*
1210 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1211 */
iwl_pcie_rx_handle(struct iwl_trans * trans,int queue)1212 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1213 {
1214 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1215 struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1216 u32 r, i, count = 0;
1217 bool emergency = false;
1218
1219 restart:
1220 spin_lock(&rxq->lock);
1221 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1222 * buffer that the driver may process (last buffer filled by ucode). */
1223 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1224 i = rxq->read;
1225
1226 /* W/A 9000 device step A0 wrap-around bug */
1227 r &= (rxq->queue_size - 1);
1228
1229 /* Rx interrupt, but nothing sent from uCode */
1230 if (i == r)
1231 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1232
1233 while (i != r) {
1234 struct iwl_rx_mem_buffer *rxb;
1235
1236 if (unlikely(rxq->used_count == rxq->queue_size / 2))
1237 emergency = true;
1238
1239 if (trans->cfg->mq_rx_supported) {
1240 /*
1241 * used_bd is a 32 bit but only 12 are used to retrieve
1242 * the vid
1243 */
1244 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1245
1246 if (WARN(!vid ||
1247 vid > ARRAY_SIZE(trans_pcie->global_table),
1248 "Invalid rxb index from HW %u\n", (u32)vid)) {
1249 iwl_force_nmi(trans);
1250 goto out;
1251 }
1252 rxb = trans_pcie->global_table[vid - 1];
1253 if (WARN(rxb->invalid,
1254 "Invalid rxb from HW %u\n", (u32)vid)) {
1255 iwl_force_nmi(trans);
1256 goto out;
1257 }
1258 rxb->invalid = true;
1259 } else {
1260 rxb = rxq->queue[i];
1261 rxq->queue[i] = NULL;
1262 }
1263
1264 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1265 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1266
1267 i = (i + 1) & (rxq->queue_size - 1);
1268
1269 /*
1270 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1271 * try to claim the pre-allocated buffers from the allocator.
1272 * If not ready - will try to reclaim next time.
1273 * There is no need to reschedule work - allocator exits only
1274 * on success
1275 */
1276 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1277 iwl_pcie_rx_allocator_get(trans, rxq);
1278
1279 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1280 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1281
1282 /* Add the remaining empty RBDs for allocator use */
1283 spin_lock(&rba->lock);
1284 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1285 spin_unlock(&rba->lock);
1286 } else if (emergency) {
1287 count++;
1288 if (count == 8) {
1289 count = 0;
1290 if (rxq->used_count < rxq->queue_size / 3)
1291 emergency = false;
1292
1293 rxq->read = i;
1294 spin_unlock(&rxq->lock);
1295 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1296 iwl_pcie_rxq_restock(trans, rxq);
1297 goto restart;
1298 }
1299 }
1300 }
1301 out:
1302 /* Backtrack one entry */
1303 rxq->read = i;
1304 spin_unlock(&rxq->lock);
1305
1306 /*
1307 * handle a case where in emergency there are some unallocated RBDs.
1308 * those RBDs are in the used list, but are not tracked by the queue's
1309 * used_count which counts allocator owned RBDs.
1310 * unallocated emergency RBDs must be allocated on exit, otherwise
1311 * when called again the function may not be in emergency mode and
1312 * they will be handed to the allocator with no tracking in the RBD
1313 * allocator counters, which will lead to them never being claimed back
1314 * by the queue.
1315 * by allocating them here, they are now in the queue free list, and
1316 * will be restocked by the next call of iwl_pcie_rxq_restock.
1317 */
1318 if (unlikely(emergency && count))
1319 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1320
1321 if (rxq->napi.poll)
1322 napi_gro_flush(&rxq->napi, false);
1323
1324 iwl_pcie_rxq_restock(trans, rxq);
1325 }
1326
iwl_pcie_get_trans_pcie(struct msix_entry * entry)1327 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1328 {
1329 u8 queue = entry->entry;
1330 struct msix_entry *entries = entry - queue;
1331
1332 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1333 }
1334
iwl_pcie_clear_irq(struct iwl_trans * trans,struct msix_entry * entry)1335 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1336 struct msix_entry *entry)
1337 {
1338 /*
1339 * Before sending the interrupt the HW disables it to prevent
1340 * a nested interrupt. This is done by writing 1 to the corresponding
1341 * bit in the mask register. After handling the interrupt, it should be
1342 * re-enabled by clearing this bit. This register is defined as
1343 * write 1 clear (W1C) register, meaning that it's being clear
1344 * by writing 1 to the bit.
