• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
42 
43 #ifndef user_long_t
44 #define user_long_t long
45 #endif
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
48 #endif
49 
50 static int load_elf_binary(struct linux_binprm *bprm);
51 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 				int, int, unsigned long);
53 
54 #ifdef CONFIG_USELIB
55 static int load_elf_library(struct file *);
56 #else
57 #define load_elf_library NULL
58 #endif
59 
60 /*
61  * If we don't support core dumping, then supply a NULL so we
62  * don't even try.
63  */
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params *cprm);
66 #else
67 #define elf_core_dump	NULL
68 #endif
69 
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
72 #else
73 #define ELF_MIN_ALIGN	PAGE_SIZE
74 #endif
75 
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS	0
78 #endif
79 
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
83 
84 static struct linux_binfmt elf_format = {
85 	.module		= THIS_MODULE,
86 	.load_binary	= load_elf_binary,
87 	.load_shlib	= load_elf_library,
88 	.core_dump	= elf_core_dump,
89 	.min_coredump	= ELF_EXEC_PAGESIZE,
90 };
91 
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
93 
set_brk(unsigned long start,unsigned long end)94 static int set_brk(unsigned long start, unsigned long end)
95 {
96 	start = ELF_PAGEALIGN(start);
97 	end = ELF_PAGEALIGN(end);
98 	if (end > start) {
99 		int error = vm_brk(start, end - start);
100 		if (error)
101 			return error;
102 	}
103 	current->mm->start_brk = current->mm->brk = end;
104 	return 0;
105 }
106 
107 /* We need to explicitly zero any fractional pages
108    after the data section (i.e. bss).  This would
109    contain the junk from the file that should not
110    be in memory
111  */
padzero(unsigned long elf_bss)112 static int padzero(unsigned long elf_bss)
113 {
114 	unsigned long nbyte;
115 
116 	nbyte = ELF_PAGEOFFSET(elf_bss);
117 	if (nbyte) {
118 		nbyte = ELF_MIN_ALIGN - nbyte;
119 		if (clear_user((void __user *) elf_bss, nbyte))
120 			return -EFAULT;
121 	}
122 	return 0;
123 }
124 
125 /* Let's use some macros to make this stack manipulation a little clearer */
126 #ifdef CONFIG_STACK_GROWSUP
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128 #define STACK_ROUND(sp, items) \
129 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ \
131 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 	old_sp; })
133 #else
134 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135 #define STACK_ROUND(sp, items) \
136 	(((unsigned long) (sp - items)) &~ 15UL)
137 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138 #endif
139 
140 #ifndef ELF_BASE_PLATFORM
141 /*
142  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144  * will be copied to the user stack in the same manner as AT_PLATFORM.
145  */
146 #define ELF_BASE_PLATFORM NULL
147 #endif
148 
149 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)150 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
151 		unsigned long load_addr, unsigned long interp_load_addr)
152 {
153 	unsigned long p = bprm->p;
154 	int argc = bprm->argc;
155 	int envc = bprm->envc;
156 	elf_addr_t __user *argv;
157 	elf_addr_t __user *envp;
158 	elf_addr_t __user *sp;
159 	elf_addr_t __user *u_platform;
160 	elf_addr_t __user *u_base_platform;
161 	elf_addr_t __user *u_rand_bytes;
162 	const char *k_platform = ELF_PLATFORM;
163 	const char *k_base_platform = ELF_BASE_PLATFORM;
164 	unsigned char k_rand_bytes[16];
165 	int items;
166 	elf_addr_t *elf_info;
167 	int ei_index = 0;
168 	const struct cred *cred = current_cred();
169 	struct vm_area_struct *vma;
170 
171 	/*
172 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 	 * evictions by the processes running on the same package. One
174 	 * thing we can do is to shuffle the initial stack for them.
175 	 */
176 
177 	p = arch_align_stack(p);
178 
179 	/*
180 	 * If this architecture has a platform capability string, copy it
181 	 * to userspace.  In some cases (Sparc), this info is impossible
182 	 * for userspace to get any other way, in others (i386) it is
183 	 * merely difficult.
184 	 */
185 	u_platform = NULL;
186 	if (k_platform) {
187 		size_t len = strlen(k_platform) + 1;
188 
189 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_platform, k_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * If this architecture has a "base" platform capability
196 	 * string, copy it to userspace.
197 	 */
198 	u_base_platform = NULL;
199 	if (k_base_platform) {
200 		size_t len = strlen(k_base_platform) + 1;
201 
202 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 		if (__copy_to_user(u_base_platform, k_base_platform, len))
204 			return -EFAULT;
205 	}
206 
207 	/*
208 	 * Generate 16 random bytes for userspace PRNG seeding.
209 	 */
210 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 	u_rand_bytes = (elf_addr_t __user *)
212 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
213 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 		return -EFAULT;
215 
216 	/* Create the ELF interpreter info */
217 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
218 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219 #define NEW_AUX_ENT(id, val) \
220 	do { \
221 		elf_info[ei_index++] = id; \
222 		elf_info[ei_index++] = val; \
223 	} while (0)
224 
225 #ifdef ARCH_DLINFO
226 	/*
227 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 	 * AUXV.
229 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 	 * ARCH_DLINFO changes
231 	 */
232 	ARCH_DLINFO;
233 #endif
234 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
238 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
239 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 	NEW_AUX_ENT(AT_FLAGS, 0);
242 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
243 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
247  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
248 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
249 #ifdef ELF_HWCAP2
250 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251 #endif
252 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
253 	if (k_platform) {
254 		NEW_AUX_ENT(AT_PLATFORM,
255 			    (elf_addr_t)(unsigned long)u_platform);
256 	}
257 	if (k_base_platform) {
258 		NEW_AUX_ENT(AT_BASE_PLATFORM,
259 			    (elf_addr_t)(unsigned long)u_base_platform);
260 	}
261 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
262 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
263 	}
264 #undef NEW_AUX_ENT
265 	/* AT_NULL is zero; clear the rest too */
266 	memset(&elf_info[ei_index], 0,
267 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
268 
269 	/* And advance past the AT_NULL entry.  */
270 	ei_index += 2;
271 
272 	sp = STACK_ADD(p, ei_index);
273 
274 	items = (argc + 1) + (envc + 1) + 1;
275 	bprm->p = STACK_ROUND(sp, items);
276 
277 	/* Point sp at the lowest address on the stack */
278 #ifdef CONFIG_STACK_GROWSUP
279 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
280 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
281 #else
282 	sp = (elf_addr_t __user *)bprm->p;
283 #endif
284 
285 
286 	/*
287 	 * Grow the stack manually; some architectures have a limit on how
288 	 * far ahead a user-space access may be in order to grow the stack.
289 	 */
290 	vma = find_extend_vma(current->mm, bprm->p);
291 	if (!vma)
292 		return -EFAULT;
293 
294 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 	if (__put_user(argc, sp++))
296 		return -EFAULT;
297 	argv = sp;
298 	envp = argv + argc + 1;
299 
300 	/* Populate argv and envp */
301 	p = current->mm->arg_end = current->mm->arg_start;
302 	while (argc-- > 0) {
303 		size_t len;
304 		if (__put_user((elf_addr_t)p, argv++))
305 			return -EFAULT;
306 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 		if (!len || len > MAX_ARG_STRLEN)
308 			return -EINVAL;
309 		p += len;
310 	}
311 	if (__put_user(0, argv))
312 		return -EFAULT;
313 	current->mm->arg_end = current->mm->env_start = p;
314 	while (envc-- > 0) {
315 		size_t len;
316 		if (__put_user((elf_addr_t)p, envp++))
317 			return -EFAULT;
318 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 		if (!len || len > MAX_ARG_STRLEN)
320 			return -EINVAL;
321 		p += len;
322 	}
323 	if (__put_user(0, envp))
324 		return -EFAULT;
325 	current->mm->env_end = p;
326 
327 	/* Put the elf_info on the stack in the right place.  */
328 	sp = (elf_addr_t __user *)envp + 1;
329 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 		return -EFAULT;
331 	return 0;
332 }
333 
334 #ifndef elf_map
335 
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)336 static unsigned long elf_map(struct file *filep, unsigned long addr,
337 		struct elf_phdr *eppnt, int prot, int type,
338 		unsigned long total_size)
339 {
340 	unsigned long map_addr;
341 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 	addr = ELF_PAGESTART(addr);
344 	size = ELF_PAGEALIGN(size);
345 
346 	/* mmap() will return -EINVAL if given a zero size, but a
347 	 * segment with zero filesize is perfectly valid */
348 	if (!size)
349 		return addr;
350 
351 	/*
352 	* total_size is the size of the ELF (interpreter) image.
353 	* The _first_ mmap needs to know the full size, otherwise
354 	* randomization might put this image into an overlapping
355 	* position with the ELF binary image. (since size < total_size)
356 	* So we first map the 'big' image - and unmap the remainder at
357 	* the end. (which unmap is needed for ELF images with holes.)
