• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Analog Devices SPI3 controller driver
3  *
4  * Copyright (c) 2014 Analog Devices Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/errno.h>
21 #include <linux/gpio.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/adi_spi3.h>
31 #include <linux/types.h>
32 
33 #include <asm/dma.h>
34 #include <asm/portmux.h>
35 
36 enum adi_spi_state {
37 	START_STATE,
38 	RUNNING_STATE,
39 	DONE_STATE,
40 	ERROR_STATE
41 };
42 
43 struct adi_spi_master;
44 
45 struct adi_spi_transfer_ops {
46 	void (*write) (struct adi_spi_master *);
47 	void (*read) (struct adi_spi_master *);
48 	void (*duplex) (struct adi_spi_master *);
49 };
50 
51 /* runtime info for spi master */
52 struct adi_spi_master {
53 	/* SPI framework hookup */
54 	struct spi_master *master;
55 
56 	/* Regs base of SPI controller */
57 	struct adi_spi_regs __iomem *regs;
58 
59 	/* Pin request list */
60 	u16 *pin_req;
61 
62 	/* Message Transfer pump */
63 	struct tasklet_struct pump_transfers;
64 
65 	/* Current message transfer state info */
66 	struct spi_message *cur_msg;
67 	struct spi_transfer *cur_transfer;
68 	struct adi_spi_device *cur_chip;
69 	unsigned transfer_len;
70 
71 	/* transfer buffer */
72 	void *tx;
73 	void *tx_end;
74 	void *rx;
75 	void *rx_end;
76 
77 	/* dma info */
78 	unsigned int tx_dma;
79 	unsigned int rx_dma;
80 	dma_addr_t tx_dma_addr;
81 	dma_addr_t rx_dma_addr;
82 	unsigned long dummy_buffer; /* used in unidirectional transfer */
83 	unsigned long tx_dma_size;
84 	unsigned long rx_dma_size;
85 	int tx_num;
86 	int rx_num;
87 
88 	/* store register value for suspend/resume */
89 	u32 control;
90 	u32 ssel;
91 
92 	unsigned long sclk;
93 	enum adi_spi_state state;
94 
95 	const struct adi_spi_transfer_ops *ops;
96 };
97 
98 struct adi_spi_device {
99 	u32 control;
100 	u32 clock;
101 	u32 ssel;
102 
103 	u8 cs;
104 	u16 cs_chg_udelay; /* Some devices require > 255usec delay */
105 	u32 cs_gpio;
106 	u32 tx_dummy_val; /* tx value for rx only transfer */
107 	bool enable_dma;
108 	const struct adi_spi_transfer_ops *ops;
109 };
110 
adi_spi_enable(struct adi_spi_master * drv_data)111 static void adi_spi_enable(struct adi_spi_master *drv_data)
112 {
113 	u32 ctl;
114 
115 	ctl = ioread32(&drv_data->regs->control);
116 	ctl |= SPI_CTL_EN;
117 	iowrite32(ctl, &drv_data->regs->control);
118 }
119 
adi_spi_disable(struct adi_spi_master * drv_data)120 static void adi_spi_disable(struct adi_spi_master *drv_data)
121 {
122 	u32 ctl;
123 
124 	ctl = ioread32(&drv_data->regs->control);
125 	ctl &= ~SPI_CTL_EN;
126 	iowrite32(ctl, &drv_data->regs->control);
127 }
128 
129 /* Caculate the SPI_CLOCK register value based on input HZ */
hz_to_spi_clock(u32 sclk,u32 speed_hz)130 static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
131 {
132 	u32 spi_clock = sclk / speed_hz;
133 
134 	if (spi_clock)
135 		spi_clock--;
136 	return spi_clock;
137 }
138 
adi_spi_flush(struct adi_spi_master * drv_data)139 static int adi_spi_flush(struct adi_spi_master *drv_data)
140 {
141 	unsigned long limit = loops_per_jiffy << 1;
142 
143 	/* wait for stop and clear stat */
144 	while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
145 		cpu_relax();
146 
147 	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
148 
149 	return limit;
150 }
151 
152 /* Chip select operation functions for cs_change flag */
adi_spi_cs_active(struct adi_spi_master * drv_data,struct adi_spi_device * chip)153 static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
154 {
155 	if (likely(chip->cs < MAX_CTRL_CS)) {
156 		u32 reg;
157 		reg = ioread32(&drv_data->regs->ssel);
158 		reg &= ~chip->ssel;
159 		iowrite32(reg, &drv_data->regs->ssel);
160 	} else {
161 		gpio_set_value(chip->cs_gpio, 0);
