1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38
39 /*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46 struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
51
52 char *buf;
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
55 char inline_buf[];
56 };
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
63 };
64 };
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69 /* reused for each extent */
70 struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76 };
77
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81 struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112 u64 cur_inode_rdev;
113 u64 cur_inode_last_extent;
114
115 u64 send_progress;
116
117 struct list_head new_refs;
118 struct list_head deleted_refs;
119
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
122 int name_cache_size;
123
124 struct file_ra_state ra;
125
126 char *read_buf;
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
181
182 /*
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
187 *
188 * Parent snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- c/ (ino 259)
194 * | |-- x/ (ino 260)
195 * |
196 * |-- y/ (ino 261)
197 *
198 * Send snapshot:
199 *
200 * . (ino 256)
201 * |-- a/ (ino 257)
202 * |-- b/ (ino 258)
203 * |-- YY/ (ino 261)
204 * |-- x/ (ino 260)
205 *
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
208 * mv /a/b/y /a/b/YY
209 * mv /a/b/c/x /a/b/YY
210 * rmdir /a/b/c
211 *
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
218 *
219 * Indexed by the inode number of the directory to be deleted.
220 */
221 struct rb_root orphan_dirs;
222 };
223
224 struct pending_dir_move {
225 struct rb_node node;
226 struct list_head list;
227 u64 parent_ino;
228 u64 ino;
229 u64 gen;
230 struct list_head update_refs;
231 };
232
233 struct waiting_dir_move {
234 struct rb_node node;
235 u64 ino;
236 /*
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 */
241 u64 rmdir_ino;
242 bool orphanized;
243 };
244
245 struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
249 };
250
251 struct name_cache_entry {
252 struct list_head list;
253 /*
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
259 * generations.
260 */
261 struct list_head radix_list;
262 u64 ino;
263 u64 gen;
264 u64 parent_ino;
265 u64 parent_gen;
266 int ret;
267 int need_later_update;
268 int name_len;
269 char name[];
270 };
271
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
274 const char *what)
275 {
276 const char *result_string;
277
278 switch (result) {
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
281 break;
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
284 break;
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
287 break;
288 case BTRFS_COMPARE_TREE_SAME:
289 ASSERT(0);
290 result_string = "unchanged";
291 break;
292 default:
293 ASSERT(0);
294 result_string = "unexpected";
295 }
296
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
301 (sctx->parent_root ?
302 sctx->parent_root->root_key.objectid : 0));
303 }
304
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311
need_send_hole(struct send_ctx * sctx)312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
317 }
318
fs_path_reset(struct fs_path * p)319 static void fs_path_reset(struct fs_path *p)
320 {
321 if (p->reversed) {
322 p->start = p->buf + p->buf_len - 1;
323 p->end = p->start;
324 *p->start = 0;
325 } else {
326 p->start = p->buf;
327 p->end = p->start;
328 *p->start = 0;
329 }
330 }
331
fs_path_alloc(void)332 static struct fs_path *fs_path_alloc(void)
333 {
334 struct fs_path *p;
335
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
337 if (!p)
338 return NULL;
339 p->reversed = 0;
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
342 fs_path_reset(p);
343 return p;
344 }
345
fs_path_alloc_reversed(void)346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 struct fs_path *p;
349
350 p = fs_path_alloc();
351 if (!p)
352 return NULL;
353 p->reversed = 1;
354 fs_path_reset(p);
355 return p;
356 }
357
fs_path_free(struct fs_path * p)358 static void fs_path_free(struct fs_path *p)
359 {
360 if (!p)
361 return;
362 if (p->buf != p->inline_buf)
363 kfree(p->buf);
364 kfree(p);
365 }
366
fs_path_len(struct fs_path * p)367 static int fs_path_len(struct fs_path *p)
368 {
369 return p->end - p->start;
370 }
371
fs_path_ensure_buf(struct fs_path * p,int len)372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 char *tmp_buf;
375 int path_len;
376 int old_buf_len;
377
378 len++;
379
380 if (p->buf_len >= len)
381 return 0;
382
383 if (len > PATH_MAX) {
384 WARN_ON(1);
385 return -ENOMEM;
386 }
387
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
390
391 /*
392 * First time the inline_buf does not suffice
393 */
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
396 if (tmp_buf)
397 memcpy(tmp_buf, p->buf, old_buf_len);
398 } else {
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 }
401 if (!tmp_buf)
402 return -ENOMEM;
403 p->buf = tmp_buf;
404 /*
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
407 */
408 p->buf_len = ksize(p->buf);
409
410 if (p->reversed) {
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
415 } else {
416 p->start = p->buf;
417 p->end = p->start + path_len;
418 }
419 return 0;
420 }
421
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 char **prepared)
424 {
425 int ret;
426 int new_len;
427
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
430 new_len++;
431 ret = fs_path_ensure_buf(p, new_len);
432 if (ret < 0)
433 goto out;
434
435 if (p->reversed) {
436 if (p->start != p->end)
437 *--p->start = '/';
438 p->start -= name_len;
439 *prepared = p->start;
440 } else {
441 if (p->start != p->end)
442 *p->end++ = '/';
443 *prepared = p->end;
444 p->end += name_len;
445 *p->end = 0;
446 }
447
448 out:
449 return ret;
450 }
451
fs_path_add(struct fs_path * p,const char * name,int name_len)452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 int ret;
455 char *prepared;
456
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 if (ret < 0)
459 goto out;
460 memcpy(prepared, name, name_len);
461
462 out:
463 return ret;
464 }
465
fs_path_add_path(struct fs_path * p,struct fs_path * p2)466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 int ret;
469 char *prepared;
470
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 if (ret < 0)
473 goto out;
474 memcpy(prepared, p2->start, p2->end - p2->start);
475
476 out:
477 return ret;
478 }
479
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
483 {
484 int ret;
485 char *prepared;
486
487 ret = fs_path_prepare_for_add(p, len, &prepared);
488 if (ret < 0)
489 goto out;
490
491 read_extent_buffer(eb, prepared, off, len);
492
493 out:
494 return ret;
495 }
496
fs_path_copy(struct fs_path * p,struct fs_path * from)497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 int ret;
500
501 p->reversed = from->reversed;
502 fs_path_reset(p);
503
504 ret = fs_path_add_path(p, from);
505
506 return ret;
507 }
508
509
fs_path_unreverse(struct fs_path * p)510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 char *tmp;
513 int len;
514
515 if (!p->reversed)
516 return;
517
518 tmp = p->start;
519 len = p->end - p->start;
520 p->start = p->buf;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
523 p->reversed = 0;
524 }
525
alloc_path_for_send(void)526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 struct btrfs_path *path;
529
530 path = btrfs_alloc_path();
531 if (!path)
532 return NULL;
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
536 return path;
537 }
538
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 int ret;
542 mm_segment_t old_fs;
543 u32 pos = 0;
544
545 old_fs = get_fs();
546 set_fs(KERNEL_DS);
547
548 while (pos < len) {
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 len - pos, off);
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
553 continue;
554 }*/
555 if (ret < 0)
556 goto out;
557 if (ret == 0) {
558 ret = -EIO;
559 goto out;
560 }
561 pos += ret;
562 }
563
564 ret = 0;
565
566 out:
567 set_fs(old_fs);
568 return ret;
569 }
570
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
576
577 if (unlikely(left < total_len))
578 return -EOVERFLOW;
579
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
585
586 return 0;
587 }
588
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
592 { \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
595 }
596
597 TLV_PUT_DEFINE_INT(64)
598
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
601 {
602 if (len == -1)
603 len = strlen(str);
604 return tlv_put(sctx, attr, str, len);
605 }
606
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 const u8 *uuid)
609 {
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
616 {
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621
622
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
624 do { \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 do { \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 do { \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
644 if (ret < 0) \
645 goto tlv_put_failure; \
646 } while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 do { \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 do { \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 if (ret < 0) \
658 goto tlv_put_failure; \
659 } while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 do { \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
send_header(struct send_ctx * sctx)667 static int send_header(struct send_ctx *sctx)
668 {
669 struct btrfs_stream_header hdr;
670
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 &sctx->send_off);
676 }
677
678 /*
679 * For each command/item we want to send to userspace, we call this function.
680 */
begin_cmd(struct send_ctx * sctx,int cmd)681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 struct btrfs_cmd_header *hdr;
684
685 if (WARN_ON(!sctx->send_buf))
686 return -EINVAL;
687
688 BUG_ON(sctx->send_size);
689
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
693
694 return 0;
695 }
696
send_cmd(struct send_ctx * sctx)697 static int send_cmd(struct send_ctx *sctx)
698 {
699 int ret;
700 struct btrfs_cmd_header *hdr;
701 u32 crc;
702
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 hdr->crc = 0;
706
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 hdr->crc = cpu_to_le32(crc);
709
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 &sctx->send_off);
712
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 sctx->send_size = 0;
716
717 return ret;
718 }
719
720 /*
721 * Sends a move instruction to user space
722 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
725 {
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 int ret;
728
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 if (ret < 0)
733 goto out;
734
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738 ret = send_cmd(sctx);
739
740 tlv_put_failure:
741 out:
742 return ret;
743 }
744
745 /*
746 * Sends a link instruction to user space
747 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
750 {
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 int ret;
753
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 if (ret < 0)
758 goto out;
759
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763 ret = send_cmd(sctx);
764
765 tlv_put_failure:
766 out:
767 return ret;
768 }
769
770 /*
771 * Sends an unlink instruction to user space
772 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 int ret;
777
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
779
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 if (ret < 0)
782 goto out;
783
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786 ret = send_cmd(sctx);
787
788 tlv_put_failure:
789 out:
790 return ret;
791 }
792
793 /*
794 * Sends a rmdir instruction to user space
795 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 int ret;
800
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811 tlv_put_failure:
812 out:
813 return ret;
814 }
815
816 /*
817 * Helper function to retrieve some fields from an inode item.
818 */
__get_inode_info(struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
822 {
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 if (ret) {
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
851
852 return ret;
853 }
854
get_inode_info(struct btrfs_root * root,u64 ino,u64 * size,u64 * gen,u64 * mode,u64 * uid,u64 * gid,u64 * rdev)855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859 {
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876 /*
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
882 * path must point to the INODE_REF or INODE_EXTREF when called.
883 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887 {
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
894 u32 cur = 0;
895 u32 total;
896 int slot = path->slots[0];
897 u32 name_len;
898 char *start;
899 int ret = 0;
900 int num = 0;
901 int index;
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
906
907 p = fs_path_alloc_reversed();
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
913 fs_path_free(p);
914 return -ENOMEM;
915 }
916
917
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
930 while (cur < total) {
931 fs_path_reset(p);
932
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
947 if (resolve) {
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
975 if (ret < 0)
976 goto out;
977 }
978
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
981 if (ret)
982 goto out;
983 num++;
984 }
985
986 out:
987 btrfs_free_path(tmp_path);
988 fs_path_free(p);
989 return ret;
990 }
991
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997 /*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,iterate_dir_item_t iterate,void * ctx)1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1007 {
1008 int ret = 0;
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
1012 struct btrfs_key di_key;
1013 char *buf = NULL;
1014 int buf_len;
1015 u32 name_len;
1016 u32 data_len;
1017 u32 cur;
1018 u32 len;
1019 u32 total;
1020 int slot;
1021 int num;
1022 u8 type;
1023
1024 /*
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1028 * values are small.
1029 */
1030 buf_len = PATH_MAX;
1031 buf = kmalloc(buf_len, GFP_KERNEL);
1032 if (!buf) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
1039 item = btrfs_item_nr(slot);
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 cur = 0;
1042 len = 0;
1043 total = btrfs_item_size(eb, item);
1044
1045 num = 0;
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1055 goto out;
1056 }
1057 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1058 ret = -E2BIG;
1059 goto out;
1060 }
1061 } else {
1062 /*
1063 * Path too long
1064 */
1065 if (name_len + data_len > PATH_MAX) {
1066 ret = -ENAMETOOLONG;
1067 goto out;
1068 }
1069 }
1070
1071 if (name_len + data_len > buf_len) {
1072 buf_len = name_len + data_len;
1073 if (is_vmalloc_addr(buf)) {
1074 vfree(buf);
1075 buf = NULL;
1076 } else {
1077 char *tmp = krealloc(buf, buf_len,
1078 GFP_KERNEL | __GFP_NOWARN);
1079
1080 if (!tmp)
1081 kfree(buf);
1082 buf = tmp;
1083 }
1084 if (!buf) {
1085 buf = vmalloc(buf_len);
1086 if (!buf) {
1087 ret = -ENOMEM;
1088 goto out;
1089 }
1090 }
1091 }
1092
1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 name_len + data_len);
1095
1096 len = sizeof(*di) + name_len + data_len;
1097 di = (struct btrfs_dir_item *)((char *)di + len);
1098 cur += len;
1099
1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 data_len, type, ctx);
1102 if (ret < 0)
1103 goto out;
1104 if (ret) {
1105 ret = 0;
1106 goto out;
1107 }
1108
1109 num++;
1110 }
1111
1112 out:
1113 kvfree(buf);
1114 return ret;
1115 }
1116
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 struct fs_path *p, void *ctx)
1119 {
1120 int ret;
1121 struct fs_path *pt = ctx;
1122
1123 ret = fs_path_copy(pt, p);
1124 if (ret < 0)
1125 return ret;
1126
1127 /* we want the first only */
1128 return 1;
1129 }
1130
1131 /*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1135 static int get_inode_path(struct btrfs_root *root,
1136 u64 ino, struct fs_path *path)
1137 {
1138 int ret;
1139 struct btrfs_key key, found_key;
1140 struct btrfs_path *p;
1141
1142 p = alloc_path_for_send();
1143 if (!p)
1144 return -ENOMEM;
1145
1146 fs_path_reset(path);
1147
1148 key.objectid = ino;
1149 key.type = BTRFS_INODE_REF_KEY;
1150 key.offset = 0;
1151
1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 if (ret < 0)
1154 goto out;
1155 if (ret) {
1156 ret = 1;
1157 goto out;
1158 }
1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 if (found_key.objectid != ino ||
1161 (found_key.type != BTRFS_INODE_REF_KEY &&
1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 ret = -ENOENT;
1164 goto out;
1165 }
1166
1167 ret = iterate_inode_ref(root, p, &found_key, 1,
1168 __copy_first_ref, path);
1169 if (ret < 0)
1170 goto out;
1171 ret = 0;
1172
1173 out:
1174 btrfs_free_path(p);
1175 return ret;
1176 }
1177
1178 struct backref_ctx {
1179 struct send_ctx *sctx;
1180
1181 struct btrfs_path *path;
1182 /* number of total found references */
1183 u64 found;
1184
1185 /*
1186 * used for clones found in send_root. clones found behind cur_objectid
1187 * and cur_offset are not considered as allowed clones.