358 	*/
359 	if (total_size) {
360 		total_size = ELF_PAGEALIGN(total_size);
361 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
362 		if (!BAD_ADDR(map_addr))
363 			vm_munmap(map_addr+size, total_size-size);
364 	} else
365 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
366 
367 	return(map_addr);
368 }
369 
370 #endif /* !elf_map */
371 
total_mapping_size(struct elf_phdr * cmds,int nr)372 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
373 {
374 	int i, first_idx = -1, last_idx = -1;
375 
376 	for (i = 0; i < nr; i++) {
377 		if (cmds[i].p_type == PT_LOAD) {
378 			last_idx = i;
379 			if (first_idx == -1)
380 				first_idx = i;
381 		}
382 	}
383 	if (first_idx == -1)
384 		return 0;
385 
386 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
388 }
389 
390 /**
391  * load_elf_phdrs() - load ELF program headers
392  * @elf_ex:   ELF header of the binary whose program headers should be loaded
393  * @elf_file: the opened ELF binary file
394  *
395  * Loads ELF program headers from the binary file elf_file, which has the ELF
396  * header pointed to by elf_ex, into a newly allocated array. The caller is
397  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
398  */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)399 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 				       struct file *elf_file)
401 {
402 	struct elf_phdr *elf_phdata = NULL;
403 	int retval, size, err = -1;
404 
405 	/*
406 	 * If the size of this structure has changed, then punt, since
407 	 * we will be doing the wrong thing.
408 	 */
409 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 		goto out;
411 
412 	/* Sanity check the number of program headers... */
413 	if (elf_ex->e_phnum < 1 ||
414 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 		goto out;
416 
417 	/* ...and their total size. */
418 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 	if (size > ELF_MIN_ALIGN)
420 		goto out;
421 
422 	elf_phdata = kmalloc(size, GFP_KERNEL);
423 	if (!elf_phdata)
424 		goto out;
425 
426 	/* Read in the program headers */
427 	retval = kernel_read(elf_file, elf_ex->e_phoff,
428 			     (char *)elf_phdata, size);
429 	if (retval != size) {
430 		err = (retval < 0) ? retval : -EIO;
431 		goto out;
432 	}
433 
434 	/* Success! */
435 	err = 0;
436 out:
437 	if (err) {
438 		kfree(elf_phdata);
439 		elf_phdata = NULL;
440 	}
441 	return elf_phdata;
442 }
443 
444 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
445 
446 /**
447  * struct arch_elf_state - arch-specific ELF loading state
448  *
449  * This structure is used to preserve architecture specific data during
450  * the loading of an ELF file, throughout the checking of architecture
451  * specific ELF headers & through to the point where the ELF load is
452  * known to be proceeding (ie. SET_PERSONALITY).
453  *
454  * This implementation is a dummy for architectures which require no
455  * specific state.
456  */
457 struct arch_elf_state {
458 };
459 
460 #define INIT_ARCH_ELF_STATE {}
461 
462 /**
463  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464  * @ehdr:	The main ELF header
465  * @phdr:	The program header to check
466  * @elf:	The open ELF file
467  * @is_interp:	True if the phdr is from the interpreter of the ELF being
468  *		loaded, else false.
469  * @state:	Architecture-specific state preserved throughout the process
470  *		of loading the ELF.
471  *
472  * Inspects the program header phdr to validate its correctness and/or
473  * suitability for the system. Called once per ELF program header in the
474  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475  * interpreter.
476  *
477  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478  *         with that return code.
479  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)480 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 				   struct elf_phdr *phdr,
482 				   struct file *elf, bool is_interp,
483 				   struct arch_elf_state *state)
484 {
485 	/* Dummy implementation, always proceed */
486 	return 0;
487 }
488 
489 /**
490  * arch_check_elf() - check an ELF executable
491  * @ehdr:	The main ELF header
492  * @has_interp:	True if the ELF has an interpreter, else false.
493  * @interp_ehdr: The interpreter's ELF header
494  * @state:	Architecture-specific state preserved throughout the process
495  *		of loading the ELF.
496  *
497  * Provides a final opportunity for architecture code to reject the loading
498  * of the ELF & cause an exec syscall to return an error. This is called after
499  * all program headers to be checked by arch_elf_pt_proc have been.
500  *
501  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502  *         with that return code.
503  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)504 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 				 struct elfhdr *interp_ehdr,
506 				 struct arch_elf_state *state)
507 {
508 	/* Dummy implementation, always proceed */
509 	return 0;
510 }
511 
512 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
513 
514 /* This is much more generalized than the library routine read function,
515    so we keep this separate.  Technically the library read function
516    is only provided so that we can read a.out libraries that have
517    an ELF header */
518 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)519 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
520 		struct file *interpreter, unsigned long *interp_map_addr,
521 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
522 {
523 	struct elf_phdr *eppnt;
524 	unsigned long load_addr = 0;
525 	int load_addr_set = 0;
526 	unsigned long last_bss = 0, elf_bss = 0;
527 	unsigned long error = ~0UL;
528 	unsigned long total_size;
529 	int i;
530 
531 	/* First of all, some simple consistency checks */
532 	if (interp_elf_ex->e_type != ET_EXEC &&
533 	    interp_elf_ex->e_type != ET_DYN)
534 		goto out;
535 	if (!elf_check_arch(interp_elf_ex))
536 		goto out;
537 	if (!interpreter->f_op->mmap)
538 		goto out;
539 
540 	total_size = total_mapping_size(interp_elf_phdata,
541 					interp_elf_ex->e_phnum);
542 	if (!total_size) {
543 		error = -EINVAL;
544 		goto out;
545 	}
546 
547 	eppnt = interp_elf_phdata;
548 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
549 		if (eppnt->p_type == PT_LOAD) {
550 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
551 			int elf_prot = 0;
552 			unsigned long vaddr = 0;
553 			unsigned long k, map_addr;
554 
555 			if (eppnt->p_flags & PF_R)
556 		    		elf_prot = PROT_READ;
557 			if (eppnt->p_flags & PF_W)
558 				elf_prot |= PROT_WRITE;
559 			if (eppnt->p_flags & PF_X)
560 				elf_prot |= PROT_EXEC;
561 			vaddr = eppnt->p_vaddr;
562 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
563 				elf_type |= MAP_FIXED;
564 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
565 				load_addr = -vaddr;
566 
567 			map_addr = elf_map(interpreter, load_addr + vaddr,
568 					eppnt, elf_prot, elf_type, total_size);
569 			total_size = 0;
570 			if (!*interp_map_addr)
571 				*interp_map_addr = map_addr;
572 			error = map_addr;
573 			if (BAD_ADDR(map_addr))
574 				goto out;
575 
576 			if (!load_addr_set &&
577 			    interp_elf_ex->e_type == ET_DYN) {
578 				load_addr = map_addr - ELF_PAGESTART(vaddr);
579 				load_addr_set = 1;
580 			}
581 
582 			/*
583 			 * Check to see if the section's size will overflow the
584 			 * allowed task size. Note that p_filesz must always be
585 			 * <= p_memsize so it's only necessary to check p_memsz.
586 			 */
587 			k = load_addr + eppnt->p_vaddr;
588 			if (BAD_ADDR(k) ||
589 			    eppnt->p_filesz > eppnt->p_memsz ||
590 			    eppnt->p_memsz > TASK_SIZE ||
591 			    TASK_SIZE - eppnt->p_memsz < k) {
592 				error = -ENOMEM;
593 				goto out;
594 			}
595 
596 			/*
597 			 * Find the end of the file mapping for this phdr, and
598 			 * keep track of the largest address we see for this.
599 			 */
600 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
601 			if (k > elf_bss)
602 				elf_bss = k;
603 
604 			/*
605 			 * Do the same thing for the memory mapping - between
606 			 * elf_bss and last_bss is the bss section.
607 			 */
608 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
609 			if (k > last_bss)
610 				last_bss = k;
611 		}
612 	}
613 
614 	/*
615 	 * Now fill out the bss section: first pad the last page from
616 	 * the file up to the page boundary, and zero it from elf_bss
617 	 * up to the end of the page.
618 	 */
619 	if (padzero(elf_bss)) {
620 		error = -EFAULT;
621 		goto out;
622 	}
623 	/*
624 	 * Next, align both the file and mem bss up to the page size,
625 	 * since this is where elf_bss was just zeroed up to, and where
626 	 * last_bss will end after the vm_brk() below.
627 	 */
628 	elf_bss = ELF_PAGEALIGN(elf_bss);
629 	last_bss = ELF_PAGEALIGN(last_bss);
630 	/* Finally, if there is still more bss to allocate, do it. */
631 	if (last_bss > elf_bss) {
632 		error = vm_brk(elf_bss, last_bss - elf_bss);
633 		if (error)
634 			goto out;
635 	}
636 
637 	error = load_addr;
638 out:
639 	return error;
640 }
641 
642 /*
643  * These are the functions used to load ELF style executables and shared
644  * libraries.  There is no binary dependent code anywhere else.