1345 */
1346 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1347 }
1348
1349 /*
1350 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1351 * This interrupt handler should be used with RSS queue only.
1352 */
iwl_pcie_irq_rx_msix_handler(int irq,void * dev_id)1353 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1354 {
1355 struct msix_entry *entry = dev_id;
1356 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1357 struct iwl_trans *trans = trans_pcie->trans;
1358
1359 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1360 return IRQ_NONE;
1361
1362 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1363
1364 local_bh_disable();
1365 iwl_pcie_rx_handle(trans, entry->entry);
1366 local_bh_enable();
1367
1368 iwl_pcie_clear_irq(trans, entry);
1369
1370 lock_map_release(&trans->sync_cmd_lockdep_map);
1371
1372 return IRQ_HANDLED;
1373 }
1374
1375 /*
1376 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1377 */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)1378 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1379 {
1380 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1381 int i;
1382
1383 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1384 if (trans->cfg->internal_wimax_coex &&
1385 !trans->cfg->apmg_not_supported &&
1386 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1387 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1388 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1389 APMG_PS_CTRL_VAL_RESET_REQ))) {
1390 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1391 iwl_op_mode_wimax_active(trans->op_mode);
1392 wake_up(&trans_pcie->wait_command_queue);
1393 return;
1394 }
1395
1396 iwl_pcie_dump_csr(trans);
1397 iwl_dump_fh(trans, NULL);
1398
1399 local_bh_disable();
1400 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1401 * before we wake up the command caller, to ensure a proper cleanup. */
1402 iwl_trans_fw_error(trans);
1403 local_bh_enable();
1404
1405 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1406 del_timer(&trans_pcie->txq[i].stuck_timer);
1407
1408 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1409 wake_up(&trans_pcie->wait_command_queue);
1410 }
1411
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)1412 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1413 {
1414 u32 inta;
1415
1416 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1417
1418 trace_iwlwifi_dev_irq(trans->dev);
1419
1420 /* Discover which interrupts are active/pending */
1421 inta = iwl_read32(trans, CSR_INT);
1422
1423 /* the thread will service interrupts and re-enable them */
1424 return inta;
1425 }
1426
1427 /* a device (PCI-E) page is 4096 bytes long */
1428 #define ICT_SHIFT 12
1429 #define ICT_SIZE (1 << ICT_SHIFT)
1430 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1431
1432 /* interrupt handler using ict table, with this interrupt driver will
1433 * stop using INTA register to get device's interrupt, reading this register
1434 * is expensive, device will write interrupts in ICT dram table, increment
1435 * index then will fire interrupt to driver, driver will OR all ICT table
1436 * entries from current index up to table entry with 0 value. the result is
1437 * the interrupt we need to service, driver will set the entries back to 0 and
1438 * set index.
1439 */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)1440 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1441 {
1442 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1443 u32 inta;
1444 u32 val = 0;
1445 u32 read;
1446
1447 trace_iwlwifi_dev_irq(trans->dev);
1448
1449 /* Ignore interrupt if there's nothing in NIC to service.
1450 * This may be due to IRQ shared with another device,
1451 * or due to sporadic interrupts thrown from our NIC. */
1452 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1453 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1454 if (!read)
1455 return 0;
1456
1457 /*
1458 * Collect all entries up to the first 0, starting from ict_index;
1459 * note we already read at ict_index.
1460 */
1461 do {
1462 val |= read;
1463 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1464 trans_pcie->ict_index, read);
1465 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1466 trans_pcie->ict_index =
1467 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1468
1469 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1470 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1471 read);
1472 } while (read);
1473
1474 /* We should not get this value, just ignore it. */
1475 if (val == 0xffffffff)
1476 val = 0;
1477
1478 /*
1479 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1480 * (bit 15 before shifting it to 31) to clear when using interrupt
1481 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1482 * so we use them to decide on the real state of the Rx bit.