1188 */
1189 u64 cur_objectid;
1190 u64 cur_offset;
1191
1192 /* may be truncated in case it's the last extent in a file */
1193 u64 extent_len;
1194
1195 /* data offset in the file extent item */
1196 u64 data_offset;
1197
1198 /* Just to check for bugs in backref resolving */
1199 int found_itself;
1200 };
1201
__clone_root_cmp_bsearch(const void * key,const void * elt)1202 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1203 {
1204 u64 root = (u64)(uintptr_t)key;
1205 struct clone_root *cr = (struct clone_root *)elt;
1206
1207 if (root < cr->root->objectid)
1208 return -1;
1209 if (root > cr->root->objectid)
1210 return 1;
1211 return 0;
1212 }
1213
__clone_root_cmp_sort(const void * e1,const void * e2)1214 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1215 {
1216 struct clone_root *cr1 = (struct clone_root *)e1;
1217 struct clone_root *cr2 = (struct clone_root *)e2;
1218
1219 if (cr1->root->objectid < cr2->root->objectid)
1220 return -1;
1221 if (cr1->root->objectid > cr2->root->objectid)
1222 return 1;
1223 return 0;
1224 }
1225
1226 /*
1227 * Called for every backref that is found for the current extent.
1228 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1229 */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1230 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1231 {
1232 struct backref_ctx *bctx = ctx_;
1233 struct clone_root *found;
1234 int ret;
1235 u64 i_size;
1236
1237 /* First check if the root is in the list of accepted clone sources */
1238 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1239 bctx->sctx->clone_roots_cnt,
1240 sizeof(struct clone_root),
1241 __clone_root_cmp_bsearch);
1242 if (!found)
1243 return 0;
1244
1245 if (found->root == bctx->sctx->send_root &&
1246 ino == bctx->cur_objectid &&
1247 offset == bctx->cur_offset) {
1248 bctx->found_itself = 1;
1249 }
1250
1251 /*
1252 * There are inodes that have extents that lie behind its i_size. Don't
1253 * accept clones from these extents.
1254 */
1255 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1256 NULL, NULL, NULL);
1257 btrfs_release_path(bctx->path);
1258 if (ret < 0)
1259 return ret;
1260
1261 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1262 return 0;
1263
1264 /*
1265 * Make sure we don't consider clones from send_root that are
1266 * behind the current inode/offset.
1267 */
1268 if (found->root == bctx->sctx->send_root) {
1269 /*
1270 * TODO for the moment we don't accept clones from the inode
1271 * that is currently send. We may change this when
1272 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1273 * file.
1274 */
1275 if (ino >= bctx->cur_objectid)
1276 return 0;
1277 #if 0
1278 if (ino > bctx->cur_objectid)
1279 return 0;
1280 if (offset + bctx->extent_len > bctx->cur_offset)
1281 return 0;
1282 #endif
1283 }
1284
1285 bctx->found++;
1286 found->found_refs++;
1287 if (ino < found->ino) {
1288 found->ino = ino;
1289 found->offset = offset;
1290 } else if (found->ino == ino) {
1291 /*
1292 * same extent found more then once in the same file.
1293 */
1294 if (found->offset > offset + bctx->extent_len)
1295 found->offset = offset;
1296 }
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Given an inode, offset and extent item, it finds a good clone for a clone
1303 * instruction. Returns -ENOENT when none could be found. The function makes
1304 * sure that the returned clone is usable at the point where sending is at the
1305 * moment. This means, that no clones are accepted which lie behind the current
1306 * inode+offset.
1307 *
1308 * path must point to the extent item when called.
1309 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1310 static int find_extent_clone(struct send_ctx *sctx,
1311 struct btrfs_path *path,
1312 u64 ino, u64 data_offset,
1313 u64 ino_size,
1314 struct clone_root **found)
1315 {
1316 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1317 int ret;
1318 int extent_type;
1319 u64 logical;
1320 u64 disk_byte;
1321 u64 num_bytes;
1322 u64 extent_item_pos;
1323 u64 flags = 0;
1324 struct btrfs_file_extent_item *fi;
1325 struct extent_buffer *eb = path->nodes[0];
1326 struct backref_ctx *backref_ctx = NULL;
1327 struct clone_root *cur_clone_root;
1328 struct btrfs_key found_key;
1329 struct btrfs_path *tmp_path;
1330 int compressed;
1331 u32 i;
1332
1333 tmp_path = alloc_path_for_send();
1334 if (!tmp_path)
1335 return -ENOMEM;
1336
1337 /* We only use this path under the commit sem */
1338 tmp_path->need_commit_sem = 0;
1339
1340 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1341 if (!backref_ctx) {
1342 ret = -ENOMEM;
1343 goto out;
1344 }
1345
1346 backref_ctx->path = tmp_path;
1347
1348 if (data_offset >= ino_size) {
1349 /*
1350 * There may be extents that lie behind the file's size.
1351 * I at least had this in combination with snapshotting while
1352 * writing large files.
1353 */
1354 ret = 0;
1355 goto out;
1356 }
1357
1358 fi = btrfs_item_ptr(eb, path->slots[0],
1359 struct btrfs_file_extent_item);
1360 extent_type = btrfs_file_extent_type(eb, fi);
1361 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1362 ret = -ENOENT;
1363 goto out;
1364 }
1365 compressed = btrfs_file_extent_compression(eb, fi);
1366
1367 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1368 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1369 if (disk_byte == 0) {
1370 ret = -ENOENT;
1371 goto out;
1372 }
1373 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1374
1375 down_read(&fs_info->commit_root_sem);
1376 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1377 &found_key, &flags);
1378 up_read(&fs_info->commit_root_sem);
1379 btrfs_release_path(tmp_path);
1380
1381 if (ret < 0)
1382 goto out;
1383 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1384 ret = -EIO;
1385 goto out;
1386 }
1387
1388 /*
1389 * Setup the clone roots.
1390 */
1391 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1392 cur_clone_root = sctx->clone_roots + i;
1393 cur_clone_root->ino = (u64)-1;
1394 cur_clone_root->offset = 0;
1395 cur_clone_root->found_refs = 0;
1396 }
1397
1398 backref_ctx->sctx = sctx;
1399 backref_ctx->found = 0;
1400 backref_ctx->cur_objectid = ino;
1401 backref_ctx->cur_offset = data_offset;
1402 backref_ctx->found_itself = 0;
1403 backref_ctx->extent_len = num_bytes;
1404 /*
1405 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 * offsets that already take into account the data offset, but not for
1407 * compressed extents, since the offset is logical and not relative to
1408 * the physical extent locations. We must take this into account to
1409 * avoid sending clone offsets that go beyond the source file's size,
1410 * which would result in the clone ioctl failing with -EINVAL on the
1411 * receiving end.
1412 */
1413 if (compressed == BTRFS_COMPRESS_NONE)
1414 backref_ctx->data_offset = 0;
1415 else
1416 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1417
1418 /*
1419 * The last extent of a file may be too large due to page alignment.
1420 * We need to adjust extent_len in this case so that the checks in
1421 * __iterate_backrefs work.
1422 */
1423 if (data_offset + num_bytes >= ino_size)
1424 backref_ctx->extent_len = ino_size - data_offset;
1425
1426 /*
1427 * Now collect all backrefs.
1428 */
1429 if (compressed == BTRFS_COMPRESS_NONE)
1430 extent_item_pos = logical - found_key.objectid;
1431 else
1432 extent_item_pos = 0;
1433 ret = iterate_extent_inodes(fs_info,
1434 found_key.objectid, extent_item_pos, 1,
1435 __iterate_backrefs, backref_ctx);
1436
1437 if (ret < 0)
1438 goto out;
1439
1440 if (!backref_ctx->found_itself) {
1441 /* found a bug in backref code? */
1442 ret = -EIO;
1443 btrfs_err(fs_info,
1444 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 ino, data_offset, disk_byte, found_key.objectid);
1446 goto out;
1447 }
1448
1449 btrfs_debug(fs_info,
1450 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 data_offset, ino, num_bytes, logical);
1452
1453 if (!backref_ctx->found)
1454 btrfs_debug(fs_info, "no clones found");
1455
1456 cur_clone_root = NULL;
1457 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1458 if (sctx->clone_roots[i].found_refs) {
1459 if (!cur_clone_root)
1460 cur_clone_root = sctx->clone_roots + i;
1461 else if (sctx->clone_roots[i].root == sctx->send_root)
1462 /* prefer clones from send_root over others */
1463 cur_clone_root = sctx->clone_roots + i;
1464 }
1465
1466 }
1467
1468 if (cur_clone_root) {
1469 *found = cur_clone_root;
1470 ret = 0;
1471 } else {
1472 ret = -ENOENT;
1473 }
1474
1475 out:
1476 btrfs_free_path(tmp_path);
1477 kfree(backref_ctx);
1478 return ret;
1479 }
1480
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1481 static int read_symlink(struct btrfs_root *root,
1482 u64 ino,
1483 struct fs_path *dest)
1484 {
1485 int ret;
1486 struct btrfs_path *path;
1487 struct btrfs_key key;
1488 struct btrfs_file_extent_item *ei;
1489 u8 type;
1490 u8 compression;
1491 unsigned long off;
1492 int len;
1493
1494 path = alloc_path_for_send();
1495 if (!path)
1496 return -ENOMEM;
1497
1498 key.objectid = ino;
1499 key.type = BTRFS_EXTENT_DATA_KEY;
1500 key.offset = 0;
1501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1502 if (ret < 0)
1503 goto out;
1504 if (ret) {
1505 /*
1506 * An empty symlink inode. Can happen in rare error paths when
1507 * creating a symlink (transaction committed before the inode
1508 * eviction handler removed the symlink inode items and a crash
1509 * happened in between or the subvol was snapshoted in between).
1510 * Print an informative message to dmesg/syslog so that the user
1511 * can delete the symlink.
1512 */
1513 btrfs_err(root->fs_info,
1514 "Found empty symlink inode %llu at root %llu",
1515 ino, root->root_key.objectid);
1516 ret = -EIO;
1517 goto out;
1518 }
1519
1520 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1521 struct btrfs_file_extent_item);
1522 type = btrfs_file_extent_type(path->nodes[0], ei);
1523 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1524 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1525 BUG_ON(compression);
1526
1527 off = btrfs_file_extent_inline_start(ei);
1528 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1529
1530 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1531
1532 out:
1533 btrfs_free_path(path);
1534 return ret;
1535 }
1536
1537 /*
1538 * Helper function to generate a file name that is unique in the root of
1539 * send_root and parent_root. This is used to generate names for orphan inodes.