645  */
646 
647 #ifndef STACK_RND_MASK
648 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
649 #endif
650 
randomize_stack_top(unsigned long stack_top)651 static unsigned long randomize_stack_top(unsigned long stack_top)
652 {
653 	unsigned long random_variable = 0;
654 
655 	if ((current->flags & PF_RANDOMIZE) &&
656 		!(current->personality & ADDR_NO_RANDOMIZE)) {
657 		random_variable = get_random_long();
658 		random_variable &= STACK_RND_MASK;
659 		random_variable <<= PAGE_SHIFT;
660 	}
661 #ifdef CONFIG_STACK_GROWSUP
662 	return PAGE_ALIGN(stack_top) + random_variable;
663 #else
664 	return PAGE_ALIGN(stack_top) - random_variable;
665 #endif
666 }
667 
load_elf_binary(struct linux_binprm * bprm)668 static int load_elf_binary(struct linux_binprm *bprm)
669 {
670 	struct file *interpreter = NULL; /* to shut gcc up */
671  	unsigned long load_addr = 0, load_bias = 0;
672 	int load_addr_set = 0;
673 	char * elf_interpreter = NULL;
674 	unsigned long error;
675 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
676 	unsigned long elf_bss, elf_brk;
677 	int retval, i;
678 	unsigned long elf_entry;
679 	unsigned long interp_load_addr = 0;
680 	unsigned long start_code, end_code, start_data, end_data;
681 	unsigned long reloc_func_desc __maybe_unused = 0;
682 	int executable_stack = EXSTACK_DEFAULT;
683 	struct pt_regs *regs = current_pt_regs();
684 	struct {
685 		struct elfhdr elf_ex;
686 		struct elfhdr interp_elf_ex;
687 	} *loc;
688 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
689 
690 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
691 	if (!loc) {
692 		retval = -ENOMEM;
693 		goto out_ret;
694 	}
695 
696 	/* Get the exec-header */
697 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
698 
699 	retval = -ENOEXEC;
700 	/* First of all, some simple consistency checks */
701 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 		goto out;
703 
704 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
705 		goto out;
706 	if (!elf_check_arch(&loc->elf_ex))
707 		goto out;
708 	if (!bprm->file->f_op->mmap)
709 		goto out;
710 
711 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
712 	if (!elf_phdata)
713 		goto out;
714 
715 	elf_ppnt = elf_phdata;
716 	elf_bss = 0;
717 	elf_brk = 0;
718 
719 	start_code = ~0UL;
720 	end_code = 0;
721 	start_data = 0;
722 	end_data = 0;
723 
724 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
725 		if (elf_ppnt->p_type == PT_INTERP) {
726 			/* This is the program interpreter used for
727 			 * shared libraries - for now assume that this
728 			 * is an a.out format binary
729 			 */
730 			retval = -ENOEXEC;
731 			if (elf_ppnt->p_filesz > PATH_MAX ||
732 			    elf_ppnt->p_filesz < 2)
733 				goto out_free_ph;
734 
735 			retval = -ENOMEM;
736 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
737 						  GFP_KERNEL);
738 			if (!elf_interpreter)
739 				goto out_free_ph;
740 
741 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
742 					     elf_interpreter,
743 					     elf_ppnt->p_filesz);
744 			if (retval != elf_ppnt->p_filesz) {
745 				if (retval >= 0)
746 					retval = -EIO;
747 				goto out_free_interp;
748 			}
749 			/* make sure path is NULL terminated */
750 			retval = -ENOEXEC;
751 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
752 				goto out_free_interp;
753 
754 			interpreter = open_exec(elf_interpreter);
755 			retval = PTR_ERR(interpreter);
756 			if (IS_ERR(interpreter))
757 				goto out_free_interp;
758 
759 			/*
760 			 * If the binary is not readable then enforce
761 			 * mm->dumpable = 0 regardless of the interpreter's
762 			 * permissions.
763 			 */
764 			would_dump(bprm, interpreter);
765 
766 			/* Get the exec headers */
767 			retval = kernel_read(interpreter, 0,
768 					     (void *)&loc->interp_elf_ex,
769 					     sizeof(loc->interp_elf_ex));
770 			if (retval != sizeof(loc->interp_elf_ex)) {
771 				if (retval >= 0)
772 					retval = -EIO;
773 				goto out_free_dentry;
774 			}
775 
776 			break;
777 		}
778 		elf_ppnt++;
779 	}
780 
781 	elf_ppnt = elf_phdata;
782 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
783 		switch (elf_ppnt->p_type) {
784 		case PT_GNU_STACK:
785 			if (elf_ppnt->p_flags & PF_X)
786 				executable_stack = EXSTACK_ENABLE_X;
787 			else
788 				executable_stack = EXSTACK_DISABLE_X;
789 			break;
790 
791 		case PT_LOPROC ... PT_HIPROC:
792 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
793 						  bprm->file, false,
794 						  &arch_state);
795 			if (retval)
796 				goto out_free_dentry;
797 			break;
798 		}
799 
800 	/* Some simple consistency checks for the interpreter */
801 	if (elf_interpreter) {
802 		retval = -ELIBBAD;
803 		/* Not an ELF interpreter */
804 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 			goto out_free_dentry;
806 		/* Verify the interpreter has a valid arch */
807 		if (!elf_check_arch(&loc->interp_elf_ex))
808 			goto out_free_dentry;
809 
810 		/* Load the interpreter program headers */
811 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
812 						   interpreter);
813 		if (!interp_elf_phdata)
814 			goto out_free_dentry;
815 
816 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 		elf_ppnt = interp_elf_phdata;
818 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
819 			switch (elf_ppnt->p_type) {
820 			case PT_LOPROC ... PT_HIPROC:
821 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
822 							  elf_ppnt, interpreter,
823 							  true, &arch_state);
824 				if (retval)
825 					goto out_free_dentry;
826 				break;
827 			}
828 	}
829 
830 	/*
831 	 * Allow arch code to reject the ELF at this point, whilst it's
832 	 * still possible to return an error to the code that invoked
833 	 * the exec syscall.
834 	 */
835 	retval = arch_check_elf(&loc->elf_ex,
836 				!!interpreter, &loc->interp_elf_ex,
837 				&arch_state);
838 	if (retval)
839 		goto out_free_dentry;
840 
841 	/* Flush all traces of the currently running executable */
842 	retval = flush_old_exec(bprm);
843 	if (retval)
844 		goto out_free_dentry;
845 
846 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 	   may depend on the personality.  */
848 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
849 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
850 		current->personality |= READ_IMPLIES_EXEC;
851 
852 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
853 		current->flags |= PF_RANDOMIZE;
854 
855 	setup_new_exec(bprm);
856 	install_exec_creds(bprm);
857 
858 	/* Do this so that we can load the interpreter, if need be.  We will
859 	   change some of these later */
860 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
861 				 executable_stack);
862 	if (retval < 0)
863 		goto out_free_dentry;
864 
865 	current->mm->start_stack = bprm->p;
866 
867 	/* Now we do a little grungy work by mmapping the ELF image into
868 	   the correct location in memory. */
869 	for(i = 0, elf_ppnt = elf_phdata;
870 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
871 		int elf_prot = 0, elf_flags;
872 		unsigned long k, vaddr;
873 		unsigned long total_size = 0;
874 
875 		if (elf_ppnt->p_type != PT_LOAD)
876 			continue;
877 
878 		if (unlikely (elf_brk > elf_bss)) {
879 			unsigned long nbyte;
880 
881 			/* There was a PT_LOAD segment with p_memsz > p_filesz
882 			   before this one. Map anonymous pages, if needed,
883 			   and clear the area.  */
884 			retval = set_brk(elf_bss + load_bias,
885 					 elf_brk + load_bias);
886 			if (retval)
887 				goto out_free_dentry;
888 			nbyte = ELF_PAGEOFFSET(elf_bss);
889 			if (nbyte) {
890 				nbyte = ELF_MIN_ALIGN - nbyte;
891 				if (nbyte > elf_brk - elf_bss)
892 					nbyte = elf_brk - elf_bss;
893 				if (clear_user((void __user *)elf_bss +
894 							load_bias, nbyte)) {
895 					/*
896 					 * This bss-zeroing can fail if the ELF
897 					 * file specifies odd protections. So
898 					 * we don't check the return value
899 					 */
900 				}
901 			}
902 		}
903 
904 		if (elf_ppnt->p_flags & PF_R)
905 			elf_prot |= PROT_READ;
906 		if (elf_ppnt->p_flags & PF_W)
907 			elf_prot |= PROT_WRITE;
908 		if (elf_ppnt->p_flags & PF_X)
909 			elf_prot |= PROT_EXEC;
910 
911 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
912 
913 		vaddr = elf_ppnt->p_vaddr;
914 		/*
915 		 * If we are loading ET_EXEC or we have already performed
916 		 * the ET_DYN load_addr calculations, proceed normally.
917 		 */
918 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
919 			elf_flags |= MAP_FIXED;
920 		} else if (loc->elf_ex.e_type == ET_DYN) {
921 			/*
922 			 * This logic is run once for the first LOAD Program
923 			 * Header for ET_DYN binaries to calculate the
924 			 * randomization (load_bias) for all the LOAD
925 			 * Program Headers, and to calculate the entire
926 			 * size of the ELF mapping (total_size). (Note that
927 			 * load_addr_set is set to true later once the
928 			 * initial mapping is performed.)