1483 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1484 */
1485 if (val & 0xC0000)
1486 val |= 0x8000;
1487
1488 inta = (0xff & val) | ((0xff00 & val) << 16);
1489 return inta;
1490 }
1491
iwl_pcie_irq_handler(int irq,void * dev_id)1492 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1493 {
1494 struct iwl_trans *trans = dev_id;
1495 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1496 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1497 u32 inta = 0;
1498 u32 handled = 0;
1499
1500 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1501
1502 spin_lock(&trans_pcie->irq_lock);
1503
1504 /* dram interrupt table not set yet,
1505 * use legacy interrupt.
1506 */
1507 if (likely(trans_pcie->use_ict))
1508 inta = iwl_pcie_int_cause_ict(trans);
1509 else
1510 inta = iwl_pcie_int_cause_non_ict(trans);
1511
1512 if (iwl_have_debug_level(IWL_DL_ISR)) {
1513 IWL_DEBUG_ISR(trans,
1514 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1515 inta, trans_pcie->inta_mask,
1516 iwl_read32(trans, CSR_INT_MASK),
1517 iwl_read32(trans, CSR_FH_INT_STATUS));
1518 if (inta & (~trans_pcie->inta_mask))
1519 IWL_DEBUG_ISR(trans,
1520 "We got a masked interrupt (0x%08x)\n",
1521 inta & (~trans_pcie->inta_mask));
1522 }
1523
1524 inta &= trans_pcie->inta_mask;
1525
1526 /*
1527 * Ignore interrupt if there's nothing in NIC to service.
1528 * This may be due to IRQ shared with another device,
1529 * or due to sporadic interrupts thrown from our NIC.
1530 */
1531 if (unlikely(!inta)) {
1532 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1533 /*
1534 * Re-enable interrupts here since we don't
1535 * have anything to service
1536 */
1537 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1538 _iwl_enable_interrupts(trans);
1539 spin_unlock(&trans_pcie->irq_lock);
1540 lock_map_release(&trans->sync_cmd_lockdep_map);
1541 return IRQ_NONE;
1542 }
1543
1544 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1545 /*
1546 * Hardware disappeared. It might have
1547 * already raised an interrupt.
1548 */
1549 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1550 spin_unlock(&trans_pcie->irq_lock);
1551 goto out;
1552 }
1553
1554 /* Ack/clear/reset pending uCode interrupts.
1555 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1556 */
1557 /* There is a hardware bug in the interrupt mask function that some
1558 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1559 * they are disabled in the CSR_INT_MASK register. Furthermore the
1560 * ICT interrupt handling mechanism has another bug that might cause
1561 * these unmasked interrupts fail to be detected. We workaround the
1562 * hardware bugs here by ACKing all the possible interrupts so that
1563 * interrupt coalescing can still be achieved.
1564 */
1565 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1566
1567 if (iwl_have_debug_level(IWL_DL_ISR))
1568 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1569 inta, iwl_read32(trans, CSR_INT_MASK));
1570
1571 spin_unlock(&trans_pcie->irq_lock);
1572
1573 /* Now service all interrupt bits discovered above. */
1574 if (inta & CSR_INT_BIT_HW_ERR) {
1575 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
1576
1577 /* Tell the device to stop sending interrupts */
1578 iwl_disable_interrupts(trans);
1579
1580 isr_stats->hw++;
1581 iwl_pcie_irq_handle_error(trans);
1582
1583 handled |= CSR_INT_BIT_HW_ERR;
1584
1585 goto out;
1586 }
1587
1588 if (iwl_have_debug_level(IWL_DL_ISR)) {
1589 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1590 if (inta & CSR_INT_BIT_SCD) {
1591 IWL_DEBUG_ISR(trans,
1592 "Scheduler finished to transmit the frame/frames.\n");