1540 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1541 static int gen_unique_name(struct send_ctx *sctx,
1542 u64 ino, u64 gen,
1543 struct fs_path *dest)
1544 {
1545 int ret = 0;
1546 struct btrfs_path *path;
1547 struct btrfs_dir_item *di;
1548 char tmp[64];
1549 int len;
1550 u64 idx = 0;
1551
1552 path = alloc_path_for_send();
1553 if (!path)
1554 return -ENOMEM;
1555
1556 while (1) {
1557 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1558 ino, gen, idx);
1559 ASSERT(len < sizeof(tmp));
1560
1561 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1562 path, BTRFS_FIRST_FREE_OBJECTID,
1563 tmp, strlen(tmp), 0);
1564 btrfs_release_path(path);
1565 if (IS_ERR(di)) {
1566 ret = PTR_ERR(di);
1567 goto out;
1568 }
1569 if (di) {
1570 /* not unique, try again */
1571 idx++;
1572 continue;
1573 }
1574
1575 if (!sctx->parent_root) {
1576 /* unique */
1577 ret = 0;
1578 break;
1579 }
1580
1581 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1582 path, BTRFS_FIRST_FREE_OBJECTID,
1583 tmp, strlen(tmp), 0);
1584 btrfs_release_path(path);
1585 if (IS_ERR(di)) {
1586 ret = PTR_ERR(di);
1587 goto out;
1588 }
1589 if (di) {
1590 /* not unique, try again */
1591 idx++;
1592 continue;
1593 }
1594 /* unique */
1595 break;
1596 }
1597
1598 ret = fs_path_add(dest, tmp, strlen(tmp));
1599
1600 out:
1601 btrfs_free_path(path);
1602 return ret;
1603 }
1604
1605 enum inode_state {
1606 inode_state_no_change,
1607 inode_state_will_create,
1608 inode_state_did_create,
1609 inode_state_will_delete,
1610 inode_state_did_delete,
1611 };
1612
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1613 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1614 {
1615 int ret;
1616 int left_ret;
1617 int right_ret;
1618 u64 left_gen;
1619 u64 right_gen;
1620
1621 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1622 NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1624 goto out;
1625 left_ret = ret;
1626
1627 if (!sctx->parent_root) {
1628 right_ret = -ENOENT;
1629 } else {
1630 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1631 NULL, NULL, NULL, NULL);
1632 if (ret < 0 && ret != -ENOENT)
1633 goto out;
1634 right_ret = ret;
1635 }
1636
1637 if (!left_ret && !right_ret) {
1638 if (left_gen == gen && right_gen == gen) {
1639 ret = inode_state_no_change;
1640 } else if (left_gen == gen) {
1641 if (ino < sctx->send_progress)
1642 ret = inode_state_did_create;
1643 else
1644 ret = inode_state_will_create;
1645 } else if (right_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_delete;
1648 else
1649 ret = inode_state_will_delete;
1650 } else {
1651 ret = -ENOENT;
1652 }
1653 } else if (!left_ret) {
1654 if (left_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_create;
1657 else
1658 ret = inode_state_will_create;
1659 } else {
1660 ret = -ENOENT;
1661 }
1662 } else if (!right_ret) {
1663 if (right_gen == gen) {
1664 if (ino < sctx->send_progress)
1665 ret = inode_state_did_delete;
1666 else
1667 ret = inode_state_will_delete;
1668 } else {
1669 ret = -ENOENT;
1670 }
1671 } else {
1672 ret = -ENOENT;
1673 }
1674
1675 out:
1676 return ret;
1677 }
1678
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1679 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1680 {
1681 int ret;
1682
1683 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1684 return 1;
1685
1686 ret = get_cur_inode_state(sctx, ino, gen);
1687 if (ret < 0)
1688 goto out;
1689
1690 if (ret == inode_state_no_change ||
1691 ret == inode_state_did_create ||
1692 ret == inode_state_will_delete)
1693 ret = 1;
1694 else
1695 ret = 0;
1696
1697 out:
1698 return ret;
1699 }
1700
1701 /*
1702 * Helper function to lookup a dir item in a dir.
1703 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode,u8 * found_type)1704 static int lookup_dir_item_inode(struct btrfs_root *root,
1705 u64 dir, const char *name, int name_len,
1706 u64 *found_inode,
1707 u8 *found_type)
1708 {
1709 int ret = 0;
1710 struct btrfs_dir_item *di;
1711 struct btrfs_key key;
1712 struct btrfs_path *path;
1713
1714 path = alloc_path_for_send();
1715 if (!path)
1716 return -ENOMEM;
1717
1718 di = btrfs_lookup_dir_item(NULL, root, path,
1719 dir, name, name_len, 0);
1720 if (!di) {
1721 ret = -ENOENT;
1722 goto out;
1723 }
1724 if (IS_ERR(di)) {
1725 ret = PTR_ERR(di);
1726 goto out;
1727 }
1728 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1729 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1730 ret = -ENOENT;
1731 goto out;
1732 }
1733 *found_inode = key.objectid;
1734 *found_type = btrfs_dir_type(path->nodes[0], di);
1735
1736 out:
1737 btrfs_free_path(path);
1738 return ret;
1739 }
1740
1741 /*
1742 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1743 * generation of the parent dir and the name of the dir entry.
1744 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1745 static int get_first_ref(struct btrfs_root *root, u64 ino,
1746 u64 *dir, u64 *dir_gen, struct fs_path *name)
1747 {
1748 int ret;
1749 struct btrfs_key key;
1750 struct btrfs_key found_key;
1751 struct btrfs_path *path;
1752 int len;
1753 u64 parent_dir;
1754
1755 path = alloc_path_for_send();
1756 if (!path)
1757 return -ENOMEM;
1758
1759 key.objectid = ino;
1760 key.type = BTRFS_INODE_REF_KEY;
1761 key.offset = 0;
1762
1763 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1764 if (ret < 0)
1765 goto out;
1766 if (!ret)
1767 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1768 path->slots[0]);
1769 if (ret || found_key.objectid != ino ||
1770 (found_key.type != BTRFS_INODE_REF_KEY &&
1771 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1772 ret = -ENOENT;
1773 goto out;
1774 }
1775
1776 if (found_key.type == BTRFS_INODE_REF_KEY) {
1777 struct btrfs_inode_ref *iref;
1778 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_ref);
1780 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)(iref + 1),
1783 len);
1784 parent_dir = found_key.offset;
1785 } else {
1786 struct btrfs_inode_extref *extref;
1787 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 struct btrfs_inode_extref);
1789 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1790 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1791 (unsigned long)&extref->name, len);
1792 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1793 }
1794 if (ret < 0)
1795 goto out;
1796 btrfs_release_path(path);
1797
1798 if (dir_gen) {
1799 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1800 NULL, NULL, NULL);
1801 if (ret < 0)
1802 goto out;
1803 }
1804
1805 *dir = parent_dir;
1806
1807 out:
1808 btrfs_free_path(path);
1809 return ret;
1810 }
1811
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1812 static int is_first_ref(struct btrfs_root *root,
1813 u64 ino, u64 dir,
1814 const char *name, int name_len)
1815 {
1816 int ret;
1817 struct fs_path *tmp_name;
1818 u64 tmp_dir;
1819
1820 tmp_name = fs_path_alloc();
1821 if (!tmp_name)
1822 return -ENOMEM;
1823
1824 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1825 if (ret < 0)
1826 goto out;
1827
1828 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1829 ret = 0;
1830 goto out;
1831 }
1832
1833 ret = !memcmp(tmp_name->start, name, name_len);
1834
1835 out:
1836 fs_path_free(tmp_name);
1837 return ret;
1838 }
1839
1840 /*
1841 * Used by process_recorded_refs to determine if a new ref would overwrite an
1842 * already existing ref. In case it detects an overwrite, it returns the
1843 * inode/gen in who_ino/who_gen.
1844 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1845 * to make sure later references to the overwritten inode are possible.
1846 * Orphanizing is however only required for the first ref of an inode.
1847 * process_recorded_refs does an additional is_first_ref check to see if
1848 * orphanizing is really required.
1849 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen)1850 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1851 const char *name, int name_len,
1852 u64 *who_ino, u64 *who_gen)
1853 {
1854 int ret = 0;
1855 u64 gen;
1856 u64 other_inode = 0;
1857 u8 other_type = 0;
1858
1859 if (!sctx->parent_root)
1860 goto out;
1861
1862 ret = is_inode_existent(sctx, dir, dir_gen);
1863 if (ret <= 0)
1864 goto out;
1865
1866 /*
1867 * If we have a parent root we need to verify that the parent dir was
1868 * not deleted and then re-created, if it was then we have no overwrite
1869 * and we can just unlink this entry.
1870 */
1871 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1872 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1873 NULL, NULL, NULL);
1874 if (ret < 0 && ret != -ENOENT)
1875 goto out;
1876 if (ret) {
1877 ret = 0;
1878 goto out;
1879 }
1880 if (gen != dir_gen)
1881 goto out;
1882 }
1883
1884 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1885 &other_inode, &other_type);
1886 if (ret < 0 && ret != -ENOENT)
1887 goto out;
1888 if (ret) {
1889 ret = 0;
1890 goto out;
1891 }
1892
1893 /*
1894 * Check if the overwritten ref was already processed. If yes, the ref
1895 * was already unlinked/moved, so we can safely assume that we will not
1896 * overwrite anything at this point in time.
1897 */
1898 if (other_inode > sctx->send_progress ||
1899 is_waiting_for_move(sctx, other_inode)) {
1900 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1901 who_gen, NULL, NULL, NULL, NULL);
1902 if (ret < 0)
1903 goto out;
1904
1905 ret = 1;
1906 *who_ino = other_inode;
1907 } else {
1908 ret = 0;
1909 }
1910
1911 out:
1912 return ret;
1913 }
1914
1915 /*
1916 * Checks if the ref was overwritten by an already processed inode. This is
1917 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1918 * thus the orphan name needs be used.
1919 * process_recorded_refs also uses it to avoid unlinking of refs that were
1920 * overwritten.
1921 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1922 static int did_overwrite_ref(struct send_ctx *sctx,
1923 u64 dir, u64 dir_gen,
1924 u64 ino, u64 ino_gen,
1925 const char *name, int name_len)
1926 {
1927 int ret = 0;
1928 u64 gen;
1929 u64 ow_inode;
1930 u8 other_type;
1931
1932 if (!sctx->parent_root)
1933 goto out;
1934
1935 ret = is_inode_existent(sctx, dir, dir_gen);
1936 if (ret <= 0)
1937 goto out;
1938
1939 /* check if the ref was overwritten by another ref */
1940 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1941 &ow_inode, &other_type);
1942 if (ret < 0 && ret != -ENOENT)
1943 goto out;
1944 if (ret) {
1945 /* was never and will never be overwritten */
1946 ret = 0;
1947 goto out;
1948 }
1949
1950 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1951 NULL, NULL);
1952 if (ret < 0)
1953 goto out;
1954
1955 if (ow_inode == ino && gen == ino_gen) {
1956 ret = 0;
1957 goto out;
1958 }
1959
1960 /*
1961 * We know that it is or will be overwritten. Check this now.
1962 * The current inode being processed might have been the one that caused
1963 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1964 * the current inode being processed.
1965 */
1966 if ((ow_inode < sctx->send_progress) ||
1967 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1968 gen == sctx->cur_inode_gen))
1969 ret = 1;
1970 else
1971 ret = 0;
1972
1973 out:
1974 return ret;
1975 }
1976
1977 /*
1978 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1979 * that got overwritten. This is used by process_recorded_refs to determine
1980 * if it has to use the path as returned by get_cur_path or the orphan name.
1981 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)1982 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1983 {
1984 int ret = 0;
1985 struct fs_path *name = NULL;
1986 u64 dir;
1987 u64 dir_gen;
1988
1989 if (!sctx->parent_root)
1990 goto out;
1991
1992 name = fs_path_alloc();
1993 if (!name)
1994 return -ENOMEM;
1995
1996 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1997 if (ret < 0)
1998 goto out;
1999
2000 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2001 name->start, fs_path_len(name));
2002
2003 out:
2004 fs_path_free(name);
2005 return ret;
2006 }
2007
2008 /*
2009 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2010 * so we need to do some special handling in case we have clashes. This function
2011 * takes care of this with the help of name_cache_entry::radix_list.
2012 * In case of error, nce is kfreed.
2013 */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)2014 static int name_cache_insert(struct send_ctx *sctx,
2015 struct name_cache_entry *nce)
2016 {
2017 int ret = 0;
2018 struct list_head *nce_head;
2019
2020 nce_head = radix_tree_lookup(&sctx->name_cache,
2021 (unsigned long)nce->ino);
2022 if (!nce_head) {
2023 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2024 if (!nce_head) {
2025 kfree(nce);
2026 return -ENOMEM;
2027 }
2028 INIT_LIST_HEAD(nce_head);
2029
2030 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2031 if (ret < 0) {
2032 kfree(nce_head);
2033 kfree(nce);
2034 return ret;
2035 }
2036 }
2037 list_add_tail(&nce->radix_list, nce_head);
2038 list_add_tail(&nce->list, &sctx->name_cache_list);
2039 sctx->name_cache_size++;
2040
2041 return ret;
2042 }
2043
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)2044 static void name_cache_delete(struct send_ctx *sctx,
2045 struct name_cache_entry *nce)
2046 {
2047 struct list_head *nce_head;
2048
2049 nce_head = radix_tree_lookup(&sctx->name_cache,
2050 (unsigned long)nce->ino);
2051 if (!nce_head) {
2052 btrfs_err(sctx->send_root->fs_info,
2053 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2054 nce->ino, sctx->name_cache_size);
2055 }
2056
2057 list_del(&nce->radix_list);
2058 list_del(&nce->list);
2059 sctx->name_cache_size--;
2060
2061 /*
2062 * We may not get to the final release of nce_head if the lookup fails
2063 */
2064 if (nce_head && list_empty(nce_head)) {
2065 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2066 kfree(nce_head);
2067 }
2068 }
2069
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2070 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2071 u64 ino, u64 gen)
2072 {
2073 struct list_head *nce_head;
2074 struct name_cache_entry *cur;
2075
2076 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2077 if (!nce_head)
2078 return NULL;
2079
2080 list_for_each_entry(cur, nce_head, radix_list) {
2081 if (cur->ino == ino && cur->gen == gen)
2082 return cur;
2083 }
2084 return NULL;
2085 }
2086
2087 /*
2088 * Removes the entry from the list and adds it back to the end. This marks the
2089 * entry as recently used so that name_cache_clean_unused does not remove it.