929 			 *
930 			 * There are effectively two types of ET_DYN
931 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
932 			 * and loaders (ET_DYN without INTERP, since they
933 			 * _are_ the ELF interpreter). The loaders must
934 			 * be loaded away from programs since the program
935 			 * may otherwise collide with the loader (especially
936 			 * for ET_EXEC which does not have a randomized
937 			 * position). For example to handle invocations of
938 			 * "./ld.so someprog" to test out a new version of
939 			 * the loader, the subsequent program that the
940 			 * loader loads must avoid the loader itself, so
941 			 * they cannot share the same load range. Sufficient
942 			 * room for the brk must be allocated with the
943 			 * loader as well, since brk must be available with
944 			 * the loader.
945 			 *
946 			 * Therefore, programs are loaded offset from
947 			 * ELF_ET_DYN_BASE and loaders are loaded into the
948 			 * independently randomized mmap region (0 load_bias
949 			 * without MAP_FIXED).
950 			 */
951 			if (elf_interpreter) {
952 				load_bias = ELF_ET_DYN_BASE;
953 				if (current->flags & PF_RANDOMIZE)
954 					load_bias += arch_mmap_rnd();
955 				elf_flags |= MAP_FIXED;
956 			} else
957 				load_bias = 0;
958 
959 			/*
960 			 * Since load_bias is used for all subsequent loading
961 			 * calculations, we must lower it by the first vaddr
962 			 * so that the remaining calculations based on the
963 			 * ELF vaddrs will be correctly offset. The result
964 			 * is then page aligned.
965 			 */
966 			load_bias = ELF_PAGESTART(load_bias - vaddr);
967 
968 			total_size = total_mapping_size(elf_phdata,
969 							loc->elf_ex.e_phnum);
970 			if (!total_size) {
971 				retval = -EINVAL;
972 				goto out_free_dentry;
973 			}
974 		}
975 
976 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
977 				elf_prot, elf_flags, total_size);
978 		if (BAD_ADDR(error)) {
979 			retval = IS_ERR((void *)error) ?
980 				PTR_ERR((void*)error) : -EINVAL;
981 			goto out_free_dentry;
982 		}
983 
984 		if (!load_addr_set) {
985 			load_addr_set = 1;
986 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
987 			if (loc->elf_ex.e_type == ET_DYN) {
988 				load_bias += error -
989 				             ELF_PAGESTART(load_bias + vaddr);
990 				load_addr += load_bias;
991 				reloc_func_desc = load_bias;
992 			}
993 		}
994 		k = elf_ppnt->p_vaddr;
995 		if (k < start_code)
996 			start_code = k;
997 		if (start_data < k)
998 			start_data = k;
999 
1000 		/*
1001 		 * Check to see if the section's size will overflow the
1002 		 * allowed task size. Note that p_filesz must always be
1003 		 * <= p_memsz so it is only necessary to check p_memsz.
1004 		 */
1005 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1006 		    elf_ppnt->p_memsz > TASK_SIZE ||
1007 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1008 			/* set_brk can never work. Avoid overflows. */
1009 			retval = -EINVAL;
1010 			goto out_free_dentry;
1011 		}
1012 
1013 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1014 
1015 		if (k > elf_bss)
1016 			elf_bss = k;
1017 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1018 			end_code = k;
1019 		if (end_data < k)
1020 			end_data = k;
1021 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1022 		if (k > elf_brk)
1023 			elf_brk = k;
1024 	}
1025 
1026 	loc->elf_ex.e_entry += load_bias;
1027 	elf_bss += load_bias;
1028 	elf_brk += load_bias;
1029 	start_code += load_bias;
1030 	end_code += load_bias;
1031 	start_data += load_bias;
1032 	end_data += load_bias;
1033 
1034 	/* Calling set_brk effectively mmaps the pages that we need
1035 	 * for the bss and break sections.  We must do this before
1036 	 * mapping in the interpreter, to make sure it doesn't wind
1037 	 * up getting placed where the bss needs to go.
1038 	 */
1039 	retval = set_brk(elf_bss, elf_brk);
1040 	if (retval)
1041 		goto out_free_dentry;
1042 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1043 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1044 		goto out_free_dentry;
1045 	}
1046 
1047 	if (elf_interpreter) {
1048 		unsigned long interp_map_addr = 0;
1049 
1050 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1051 					    interpreter,
1052 					    &interp_map_addr,
1053 					    load_bias, interp_elf_phdata);
1054 		if (!IS_ERR((void *)elf_entry)) {
1055 			/*
1056 			 * load_elf_interp() returns relocation
1057 			 * adjustment
1058 			 */
1059 			interp_load_addr = elf_entry;
1060 			elf_entry += loc->interp_elf_ex.e_entry;
1061 		}
1062 		if (BAD_ADDR(elf_entry)) {
1063 			retval = IS_ERR((void *)elf_entry) ?
1064 					(int)elf_entry : -EINVAL;
1065 			goto out_free_dentry;
1066 		}
1067 		reloc_func_desc = interp_load_addr;
1068 
1069 		allow_write_access(interpreter);
1070 		fput(interpreter);
1071 		kfree(elf_interpreter);
1072 	} else {
1073 		elf_entry = loc->elf_ex.e_entry;
1074 		if (BAD_ADDR(elf_entry)) {
1075 			retval = -EINVAL;
1076 			goto out_free_dentry;
1077 		}
1078 	}
1079 
1080 	kfree(interp_elf_phdata);
1081 	kfree(elf_phdata);
1082 
1083 	set_binfmt(&elf_format);
1084 
1085 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1086 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1087 	if (retval < 0)
1088 		goto out;
1089 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1090 
1091 	retval = create_elf_tables(bprm, &loc->elf_ex,
1092 			  load_addr, interp_load_addr);
1093 	if (retval < 0)
1094 		goto out;
1095 	/* N.B. passed_fileno might not be initialized? */
1096 	current->mm->end_code = end_code;
1097 	current->mm->start_code = start_code;
1098 	current->mm->start_data = start_data;
1099 	current->mm->end_data = end_data;
1100 	current->mm->start_stack = bprm->p;
1101 
1102 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1103 		current->mm->brk = current->mm->start_brk =
1104 			arch_randomize_brk(current->mm);
1105 #ifdef compat_brk_randomized
1106 		current->brk_randomized = 1;
1107 #endif
1108 	}
1109 
1110 	if (current->personality & MMAP_PAGE_ZERO) {
1111 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1112 		   and some applications "depend" upon this behavior.
1113 		   Since we do not have the power to recompile these, we
1114 		   emulate the SVr4 behavior. Sigh. */
1115 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1116 				MAP_FIXED | MAP_PRIVATE, 0);
1117 	}
1118 
1119 #ifdef ELF_PLAT_INIT
1120 	/*
1121 	 * The ABI may specify that certain registers be set up in special
1122 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1123 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1124 	 * that the e_entry field is the address of the function descriptor
1125 	 * for the startup routine, rather than the address of the startup
1126 	 * routine itself.  This macro performs whatever initialization to
1127 	 * the regs structure is required as well as any relocations to the
1128 	 * function descriptor entries when executing dynamically links apps.
1129 	 */
1130 	ELF_PLAT_INIT(regs, reloc_func_desc);
1131 #endif
1132 
1133 	start_thread(regs, elf_entry, bprm->p);
1134 	retval = 0;
1135 out:
1136 	kfree(loc);
1137 out_ret:
1138 	return retval;
1139 
1140 	/* error cleanup */
1141 out_free_dentry:
1142 	kfree(interp_elf_phdata);
1143 	allow_write_access(interpreter);
1144 	if (interpreter)
1145 		fput(interpreter);
1146 out_free_interp:
1147 	kfree(elf_interpreter);
1148 out_free_ph:
1149 	kfree(elf_phdata);
1150 	goto out;
1151 }
1152 
1153 #ifdef CONFIG_USELIB
1154 /* This is really simpleminded and specialized - we are loading an
1155    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1156 static int load_elf_library(struct file *file)
1157 {
1158 	struct elf_phdr *elf_phdata;
1159 	struct elf_phdr *eppnt;
1160 	unsigned long elf_bss, bss, len;
1161 	int retval, error, i, j;
1162 	struct elfhdr elf_ex;
1163 
1164 	error = -ENOEXEC;
1165 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1166 	if (retval != sizeof(elf_ex))
1167 		goto out;
1168 
1169 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1170 		goto out;
1171 
1172 	/* First of all, some simple consistency checks */
1173 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1174 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1175 		goto out;
1176 
1177 	/* Now read in all of the header information */
1178 
1179 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1180 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1181 
1182 	error = -ENOMEM;
1183 	elf_phdata = kmalloc(j, GFP_KERNEL);
1184 	if (!elf_phdata)
1185 		goto out;
1186 
1187 	eppnt = elf_phdata;
1188 	error = -ENOEXEC;
1189 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1190 	if (retval != j)
1191 		goto out_free_ph;
1192 
1193 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1194 		if ((eppnt + i)->p_type == PT_LOAD)
1195 			j++;
1196 	if (j != 1)
1197 		goto out_free_ph;
1198 
1199 	while (eppnt->p_type != PT_LOAD)
1200 		eppnt++;
1201 
1202 	/* Now use mmap to map the library into memory. */
1203 	error = vm_mmap(file,
1204 			ELF_PAGESTART(eppnt->p_vaddr),
1205 			(eppnt->p_filesz +
1206 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1207 			PROT_READ | PROT_WRITE | PROT_EXEC,
1208 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1209 			(eppnt->p_offset -
1210 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1211 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1212 		goto out_free_ph;
1213 
1214 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1215 	if (padzero(elf_bss)) {
1216 		error = -EFAULT;
1217 		goto out_free_ph;
1218 	}
1219 
1220 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1221 			    ELF_MIN_ALIGN - 1);
1222 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1223 	if (bss > len) {
1224 		error = vm_brk(len, bss - len);
1225 		if (error)
1226 			goto out_free_ph;
1227 	}
1228 	error = 0;
1229 
1230 out_free_ph:
1231 	kfree(elf_phdata);
1232 out:
1233 	return error;
1234 }
1235 #endif /* #ifdef CONFIG_USELIB */
1236 
1237 #ifdef CONFIG_ELF_CORE
1238 /*
1239  * ELF core dumper
1240  *
1241  * Modelled on fs/exec.c:aout_core_dump()
1242  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1243  */
1244 
1245 /*
1246  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1247  * that are useful for post-mortem analysis are included in every core dump.