1593 isr_stats->sch++;
1594 }
1595
1596 /* Alive notification via Rx interrupt will do the real work */
1597 if (inta & CSR_INT_BIT_ALIVE) {
1598 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1599 isr_stats->alive++;
1600 }
1601 }
1602
1603 /* Safely ignore these bits for debug checks below */
1604 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1605
1606 /* HW RF KILL switch toggled */
1607 if (inta & CSR_INT_BIT_RF_KILL) {
1608 bool hw_rfkill;
1609
1610 hw_rfkill = iwl_is_rfkill_set(trans);
1611 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1612 hw_rfkill ? "disable radio" : "enable radio");
1613
1614 isr_stats->rfkill++;
1615
1616 mutex_lock(&trans_pcie->mutex);
1617 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1618 mutex_unlock(&trans_pcie->mutex);
1619 if (hw_rfkill) {
1620 set_bit(STATUS_RFKILL, &trans->status);
1621 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1622 &trans->status))
1623 IWL_DEBUG_RF_KILL(trans,
1624 "Rfkill while SYNC HCMD in flight\n");
1625 wake_up(&trans_pcie->wait_command_queue);
1626 } else {
1627 clear_bit(STATUS_RFKILL, &trans->status);
1628 }
1629
1630 handled |= CSR_INT_BIT_RF_KILL;
1631 }
1632
1633 /* Chip got too hot and stopped itself */
1634 if (inta & CSR_INT_BIT_CT_KILL) {
1635 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1636 isr_stats->ctkill++;
1637 handled |= CSR_INT_BIT_CT_KILL;
1638 }
1639
1640 /* Error detected by uCode */
1641 if (inta & CSR_INT_BIT_SW_ERR) {
1642 IWL_ERR(trans, "Microcode SW error detected. "
1643 " Restarting 0x%X.\n", inta);
1644 isr_stats->sw++;
1645 iwl_pcie_irq_handle_error(trans);
1646 handled |= CSR_INT_BIT_SW_ERR;
1647 }
1648
1649 /* uCode wakes up after power-down sleep */
1650 if (inta & CSR_INT_BIT_WAKEUP) {
1651 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1652 iwl_pcie_rxq_check_wrptr(trans);
1653 iwl_pcie_txq_check_wrptrs(trans);
1654
1655 isr_stats->wakeup++;
1656
1657 handled |= CSR_INT_BIT_WAKEUP;
1658 }
1659
1660 /* All uCode command responses, including Tx command responses,
1661 * Rx "responses" (frame-received notification), and other
1662 * notifications from uCode come through here*/
1663 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1664 CSR_INT_BIT_RX_PERIODIC)) {
1665 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1666 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1667 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1668 iwl_write32(trans, CSR_FH_INT_STATUS,
1669 CSR_FH_INT_RX_MASK);
1670 }
1671 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1672 handled |= CSR_INT_BIT_RX_PERIODIC;
1673 iwl_write32(trans,
1674 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1675 }
1676 /* Sending RX interrupt require many steps to be done in the
1677 * the device:
1678 * 1- write interrupt to current index in ICT table.
1679 * 2- dma RX frame.
1680 * 3- update RX shared data to indicate last write index.
1681 * 4- send interrupt.
1682 * This could lead to RX race, driver could receive RX interrupt
1683 * but the shared data changes does not reflect this;
1684 * periodic interrupt will detect any dangling Rx activity.
1685 */
1686
1687 /* Disable periodic interrupt; we use it as just a one-shot. */
1688 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1689 CSR_INT_PERIODIC_DIS);
1690
1691 /*
1692 * Enable periodic interrupt in 8 msec only if we received
1693 * real RX interrupt (instead of just periodic int), to catch
1694 * any dangling Rx interrupt. If it was just the periodic
1695 * interrupt, there was no dangling Rx activity, and no need
1696 * to extend the periodic interrupt; one-shot is enough.