2090 */
name_cache_used(struct send_ctx * sctx,struct name_cache_entry * nce)2091 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2092 {
2093 list_del(&nce->list);
2094 list_add_tail(&nce->list, &sctx->name_cache_list);
2095 }
2096
2097 /*
2098 * Remove some entries from the beginning of name_cache_list.
2099 */
name_cache_clean_unused(struct send_ctx * sctx)2100 static void name_cache_clean_unused(struct send_ctx *sctx)
2101 {
2102 struct name_cache_entry *nce;
2103
2104 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2105 return;
2106
2107 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2108 nce = list_entry(sctx->name_cache_list.next,
2109 struct name_cache_entry, list);
2110 name_cache_delete(sctx, nce);
2111 kfree(nce);
2112 }
2113 }
2114
name_cache_free(struct send_ctx * sctx)2115 static void name_cache_free(struct send_ctx *sctx)
2116 {
2117 struct name_cache_entry *nce;
2118
2119 while (!list_empty(&sctx->name_cache_list)) {
2120 nce = list_entry(sctx->name_cache_list.next,
2121 struct name_cache_entry, list);
2122 name_cache_delete(sctx, nce);
2123 kfree(nce);
2124 }
2125 }
2126
2127 /*
2128 * Used by get_cur_path for each ref up to the root.
2129 * Returns 0 if it succeeded.
2130 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2131 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2132 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2133 * Returns <0 in case of error.
2134 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2135 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2136 u64 ino, u64 gen,
2137 u64 *parent_ino,
2138 u64 *parent_gen,
2139 struct fs_path *dest)
2140 {
2141 int ret;
2142 int nce_ret;
2143 struct name_cache_entry *nce = NULL;
2144
2145 /*
2146 * First check if we already did a call to this function with the same
2147 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2148 * return the cached result.
2149 */
2150 nce = name_cache_search(sctx, ino, gen);
2151 if (nce) {
2152 if (ino < sctx->send_progress && nce->need_later_update) {
2153 name_cache_delete(sctx, nce);
2154 kfree(nce);
2155 nce = NULL;
2156 } else {
2157 name_cache_used(sctx, nce);
2158 *parent_ino = nce->parent_ino;
2159 *parent_gen = nce->parent_gen;
2160 ret = fs_path_add(dest, nce->name, nce->name_len);
2161 if (ret < 0)
2162 goto out;
2163 ret = nce->ret;
2164 goto out;
2165 }
2166 }
2167
2168 /*
2169 * If the inode is not existent yet, add the orphan name and return 1.
2170 * This should only happen for the parent dir that we determine in
2171 * __record_new_ref
2172 */
2173 ret = is_inode_existent(sctx, ino, gen);
2174 if (ret < 0)
2175 goto out;
2176
2177 if (!ret) {
2178 ret = gen_unique_name(sctx, ino, gen, dest);
2179 if (ret < 0)
2180 goto out;
2181 ret = 1;
2182 goto out_cache;
2183 }
2184
2185 /*
2186 * Depending on whether the inode was already processed or not, use
2187 * send_root or parent_root for ref lookup.
2188 */
2189 if (ino < sctx->send_progress)
2190 ret = get_first_ref(sctx->send_root, ino,
2191 parent_ino, parent_gen, dest);
2192 else
2193 ret = get_first_ref(sctx->parent_root, ino,
2194 parent_ino, parent_gen, dest);
2195 if (ret < 0)
2196 goto out;
2197
2198 /*
2199 * Check if the ref was overwritten by an inode's ref that was processed
2200 * earlier. If yes, treat as orphan and return 1.
2201 */
2202 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2203 dest->start, dest->end - dest->start);
2204 if (ret < 0)
2205 goto out;
2206 if (ret) {
2207 fs_path_reset(dest);
2208 ret = gen_unique_name(sctx, ino, gen, dest);
2209 if (ret < 0)
2210 goto out;
2211 ret = 1;
2212 }
2213
2214 out_cache:
2215 /*
2216 * Store the result of the lookup in the name cache.
2217 */
2218 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2219 if (!nce) {
2220 ret = -ENOMEM;
2221 goto out;
2222 }
2223
2224 nce->ino = ino;
2225 nce->gen = gen;
2226 nce->parent_ino = *parent_ino;
2227 nce->parent_gen = *parent_gen;
2228 nce->name_len = fs_path_len(dest);
2229 nce->ret = ret;
2230 strcpy(nce->name, dest->start);
2231
2232 if (ino < sctx->send_progress)
2233 nce->need_later_update = 0;
2234 else
2235 nce->need_later_update = 1;
2236
2237 nce_ret = name_cache_insert(sctx, nce);
2238 if (nce_ret < 0)
2239 ret = nce_ret;
2240 name_cache_clean_unused(sctx);
2241
2242 out:
2243 return ret;
2244 }
2245
2246 /*
2247 * Magic happens here. This function returns the first ref to an inode as it
2248 * would look like while receiving the stream at this point in time.
2249 * We walk the path up to the root. For every inode in between, we check if it
2250 * was already processed/sent. If yes, we continue with the parent as found
2251 * in send_root. If not, we continue with the parent as found in parent_root.
2252 * If we encounter an inode that was deleted at this point in time, we use the
2253 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2254 * that were not created yet and overwritten inodes/refs.
2255 *
2256 * When do we have have orphan inodes:
2257 * 1. When an inode is freshly created and thus no valid refs are available yet
2258 * 2. When a directory lost all it's refs (deleted) but still has dir items
2259 * inside which were not processed yet (pending for move/delete). If anyone
2260 * tried to get the path to the dir items, it would get a path inside that
2261 * orphan directory.
2262 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2263 * of an unprocessed inode. If in that case the first ref would be
2264 * overwritten, the overwritten inode gets "orphanized". Later when we
2265 * process this overwritten inode, it is restored at a new place by moving
2266 * the orphan inode.
2267 *
2268 * sctx->send_progress tells this function at which point in time receiving
2269 * would be.
2270 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2271 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2272 struct fs_path *dest)
2273 {
2274 int ret = 0;
2275 struct fs_path *name = NULL;
2276 u64 parent_inode = 0;
2277 u64 parent_gen = 0;
2278 int stop = 0;
2279
2280 name = fs_path_alloc();
2281 if (!name) {
2282 ret = -ENOMEM;
2283 goto out;
2284 }
2285
2286 dest->reversed = 1;
2287 fs_path_reset(dest);
2288
2289 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2290 struct waiting_dir_move *wdm;
2291
2292 fs_path_reset(name);
2293
2294 if (is_waiting_for_rm(sctx, ino)) {
2295 ret = gen_unique_name(sctx, ino, gen, name);
2296 if (ret < 0)
2297 goto out;
2298 ret = fs_path_add_path(dest, name);
2299 break;
2300 }
2301
2302 wdm = get_waiting_dir_move(sctx, ino);
2303 if (wdm && wdm->orphanized) {
2304 ret = gen_unique_name(sctx, ino, gen, name);
2305 stop = 1;
2306 } else if (wdm) {
2307 ret = get_first_ref(sctx->parent_root, ino,
2308 &parent_inode, &parent_gen, name);
2309 } else {
2310 ret = __get_cur_name_and_parent(sctx, ino, gen,
2311 &parent_inode,
2312 &parent_gen, name);
2313 if (ret)
2314 stop = 1;
2315 }
2316
2317 if (ret < 0)
2318 goto out;
2319
2320 ret = fs_path_add_path(dest, name);
2321 if (ret < 0)
2322 goto out;
2323
2324 ino = parent_inode;
2325 gen = parent_gen;
2326 }
2327
2328 out:
2329 fs_path_free(name);
2330 if (!ret)
2331 fs_path_unreverse(dest);
2332 return ret;
2333 }
2334
2335 /*
2336 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2337 */
send_subvol_begin(struct send_ctx * sctx)2338 static int send_subvol_begin(struct send_ctx *sctx)
2339 {
2340 int ret;
2341 struct btrfs_root *send_root = sctx->send_root;
2342 struct btrfs_root *parent_root = sctx->parent_root;
2343 struct btrfs_path *path;
2344 struct btrfs_key key;
2345 struct btrfs_root_ref *ref;
2346 struct extent_buffer *leaf;
2347 char *name = NULL;
2348 int namelen;
2349
2350 path = btrfs_alloc_path();
2351 if (!path)
2352 return -ENOMEM;
2353
2354 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2355 if (!name) {
2356 btrfs_free_path(path);
2357 return -ENOMEM;
2358 }
2359
2360 key.objectid = send_root->objectid;
2361 key.type = BTRFS_ROOT_BACKREF_KEY;
2362 key.offset = 0;
2363
2364 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2365 &key, path, 1, 0);
2366 if (ret < 0)
2367 goto out;
2368 if (ret) {
2369 ret = -ENOENT;
2370 goto out;
2371 }
2372
2373 leaf = path->nodes[0];
2374 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2375 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2376 key.objectid != send_root->objectid) {
2377 ret = -ENOENT;
2378 goto out;
2379 }
2380 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2381 namelen = btrfs_root_ref_name_len(leaf, ref);
2382 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2383 btrfs_release_path(path);
2384
2385 if (parent_root) {
2386 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2387 if (ret < 0)
2388 goto out;
2389 } else {
2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2391 if (ret < 0)
2392 goto out;
2393 }
2394
2395 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2396
2397 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2398 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2399 sctx->send_root->root_item.received_uuid);
2400 else
2401 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2402 sctx->send_root->root_item.uuid);
2403
2404 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2405 le64_to_cpu(sctx->send_root->root_item.ctransid));
2406 if (parent_root) {
2407 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2408 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2409 parent_root->root_item.received_uuid);
2410 else
2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2412 parent_root->root_item.uuid);
2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2414 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2415 }
2416
2417 ret = send_cmd(sctx);
2418
2419 tlv_put_failure:
2420 out:
2421 btrfs_free_path(path);
2422 kfree(name);
2423 return ret;
2424 }
2425
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2426 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2427 {
2428 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2429 int ret = 0;
2430 struct fs_path *p;
2431
2432 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2433
2434 p = fs_path_alloc();
2435 if (!p)
2436 return -ENOMEM;
2437
2438 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2439 if (ret < 0)
2440 goto out;
2441
2442 ret = get_cur_path(sctx, ino, gen, p);
2443 if (ret < 0)
2444 goto out;
2445 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2446 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2447
2448 ret = send_cmd(sctx);
2449
2450 tlv_put_failure:
2451 out:
2452 fs_path_free(p);
2453 return ret;
2454 }
2455
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2456 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2457 {
2458 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2459 int ret = 0;
2460 struct fs_path *p;
2461
2462 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2463
2464 p = fs_path_alloc();
2465 if (!p)
2466 return -ENOMEM;
2467
2468 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2469 if (ret < 0)
2470 goto out;
2471
2472 ret = get_cur_path(sctx, ino, gen, p);
2473 if (ret < 0)
2474 goto out;
2475 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2476 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2477
2478 ret = send_cmd(sctx);
2479
2480 tlv_put_failure:
2481 out:
2482 fs_path_free(p);
2483 return ret;
2484 }
2485
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2486 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2487 {
2488 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2489 int ret = 0;
2490 struct fs_path *p;
2491
2492 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2493 ino, uid, gid);
2494
2495 p = fs_path_alloc();
2496 if (!p)
2497 return -ENOMEM;
2498
2499 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2500 if (ret < 0)
2501 goto out;
2502
2503 ret = get_cur_path(sctx, ino, gen, p);
2504 if (ret < 0)
2505 goto out;
2506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2507 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2508 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2509
2510 ret = send_cmd(sctx);
2511
2512 tlv_put_failure:
2513 out:
2514 fs_path_free(p);
2515 return ret;
2516 }
2517
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2518 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2519 {
2520 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2521 int ret = 0;
2522 struct fs_path *p = NULL;
2523 struct btrfs_inode_item *ii;
2524 struct btrfs_path *path = NULL;
2525 struct extent_buffer *eb;
2526 struct btrfs_key key;
2527 int slot;
2528
2529 btrfs_debug(fs_info, "send_utimes %llu", ino);
2530
2531 p = fs_path_alloc();
2532 if (!p)
2533 return -ENOMEM;
2534
2535 path = alloc_path_for_send();
2536 if (!path) {
2537 ret = -ENOMEM;
2538 goto out;
2539 }
2540
2541 key.objectid = ino;
2542 key.type = BTRFS_INODE_ITEM_KEY;
2543 key.offset = 0;
2544 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2545 if (ret > 0)
2546 ret = -ENOENT;
2547 if (ret < 0)
2548 goto out;
2549
2550 eb = path->nodes[0];
2551 slot = path->slots[0];
2552 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2553
2554 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2555 if (ret < 0)
2556 goto out;
2557
2558 ret = get_cur_path(sctx, ino, gen, p);
2559 if (ret < 0)
2560 goto out;
2561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2563 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2564 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2565 /* TODO Add otime support when the otime patches get into upstream */
2566
2567 ret = send_cmd(sctx);
2568
2569 tlv_put_failure:
2570 out:
2571 fs_path_free(p);
2572 btrfs_free_path(path);
2573 return ret;
2574 }
2575
2576 /*
2577 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2578 * a valid path yet because we did not process the refs yet. So, the inode
2579 * is created as orphan.