162 	}
163 }
164 
adi_spi_cs_deactive(struct adi_spi_master * drv_data,struct adi_spi_device * chip)165 static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
166 				struct adi_spi_device *chip)
167 {
168 	if (likely(chip->cs < MAX_CTRL_CS)) {
169 		u32 reg;
170 		reg = ioread32(&drv_data->regs->ssel);
171 		reg |= chip->ssel;
172 		iowrite32(reg, &drv_data->regs->ssel);
173 	} else {
174 		gpio_set_value(chip->cs_gpio, 1);
175 	}
176 
177 	/* Move delay here for consistency */
178 	if (chip->cs_chg_udelay)
179 		udelay(chip->cs_chg_udelay);
180 }
181 
182 /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
adi_spi_cs_enable(struct adi_spi_master * drv_data,struct adi_spi_device * chip)183 static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
184 					struct adi_spi_device *chip)
185 {
186 	if (chip->cs < MAX_CTRL_CS) {
187 		u32 reg;
188 		reg = ioread32(&drv_data->regs->ssel);
189 		reg |= chip->ssel >> 8;
190 		iowrite32(reg, &drv_data->regs->ssel);
191 	}
192 }
193 
adi_spi_cs_disable(struct adi_spi_master * drv_data,struct adi_spi_device * chip)194 static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
195 					struct adi_spi_device *chip)
196 {
197 	if (chip->cs < MAX_CTRL_CS) {
198 		u32 reg;
199 		reg = ioread32(&drv_data->regs->ssel);
200 		reg &= ~(chip->ssel >> 8);
201 		iowrite32(reg, &drv_data->regs->ssel);
202 	}
203 }
204 
205 /* stop controller and re-config current chip*/
adi_spi_restore_state(struct adi_spi_master * drv_data)206 static void adi_spi_restore_state(struct adi_spi_master *drv_data)
207 {
208 	struct adi_spi_device *chip = drv_data->cur_chip;
209 
210 	/* Clear status and disable clock */
211 	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
212 	iowrite32(0x0, &drv_data->regs->rx_control);
213 	iowrite32(0x0, &drv_data->regs->tx_control);
214 	adi_spi_disable(drv_data);
215 
216 	/* Load the registers */
217 	iowrite32(chip->control, &drv_data->regs->control);
218 	iowrite32(chip->clock, &drv_data->regs->clock);
219 
220 	adi_spi_enable(drv_data);
221 	drv_data->tx_num = drv_data->rx_num = 0;
222 	/* we always choose tx transfer initiate */
223 	iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
224 	iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
225 	adi_spi_cs_active(drv_data, chip);
226 }
227 
228 /* discard invalid rx data and empty rfifo */
dummy_read(struct adi_spi_master * drv_data)229 static inline void dummy_read(struct adi_spi_master *drv_data)
230 {
231 	while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
232 		ioread32(&drv_data->regs->rfifo);
233 }
234 
adi_spi_u8_write(struct adi_spi_master * drv_data)235 static void adi_spi_u8_write(struct adi_spi_master *drv_data)
236 {
237 	dummy_read(drv_data);
238 	while (drv_data->tx < drv_data->tx_end) {
239 		iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
240 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
241 			cpu_relax();
242 		ioread32(&drv_data->regs->rfifo);
243 	}
244 }
245 
adi_spi_u8_read(struct adi_spi_master * drv_data)246 static void adi_spi_u8_read(struct adi_spi_master *drv_data)
247 {
248 	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
249 
250 	dummy_read(drv_data);
251 	while (drv_data->rx < drv_data->rx_end) {
252 		iowrite32(tx_val, &drv_data->regs->tfifo);
253 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
254 			cpu_relax();
255 		*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
256 	}
257 }
258 
adi_spi_u8_duplex(struct adi_spi_master * drv_data)259 static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
260 {
261 	dummy_read(drv_data);
262 	while (drv_data->rx < drv_data->rx_end) {
263 		iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
264 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