1697 */
1698 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1699 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1700 CSR_INT_PERIODIC_ENA);
1701
1702 isr_stats->rx++;
1703
1704 local_bh_disable();
1705 iwl_pcie_rx_handle(trans, 0);
1706 local_bh_enable();
1707 }
1708
1709 /* This "Tx" DMA channel is used only for loading uCode */
1710 if (inta & CSR_INT_BIT_FH_TX) {
1711 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1712 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1713 isr_stats->tx++;
1714 handled |= CSR_INT_BIT_FH_TX;
1715 /* Wake up uCode load routine, now that load is complete */
1716 trans_pcie->ucode_write_complete = true;
1717 wake_up(&trans_pcie->ucode_write_waitq);
1718 }
1719
1720 if (inta & ~handled) {
1721 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1722 isr_stats->unhandled++;
1723 }
1724
1725 if (inta & ~(trans_pcie->inta_mask)) {
1726 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1727 inta & ~trans_pcie->inta_mask);
1728 }
1729
1730 spin_lock(&trans_pcie->irq_lock);
1731 /* only Re-enable all interrupt if disabled by irq */
1732 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1733 _iwl_enable_interrupts(trans);
1734 /* we are loading the firmware, enable FH_TX interrupt only */
1735 else if (handled & CSR_INT_BIT_FH_TX)
1736 iwl_enable_fw_load_int(trans);
1737 /* Re-enable RF_KILL if it occurred */
1738 else if (handled & CSR_INT_BIT_RF_KILL)
1739 iwl_enable_rfkill_int(trans);
1740 spin_unlock(&trans_pcie->irq_lock);
1741
1742 out:
1743 lock_map_release(&trans->sync_cmd_lockdep_map);
1744 return IRQ_HANDLED;
1745 }
1746
1747 /******************************************************************************
1748 *
1749 * ICT functions
1750 *
1751 ******************************************************************************/
1752
1753 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)1754 void iwl_pcie_free_ict(struct iwl_trans *trans)
1755 {
1756 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1757
1758 if (trans_pcie->ict_tbl) {
1759 dma_free_coherent(trans->dev, ICT_SIZE,
1760 trans_pcie->ict_tbl,
1761 trans_pcie->ict_tbl_dma);
1762 trans_pcie->ict_tbl = NULL;
1763 trans_pcie->ict_tbl_dma = 0;
1764 }
1765 }
1766
1767 /*
1768 * allocate dram shared table, it is an aligned memory
1769 * block of ICT_SIZE.
1770 * also reset all data related to ICT table interrupt.
1771 */
iwl_pcie_alloc_ict(struct iwl_trans * trans)1772 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1773 {
1774 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1775
1776 trans_pcie->ict_tbl =
1777 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1778 &trans_pcie->ict_tbl_dma,
1779 GFP_KERNEL);
1780 if (!trans_pcie->ict_tbl)
1781 return -ENOMEM;
1782
1783 /* just an API sanity check ... it is guaranteed to be aligned */
1784 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1785 iwl_pcie_free_ict(trans);
1786 return -EINVAL;
1787 }
1788
1789 return 0;
1790 }
1791
1792 /* Device is going up inform it about using ICT interrupt table,
1793 * also we need to tell the driver to start using ICT interrupt.
1794 */
iwl_pcie_reset_ict(struct iwl_trans * trans)1795 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1796 {
1797 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1798 u32 val;
1799
1800 if (!trans_pcie->ict_tbl)
1801 return;
1802
1803 spin_lock(&trans_pcie->irq_lock);
1804 _iwl_disable_interrupts(trans);
1805
1806 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1807
1808 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1809
1810 val |= CSR_DRAM_INT_TBL_ENABLE |
1811 CSR_DRAM_INIT_TBL_WRAP_CHECK |
1812 CSR_DRAM_INIT_TBL_WRITE_POINTER;
1813
1814 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1815
1816 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1817 trans_pcie->use_ict = true;
1818 trans_pcie->ict_index = 0;
1819 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1820 _iwl_enable_interrupts(trans);
1821 spin_unlock(&trans_pcie->irq_lock);
1822 }
1823
1824 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)1825 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1826 {
1827 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1828
1829 spin_lock(&trans_pcie->irq_lock);
1830 trans_pcie->use_ict = false;
1831 spin_unlock(&trans_pcie->irq_lock);
1832 }
1833
iwl_pcie_isr(int irq,void * data)1834 irqreturn_t iwl_pcie_isr(int irq, void *data)
1835 {
1836 struct iwl_trans *trans = data;
1837
1838 if (!trans)
1839 return IRQ_NONE;
1840
1841 /* Disable (but don't clear!) interrupts here to avoid
1842 * back-to-back ISRs and sporadic interrupts from our NIC.
1843 * If we have something to service, the tasklet will re-enable ints.
1844 * If we *don't* have something, we'll re-enable before leaving here.