2580 */
send_create_inode(struct send_ctx * sctx,u64 ino)2581 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2582 {
2583 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2584 int ret = 0;
2585 struct fs_path *p;
2586 int cmd;
2587 u64 gen;
2588 u64 mode;
2589 u64 rdev;
2590
2591 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2592
2593 p = fs_path_alloc();
2594 if (!p)
2595 return -ENOMEM;
2596
2597 if (ino != sctx->cur_ino) {
2598 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2599 NULL, NULL, &rdev);
2600 if (ret < 0)
2601 goto out;
2602 } else {
2603 gen = sctx->cur_inode_gen;
2604 mode = sctx->cur_inode_mode;
2605 rdev = sctx->cur_inode_rdev;
2606 }
2607
2608 if (S_ISREG(mode)) {
2609 cmd = BTRFS_SEND_C_MKFILE;
2610 } else if (S_ISDIR(mode)) {
2611 cmd = BTRFS_SEND_C_MKDIR;
2612 } else if (S_ISLNK(mode)) {
2613 cmd = BTRFS_SEND_C_SYMLINK;
2614 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2615 cmd = BTRFS_SEND_C_MKNOD;
2616 } else if (S_ISFIFO(mode)) {
2617 cmd = BTRFS_SEND_C_MKFIFO;
2618 } else if (S_ISSOCK(mode)) {
2619 cmd = BTRFS_SEND_C_MKSOCK;
2620 } else {
2621 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2622 (int)(mode & S_IFMT));
2623 ret = -ENOTSUPP;
2624 goto out;
2625 }
2626
2627 ret = begin_cmd(sctx, cmd);
2628 if (ret < 0)
2629 goto out;
2630
2631 ret = gen_unique_name(sctx, ino, gen, p);
2632 if (ret < 0)
2633 goto out;
2634
2635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2637
2638 if (S_ISLNK(mode)) {
2639 fs_path_reset(p);
2640 ret = read_symlink(sctx->send_root, ino, p);
2641 if (ret < 0)
2642 goto out;
2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2644 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2645 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2646 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2647 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2648 }
2649
2650 ret = send_cmd(sctx);
2651 if (ret < 0)
2652 goto out;
2653
2654
2655 tlv_put_failure:
2656 out:
2657 fs_path_free(p);
2658 return ret;
2659 }
2660
2661 /*
2662 * We need some special handling for inodes that get processed before the parent
2663 * directory got created. See process_recorded_refs for details.
2664 * This function does the check if we already created the dir out of order.
2665 */
did_create_dir(struct send_ctx * sctx,u64 dir)2666 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2667 {
2668 int ret = 0;
2669 struct btrfs_path *path = NULL;
2670 struct btrfs_key key;
2671 struct btrfs_key found_key;
2672 struct btrfs_key di_key;
2673 struct extent_buffer *eb;
2674 struct btrfs_dir_item *di;
2675 int slot;
2676
2677 path = alloc_path_for_send();
2678 if (!path) {
2679 ret = -ENOMEM;
2680 goto out;
2681 }
2682
2683 key.objectid = dir;
2684 key.type = BTRFS_DIR_INDEX_KEY;
2685 key.offset = 0;
2686 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2687 if (ret < 0)
2688 goto out;
2689
2690 while (1) {
2691 eb = path->nodes[0];
2692 slot = path->slots[0];
2693 if (slot >= btrfs_header_nritems(eb)) {
2694 ret = btrfs_next_leaf(sctx->send_root, path);
2695 if (ret < 0) {
2696 goto out;
2697 } else if (ret > 0) {
2698 ret = 0;
2699 break;
2700 }
2701 continue;
2702 }
2703
2704 btrfs_item_key_to_cpu(eb, &found_key, slot);
2705 if (found_key.objectid != key.objectid ||
2706 found_key.type != key.type) {
2707 ret = 0;
2708 goto out;
2709 }
2710
2711 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2712 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2713
2714 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2715 di_key.objectid < sctx->send_progress) {
2716 ret = 1;
2717 goto out;
2718 }
2719
2720 path->slots[0]++;
2721 }
2722
2723 out:
2724 btrfs_free_path(path);
2725 return ret;
2726 }
2727
2728 /*
2729 * Only creates the inode if it is:
2730 * 1. Not a directory
2731 * 2. Or a directory which was not created already due to out of order
2732 * directories. See did_create_dir and process_recorded_refs for details.
2733 */
send_create_inode_if_needed(struct send_ctx * sctx)2734 static int send_create_inode_if_needed(struct send_ctx *sctx)
2735 {
2736 int ret;
2737
2738 if (S_ISDIR(sctx->cur_inode_mode)) {
2739 ret = did_create_dir(sctx, sctx->cur_ino);
2740 if (ret < 0)
2741 goto out;
2742 if (ret) {
2743 ret = 0;
2744 goto out;
2745 }
2746 }
2747
2748 ret = send_create_inode(sctx, sctx->cur_ino);
2749 if (ret < 0)
2750 goto out;
2751
2752 out:
2753 return ret;
2754 }
2755
2756 struct recorded_ref {
2757 struct list_head list;
2758 char *dir_path;
2759 char *name;
2760 struct fs_path *full_path;
2761 u64 dir;
2762 u64 dir_gen;
2763 int dir_path_len;
2764 int name_len;
2765 };
2766
2767 /*
2768 * We need to process new refs before deleted refs, but compare_tree gives us
2769 * everything mixed. So we first record all refs and later process them.
2770 * This function is a helper to record one ref.
2771 */
__record_ref(struct list_head * head,u64 dir,u64 dir_gen,struct fs_path * path)2772 static int __record_ref(struct list_head *head, u64 dir,
2773 u64 dir_gen, struct fs_path *path)
2774 {
2775 struct recorded_ref *ref;
2776
2777 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2778 if (!ref)
2779 return -ENOMEM;
2780
2781 ref->dir = dir;
2782 ref->dir_gen = dir_gen;
2783 ref->full_path = path;
2784
2785 ref->name = (char *)kbasename(ref->full_path->start);
2786 ref->name_len = ref->full_path->end - ref->name;
2787 ref->dir_path = ref->full_path->start;
2788 if (ref->name == ref->full_path->start)
2789 ref->dir_path_len = 0;
2790 else
2791 ref->dir_path_len = ref->full_path->end -
2792 ref->full_path->start - 1 - ref->name_len;
2793
2794 list_add_tail(&ref->list, head);
2795 return 0;
2796 }
2797
dup_ref(struct recorded_ref * ref,struct list_head * list)2798 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2799 {
2800 struct recorded_ref *new;
2801
2802 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2803 if (!new)
2804 return -ENOMEM;
2805
2806 new->dir = ref->dir;
2807 new->dir_gen = ref->dir_gen;
2808 new->full_path = NULL;
2809 INIT_LIST_HEAD(&new->list);
2810 list_add_tail(&new->list, list);
2811 return 0;
2812 }
2813
__free_recorded_refs(struct list_head * head)2814 static void __free_recorded_refs(struct list_head *head)
2815 {
2816 struct recorded_ref *cur;
2817
2818 while (!list_empty(head)) {
2819 cur = list_entry(head->next, struct recorded_ref, list);
2820 fs_path_free(cur->full_path);
2821 list_del(&cur->list);
2822 kfree(cur);
2823 }
2824 }
2825
free_recorded_refs(struct send_ctx * sctx)2826 static void free_recorded_refs(struct send_ctx *sctx)
2827 {
2828 __free_recorded_refs(&sctx->new_refs);
2829 __free_recorded_refs(&sctx->deleted_refs);
2830 }
2831
2832 /*
2833 * Renames/moves a file/dir to its orphan name. Used when the first
2834 * ref of an unprocessed inode gets overwritten and for all non empty
2835 * directories.
2836 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2837 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2838 struct fs_path *path)
2839 {
2840 int ret;
2841 struct fs_path *orphan;
2842
2843 orphan = fs_path_alloc();
2844 if (!orphan)
2845 return -ENOMEM;
2846
2847 ret = gen_unique_name(sctx, ino, gen, orphan);
2848 if (ret < 0)
2849 goto out;
2850
2851 ret = send_rename(sctx, path, orphan);
2852
2853 out:
2854 fs_path_free(orphan);
2855 return ret;
2856 }
2857
2858 static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2859 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2860 {
2861 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2862 struct rb_node *parent = NULL;
2863 struct orphan_dir_info *entry, *odi;
2864
2865 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2866 if (!odi)
2867 return ERR_PTR(-ENOMEM);
2868 odi->ino = dir_ino;
2869 odi->gen = 0;
2870
2871 while (*p) {
2872 parent = *p;
2873 entry = rb_entry(parent, struct orphan_dir_info, node);
2874 if (dir_ino < entry->ino) {
2875 p = &(*p)->rb_left;
2876 } else if (dir_ino > entry->ino) {
2877 p = &(*p)->rb_right;
2878 } else {
2879 kfree(odi);
2880 return entry;
2881 }
2882 }
2883
2884 rb_link_node(&odi->node, parent, p);
2885 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2886 return odi;
2887 }
2888
2889 static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino)2890 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2891 {
2892 struct rb_node *n = sctx->orphan_dirs.rb_node;
2893 struct orphan_dir_info *entry;
2894
2895 while (n) {
2896 entry = rb_entry(n, struct orphan_dir_info, node);
2897 if (dir_ino < entry->ino)
2898 n = n->rb_left;
2899 else if (dir_ino > entry->ino)
2900 n = n->rb_right;
2901 else
2902 return entry;
2903 }
2904 return NULL;
2905 }
2906
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino)2907 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2908 {
2909 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2910
2911 return odi != NULL;
2912 }
2913
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2914 static void free_orphan_dir_info(struct send_ctx *sctx,
2915 struct orphan_dir_info *odi)
2916 {
2917 if (!odi)
2918 return;
2919 rb_erase(&odi->node, &sctx->orphan_dirs);
2920 kfree(odi);
2921 }
2922
2923 /*
2924 * Returns 1 if a directory can be removed at this point in time.
2925 * We check this by iterating all dir items and checking if the inode behind
2926 * the dir item was already processed.
2927 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2928 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2929 u64 send_progress)
2930 {
2931 int ret = 0;
2932 struct btrfs_root *root = sctx->parent_root;
2933 struct btrfs_path *path;
2934 struct btrfs_key key;
2935 struct btrfs_key found_key;
2936 struct btrfs_key loc;
2937 struct btrfs_dir_item *di;
2938
2939 /*
2940 * Don't try to rmdir the top/root subvolume dir.