1248  * In that way we ensure that the core dump is fully interpretable later
1249  * without matching up the same kernel and hardware config to see what PC values
1250  * meant. These special mappings include - vDSO, vsyscall, and other
1251  * architecture specific mappings
1252  */
always_dump_vma(struct vm_area_struct * vma)1253 static bool always_dump_vma(struct vm_area_struct *vma)
1254 {
1255 	/* Any vsyscall mappings? */
1256 	if (vma == get_gate_vma(vma->vm_mm))
1257 		return true;
1258 
1259 	/*
1260 	 * Assume that all vmas with a .name op should always be dumped.
1261 	 * If this changes, a new vm_ops field can easily be added.
1262 	 */
1263 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1264 		return true;
1265 
1266 	/*
1267 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1268 	 * such as vDSO sections.
1269 	 */
1270 	if (arch_vma_name(vma))
1271 		return true;
1272 
1273 	return false;
1274 }
1275 
1276 /*
1277  * Decide what to dump of a segment, part, all or none.
1278  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1279 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1280 				   unsigned long mm_flags)
1281 {
1282 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1283 
1284 	/* always dump the vdso and vsyscall sections */
1285 	if (always_dump_vma(vma))
1286 		goto whole;
1287 
1288 	if (vma->vm_flags & VM_DONTDUMP)
1289 		return 0;
1290 
1291 	/* support for DAX */
1292 	if (vma_is_dax(vma)) {
1293 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1294 			goto whole;
1295 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1296 			goto whole;
1297 		return 0;
1298 	}
1299 
1300 	/* Hugetlb memory check */
1301 	if (vma->vm_flags & VM_HUGETLB) {
1302 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1303 			goto whole;
1304 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1305 			goto whole;
1306 		return 0;
1307 	}
1308 
1309 	/* Do not dump I/O mapped devices or special mappings */
1310 	if (vma->vm_flags & VM_IO)
1311 		return 0;
1312 
1313 	/* By default, dump shared memory if mapped from an anonymous file. */
1314 	if (vma->vm_flags & VM_SHARED) {
1315 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1316 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1317 			goto whole;
1318 		return 0;
1319 	}
1320 
1321 	/* Dump segments that have been written to.  */
1322 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1323 		goto whole;
1324 	if (vma->vm_file == NULL)
1325 		return 0;
1326 
1327 	if (FILTER(MAPPED_PRIVATE))
1328 		goto whole;
1329 
1330 	/*
1331 	 * If this looks like the beginning of a DSO or executable mapping,
1332 	 * check for an ELF header.  If we find one, dump the first page to
1333 	 * aid in determining what was mapped here.
1334 	 */
1335 	if (FILTER(ELF_HEADERS) &&
1336 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1337 		u32 __user *header = (u32 __user *) vma->vm_start;
1338 		u32 word;
1339 		mm_segment_t fs = get_fs();
1340 		/*
1341 		 * Doing it this way gets the constant folded by GCC.
1342 		 */
1343 		union {
1344 			u32 cmp;
1345 			char elfmag[SELFMAG];
1346 		} magic;
1347 		BUILD_BUG_ON(SELFMAG != sizeof word);
1348 		magic.elfmag[EI_MAG0] = ELFMAG0;
1349 		magic.elfmag[EI_MAG1] = ELFMAG1;
1350 		magic.elfmag[EI_MAG2] = ELFMAG2;
1351 		magic.elfmag[EI_MAG3] = ELFMAG3;
1352 		/*
1353 		 * Switch to the user "segment" for get_user(),
1354 		 * then put back what elf_core_dump() had in place.
1355 		 */
1356 		set_fs(USER_DS);
1357 		if (unlikely(get_user(word, header)))
1358 			word = 0;
1359 		set_fs(fs);
1360 		if (word == magic.cmp)
1361 			return PAGE_SIZE;
1362 	}
1363 
1364 #undef	FILTER
1365 
1366 	return 0;
1367 
1368 whole:
1369 	return vma->vm_end - vma->vm_start;
1370 }
1371 
1372 /* An ELF note in memory */
1373 struct memelfnote
1374 {
1375 	const char *name;
1376 	int type;
1377 	unsigned int datasz;
1378 	void *data;
1379 };
1380 
notesize(struct memelfnote * en)1381 static int notesize(struct memelfnote *en)
1382 {
1383 	int sz;
1384 
1385 	sz = sizeof(struct elf_note);
1386 	sz += roundup(strlen(en->name) + 1, 4);
1387 	sz += roundup(en->datasz, 4);
1388 
1389 	return sz;
1390 }
1391 
writenote(struct memelfnote * men,struct coredump_params * cprm)1392 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1393 {
1394 	struct elf_note en;
1395 	en.n_namesz = strlen(men->name) + 1;
1396 	en.n_descsz = men->datasz;
1397 	en.n_type = men->type;
1398 
1399 	return dump_emit(cprm, &en, sizeof(en)) &&
1400 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1401 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1402 }
1403 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1404 static void fill_elf_header(struct elfhdr *elf, int segs,
1405 			    u16 machine, u32 flags)
1406 {
1407 	memset(elf, 0, sizeof(*elf));
1408 
1409 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1410 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1411 	elf->e_ident[EI_DATA] = ELF_DATA;
1412 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1413 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1414 
1415 	elf->e_type = ET_CORE;
1416 	elf->e_machine = machine;
1417 	elf->e_version = EV_CURRENT;
1418 	elf->e_phoff = sizeof(struct elfhdr);
1419 	elf->e_flags = flags;
1420 	elf->e_ehsize = sizeof(struct elfhdr);
1421 	elf->e_phentsize = sizeof(struct elf_phdr);
1422 	elf->e_phnum = segs;
1423 
1424 	return;
1425 }
1426 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1427 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1428 {
1429 	phdr->p_type = PT_NOTE;
1430 	phdr->p_offset = offset;
1431 	phdr->p_vaddr = 0;
1432 	phdr->p_paddr = 0;
1433 	phdr->p_filesz = sz;
1434 	phdr->p_memsz = 0;
1435 	phdr->p_flags = 0;
1436 	phdr->p_align = 0;
1437 	return;
1438 }
1439 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1440 static void fill_note(struct memelfnote *note, const char *name, int type,
1441 		unsigned int sz, void *data)
1442 {
1443 	note->name = name;
1444 	note->type = type;
1445 	note->datasz = sz;
1446 	note->data = data;
1447 	return;
1448 }
1449 
1450 /*
1451  * fill up all the fields in prstatus from the given task struct, except
1452  * registers which need to be filled up separately.
1453  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1454 static void fill_prstatus(struct elf_prstatus *prstatus,
1455 		struct task_struct *p, long signr)
1456 {
1457 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1458 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1459 	prstatus->pr_sighold = p->blocked.sig[0];
1460 	rcu_read_lock();
1461 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1462 	rcu_read_unlock();
1463 	prstatus->pr_pid = task_pid_vnr(p);
1464 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1465 	prstatus->pr_sid = task_session_vnr(p);
1466 	if (thread_group_leader(p)) {
1467 		struct task_cputime cputime;
1468 
1469 		/*
1470 		 * This is the record for the group leader.  It shows the
1471 		 * group-wide total, not its individual thread total.