265 			cpu_relax();
266 		*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
267 	}
268 }
269 
270 static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
271 	.write  = adi_spi_u8_write,
272 	.read   = adi_spi_u8_read,
273 	.duplex = adi_spi_u8_duplex,
274 };
275 
adi_spi_u16_write(struct adi_spi_master * drv_data)276 static void adi_spi_u16_write(struct adi_spi_master *drv_data)
277 {
278 	dummy_read(drv_data);
279 	while (drv_data->tx < drv_data->tx_end) {
280 		iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
281 		drv_data->tx += 2;
282 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
283 			cpu_relax();
284 		ioread32(&drv_data->regs->rfifo);
285 	}
286 }
287 
adi_spi_u16_read(struct adi_spi_master * drv_data)288 static void adi_spi_u16_read(struct adi_spi_master *drv_data)
289 {
290 	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
291 
292 	dummy_read(drv_data);
293 	while (drv_data->rx < drv_data->rx_end) {
294 		iowrite32(tx_val, &drv_data->regs->tfifo);
295 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
296 			cpu_relax();
297 		*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
298 		drv_data->rx += 2;
299 	}
300 }
301 
adi_spi_u16_duplex(struct adi_spi_master * drv_data)302 static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
303 {
304 	dummy_read(drv_data);
305 	while (drv_data->rx < drv_data->rx_end) {
306 		iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
307 		drv_data->tx += 2;
308 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
309 			cpu_relax();
310 		*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
311 		drv_data->rx += 2;
312 	}
313 }
314 
315 static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
316 	.write  = adi_spi_u16_write,
317 	.read   = adi_spi_u16_read,
318 	.duplex = adi_spi_u16_duplex,
319 };
320 
adi_spi_u32_write(struct adi_spi_master * drv_data)321 static void adi_spi_u32_write(struct adi_spi_master *drv_data)
322 {
323 	dummy_read(drv_data);
324 	while (drv_data->tx < drv_data->tx_end) {
325 		iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
326 		drv_data->tx += 4;
327 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
328 			cpu_relax();
329 		ioread32(&drv_data->regs->rfifo);
330 	}
331 }
332 
adi_spi_u32_read(struct adi_spi_master * drv_data)333 static void adi_spi_u32_read(struct adi_spi_master *drv_data)
334 {
335 	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
336 
337 	dummy_read(drv_data);
338 	while (drv_data->rx < drv_data->rx_end) {
339 		iowrite32(tx_val, &drv_data->regs->tfifo);
340 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
341 			cpu_relax();
342 		*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
343 		drv_data->rx += 4;
344 	}
345 }
346 
adi_spi_u32_duplex(struct adi_spi_master * drv_data)347 static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
348 {
349 	dummy_read(drv_data);
350 	while (drv_data->rx < drv_data->rx_end) {
351 		iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
352 		drv_data->tx += 4;
353 		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
354 			cpu_relax();
355 		*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
356 		drv_data->rx += 4;
357 	}
358 }
359 
360 static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
361 	.write  = adi_spi_u32_write,
362 	.read   = adi_spi_u32_read,
363 	.duplex = adi_spi_u32_duplex,
364 };
365 
366 
367 /* test if there is more transfer to be done */
adi_spi_next_transfer(struct adi_spi_master * drv)368 static void adi_spi_next_transfer(struct adi_spi_master *drv)
369 {
370 	struct spi_message *msg = drv->cur_msg;
371 	struct spi_transfer *t = drv->cur_transfer;
372 
373 	/* Move to next transfer */
374 	if (t->transfer_list.next != &msg->transfers) {