1845 */
1846 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1847
1848 return IRQ_WAKE_THREAD;
1849 }
1850
iwl_pcie_msix_isr(int irq,void * data)1851 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1852 {
1853 return IRQ_WAKE_THREAD;
1854 }
1855
iwl_pcie_irq_msix_handler(int irq,void * dev_id)1856 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1857 {
1858 struct msix_entry *entry = dev_id;
1859 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1860 struct iwl_trans *trans = trans_pcie->trans;
1861 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1862 u32 inta_fh, inta_hw;
1863
1864 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1865
1866 spin_lock(&trans_pcie->irq_lock);
1867 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1868 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1869 /*
1870 * Clear causes registers to avoid being handling the same cause.
1871 */
1872 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1873 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1874 spin_unlock(&trans_pcie->irq_lock);
1875
1876 if (unlikely(!(inta_fh | inta_hw))) {
1877 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1878 lock_map_release(&trans->sync_cmd_lockdep_map);
1879 return IRQ_NONE;
1880 }
1881
1882 if (iwl_have_debug_level(IWL_DL_ISR))
1883 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1884 inta_fh,
1885 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1886
1887 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
1888 inta_fh & MSIX_FH_INT_CAUSES_Q0) {
1889 local_bh_disable();
1890 iwl_pcie_rx_handle(trans, 0);
1891 local_bh_enable();
1892 }
1893
1894 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
1895 inta_fh & MSIX_FH_INT_CAUSES_Q1) {
1896 local_bh_disable();
1897 iwl_pcie_rx_handle(trans, 1);
1898 local_bh_enable();
1899 }
1900
1901 /* This "Tx" DMA channel is used only for loading uCode */
1902 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1903 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1904 isr_stats->tx++;
1905 /*
1906 * Wake up uCode load routine,
1907 * now that load is complete
1908 */
1909 trans_pcie->ucode_write_complete = true;
1910 wake_up(&trans_pcie->ucode_write_waitq);
1911 }
1912
1913 /* Error detected by uCode */
1914 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1915 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1916 IWL_ERR(trans,
1917 "Microcode SW error detected. Restarting 0x%X.\n",
1918 inta_fh);
1919 isr_stats->sw++;
1920 iwl_pcie_irq_handle_error(trans);
1921 }
1922
1923 /* After checking FH register check HW register */
1924 if (iwl_have_debug_level(IWL_DL_ISR))
1925 IWL_DEBUG_ISR(trans,
1926 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1927 inta_hw,
1928 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1929
1930 /* Alive notification via Rx interrupt will do the real work */
1931 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1932 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1933 isr_stats->alive++;
1934 }
1935
1936 /* uCode wakes up after power-down sleep */
1937 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1938 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1939 iwl_pcie_rxq_check_wrptr(trans);
1940 iwl_pcie_txq_check_wrptrs(trans);
1941
1942 isr_stats->wakeup++;
1943 }
1944
1945 /* Chip got too hot and stopped itself */
1946 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1947 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1948 isr_stats->ctkill++;
1949 }
1950
1951 /* HW RF KILL switch toggled */
1952 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1953 bool hw_rfkill;
1954
1955 hw_rfkill = iwl_is_rfkill_set(trans);
1956 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1957 hw_rfkill ? "disable radio" : "enable radio");
1958
1959 isr_stats->rfkill++;
1960
1961 mutex_lock(&trans_pcie->mutex);
1962 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1963 mutex_unlock(&trans_pcie->mutex);
1964 if (hw_rfkill) {
1965 set_bit(STATUS_RFKILL, &trans->status);
1966 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1967 &trans->status))
1968 IWL_DEBUG_RF_KILL(trans,
1969 "Rfkill while SYNC HCMD in flight\n");
1970 wake_up(&trans_pcie->wait_command_queue);
1971 } else {
1972 clear_bit(STATUS_RFKILL, &trans->status);
1973 }
1974 }
1975
1976 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1977 IWL_ERR(trans,
1978 "Hardware error detected. Restarting.\n");
1979
1980 isr_stats->hw++;
1981 iwl_pcie_irq_handle_error(trans);
1982 }
1983
1984 iwl_pcie_clear_irq(trans, entry);
1985
1986 lock_map_release(&trans->sync_cmd_lockdep_map);
1987
1988 return IRQ_HANDLED;
1989 }
1990