1472 		 */
1473 		thread_group_cputime(p, &cputime);
1474 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1475 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1476 	} else {
1477 		cputime_t utime, stime;
1478 
1479 		task_cputime(p, &utime, &stime);
1480 		cputime_to_timeval(utime, &prstatus->pr_utime);
1481 		cputime_to_timeval(stime, &prstatus->pr_stime);
1482 	}
1483 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1484 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1485 }
1486 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1487 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1488 		       struct mm_struct *mm)
1489 {
1490 	const struct cred *cred;
1491 	unsigned int i, len;
1492 
1493 	/* first copy the parameters from user space */
1494 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1495 
1496 	len = mm->arg_end - mm->arg_start;
1497 	if (len >= ELF_PRARGSZ)
1498 		len = ELF_PRARGSZ-1;
1499 	if (copy_from_user(&psinfo->pr_psargs,
1500 		           (const char __user *)mm->arg_start, len))
1501 		return -EFAULT;
1502 	for(i = 0; i < len; i++)
1503 		if (psinfo->pr_psargs[i] == 0)
1504 			psinfo->pr_psargs[i] = ' ';
1505 	psinfo->pr_psargs[len] = 0;
1506 
1507 	rcu_read_lock();
1508 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1509 	rcu_read_unlock();
1510 	psinfo->pr_pid = task_pid_vnr(p);
1511 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1512 	psinfo->pr_sid = task_session_vnr(p);
1513 
1514 	i = p->state ? ffz(~p->state) + 1 : 0;
1515 	psinfo->pr_state = i;
1516 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1517 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1518 	psinfo->pr_nice = task_nice(p);
1519 	psinfo->pr_flag = p->flags;
1520 	rcu_read_lock();
1521 	cred = __task_cred(p);
1522 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1523 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1524 	rcu_read_unlock();
1525 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1526 
1527 	return 0;
1528 }
1529 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1530 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1531 {
1532 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1533 	int i = 0;
1534 	do
1535 		i += 2;
1536 	while (auxv[i - 2] != AT_NULL);
1537 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1538 }
1539 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1540 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1541 		const siginfo_t *siginfo)
1542 {
1543 	mm_segment_t old_fs = get_fs();
1544 	set_fs(KERNEL_DS);
1545 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1546 	set_fs(old_fs);
1547 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1548 }
1549 
1550 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1551 /*
1552  * Format of NT_FILE note:
1553  *
1554  * long count     -- how many files are mapped
1555  * long page_size -- units for file_ofs
1556  * array of [COUNT] elements of
1557  *   long start
1558  *   long end
1559  *   long file_ofs
1560  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1561  */
fill_files_note(struct memelfnote * note)1562 static int fill_files_note(struct memelfnote *note)
1563 {
1564 	struct vm_area_struct *vma;
1565 	unsigned count, size, names_ofs, remaining, n;
1566 	user_long_t *data;
1567 	user_long_t *start_end_ofs;
1568 	char *name_base, *name_curpos;
1569 
1570 	/* *Estimated* file count and total data size needed */
1571 	count = current->mm->map_count;
1572 	size = count * 64;
1573 
1574 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1575  alloc:
1576 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1577 		return -EINVAL;
1578 	size = round_up(size, PAGE_SIZE);
1579 	data = vmalloc(size);
1580 	if (!data)
1581 		return -ENOMEM;
1582 
1583 	start_end_ofs = data + 2;
1584 	name_base = name_curpos = ((char *)data) + names_ofs;
1585 	remaining = size - names_ofs;
1586 	count = 0;
1587 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1588 		struct file *file;
1589 		const char *filename;
1590 
1591 		file = vma->vm_file;
1592 		if (!file)
1593 			continue;
1594 		filename = file_path(file, name_curpos, remaining);
1595 		if (IS_ERR(filename)) {
1596 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1597 				vfree(data);
1598 				size = size * 5 / 4;
1599 				goto alloc;
1600 			}
1601 			continue;
1602 		}
1603 
1604 		/* file_path() fills at the end, move name down */
1605 		/* n = strlen(filename) + 1: */
1606 		n = (name_curpos + remaining) - filename;
1607 		remaining = filename - name_curpos;
1608 		memmove(name_curpos, filename, n);
1609 		name_curpos += n;
1610 
1611 		*start_end_ofs++ = vma->vm_start;
1612 		*start_end_ofs++ = vma->vm_end;
1613 		*start_end_ofs++ = vma->vm_pgoff;
1614 		count++;
1615 	}
1616 
1617 	/* Now we know exact count of files, can store it */
1618 	data[0] = count;
1619 	data[1] = PAGE_SIZE;
1620 	/*
1621 	 * Count usually is less than current->mm->map_count,
1622 	 * we need to move filenames down.
1623 	 */
1624 	n = current->mm->map_count - count;
1625 	if (n != 0) {
1626 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1627 		memmove(name_base - shift_bytes, name_base,
1628 			name_curpos - name_base);
1629 		name_curpos -= shift_bytes;
1630 	}
1631 
1632 	size = name_curpos - (char *)data;
1633 	fill_note(note, "CORE", NT_FILE, size, data);
1634 	return 0;
1635 }
1636 
1637 #ifdef CORE_DUMP_USE_REGSET
1638 #include <linux/regset.h>
1639 
1640 struct elf_thread_core_info {
1641 	struct elf_thread_core_info *next;
1642 	struct task_struct *task;
1643 	struct elf_prstatus prstatus;
1644 	struct memelfnote notes[0];
1645 };
1646 
1647 struct elf_note_info {
1648 	struct elf_thread_core_info *thread;
1649 	struct memelfnote psinfo;
1650 	struct memelfnote signote;
1651 	struct memelfnote auxv;
1652 	struct memelfnote files;
1653 	user_siginfo_t csigdata;
1654 	size_t size;
1655 	int thread_notes;
1656 };
1657 
1658 /*
1659  * When a regset has a writeback hook, we call it on each thread before
1660  * dumping user memory.  On register window machines, this makes sure the
1661  * user memory backing the register data is up to date before we read it.
1662  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1663 static void do_thread_regset_writeback(struct task_struct *task,
1664 				       const struct user_regset *regset)
1665 {
1666 	if (regset->writeback)
1667 		regset->writeback(task, regset, 1);
1668 }
1669 
1670 #ifndef PRSTATUS_SIZE
1671 #define PRSTATUS_SIZE(S, R) sizeof(S)
1672 #endif
1673 
1674 #ifndef SET_PR_FPVALID
1675 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1676 #endif
1677 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1678 static int fill_thread_core_info(struct elf_thread_core_info *t,
1679 				 const struct user_regset_view *view,
1680 				 long signr, size_t *total)
1681 {
1682 	unsigned int i;
1683 	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1684 
1685 	/*
1686 	 * NT_PRSTATUS is the one special case, because the regset data
1687 	 * goes into the pr_reg field inside the note contents, rather
1688 	 * than being the whole note contents.  We fill the reset in here.
1689 	 * We assume that regset 0 is NT_PRSTATUS.
1690 	 */
1691 	fill_prstatus(&t->prstatus, t->task, signr);
1692 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1693 				    &t->prstatus.pr_reg, NULL);
1694 
1695 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1696 		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1697 	*total += notesize(&t->notes[0]);
1698 
1699 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1700 
1701 	/*
1702 	 * Each other regset might generate a note too.  For each regset
1703 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1704 	 * all zero and we'll know to skip writing it later.
1705 	 */
1706 	for (i = 1; i < view->n; ++i) {
1707 		const struct user_regset *regset = &view->regsets[i];
1708 		do_thread_regset_writeback(t->task, regset);
1709 		if (regset->core_note_type && regset->get &&
1710 		    (!regset->active || regset->active(t->task, regset))) {
1711 			int ret;
1712 			size_t size = regset->n * regset->size;
1713 			void *data = kmalloc(size, GFP_KERNEL);
1714 			if (unlikely(!data))
1715 				return 0;
1716 			ret = regset->get(t->task, regset,
1717 					  0, size, data, NULL);
1718 			if (unlikely(ret))
1719 				kfree(data);
1720 			else {
1721 				if (regset->core_note_type != NT_PRFPREG)
1722 					fill_note(&t->notes[i], "LINUX",
1723 						  regset->core_note_type,
1724 						  size, data);
1725 				else {
1726 					SET_PR_FPVALID(&t->prstatus,
1727 							1, regset_size);
1728 					fill_note(&t->notes[i], "CORE",
1729 						  NT_PRFPREG, size, data);
1730 				}
1731 				*total += notesize(&t->notes[i]);
1732 			}
1733 		}
1734 	}
1735 
1736 	return 1;
1737 }
1738 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1739 static int fill_note_info(struct elfhdr *elf, int phdrs,
1740 			  struct elf_note_info *info,
1741 			  const siginfo_t *siginfo, struct pt_regs *regs)
1742 {
1743 	struct task_struct *dump_task = current;
1744 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1745 	struct elf_thread_core_info *t;
1746 	struct elf_prpsinfo *psinfo;
1747 	struct core_thread *ct;
1748 	unsigned int i;
1749 
1750 	info->size = 0;
1751 	info->thread = NULL;
1752 
1753 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1754 	if (psinfo == NULL) {
1755 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1756 		return 0;
1757 	}
1758 
1759 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1760 
1761 	/*
1762 	 * Figure out how many notes we're going to need for each thread.
1763 	 */
1764 	info->thread_notes = 0;
1765 	for (i = 0; i < view->n; ++i)
1766 		if (view->regsets[i].core_note_type != 0)
1767 			++info->thread_notes;
1768 
1769 	/*
1770 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1771 	 * since it is our one special case.
1772 	 */
1773 	if (unlikely(info->thread_notes == 0) ||
1774 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1775 		WARN_ON(1);
1776 		return 0;
1777 	}
1778 
1779 	/*
1780 	 * Initialize the ELF file header.
1781 	 */
1782 	fill_elf_header(elf, phdrs,
1783 			view->e_machine, view->e_flags);
1784 
1785 	/*
1786 	 * Allocate a structure for each thread.