375 		drv->cur_transfer = list_entry(t->transfer_list.next,
376 			       struct spi_transfer, transfer_list);
377 		drv->state = RUNNING_STATE;
378 	} else {
379 		drv->state = DONE_STATE;
380 		drv->cur_transfer = NULL;
381 	}
382 }
383 
adi_spi_giveback(struct adi_spi_master * drv_data)384 static void adi_spi_giveback(struct adi_spi_master *drv_data)
385 {
386 	struct adi_spi_device *chip = drv_data->cur_chip;
387 
388 	adi_spi_cs_deactive(drv_data, chip);
389 	spi_finalize_current_message(drv_data->master);
390 }
391 
adi_spi_setup_transfer(struct adi_spi_master * drv)392 static int adi_spi_setup_transfer(struct adi_spi_master *drv)
393 {
394 	struct spi_transfer *t = drv->cur_transfer;
395 	u32 cr, cr_width;
396 
397 	if (t->tx_buf) {
398 		drv->tx = (void *)t->tx_buf;
399 		drv->tx_end = drv->tx + t->len;
400 	} else {
401 		drv->tx = NULL;
402 	}
403 
404 	if (t->rx_buf) {
405 		drv->rx = t->rx_buf;
406 		drv->rx_end = drv->rx + t->len;
407 	} else {
408 		drv->rx = NULL;
409 	}
410 
411 	drv->transfer_len = t->len;
412 
413 	/* bits per word setup */
414 	switch (t->bits_per_word) {
415 	case 8:
416 		cr_width = SPI_CTL_SIZE08;
417 		drv->ops = &adi_spi_transfer_ops_u8;
418 		break;
419 	case 16:
420 		cr_width = SPI_CTL_SIZE16;
421 		drv->ops = &adi_spi_transfer_ops_u16;
422 		break;
423 	case 32:
424 		cr_width = SPI_CTL_SIZE32;
425 		drv->ops = &adi_spi_transfer_ops_u32;
426 		break;
427 	default:
428 		return -EINVAL;
429 	}
430 	cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
431 	cr |= cr_width;
432 	iowrite32(cr, &drv->regs->control);
433 
434 	/* speed setup */
435 	iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
436 	return 0;
437 }
438 
adi_spi_dma_xfer(struct adi_spi_master * drv_data)439 static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
440 {
441 	struct spi_transfer *t = drv_data->cur_transfer;
442 	struct spi_message *msg = drv_data->cur_msg;
443 	struct adi_spi_device *chip = drv_data->cur_chip;
444 	u32 dma_config;
445 	unsigned long word_count, word_size;
446 	void *tx_buf, *rx_buf;
447 
448 	switch (t->bits_per_word) {
449 	case 8:
450 		dma_config = WDSIZE_8 | PSIZE_8;
451 		word_count = drv_data->transfer_len;
452 		word_size = 1;
453 		break;
454 	case 16:
455 		dma_config = WDSIZE_16 | PSIZE_16;
456 		word_count = drv_data->transfer_len / 2;
457 		word_size = 2;
458 		break;
459 	default:
460 		dma_config = WDSIZE_32 | PSIZE_32;
461 		word_count = drv_data->transfer_len / 4;
462 		word_size = 4;
463 		break;
464 	}
465 
466 	if (!drv_data->rx) {
467 		tx_buf = drv_data->tx;
468 		rx_buf = &drv_data->dummy_buffer;
469 		drv_data->tx_dma_size = drv_data->transfer_len;
470 		drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
471 		set_dma_x_modify(drv_data->tx_dma, word_size);
472 		set_dma_x_modify(drv_data->rx_dma, 0);
473 	} else if (!drv_data->tx) {
474 		drv_data->dummy_buffer = chip->tx_dummy_val;
475 		tx_buf = &drv_data->dummy_buffer;
476 		rx_buf = drv_data->rx;
477 		drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
478 		drv_data->rx_dma_size = drv_data->transfer_len;
479 		set_dma_x_modify(drv_data->tx_dma, 0);
480 		set_dma_x_modify(drv_data->rx_dma, word_size);
481 	} else {
482 		tx_buf = drv_data->tx;
483 		rx_buf = drv_data->rx;
484 		drv_data->tx_dma_size = drv_data->rx_dma_size
485 					= drv_data->transfer_len;
486 		set_dma_x_modify(drv_data->tx_dma, word_size);
487 		set_dma_x_modify(drv_data->rx_dma, word_size);
488 	}
489 
490 	drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
491 				(void *)tx_buf,
492 				drv_data->tx_dma_size,
493 				DMA_TO_DEVICE);
494 	if (dma_mapping_error(&msg->spi->dev,
495 				drv_data->tx_dma_addr))
496 		return -ENOMEM;
497 