2941 */
2942 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2943 return 0;
2944
2945 path = alloc_path_for_send();
2946 if (!path)
2947 return -ENOMEM;
2948
2949 key.objectid = dir;
2950 key.type = BTRFS_DIR_INDEX_KEY;
2951 key.offset = 0;
2952 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2953 if (ret < 0)
2954 goto out;
2955
2956 while (1) {
2957 struct waiting_dir_move *dm;
2958
2959 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2960 ret = btrfs_next_leaf(root, path);
2961 if (ret < 0)
2962 goto out;
2963 else if (ret > 0)
2964 break;
2965 continue;
2966 }
2967 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2968 path->slots[0]);
2969 if (found_key.objectid != key.objectid ||
2970 found_key.type != key.type)
2971 break;
2972
2973 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2974 struct btrfs_dir_item);
2975 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2976
2977 dm = get_waiting_dir_move(sctx, loc.objectid);
2978 if (dm) {
2979 struct orphan_dir_info *odi;
2980
2981 odi = add_orphan_dir_info(sctx, dir);
2982 if (IS_ERR(odi)) {
2983 ret = PTR_ERR(odi);
2984 goto out;
2985 }
2986 odi->gen = dir_gen;
2987 dm->rmdir_ino = dir;
2988 ret = 0;
2989 goto out;
2990 }
2991
2992 if (loc.objectid > send_progress) {
2993 struct orphan_dir_info *odi;
2994
2995 odi = get_orphan_dir_info(sctx, dir);
2996 free_orphan_dir_info(sctx, odi);
2997 ret = 0;
2998 goto out;
2999 }
3000
3001 path->slots[0]++;
3002 }
3003
3004 ret = 1;
3005
3006 out:
3007 btrfs_free_path(path);
3008 return ret;
3009 }
3010
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3011 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3012 {
3013 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3014
3015 return entry != NULL;
3016 }
3017
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3018 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3019 {
3020 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3021 struct rb_node *parent = NULL;
3022 struct waiting_dir_move *entry, *dm;
3023
3024 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3025 if (!dm)
3026 return -ENOMEM;
3027 dm->ino = ino;
3028 dm->rmdir_ino = 0;
3029 dm->orphanized = orphanized;
3030
3031 while (*p) {
3032 parent = *p;
3033 entry = rb_entry(parent, struct waiting_dir_move, node);
3034 if (ino < entry->ino) {
3035 p = &(*p)->rb_left;
3036 } else if (ino > entry->ino) {
3037 p = &(*p)->rb_right;
3038 } else {
3039 kfree(dm);
3040 return -EEXIST;
3041 }
3042 }
3043
3044 rb_link_node(&dm->node, parent, p);
3045 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3046 return 0;
3047 }
3048
3049 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3050 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3051 {
3052 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3053 struct waiting_dir_move *entry;
3054
3055 while (n) {
3056 entry = rb_entry(n, struct waiting_dir_move, node);
3057 if (ino < entry->ino)
3058 n = n->rb_left;
3059 else if (ino > entry->ino)
3060 n = n->rb_right;
3061 else
3062 return entry;
3063 }
3064 return NULL;
3065 }
3066
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3067 static void free_waiting_dir_move(struct send_ctx *sctx,
3068 struct waiting_dir_move *dm)
3069 {
3070 if (!dm)
3071 return;
3072 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3073 kfree(dm);
3074 }
3075
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3076 static int add_pending_dir_move(struct send_ctx *sctx,
3077 u64 ino,
3078 u64 ino_gen,
3079 u64 parent_ino,
3080 struct list_head *new_refs,
3081 struct list_head *deleted_refs,
3082 const bool is_orphan)
3083 {
3084 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3085 struct rb_node *parent = NULL;
3086 struct pending_dir_move *entry = NULL, *pm;
3087 struct recorded_ref *cur;
3088 int exists = 0;
3089 int ret;
3090
3091 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3092 if (!pm)
3093 return -ENOMEM;
3094 pm->parent_ino = parent_ino;
3095 pm->ino = ino;
3096 pm->gen = ino_gen;
3097 INIT_LIST_HEAD(&pm->list);
3098 INIT_LIST_HEAD(&pm->update_refs);
3099 RB_CLEAR_NODE(&pm->node);
3100
3101 while (*p) {
3102 parent = *p;
3103 entry = rb_entry(parent, struct pending_dir_move, node);
3104 if (parent_ino < entry->parent_ino) {
3105 p = &(*p)->rb_left;
3106 } else if (parent_ino > entry->parent_ino) {
3107 p = &(*p)->rb_right;
3108 } else {
3109 exists = 1;
3110 break;
3111 }
3112 }
3113
3114 list_for_each_entry(cur, deleted_refs, list) {
3115 ret = dup_ref(cur, &pm->update_refs);
3116 if (ret < 0)
3117 goto out;
3118 }
3119 list_for_each_entry(cur, new_refs, list) {
3120 ret = dup_ref(cur, &pm->update_refs);
3121 if (ret < 0)
3122 goto out;
3123 }
3124
3125 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3126 if (ret)
3127 goto out;
3128
3129 if (exists) {
3130 list_add_tail(&pm->list, &entry->list);
3131 } else {
3132 rb_link_node(&pm->node, parent, p);
3133 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3134 }
3135 ret = 0;
3136 out:
3137 if (ret) {
3138 __free_recorded_refs(&pm->update_refs);
3139 kfree(pm);
3140 }
3141 return ret;
3142 }
3143
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3144 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3145 u64 parent_ino)
3146 {
3147 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3148 struct pending_dir_move *entry;
3149
3150 while (n) {
3151 entry = rb_entry(n, struct pending_dir_move, node);
3152 if (parent_ino < entry->parent_ino)
3153 n = n->rb_left;
3154 else if (parent_ino > entry->parent_ino)
3155 n = n->rb_right;
3156 else
3157 return entry;
3158 }
3159 return NULL;
3160 }
3161
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3162 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3163 u64 ino, u64 gen, u64 *ancestor_ino)
3164 {
3165 int ret = 0;
3166 u64 parent_inode = 0;
3167 u64 parent_gen = 0;
3168 u64 start_ino = ino;
3169
3170 *ancestor_ino = 0;
3171 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3172 fs_path_reset(name);
3173
3174 if (is_waiting_for_rm(sctx, ino))
3175 break;
3176 if (is_waiting_for_move(sctx, ino)) {
3177 if (*ancestor_ino == 0)
3178 *ancestor_ino = ino;
3179 ret = get_first_ref(sctx->parent_root, ino,
3180 &parent_inode, &parent_gen, name);
3181 } else {
3182 ret = __get_cur_name_and_parent(sctx, ino, gen,
3183 &parent_inode,
3184 &parent_gen, name);
3185 if (ret > 0) {
3186 ret = 0;
3187 break;
3188 }
3189 }
3190 if (ret < 0)
3191 break;
3192 if (parent_inode == start_ino) {
3193 ret = 1;
3194 if (*ancestor_ino == 0)
3195 *ancestor_ino = ino;
3196 break;
3197 }
3198 ino = parent_inode;
3199 gen = parent_gen;
3200 }
3201 return ret;
3202 }
3203
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3204 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3205 {
3206 struct fs_path *from_path = NULL;
3207 struct fs_path *to_path = NULL;
3208 struct fs_path *name = NULL;
3209 u64 orig_progress = sctx->send_progress;
3210 struct recorded_ref *cur;
3211 u64 parent_ino, parent_gen;
3212 struct waiting_dir_move *dm = NULL;
3213 u64 rmdir_ino = 0;
3214 u64 ancestor;
3215 bool is_orphan;
3216 int ret;
3217
3218 name = fs_path_alloc();
3219 from_path = fs_path_alloc();
3220 if (!name || !from_path) {
3221 ret = -ENOMEM;
3222 goto out;
3223 }
3224
3225 dm = get_waiting_dir_move(sctx, pm->ino);
3226 ASSERT(dm);
3227 rmdir_ino = dm->rmdir_ino;
3228 is_orphan = dm->orphanized;
3229 free_waiting_dir_move(sctx, dm);
3230
3231 if (is_orphan) {
3232 ret = gen_unique_name(sctx, pm->ino,
3233 pm->gen, from_path);
3234 } else {
3235 ret = get_first_ref(sctx->parent_root, pm->ino,
3236 &parent_ino, &parent_gen, name);
3237 if (ret < 0)
3238 goto out;
3239 ret = get_cur_path(sctx, parent_ino, parent_gen,
3240 from_path);
3241 if (ret < 0)
3242 goto out;
3243 ret = fs_path_add_path(from_path, name);
3244 }
3245 if (ret < 0)
3246 goto out;
3247
3248 sctx->send_progress = sctx->cur_ino + 1;
3249 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3250 if (ret < 0)
3251 goto out;
3252 if (ret) {
3253 LIST_HEAD(deleted_refs);
3254 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3255 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3256 &pm->update_refs, &deleted_refs,
3257 is_orphan);
3258 if (ret < 0)
3259 goto out;
3260 if (rmdir_ino) {
3261 dm = get_waiting_dir_move(sctx, pm->ino);
3262 ASSERT(dm);
3263 dm->rmdir_ino = rmdir_ino;
3264 }
3265 goto out;
3266 }
3267 fs_path_reset(name);
3268 to_path = name;
3269 name = NULL;
3270 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3271 if (ret < 0)
3272 goto out;
3273
3274 ret = send_rename(sctx, from_path, to_path);
3275 if (ret < 0)
3276 goto out;
3277
3278 if (rmdir_ino) {
3279 struct orphan_dir_info *odi;
3280
3281 odi = get_orphan_dir_info(sctx, rmdir_ino);
3282 if (!odi) {
3283 /* already deleted */
3284 goto finish;
3285 }
3286 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3287 if (ret < 0)
3288 goto out;
3289 if (!ret)
3290 goto finish;
3291
3292 name = fs_path_alloc();
3293 if (!name) {
3294 ret = -ENOMEM;
3295 goto out;
3296 }
3297 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3298 if (ret < 0)
3299 goto out;
3300 ret = send_rmdir(sctx, name);
3301 if (ret < 0)
3302 goto out;
3303 free_orphan_dir_info(sctx, odi);
3304 }
3305
3306 finish:
3307 ret = send_utimes(sctx, pm->ino, pm->gen);
3308 if (ret < 0)
3309 goto out;
3310
3311 /*
3312 * After rename/move, need to update the utimes of both new parent(s)
3313 * and old parent(s).
3314 */
3315 list_for_each_entry(cur, &pm->update_refs, list) {
3316 /*
3317 * The parent inode might have been deleted in the send snapshot
3318 */
3319 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3320 NULL, NULL, NULL, NULL, NULL);
3321 if (ret == -ENOENT) {
3322 ret = 0;
3323 continue;
3324 }
3325 if (ret < 0)
3326 goto out;
3327
3328 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3329 if (ret < 0)
3330 goto out;
3331 }
3332
3333 out:
3334 fs_path_free(name);
3335 fs_path_free(from_path);
3336 fs_path_free(to_path);
3337 sctx->send_progress = orig_progress;
3338
3339 return ret;
3340 }
3341
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3342 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3343 {
3344 if (!list_empty(&m->list))
3345 list_del(&m->list);
3346 if (!RB_EMPTY_NODE(&m->node))
3347 rb_erase(&m->node, &sctx->pending_dir_moves);
3348 __free_recorded_refs(&m->update_refs);
3349 kfree(m);
3350 }
3351
tail_append_pending_moves(struct pending_dir_move * moves,struct list_head * stack)3352 static void tail_append_pending_moves(struct pending_dir_move *moves,
3353 struct list_head *stack)
3354 {
3355 if (list_empty(&moves->list)) {
3356 list_add_tail(&moves->list, stack);
3357 } else {
3358 LIST_HEAD(list);
3359 list_splice_init(&moves->list, &list);
3360 list_add_tail(&moves->list, stack);
3361 list_splice_tail(&list, stack);
3362 }
3363 }
3364
apply_children_dir_moves(struct send_ctx * sctx)3365 static int apply_children_dir_moves(struct send_ctx *sctx)
3366 {
3367 struct pending_dir_move *pm;
3368 struct list_head stack;
3369 u64 parent_ino = sctx->cur_ino;
3370 int ret = 0;
3371
3372 pm = get_pending_dir_moves(sctx, parent_ino);
3373 if (!pm)
3374 return 0;
3375
3376 INIT_LIST_HEAD(&stack);
3377 tail_append_pending_moves(pm, &stack);
3378
3379 while (!list_empty(&stack)) {
3380 pm = list_first_entry(&stack, struct pending_dir_move, list);
3381 parent_ino = pm->ino;
3382 ret = apply_dir_move(sctx, pm);
3383 free_pending_move(sctx, pm);
3384 if (ret)
3385 goto out;
3386 pm = get_pending_dir_moves(sctx, parent_ino);
3387 if (pm)
3388 tail_append_pending_moves(pm, &stack);
3389 }
3390 return 0;
3391
3392 out:
3393 while (!list_empty(&stack)) {
3394 pm = list_first_entry(&stack, struct pending_dir_move, list);
3395 free_pending_move(sctx, pm);
3396 }
3397 return ret;
3398 }
3399
3400 /*
3401 * We might need to delay a directory rename even when no ancestor directory
3402 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3403 * renamed. This happens when we rename a directory to the old name (the name
3404 * in the parent root) of some other unrelated directory that got its rename
3405 * delayed due to some ancestor with higher number that got renamed.
3406 *
3407 * Example:
3408 *
3409 * Parent snapshot:
3410 * . (ino 256)
3411 * |---- a/ (ino 257)
3412 * | |---- file (ino 260)
3413 * |
3414 * |---- b/ (ino 258)
3415 * |---- c/ (ino 259)
3416 *
3417 * Send snapshot:
3418 * . (ino 256)
3419 * |---- a/ (ino 258)
3420 * |---- x/ (ino 259)
3421 * |---- y/ (ino 257)
3422 * |----- file (ino 260)
3423 *
3424 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3425 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3426 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3427 * must issue is:
3428 *
3429 * 1 - rename 259 from 'c' to 'x'
3430 * 2 - rename 257 from 'a' to 'x/y'
3431 * 3 - rename 258 from 'b' to 'a'
3432 *
3433 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3434 * be done right away and < 0 on error.
3435 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3436 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3437 struct recorded_ref *parent_ref,
3438 const bool is_orphan)
3439 {
3440 struct btrfs_path *path;
3441 struct btrfs_key key;
3442 struct btrfs_key di_key;
3443 struct btrfs_dir_item *di;
3444 u64 left_gen;
3445 u64 right_gen;
3446 int ret = 0;
3447 struct waiting_dir_move *wdm;
3448
3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3450 return 0;
3451
3452 path = alloc_path_for_send();
3453 if (!path)
3454 return -ENOMEM;
3455
3456 key.objectid = parent_ref->dir;
3457 key.type = BTRFS_DIR_ITEM_KEY;
3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459
3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3461 if (ret < 0) {
3462 goto out;
3463 } else if (ret > 0) {
3464 ret = 0;
3465 goto out;
3466 }
3467
3468 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3469 parent_ref->name, parent_ref->name_len);
3470 if (!di) {
3471 ret = 0;
3472 goto out;
3473 }
3474 /*
3475 * di_key.objectid has the number of the inode that has a dentry in the
3476 * parent directory with the same name that sctx->cur_ino is being
3477 * renamed to. We need to check if that inode is in the send root as
3478 * well and if it is currently marked as an inode with a pending rename,
3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 * that it happens after that other inode is renamed.