1787 	 */
1788 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1789 		t = kzalloc(offsetof(struct elf_thread_core_info,
1790 				     notes[info->thread_notes]),
1791 			    GFP_KERNEL);
1792 		if (unlikely(!t))
1793 			return 0;
1794 
1795 		t->task = ct->task;
1796 		if (ct->task == dump_task || !info->thread) {
1797 			t->next = info->thread;
1798 			info->thread = t;
1799 		} else {
1800 			/*
1801 			 * Make sure to keep the original task at
1802 			 * the head of the list.
1803 			 */
1804 			t->next = info->thread->next;
1805 			info->thread->next = t;
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * Now fill in each thread's information.
1811 	 */
1812 	for (t = info->thread; t != NULL; t = t->next)
1813 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1814 			return 0;
1815 
1816 	/*
1817 	 * Fill in the two process-wide notes.
1818 	 */
1819 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1820 	info->size += notesize(&info->psinfo);
1821 
1822 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1823 	info->size += notesize(&info->signote);
1824 
1825 	fill_auxv_note(&info->auxv, current->mm);
1826 	info->size += notesize(&info->auxv);
1827 
1828 	if (fill_files_note(&info->files) == 0)
1829 		info->size += notesize(&info->files);
1830 
1831 	return 1;
1832 }
1833 
get_note_info_size(struct elf_note_info * info)1834 static size_t get_note_info_size(struct elf_note_info *info)
1835 {
1836 	return info->size;
1837 }
1838 
1839 /*
1840  * Write all the notes for each thread.  When writing the first thread, the
1841  * process-wide notes are interleaved after the first thread-specific note.
1842  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1843 static int write_note_info(struct elf_note_info *info,
1844 			   struct coredump_params *cprm)
1845 {
1846 	bool first = true;
1847 	struct elf_thread_core_info *t = info->thread;
1848 
1849 	do {
1850 		int i;
1851 
1852 		if (!writenote(&t->notes[0], cprm))
1853 			return 0;
1854 
1855 		if (first && !writenote(&info->psinfo, cprm))
1856 			return 0;
1857 		if (first && !writenote(&info->signote, cprm))
1858 			return 0;
1859 		if (first && !writenote(&info->auxv, cprm))
1860 			return 0;
1861 		if (first && info->files.data &&
1862 				!writenote(&info->files, cprm))
1863 			return 0;
1864 
1865 		for (i = 1; i < info->thread_notes; ++i)
1866 			if (t->notes[i].data &&
1867 			    !writenote(&t->notes[i], cprm))
1868 				return 0;
1869 
1870 		first = false;
1871 		t = t->next;
1872 	} while (t);
1873 
1874 	return 1;
1875 }
1876 
free_note_info(struct elf_note_info * info)1877 static void free_note_info(struct elf_note_info *info)
1878 {
1879 	struct elf_thread_core_info *threads = info->thread;
1880 	while (threads) {
1881 		unsigned int i;
1882 		struct elf_thread_core_info *t = threads;
1883 		threads = t->next;
1884 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1885 		for (i = 1; i < info->thread_notes; ++i)
1886 			kfree(t->notes[i].data);
1887 		kfree(t);
1888 	}
1889 	kfree(info->psinfo.data);
1890 	vfree(info->files.data);
1891 }
1892 
1893 #else
1894 
1895 /* Here is the structure in which status of each thread is captured. */
1896 struct elf_thread_status
1897 {
1898 	struct list_head list;
1899 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1900 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1901 	struct task_struct *thread;
1902 #ifdef ELF_CORE_COPY_XFPREGS
1903 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1904 #endif
1905 	struct memelfnote notes[3];
1906 	int num_notes;
1907 };
1908 
1909 /*
1910  * In order to add the specific thread information for the elf file format,
1911  * we need to keep a linked list of every threads pr_status and then create
1912  * a single section for them in the final core file.
1913  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1914 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1915 {
1916 	int sz = 0;
1917 	struct task_struct *p = t->thread;
1918 	t->num_notes = 0;
1919 
1920 	fill_prstatus(&t->prstatus, p, signr);
1921 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1922 
1923 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1924 		  &(t->prstatus));
1925 	t->num_notes++;
1926 	sz += notesize(&t->notes[0]);
1927 
1928 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1929 								&t->fpu))) {
1930 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1931 			  &(t->fpu));
1932 		t->num_notes++;
1933 		sz += notesize(&t->notes[1]);
1934 	}
1935 
1936 #ifdef ELF_CORE_COPY_XFPREGS
1937 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1938 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1939 			  sizeof(t->xfpu), &t->xfpu);
1940 		t->num_notes++;
1941 		sz += notesize(&t->notes[2]);
1942 	}
1943 #endif
1944 	return sz;
1945 }
1946 
1947 struct elf_note_info {
1948 	struct memelfnote *notes;
1949 	struct memelfnote *notes_files;
1950 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1951 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1952 	struct list_head thread_list;
1953 	elf_fpregset_t *fpu;
1954 #ifdef ELF_CORE_COPY_XFPREGS
1955 	elf_fpxregset_t *xfpu;
1956 #endif
1957 	user_siginfo_t csigdata;
1958 	int thread_status_size;
1959 	int numnote;
1960 };
1961 
elf_note_info_init(struct elf_note_info * info)1962 static int elf_note_info_init(struct elf_note_info *info)
1963 {
1964 	memset(info, 0, sizeof(*info));
1965 	INIT_LIST_HEAD(&info->thread_list);
1966 
1967 	/* Allocate space for ELF notes */
1968 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1969 	if (!info->notes)
1970 		return 0;
1971 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1972 	if (!info->psinfo)
1973 		return 0;
1974 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1975 	if (!info->prstatus)
1976 		return 0;
1977 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1978 	if (!info->fpu)
1979 		return 0;
1980 #ifdef ELF_CORE_COPY_XFPREGS
1981 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1982 	if (!info->xfpu)
1983 		return 0;
1984 #endif
1985 	return 1;
1986 }
1987 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1988 static int fill_note_info(struct elfhdr *elf, int phdrs,
1989 			  struct elf_note_info *info,
1990 			  const siginfo_t *siginfo, struct pt_regs *regs)
1991 {
1992 	struct list_head *t;
1993 	struct core_thread *ct;
1994 	struct elf_thread_status *ets;
1995 
1996 	if (!elf_note_info_init(info))
1997 		return 0;
1998 
1999 	for (ct = current->mm->core_state->dumper.next;
2000 					ct; ct = ct->next) {
2001 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2002 		if (!ets)
2003 			return 0;
2004 
2005 		ets->thread = ct->task;
2006 		list_add(&ets->list, &info->thread_list);
2007 	}
2008 
2009 	list_for_each(t, &info->thread_list) {
2010 		int sz;
2011 
2012 		ets = list_entry(t, struct elf_thread_status, list);
2013 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2014 		info->thread_status_size += sz;
2015 	}
2016 	/* now collect the dump for the current */
2017 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2018 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2019 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2020 
2021 	/* Set up header */
2022 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2023 
2024 	/*
2025 	 * Set up the notes in similar form to SVR4 core dumps made
2026 	 * with info from their /proc.
2027 	 */
2028 
2029 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2030 		  sizeof(*info->prstatus), info->prstatus);
2031 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2032 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2033 		  sizeof(*info->psinfo), info->psinfo);
2034 
2035 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2036 	fill_auxv_note(info->notes + 3, current->mm);
2037 	info->numnote = 4;
2038 
2039 	if (fill_files_note(info->notes + info->numnote) == 0) {
2040 		info->notes_files = info->notes + info->numnote;
2041 		info->numnote++;
2042 	}
2043 
2044 	/* Try to dump the FPU. */
2045 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2046 							       info->fpu);
2047 	if (info->prstatus->pr_fpvalid)
2048 		fill_note(info->notes + info->numnote++,
2049 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2050 #ifdef ELF_CORE_COPY_XFPREGS
2051 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2052 		fill_note(info->notes + info->numnote++,
2053 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2054 			  sizeof(*info->xfpu), info->xfpu);
2055 #endif
2056 
2057 	return 1;
2058 }
2059 
get_note_info_size(struct elf_note_info * info)2060 static size_t get_note_info_size(struct elf_note_info *info)
2061 {
2062 	int sz = 0;
2063 	int i;
2064 
2065 	for (i = 0; i < info->numnote; i++)
2066 		sz += notesize(info->notes + i);
2067 
2068 	sz += info->thread_status_size;
2069 
2070 	return sz;
2071 }
2072 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2073 static int write_note_info(struct elf_note_info *info,
2074 			   struct coredump_params *cprm)
2075 {
2076 	int i;
2077 	struct list_head *t;
2078 
2079 	for (i = 0; i < info->numnote; i++)
2080 		if (!writenote(info->notes + i, cprm))
2081 			return 0;
2082 
2083 	/* write out the thread status notes section */
2084 	list_for_each(t, &info->thread_list) {
2085 		struct elf_thread_status *tmp =
2086 				list_entry(t, struct elf_thread_status, list);
2087 
2088 		for (i = 0; i < tmp->num_notes; i++)
2089 			if (!writenote(&tmp->notes[i], cprm))
2090 				return 0;
2091 	}
2092 
2093 	return 1;
2094 }
2095 
free_note_info(struct elf_note_info * info)2096 static void free_note_info(struct elf_note_info *info)
2097 {
2098 	while (!list_empty(&info->thread_list)) {
2099 		struct list_head *tmp = info->thread_list.next;
2100 		list_del(tmp);
2101 		kfree(list_entry(tmp, struct elf_thread_status, list));
2102 	}
2103 
2104 	/* Free data possibly allocated by fill_files_note(): */
2105 	if (info->notes_files)
2106 		vfree(info->notes_files->data);
2107 
2108 	kfree(info->prstatus);
2109 	kfree(info->psinfo);
2110 	kfree(info->notes);
2111 	kfree(info->fpu);
2112 #ifdef ELF_CORE_COPY_XFPREGS
2113 	kfree(info->xfpu);
2114 #endif
2115 }
2116 
2117 #endif
2118 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2119 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2120 					struct vm_area_struct *gate_vma)
2121 {
2122 	struct vm_area_struct *ret = tsk->mm->mmap;
2123 
2124 	if (ret)
2125 		return ret;
2126 	return gate_vma;
2127 }
2128 /*
2129  * Helper function for iterating across a vma list.  It ensures that the caller
2130  * will visit `gate_vma' prior to terminating the search.