498 	drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
499 				(void *)rx_buf,
500 				drv_data->rx_dma_size,
501 				DMA_FROM_DEVICE);
502 	if (dma_mapping_error(&msg->spi->dev,
503 				drv_data->rx_dma_addr)) {
504 		dma_unmap_single(&msg->spi->dev,
505 				drv_data->tx_dma_addr,
506 				drv_data->tx_dma_size,
507 				DMA_TO_DEVICE);
508 		return -ENOMEM;
509 	}
510 
511 	dummy_read(drv_data);
512 	set_dma_x_count(drv_data->tx_dma, word_count);
513 	set_dma_x_count(drv_data->rx_dma, word_count);
514 	set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
515 	set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
516 	dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
517 	set_dma_config(drv_data->tx_dma, dma_config);
518 	set_dma_config(drv_data->rx_dma, dma_config | WNR);
519 	enable_dma(drv_data->tx_dma);
520 	enable_dma(drv_data->rx_dma);
521 
522 	iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
523 			&drv_data->regs->rx_control);
524 	iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
525 			&drv_data->regs->tx_control);
526 
527 	return 0;
528 }
529 
adi_spi_pio_xfer(struct adi_spi_master * drv_data)530 static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
531 {
532 	struct spi_message *msg = drv_data->cur_msg;
533 
534 	if (!drv_data->rx) {
535 		/* write only half duplex */
536 		drv_data->ops->write(drv_data);
537 		if (drv_data->tx != drv_data->tx_end)
538 			return -EIO;
539 	} else if (!drv_data->tx) {
540 		/* read only half duplex */
541 		drv_data->ops->read(drv_data);
542 		if (drv_data->rx != drv_data->rx_end)
543 			return -EIO;
544 	} else {
545 		/* full duplex mode */
546 		drv_data->ops->duplex(drv_data);
547 		if (drv_data->tx != drv_data->tx_end)
548 			return -EIO;
549 	}
550 
551 	if (!adi_spi_flush(drv_data))
552 		return -EIO;
553 	msg->actual_length += drv_data->transfer_len;
554 	tasklet_schedule(&drv_data->pump_transfers);
555 	return 0;
556 }
557 
adi_spi_pump_transfers(unsigned long data)558 static void adi_spi_pump_transfers(unsigned long data)
559 {
560 	struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
561 	struct spi_message *msg = NULL;
562 	struct spi_transfer *t = NULL;
563 	struct adi_spi_device *chip = NULL;
564 	int ret;
565 
566 	/* Get current state information */
567 	msg = drv_data->cur_msg;
568 	t = drv_data->cur_transfer;
569 	chip = drv_data->cur_chip;
570 
571 	/* Handle for abort */
572 	if (drv_data->state == ERROR_STATE) {
573 		msg->status = -EIO;
574 		adi_spi_giveback(drv_data);
575 		return;
576 	}
577 
578 	if (drv_data->state == RUNNING_STATE) {
579 		if (t->delay_usecs)
580 			udelay(t->delay_usecs);
581 		if (t->cs_change)
582 			adi_spi_cs_deactive(drv_data, chip);
583 		adi_spi_next_transfer(drv_data);
584 		t = drv_data->cur_transfer;
585 	}
586 	/* Handle end of message */
587 	if (drv_data->state == DONE_STATE) {
588 		msg->status = 0;
589 		adi_spi_giveback(drv_data);
590 		return;
591 	}
592 
593 	if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
594 		/* Schedule next transfer tasklet */
595 		tasklet_schedule(&drv_data->pump_transfers);
596 		return;
597 	}
598 
599 	ret = adi_spi_setup_transfer(drv_data);
600 	if (ret) {
601 		msg->status = ret;
602 		adi_spi_giveback(drv_data);
603 	}
604 
605 	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
606 	adi_spi_cs_active(drv_data, chip);
607 	drv_data->state = RUNNING_STATE;
608 
609 	if (chip->enable_dma)
610 		ret = adi_spi_dma_xfer(drv_data);
611 	else
612 		ret = adi_spi_pio_xfer(drv_data);
613 	if (ret) {
614 		msg->status = ret;
615 		adi_spi_giveback(drv_data);
616 	}
617 }
618 
adi_spi_transfer_one_message(struct spi_master * master,struct spi_message * m)619 static int adi_spi_transfer_one_message(struct spi_master *master,