3481 */
3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 ret = 0;
3485 goto out;
3486 }
3487
3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 &left_gen, NULL, NULL, NULL, NULL);
3490 if (ret < 0)
3491 goto out;
3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 &right_gen, NULL, NULL, NULL, NULL);
3494 if (ret < 0) {
3495 if (ret == -ENOENT)
3496 ret = 0;
3497 goto out;
3498 }
3499
3500 /* Different inode, no need to delay the rename of sctx->cur_ino */
3501 if (right_gen != left_gen) {
3502 ret = 0;
3503 goto out;
3504 }
3505
3506 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 if (wdm && !wdm->orphanized) {
3508 ret = add_pending_dir_move(sctx,
3509 sctx->cur_ino,
3510 sctx->cur_inode_gen,
3511 di_key.objectid,
3512 &sctx->new_refs,
3513 &sctx->deleted_refs,
3514 is_orphan);
3515 if (!ret)
3516 ret = 1;
3517 }
3518 out:
3519 btrfs_free_path(path);
3520 return ret;
3521 }
3522
3523 /*
3524 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3525 * Return 1 if true, 0 if false and < 0 on error.
3526 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3527 static int is_ancestor(struct btrfs_root *root,
3528 const u64 ino1,
3529 const u64 ino1_gen,
3530 const u64 ino2,
3531 struct fs_path *fs_path)
3532 {
3533 u64 ino = ino2;
3534
3535 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3536 int ret;
3537 u64 parent;
3538 u64 parent_gen;
3539
3540 fs_path_reset(fs_path);
3541 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 if (ret < 0) {
3543 if (ret == -ENOENT && ino == ino2)
3544 ret = 0;
3545 return ret;
3546 }
3547 if (parent == ino1)
3548 return parent_gen == ino1_gen ? 1 : 0;
3549 ino = parent;
3550 }
3551 return 0;
3552 }
3553
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3554 static int wait_for_parent_move(struct send_ctx *sctx,
3555 struct recorded_ref *parent_ref,
3556 const bool is_orphan)
3557 {
3558 int ret = 0;
3559 u64 ino = parent_ref->dir;
3560 u64 parent_ino_before, parent_ino_after;
3561 struct fs_path *path_before = NULL;
3562 struct fs_path *path_after = NULL;
3563 int len1, len2;
3564
3565 path_after = fs_path_alloc();
3566 path_before = fs_path_alloc();
3567 if (!path_after || !path_before) {
3568 ret = -ENOMEM;
3569 goto out;
3570 }
3571
3572 /*
3573 * Our current directory inode may not yet be renamed/moved because some
3574 * ancestor (immediate or not) has to be renamed/moved first. So find if
3575 * such ancestor exists and make sure our own rename/move happens after
3576 * that ancestor is processed to avoid path build infinite loops (done
3577 * at get_cur_path()).
3578 */
3579 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3580 if (is_waiting_for_move(sctx, ino)) {
3581 /*
3582 * If the current inode is an ancestor of ino in the
3583 * parent root, we need to delay the rename of the
3584 * current inode, otherwise don't delayed the rename
3585 * because we can end up with a circular dependency
3586 * of renames, resulting in some directories never
3587 * getting the respective rename operations issued in
3588 * the send stream or getting into infinite path build
3589 * loops.
3590 */
3591 ret = is_ancestor(sctx->parent_root,
3592 sctx->cur_ino, sctx->cur_inode_gen,
3593 ino, path_before);
3594 if (ret)
3595 break;
3596 }
3597
3598 fs_path_reset(path_before);
3599 fs_path_reset(path_after);
3600
3601 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3602 NULL, path_after);
3603 if (ret < 0)
3604 goto out;
3605 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3606 NULL, path_before);
3607 if (ret < 0 && ret != -ENOENT) {
3608 goto out;
3609 } else if (ret == -ENOENT) {
3610 ret = 0;
3611 break;
3612 }
3613
3614 len1 = fs_path_len(path_before);
3615 len2 = fs_path_len(path_after);
3616 if (ino > sctx->cur_ino &&
3617 (parent_ino_before != parent_ino_after || len1 != len2 ||
3618 memcmp(path_before->start, path_after->start, len1))) {
3619 ret = 1;
3620 break;
3621 }
3622 ino = parent_ino_after;
3623 }
3624
3625 out:
3626 fs_path_free(path_before);
3627 fs_path_free(path_after);
3628
3629 if (ret == 1) {
3630 ret = add_pending_dir_move(sctx,
3631 sctx->cur_ino,
3632 sctx->cur_inode_gen,
3633 ino,
3634 &sctx->new_refs,
3635 &sctx->deleted_refs,
3636 is_orphan);
3637 if (!ret)
3638 ret = 1;
3639 }
3640
3641 return ret;
3642 }
3643
3644 /*
3645 * This does all the move/link/unlink/rmdir magic.
3646 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3647 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3648 {
3649 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3650 int ret = 0;
3651 struct recorded_ref *cur;
3652 struct recorded_ref *cur2;
3653 struct list_head check_dirs;
3654 struct fs_path *valid_path = NULL;
3655 u64 ow_inode = 0;
3656 u64 ow_gen;
3657 int did_overwrite = 0;
3658 int is_orphan = 0;
3659 u64 last_dir_ino_rm = 0;
3660 bool can_rename = true;
3661
3662 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3663
3664 /*
3665 * This should never happen as the root dir always has the same ref
3666 * which is always '..'
3667 */
3668 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3669 INIT_LIST_HEAD(&check_dirs);
3670
3671 valid_path = fs_path_alloc();
3672 if (!valid_path) {
3673 ret = -ENOMEM;
3674 goto out;
3675 }
3676
3677 /*
3678 * First, check if the first ref of the current inode was overwritten
3679 * before. If yes, we know that the current inode was already orphanized
3680 * and thus use the orphan name. If not, we can use get_cur_path to
3681 * get the path of the first ref as it would like while receiving at
3682 * this point in time.
3683 * New inodes are always orphan at the beginning, so force to use the
3684 * orphan name in this case.
3685 * The first ref is stored in valid_path and will be updated if it
3686 * gets moved around.
3687 */
3688 if (!sctx->cur_inode_new) {
3689 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3690 sctx->cur_inode_gen);
3691 if (ret < 0)
3692 goto out;
3693 if (ret)
3694 did_overwrite = 1;
3695 }
3696 if (sctx->cur_inode_new || did_overwrite) {
3697 ret = gen_unique_name(sctx, sctx->cur_ino,
3698 sctx->cur_inode_gen, valid_path);
3699 if (ret < 0)
3700 goto out;
3701 is_orphan = 1;
3702 } else {
3703 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3704 valid_path);
3705 if (ret < 0)
3706 goto out;
3707 }
3708
3709 list_for_each_entry(cur, &sctx->new_refs, list) {
3710 /*
3711 * We may have refs where the parent directory does not exist
3712 * yet. This happens if the parent directories inum is higher
3713 * the the current inum. To handle this case, we create the
3714 * parent directory out of order. But we need to check if this
3715 * did already happen before due to other refs in the same dir.
3716 */
3717 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3718 if (ret < 0)
3719 goto out;
3720 if (ret == inode_state_will_create) {
3721 ret = 0;
3722 /*
3723 * First check if any of the current inodes refs did
3724 * already create the dir.
3725 */
3726 list_for_each_entry(cur2, &sctx->new_refs, list) {
3727 if (cur == cur2)
3728 break;
3729 if (cur2->dir == cur->dir) {
3730 ret = 1;
3731 break;
3732 }
3733 }
3734
3735 /*
3736 * If that did not happen, check if a previous inode
3737 * did already create the dir.
3738 */
3739 if (!ret)
3740 ret = did_create_dir(sctx, cur->dir);
3741 if (ret < 0)
3742 goto out;
3743 if (!ret) {
3744 ret = send_create_inode(sctx, cur->dir);
3745 if (ret < 0)
3746 goto out;
3747 }
3748 }
3749
3750 /*
3751 * Check if this new ref would overwrite the first ref of
3752 * another unprocessed inode. If yes, orphanize the
3753 * overwritten inode. If we find an overwritten ref that is
3754 * not the first ref, simply unlink it.
3755 */
3756 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3757 cur->name, cur->name_len,
3758 &ow_inode, &ow_gen);
3759 if (ret < 0)
3760 goto out;
3761 if (ret) {
3762 ret = is_first_ref(sctx->parent_root,
3763 ow_inode, cur->dir, cur->name,
3764 cur->name_len);
3765 if (ret < 0)
3766 goto out;
3767 if (ret) {
3768 struct name_cache_entry *nce;
3769 struct waiting_dir_move *wdm;
3770
3771 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3772 cur->full_path);
3773 if (ret < 0)
3774 goto out;
3775
3776 /*
3777 * If ow_inode has its rename operation delayed
3778 * make sure that its orphanized name is used in
3779 * the source path when performing its rename
3780 * operation.
3781 */
3782 if (is_waiting_for_move(sctx, ow_inode)) {
3783 wdm = get_waiting_dir_move(sctx,
3784 ow_inode);
3785 ASSERT(wdm);
3786 wdm->orphanized = true;
3787 }
3788
3789 /*
3790 * Make sure we clear our orphanized inode's
3791 * name from the name cache. This is because the
3792 * inode ow_inode might be an ancestor of some
3793 * other inode that will be orphanized as well
3794 * later and has an inode number greater than
3795 * sctx->send_progress. We need to prevent
3796 * future name lookups from using the old name
3797 * and get instead the orphan name.
3798 */
3799 nce = name_cache_search(sctx, ow_inode, ow_gen);
3800 if (nce) {
3801 name_cache_delete(sctx, nce);
3802 kfree(nce);
3803 }
3804
3805 /*
3806 * ow_inode might currently be an ancestor of
3807 * cur_ino, therefore compute valid_path (the
3808 * current path of cur_ino) again because it
3809 * might contain the pre-orphanization name of
3810 * ow_inode, which is no longer valid.
3811 */
3812 fs_path_reset(valid_path);
3813 ret = get_cur_path(sctx, sctx->cur_ino,
3814 sctx->cur_inode_gen, valid_path);
3815 if (ret < 0)
3816 goto out;
3817 } else {
3818 ret = send_unlink(sctx, cur->full_path);
3819 if (ret < 0)
3820 goto out;
3821 }
3822 }
3823
3824 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3825 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3826 if (ret < 0)
3827 goto out;
3828 if (ret == 1) {
3829 can_rename = false;
3830 *pending_move = 1;
3831 }
3832 }
3833
3834 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3835 can_rename) {
3836 ret = wait_for_parent_move(sctx, cur, is_orphan);
3837 if (ret < 0)
3838 goto out;
3839 if (ret == 1) {
3840 can_rename = false;
3841 *pending_move = 1;
3842 }
3843 }
3844
3845 /*
3846 * link/move the ref to the new place. If we have an orphan
3847 * inode, move it and update valid_path. If not, link or move
3848 * it depending on the inode mode.
3849 */
3850 if (is_orphan && can_rename) {
3851 ret = send_rename(sctx, valid_path, cur->full_path);
3852 if (ret < 0)
3853 goto out;
3854 is_orphan = 0;
3855 ret = fs_path_copy(valid_path, cur->full_path);
3856 if (ret < 0)
3857 goto out;
3858 } else if (can_rename) {
3859 if (S_ISDIR(sctx->cur_inode_mode)) {
3860 /*
3861 * Dirs can't be linked, so move it. For moved
3862 * dirs, we always have one new and one deleted
3863 * ref. The deleted ref is ignored later.
3864 */
3865 ret = send_rename(sctx, valid_path,
3866 cur->full_path);
3867 if (!ret)
3868 ret = fs_path_copy(valid_path,
3869 cur->full_path);
3870 if (ret < 0)
3871 goto out;
3872 } else {
3873 ret = send_link(sctx, cur->full_path,
3874 valid_path);
3875 if (ret < 0)
3876 goto out;
3877 }
3878 }
3879 ret = dup_ref(cur, &check_dirs);
3880 if (ret < 0)
3881 goto out;
3882 }
3883
3884 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3885 /*
3886 * Check if we can already rmdir the directory. If not,
3887 * orphanize it. For every dir item inside that gets deleted
3888 * later, we do this check again and rmdir it then if possible.
3889 * See the use of check_dirs for more details.
3890 */
3891 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3892 sctx->cur_ino);
3893 if (ret < 0)
3894 goto out;
3895 if (ret) {
3896 ret = send_rmdir(sctx, valid_path);
3897 if (ret < 0)
3898 goto out;
3899 } else if (!is_orphan) {
3900 ret = orphanize_inode(sctx, sctx->cur_ino,
3901 sctx->cur_inode_gen, valid_path);
3902 if (ret < 0)
3903 goto out;
3904 is_orphan = 1;
3905 }
3906
3907 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3908 ret = dup_ref(cur, &check_dirs);
3909 if (ret < 0)
3910 goto out;
3911 }
3912 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3913 !list_empty(&sctx->deleted_refs)) {
3914 /*
3915 * We have a moved dir. Add the old parent to check_dirs
3916 */
3917 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3918 list);
3919 ret = dup_ref(cur, &check_dirs);
3920 if (ret < 0)
3921 goto out;
3922 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3923 /*
3924 * We have a non dir inode. Go through all deleted refs and
3925 * unlink them if they were not already overwritten by other
3926 * inodes.
3927 */
3928 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3929 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3930 sctx->cur_ino, sctx->cur_inode_gen,
3931 cur->name, cur->name_len);
3932 if (ret < 0)
3933 goto out;
3934 if (!ret) {
3935 ret = send_unlink(sctx, cur->full_path);
3936 if (ret < 0)
3937 goto out;
3938 }
3939 ret = dup_ref(cur, &check_dirs);
3940 if (ret < 0)
3941 goto out;
3942 }
3943 /*
3944 * If the inode is still orphan, unlink the orphan. This may
3945 * happen when a previous inode did overwrite the first ref
3946 * of this inode and no new refs were added for the current
3947 * inode. Unlinking does not mean that the inode is deleted in
3948 * all cases. There may still be links to this inode in other
3949 * places.