2131  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2132 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2133 					struct vm_area_struct *gate_vma)
2134 {
2135 	struct vm_area_struct *ret;
2136 
2137 	ret = this_vma->vm_next;
2138 	if (ret)
2139 		return ret;
2140 	if (this_vma == gate_vma)
2141 		return NULL;
2142 	return gate_vma;
2143 }
2144 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2145 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2146 			     elf_addr_t e_shoff, int segs)
2147 {
2148 	elf->e_shoff = e_shoff;
2149 	elf->e_shentsize = sizeof(*shdr4extnum);
2150 	elf->e_shnum = 1;
2151 	elf->e_shstrndx = SHN_UNDEF;
2152 
2153 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2154 
2155 	shdr4extnum->sh_type = SHT_NULL;
2156 	shdr4extnum->sh_size = elf->e_shnum;
2157 	shdr4extnum->sh_link = elf->e_shstrndx;
2158 	shdr4extnum->sh_info = segs;
2159 }
2160 
2161 /*
2162  * Actual dumper
2163  *
2164  * This is a two-pass process; first we find the offsets of the bits,
2165  * and then they are actually written out.  If we run out of core limit
2166  * we just truncate.
2167  */
elf_core_dump(struct coredump_params * cprm)2168 static int elf_core_dump(struct coredump_params *cprm)
2169 {
2170 	int has_dumped = 0;
2171 	mm_segment_t fs;
2172 	int segs, i;
2173 	size_t vma_data_size = 0;
2174 	struct vm_area_struct *vma, *gate_vma;
2175 	struct elfhdr *elf = NULL;
2176 	loff_t offset = 0, dataoff;
2177 	struct elf_note_info info = { };
2178 	struct elf_phdr *phdr4note = NULL;
2179 	struct elf_shdr *shdr4extnum = NULL;
2180 	Elf_Half e_phnum;
2181 	elf_addr_t e_shoff;
2182 	elf_addr_t *vma_filesz = NULL;
2183 
2184 	/*
2185 	 * We no longer stop all VM operations.
2186 	 *
2187 	 * This is because those proceses that could possibly change map_count
2188 	 * or the mmap / vma pages are now blocked in do_exit on current
2189 	 * finishing this core dump.
2190 	 *
2191 	 * Only ptrace can touch these memory addresses, but it doesn't change
2192 	 * the map_count or the pages allocated. So no possibility of crashing
2193 	 * exists while dumping the mm->vm_next areas to the core file.
2194 	 */
2195 
2196 	/* alloc memory for large data structures: too large to be on stack */
2197 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2198 	if (!elf)
2199 		goto out;
2200 	/*
2201 	 * The number of segs are recored into ELF header as 16bit value.
2202 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2203 	 */
2204 	segs = current->mm->map_count;
2205 	segs += elf_core_extra_phdrs();
2206 
2207 	gate_vma = get_gate_vma(current->mm);
2208 	if (gate_vma != NULL)
2209 		segs++;
2210 
2211 	/* for notes section */
2212 	segs++;
2213 
2214 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2215 	 * this, kernel supports extended numbering. Have a look at
2216 	 * include/linux/elf.h for further information. */
2217 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2218 
2219 	/*
2220 	 * Collect all the non-memory information about the process for the
2221 	 * notes.  This also sets up the file header.
2222 	 */
2223 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2224 		goto cleanup;
2225 
2226 	has_dumped = 1;
2227 
2228 	fs = get_fs();
2229 	set_fs(KERNEL_DS);
2230 
2231 	offset += sizeof(*elf);				/* Elf header */
2232 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2233 
2234 	/* Write notes phdr entry */
2235 	{
2236 		size_t sz = get_note_info_size(&info);
2237 
2238 		sz += elf_coredump_extra_notes_size();
2239 
2240 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2241 		if (!phdr4note)
2242 			goto end_coredump;
2243 
2244 		fill_elf_note_phdr(phdr4note, sz, offset);
2245 		offset += sz;
2246 	}
2247 
2248 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2249 
2250 	vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2251 	if (!vma_filesz)
2252 		goto end_coredump;
2253 
2254 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2255 			vma = next_vma(vma, gate_vma)) {
2256 		unsigned long dump_size;
2257 
2258 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2259 		vma_filesz[i++] = dump_size;
2260 		vma_data_size += dump_size;
2261 	}
2262 
2263 	offset += vma_data_size;
2264 	offset += elf_core_extra_data_size();
2265 	e_shoff = offset;
2266 
2267 	if (e_phnum == PN_XNUM) {
2268 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2269 		if (!shdr4extnum)
2270 			goto end_coredump;
2271 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2272 	}
2273 
2274 	offset = dataoff;
2275 
2276 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2277 		goto end_coredump;
2278 
2279 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2280 		goto end_coredump;
2281 
2282 	/* Write program headers for segments dump */
2283 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2284 			vma = next_vma(vma, gate_vma)) {
2285 		struct elf_phdr phdr;
2286 
2287 		phdr.p_type = PT_LOAD;
2288 		phdr.p_offset = offset;
2289 		phdr.p_vaddr = vma->vm_start;
2290 		phdr.p_paddr = 0;
2291 		phdr.p_filesz = vma_filesz[i++];
2292 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2293 		offset += phdr.p_filesz;
2294 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2295 		if (vma->vm_flags & VM_WRITE)
2296 			phdr.p_flags |= PF_W;
2297 		if (vma->vm_flags & VM_EXEC)
2298 			phdr.p_flags |= PF_X;
2299 		phdr.p_align = ELF_EXEC_PAGESIZE;
2300 
2301 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2302 			goto end_coredump;
2303 	}
2304 
2305 	if (!elf_core_write_extra_phdrs(cprm, offset))
2306 		goto end_coredump;
2307 
2308  	/* write out the notes section */
2309 	if (!write_note_info(&info, cprm))
2310 		goto end_coredump;
2311 
2312 	if (elf_coredump_extra_notes_write(cprm))
2313 		goto end_coredump;
2314 
2315 	/* Align to page */
2316 	if (!dump_skip(cprm, dataoff - cprm->pos))
2317 		goto end_coredump;
2318 
2319 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2320 			vma = next_vma(vma, gate_vma)) {
2321 		unsigned long addr;
2322 		unsigned long end;
2323 
2324 		end = vma->vm_start + vma_filesz[i++];
2325 
2326 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2327 			struct page *page;
2328 			int stop;
2329 
2330 			page = get_dump_page(addr);
2331 			if (page) {
2332 				void *kaddr = kmap(page);
2333 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2334 				kunmap(page);
2335 				put_page(page);
2336 			} else
2337 				stop = !dump_skip(cprm, PAGE_SIZE);
2338 			if (stop)
2339 				goto end_coredump;
2340 		}
2341 	}
2342 	dump_truncate(cprm);
2343 
2344 	if (!elf_core_write_extra_data(cprm))
2345 		goto end_coredump;
2346 
2347 	if (e_phnum == PN_XNUM) {
2348 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2349 			goto end_coredump;
2350 	}
2351 
2352 end_coredump:
2353 	set_fs(fs);
2354 
2355 cleanup:
2356 	free_note_info(&info);
2357 	kfree(shdr4extnum);
2358 	kfree(vma_filesz);
2359 	kfree(phdr4note);
2360 	kfree(elf);
2361 out:
2362 	return has_dumped;
2363 }
2364 
2365 #endif		/* CONFIG_ELF_CORE */
2366 
init_elf_binfmt(void)2367 static int __init init_elf_binfmt(void)
2368 {
2369 	register_binfmt(&elf_format);
2370 	return 0;
2371 }
2372 
exit_elf_binfmt(void)2373 static void __exit exit_elf_binfmt(void)
2374 {
2375 	/* Remove the COFF and ELF loaders. */
2376 	unregister_binfmt(&elf_format);
2377 }
2378 
2379 core_initcall(init_elf_binfmt);
2380 module_exit(exit_elf_binfmt);
2381 MODULE_LICENSE("GPL");
2382