620 					struct spi_message *m)
621 {
622 	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
623 
624 	drv_data->cur_msg = m;
625 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
626 	adi_spi_restore_state(drv_data);
627 
628 	drv_data->state = START_STATE;
629 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
630 					    struct spi_transfer, transfer_list);
631 
632 	tasklet_schedule(&drv_data->pump_transfers);
633 	return 0;
634 }
635 
636 #define MAX_SPI_SSEL	7
637 
638 static const u16 ssel[][MAX_SPI_SSEL] = {
639 	{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
640 	P_SPI0_SSEL4, P_SPI0_SSEL5,
641 	P_SPI0_SSEL6, P_SPI0_SSEL7},
642 
643 	{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
644 	P_SPI1_SSEL4, P_SPI1_SSEL5,
645 	P_SPI1_SSEL6, P_SPI1_SSEL7},
646 
647 	{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
648 	P_SPI2_SSEL4, P_SPI2_SSEL5,
649 	P_SPI2_SSEL6, P_SPI2_SSEL7},
650 };
651 
adi_spi_setup(struct spi_device * spi)652 static int adi_spi_setup(struct spi_device *spi)
653 {
654 	struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
655 	struct adi_spi_device *chip = spi_get_ctldata(spi);
656 	u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
657 	int ret = -EINVAL;
658 
659 	if (!chip) {
660 		struct adi_spi3_chip *chip_info = spi->controller_data;
661 
662 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
663 		if (!chip)
664 			return -ENOMEM;
665 
666 		if (chip_info) {
667 			if (chip_info->control & ~ctl_reg) {
668 				dev_err(&spi->dev,
669 					"do not set bits that the SPI framework manages\n");
670 				goto error;
671 			}
672 			chip->control = chip_info->control;
673 			chip->cs_chg_udelay = chip_info->cs_chg_udelay;
674 			chip->tx_dummy_val = chip_info->tx_dummy_val;
675 			chip->enable_dma = chip_info->enable_dma;
676 		}
677 		chip->cs = spi->chip_select;
678 
679 		if (chip->cs < MAX_CTRL_CS) {
680 			chip->ssel = (1 << chip->cs) << 8;
681 			ret = peripheral_request(ssel[spi->master->bus_num]
682 					[chip->cs-1], dev_name(&spi->dev));
683 			if (ret) {
684 				dev_err(&spi->dev, "peripheral_request() error\n");
685 				goto error;
686 			}
687 		} else {
688 			chip->cs_gpio = chip->cs - MAX_CTRL_CS;
689 			ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
690 						dev_name(&spi->dev));
691 			if (ret) {
692 				dev_err(&spi->dev, "gpio_request_one() error\n");
693 				goto error;
694 			}
695 		}
696 		spi_set_ctldata(spi, chip);
697 	}
698 
699 	/* force a default base state */
700 	chip->control &= ctl_reg;
701 
702 	if (spi->mode & SPI_CPOL)
703 		chip->control |= SPI_CTL_CPOL;
704 	if (spi->mode & SPI_CPHA)
705 		chip->control |= SPI_CTL_CPHA;
706 	if (spi->mode & SPI_LSB_FIRST)
707 		chip->control |= SPI_CTL_LSBF;
708 	chip->control |= SPI_CTL_MSTR;
709 	/* we choose software to controll cs */
710 	chip->control &= ~SPI_CTL_ASSEL;
711 
712 	chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
713 
714 	adi_spi_cs_enable(drv_data, chip);
715 	adi_spi_cs_deactive(drv_data, chip);
716 
717 	return 0;
718 error:
719 	if (chip) {
720 		kfree(chip);
721 		spi_set_ctldata(spi, NULL);
722 	}
723 
724 	return ret;
725 }
726 
adi_spi_cleanup(struct spi_device * spi)727 static void adi_spi_cleanup(struct spi_device *spi)
728 {
729 	struct adi_spi_device *chip = spi_get_ctldata(spi);
730 	struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
731 
732 	if (!chip)
733 		return;
734 
735 	if (chip->cs < MAX_CTRL_CS) {
736 		peripheral_free(ssel[spi->master->bus_num]
737 					[chip->cs-1]);
738 		adi_spi_cs_disable(drv_data, chip);
739 	} else {
740 		gpio_free(chip->cs_gpio);
741 	}
742 
743 	kfree(chip);
744 	spi_set_ctldata(spi, NULL);
745 }
746 
adi_spi_tx_dma_isr(int irq,void * dev_id)747 static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
748 {
749 	struct adi_spi_master *drv_data = dev_id;
750 	u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
751 	u32 tx_ctl;
752 
753 	clear_dma_irqstat(drv_data->tx_dma);
754 	if (dma_stat & DMA_DONE) {
755 		drv_data->tx_num++;
756 	} else {
757 		dev_err(&drv_data->master->dev,
758 				"spi tx dma error: %d\n", dma_stat);
759 		if (drv_data->tx)
760 			drv_data->state = ERROR_STATE;
761 	}
762 	tx_ctl = ioread32(&drv_data->regs->tx_control);
763 	tx_ctl &= ~SPI_TXCTL_TDR_NF;
764 	iowrite32(tx_ctl, &drv_data->regs->tx_control);
765 	return IRQ_HANDLED;
766 }
767 
adi_spi_rx_dma_isr(int irq,void * dev_id)768 static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
769 {
770 	struct adi_spi_master *drv_data = dev_id;
771 	struct spi_message *msg = drv_data->cur_msg;
772 	u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
773 
774 	clear_dma_irqstat(drv_data->rx_dma);
775 	if (dma_stat & DMA_DONE) {
776 		drv_data->rx_num++;
777 		/* we may fail on tx dma */
778 		if (drv_data->state != ERROR_STATE)
779 			msg->actual_length += drv_data->transfer_len;
780 	} else {
781 		drv_data->state = ERROR_STATE;
782 		dev_err(&drv_data->master->dev,
783 				"spi rx dma error: %d\n", dma_stat);
784 	}
785 	iowrite32(0, &drv_data->regs->tx_control);
786 	iowrite32(0, &drv_data->regs->rx_control);
787 	if (drv_data->rx_num != drv_data->tx_num)
788 		dev_dbg(&drv_data->master->dev,
789 				"dma interrupt missing: tx=%d,rx=%d\n",
790 				drv_data->tx_num, drv_data->rx_num);
791 	tasklet_schedule(&drv_data->pump_transfers);
792 	return IRQ_HANDLED;
793 }
794 
adi_spi_probe(struct platform_device * pdev)795 static int adi_spi_probe(struct platform_device *pdev)
796 {
797 	struct device *dev = &pdev->dev;
798 	struct adi_spi3_master *info = dev_get_platdata(dev);
799 	struct spi_master *master;
800 	struct adi_spi_master *drv_data;
801 	struct resource *mem, *res;
802 	unsigned int tx_dma, rx_dma;
803 	struct clk *sclk;
804 	int ret;
805 
806 	if (!info) {
807 		dev_err(dev, "platform data missing!\n");
808 		return -ENODEV;
809 	}
810 
811 	sclk = devm_clk_get(dev, "spi");
812 	if (IS_ERR(sclk)) {
813 		dev_err(dev, "can not get spi clock\n");
814 		return PTR_ERR(sclk);
815 	}
816 
817 	res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
818 	if (!res) {
819 		dev_err(dev, "can not get tx dma resource\n");
820 		return -ENXIO;
821 	}
822 	tx_dma = res->start;
823 
824 	res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
825 	if (!res) {
826 		dev_err(dev, "can not get rx dma resource\n");
827 		return -ENXIO;
828 	}
829 	rx_dma = res->start;
830 
831 	/* allocate master with space for drv_data */
832 	master = spi_alloc_master(dev, sizeof(*drv_data));
833 	if (!master) {
834 		dev_err(dev, "can not alloc spi_master\n");
835 		return -ENOMEM;
836 	}
837 	platform_set_drvdata(pdev, master);
838 
839 	/* the mode bits supported by this driver */
840 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
841 
842 	master->bus_num = pdev->id;
843 	master->num_chipselect = info->num_chipselect;
844 	master->cleanup = adi_spi_cleanup;
845 	master->setup = adi_spi_setup;
846 	master->transfer_one_message = adi_spi_transfer_one_message;
847 	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
848 				     SPI_BPW_MASK(8);
849 
850 	drv_data = spi_master_get_devdata(master);
851 	drv_data->master = master;
852 	drv_data->tx_dma = tx_dma;
853 	drv_data->rx_dma = rx_dma;
854 	drv_data->pin_req = info->pin_req;
855 	drv_data->sclk = clk_get_rate(sclk);
856 
857 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
858 	drv_data->regs = devm_ioremap_resource(dev, mem);
859 	if (IS_ERR(drv_data->regs)) {
860 		ret = PTR_ERR(drv_data->regs);
861 		goto err_put_master;
862 	}
863 
864 	/* request tx and rx dma */
865 	ret = request_dma(tx_dma, "SPI_TX_DMA");
866 	if (ret) {
867 		dev_err(dev, "can not request SPI TX DMA channel\n");
868 		goto err_put_master;
869 	}
870 	set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
871 
872 	ret = request_dma(rx_dma, "SPI_RX_DMA");
873 	if (ret) {
874 		dev_err(dev, "can not request SPI RX DMA channel\n");
875 		goto err_free_tx_dma;
876 	}
877 	set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
878 
879 	/* request CLK, MOSI and MISO */
880 	ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
881 	if (ret < 0) {
882 		dev_err(dev, "can not request spi pins\n");
883 		goto err_free_rx_dma;
884 	}
885 
886 	iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
887 	iowrite32(0x0000FE00, &drv_data->regs->ssel);
888 	iowrite32(0x0, &drv_data->regs->delay);
889 
890 	tasklet_init(&drv_data->pump_transfers,
891 			adi_spi_pump_transfers, (unsigned long)drv_data);
892 	/* register with the SPI framework */
893 	ret = devm_spi_register_master(dev, master);
894 	if (ret) {
895 		dev_err(dev, "can not  register spi master\n");
896 		goto err_free_peripheral;
897 	}
898 
899 	return ret;
900 
901 err_free_peripheral:
902 	peripheral_free_list(drv_data->pin_req);
903 err_free_rx_dma:
904 	free_dma(rx_dma);
905 err_free_tx_dma:
906 	free_dma(tx_dma);
907 err_put_master:
908 	spi_master_put(master);
909 
910 	return ret;
911 }
912 
adi_spi_remove(struct platform_device * pdev)913 static int adi_spi_remove(struct platform_device *pdev)
914 {
915 	struct spi_master *master = platform_get_drvdata(pdev);
916 	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
917 
918 	adi_spi_disable(drv_data);
919 	peripheral_free_list(drv_data->pin_req);
920 	free_dma(drv_data->rx_dma);
921 	free_dma(drv_data->tx_dma);
922 	return 0;
923 }
924 
925 #ifdef CONFIG_PM
adi_spi_suspend(struct device * dev)926 static int adi_spi_suspend(struct device *dev)
927 {
928 	struct spi_master *master = dev_get_drvdata(dev);
929 	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
930 
931 	spi_master_suspend(master);
932 
933 	drv_data->control = ioread32(&drv_data->regs->control);
934 	drv_data->ssel = ioread32(&drv_data->regs->ssel);
935 
936 	iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
937 	iowrite32(0x0000FE00, &drv_data->regs->ssel);
938 	dma_disable_irq(drv_data->rx_dma);
939 	dma_disable_irq(drv_data->tx_dma);
940 
941 	return 0;
942 }
943 
adi_spi_resume(struct device * dev)944 static int adi_spi_resume(struct device *dev)
945 {
946 	struct spi_master *master = dev_get_drvdata(dev);
947 	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
948 	int ret = 0;
949 
950 	/* bootrom may modify spi and dma status when resume in spi boot mode */
951 	disable_dma(drv_data->rx_dma);
952 
953 	dma_enable_irq(drv_data->rx_dma);
954 	dma_enable_irq(drv_data->tx_dma);
955 	iowrite32(drv_data->control, &drv_data->regs->control);
956 	iowrite32(drv_data->ssel, &drv_data->regs->ssel);
957 
958 	ret = spi_master_resume(master);
959 	if (ret) {
960 		free_dma(drv_data->rx_dma);
961 		free_dma(drv_data->tx_dma);
962 	}
963 
964 	return ret;
965 }
966 #endif
967 static const struct dev_pm_ops adi_spi_pm_ops = {
968 	SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
969 };
970 
971 MODULE_ALIAS("platform:adi-spi3");
972 static struct platform_driver adi_spi_driver = {
973 	.driver	= {
974 		.name	= "adi-spi3",
975 		.pm     = &adi_spi_pm_ops,
976 	},
977 	.remove		= adi_spi_remove,
978 };
979 
980 module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
981 
982 MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
983 MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
984 MODULE_LICENSE("GPL v2");
985