3950 */
3951 if (is_orphan) {
3952 ret = send_unlink(sctx, valid_path);
3953 if (ret < 0)
3954 goto out;
3955 }
3956 }
3957
3958 /*
3959 * We did collect all parent dirs where cur_inode was once located. We
3960 * now go through all these dirs and check if they are pending for
3961 * deletion and if it's finally possible to perform the rmdir now.
3962 * We also update the inode stats of the parent dirs here.
3963 */
3964 list_for_each_entry(cur, &check_dirs, list) {
3965 /*
3966 * In case we had refs into dirs that were not processed yet,
3967 * we don't need to do the utime and rmdir logic for these dirs.
3968 * The dir will be processed later.
3969 */
3970 if (cur->dir > sctx->cur_ino)
3971 continue;
3972
3973 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3974 if (ret < 0)
3975 goto out;
3976
3977 if (ret == inode_state_did_create ||
3978 ret == inode_state_no_change) {
3979 /* TODO delayed utimes */
3980 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3981 if (ret < 0)
3982 goto out;
3983 } else if (ret == inode_state_did_delete &&
3984 cur->dir != last_dir_ino_rm) {
3985 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3986 sctx->cur_ino);
3987 if (ret < 0)
3988 goto out;
3989 if (ret) {
3990 ret = get_cur_path(sctx, cur->dir,
3991 cur->dir_gen, valid_path);
3992 if (ret < 0)
3993 goto out;
3994 ret = send_rmdir(sctx, valid_path);
3995 if (ret < 0)
3996 goto out;
3997 last_dir_ino_rm = cur->dir;
3998 }
3999 }
4000 }
4001
4002 ret = 0;
4003
4004 out:
4005 __free_recorded_refs(&check_dirs);
4006 free_recorded_refs(sctx);
4007 fs_path_free(valid_path);
4008 return ret;
4009 }
4010
record_ref(struct btrfs_root * root,int num,u64 dir,int index,struct fs_path * name,void * ctx,struct list_head * refs)4011 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4012 struct fs_path *name, void *ctx, struct list_head *refs)
4013 {
4014 int ret = 0;
4015 struct send_ctx *sctx = ctx;
4016 struct fs_path *p;
4017 u64 gen;
4018
4019 p = fs_path_alloc();
4020 if (!p)
4021 return -ENOMEM;
4022
4023 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4024 NULL, NULL);
4025 if (ret < 0)
4026 goto out;
4027
4028 ret = get_cur_path(sctx, dir, gen, p);
4029 if (ret < 0)
4030 goto out;
4031 ret = fs_path_add_path(p, name);
4032 if (ret < 0)
4033 goto out;
4034
4035 ret = __record_ref(refs, dir, gen, p);
4036
4037 out:
4038 if (ret)
4039 fs_path_free(p);
4040 return ret;
4041 }
4042
__record_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4043 static int __record_new_ref(int num, u64 dir, int index,
4044 struct fs_path *name,
4045 void *ctx)
4046 {
4047 struct send_ctx *sctx = ctx;
4048 return record_ref(sctx->send_root, num, dir, index, name,
4049 ctx, &sctx->new_refs);
4050 }
4051
4052
__record_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4053 static int __record_deleted_ref(int num, u64 dir, int index,
4054 struct fs_path *name,
4055 void *ctx)
4056 {
4057 struct send_ctx *sctx = ctx;
4058 return record_ref(sctx->parent_root, num, dir, index, name,
4059 ctx, &sctx->deleted_refs);
4060 }
4061
record_new_ref(struct send_ctx * sctx)4062 static int record_new_ref(struct send_ctx *sctx)
4063 {
4064 int ret;
4065
4066 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4067 sctx->cmp_key, 0, __record_new_ref, sctx);
4068 if (ret < 0)
4069 goto out;
4070 ret = 0;
4071
4072 out:
4073 return ret;
4074 }
4075
record_deleted_ref(struct send_ctx * sctx)4076 static int record_deleted_ref(struct send_ctx *sctx)
4077 {
4078 int ret;
4079
4080 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4081 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4082 if (ret < 0)
4083 goto out;
4084 ret = 0;
4085
4086 out:
4087 return ret;
4088 }
4089
4090 struct find_ref_ctx {
4091 u64 dir;
4092 u64 dir_gen;
4093 struct btrfs_root *root;
4094 struct fs_path *name;
4095 int found_idx;
4096 };
4097
__find_iref(int num,u64 dir,int index,struct fs_path * name,void * ctx_)4098 static int __find_iref(int num, u64 dir, int index,
4099 struct fs_path *name,
4100 void *ctx_)
4101 {
4102 struct find_ref_ctx *ctx = ctx_;
4103 u64 dir_gen;
4104 int ret;
4105
4106 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4107 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4108 /*
4109 * To avoid doing extra lookups we'll only do this if everything
4110 * else matches.
4111 */
4112 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4113 NULL, NULL, NULL);
4114 if (ret)
4115 return ret;
4116 if (dir_gen != ctx->dir_gen)
4117 return 0;
4118 ctx->found_idx = num;
4119 return 1;
4120 }
4121 return 0;
4122 }
4123
find_iref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,u64 dir,u64 dir_gen,struct fs_path * name)4124 static int find_iref(struct btrfs_root *root,
4125 struct btrfs_path *path,
4126 struct btrfs_key *key,
4127 u64 dir, u64 dir_gen, struct fs_path *name)
4128 {
4129 int ret;
4130 struct find_ref_ctx ctx;
4131
4132 ctx.dir = dir;
4133 ctx.name = name;
4134 ctx.dir_gen = dir_gen;
4135 ctx.found_idx = -1;
4136 ctx.root = root;
4137
4138 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4139 if (ret < 0)
4140 return ret;
4141
4142 if (ctx.found_idx == -1)
4143 return -ENOENT;
4144
4145 return ctx.found_idx;
4146 }
4147
__record_changed_new_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4148 static int __record_changed_new_ref(int num, u64 dir, int index,
4149 struct fs_path *name,
4150 void *ctx)
4151 {
4152 u64 dir_gen;
4153 int ret;
4154 struct send_ctx *sctx = ctx;
4155
4156 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4157 NULL, NULL, NULL);
4158 if (ret)
4159 return ret;
4160
4161 ret = find_iref(sctx->parent_root, sctx->right_path,
4162 sctx->cmp_key, dir, dir_gen, name);
4163 if (ret == -ENOENT)
4164 ret = __record_new_ref(num, dir, index, name, sctx);
4165 else if (ret > 0)
4166 ret = 0;
4167
4168 return ret;
4169 }
4170
__record_changed_deleted_ref(int num,u64 dir,int index,struct fs_path * name,void * ctx)4171 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4172 struct fs_path *name,
4173 void *ctx)
4174 {
4175 u64 dir_gen;
4176 int ret;
4177 struct send_ctx *sctx = ctx;
4178
4179 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4180 NULL, NULL, NULL);
4181 if (ret)
4182 return ret;
4183
4184 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4185 dir, dir_gen, name);
4186 if (ret == -ENOENT)
4187 ret = __record_deleted_ref(num, dir, index, name, sctx);
4188 else if (ret > 0)
4189 ret = 0;
4190
4191 return ret;
4192 }
4193
record_changed_ref(struct send_ctx * sctx)4194 static int record_changed_ref(struct send_ctx *sctx)
4195 {
4196 int ret = 0;
4197
4198 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4199 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4200 if (ret < 0)
4201 goto out;
4202 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4203 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4204 if (ret < 0)
4205 goto out;
4206 ret = 0;
4207
4208 out:
4209 return ret;
4210 }
4211
4212 /*
4213 * Record and process all refs at once. Needed when an inode changes the
4214 * generation number, which means that it was deleted and recreated.
4215 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4216 static int process_all_refs(struct send_ctx *sctx,
4217 enum btrfs_compare_tree_result cmd)
4218 {
4219 int ret;
4220 struct btrfs_root *root;
4221 struct btrfs_path *path;
4222 struct btrfs_key key;
4223 struct btrfs_key found_key;
4224 struct extent_buffer *eb;
4225 int slot;
4226 iterate_inode_ref_t cb;
4227 int pending_move = 0;
4228
4229 path = alloc_path_for_send();
4230 if (!path)
4231 return -ENOMEM;
4232
4233 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4234 root = sctx->send_root;
4235 cb = __record_new_ref;
4236 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4237 root = sctx->parent_root;
4238 cb = __record_deleted_ref;
4239 } else {
4240 btrfs_err(sctx->send_root->fs_info,
4241 "Wrong command %d in process_all_refs", cmd);
4242 ret = -EINVAL;
4243 goto out;
4244 }
4245
4246 key.objectid = sctx->cmp_key->objectid;
4247 key.type = BTRFS_INODE_REF_KEY;
4248 key.offset = 0;
4249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4250 if (ret < 0)
4251 goto out;
4252
4253 while (1) {
4254 eb = path->nodes[0];
4255 slot = path->slots[0];
4256 if (slot >= btrfs_header_nritems(eb)) {
4257 ret = btrfs_next_leaf(root, path);
4258 if (ret < 0)
4259 goto out;
4260 else if (ret > 0)
4261 break;
4262 continue;
4263 }
4264
4265 btrfs_item_key_to_cpu(eb, &found_key, slot);
4266
4267 if (found_key.objectid != key.objectid ||
4268 (found_key.type != BTRFS_INODE_REF_KEY &&
4269 found_key.type != BTRFS_INODE_EXTREF_KEY))
4270 break;
4271
4272 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4273 if (ret < 0)
4274 goto out;
4275
4276 path->slots[0]++;
4277 }
4278 btrfs_release_path(path);
4279
4280 /*
4281 * We don't actually care about pending_move as we are simply
4282 * re-creating this inode and will be rename'ing it into place once we
4283 * rename the parent directory.
4284 */
4285 ret = process_recorded_refs(sctx, &pending_move);
4286 out:
4287 btrfs_free_path(path);
4288 return ret;
4289 }
4290
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4291 static int send_set_xattr(struct send_ctx *sctx,
4292 struct fs_path *path,
4293 const char *name, int name_len,
4294 const char *data, int data_len)
4295 {
4296 int ret = 0;
4297
4298 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4299 if (ret < 0)
4300 goto out;
4301
4302 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4303 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4304 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4305
4306 ret = send_cmd(sctx);
4307
4308 tlv_put_failure:
4309 out:
4310 return ret;
4311 }
4312
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4313 static int send_remove_xattr(struct send_ctx *sctx,
4314 struct fs_path *path,
4315 const char *name, int name_len)
4316 {
4317 int ret = 0;
4318
4319 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4320 if (ret < 0)
4321 goto out;
4322
4323 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4324 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4325
4326 ret = send_cmd(sctx);
4327
4328 tlv_put_failure:
4329 out:
4330 return ret;
4331 }
4332
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4333 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4334 const char *name, int name_len,
4335 const char *data, int data_len,
4336 u8 type, void *ctx)
4337 {
4338 int ret;
4339 struct send_ctx *sctx = ctx;
4340 struct fs_path *p;
4341 struct posix_acl_xattr_header dummy_acl;
4342
4343 p = fs_path_alloc();
4344 if (!p)
4345 return -ENOMEM;
4346
4347 /*
4348 * This hack is needed because empty acls are stored as zero byte
4349 * data in xattrs. Problem with that is, that receiving these zero byte
4350 * acls will fail later. To fix this, we send a dummy acl list that
4351 * only contains the version number and no entries.
4352 */
4353 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4354 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4355 if (data_len == 0) {
4356 dummy_acl.a_version =
4357 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4358 data = (char *)&dummy_acl;
4359 data_len = sizeof(dummy_acl);
4360 }
4361 }
4362
4363 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4364 if (ret < 0)
4365 goto out;
4366
4367 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4368
4369 out:
4370 fs_path_free(p);
4371 return ret;
4372 }
4373
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4374 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4375 const char *name, int name_len,
4376 const char *data, int data_len,
4377 u8 type, void *ctx)
4378 {
4379 int ret;
4380 struct send_ctx *sctx = ctx;
4381 struct fs_path *p;
4382
4383 p = fs_path_alloc();
4384 if (!p)
4385 return -ENOMEM;
4386
4387 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4388 if (ret < 0)
4389 goto out;
4390
4391 ret = send_remove_xattr(sctx, p, name, name_len);
4392
4393 out:
4394 fs_path_free(p);
4395 return ret;
4396 }
4397
process_new_xattr(struct send_ctx * sctx)4398 static int process_new_xattr(struct send_ctx *sctx)
4399 {
4400 int ret = 0;
4401
4402 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4403 sctx->cmp_key, __process_new_xattr, sctx);
4404
4405 return ret;
4406 }
4407
process_deleted_xattr(struct send_ctx * sctx)4408 static int process_deleted_xattr(struct send_ctx *sctx)
4409 {
4410 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4411 sctx->cmp_key, __process_deleted_xattr, sctx);
4412 }
4413
4414 struct find_xattr_ctx {
4415 const char *name;
4416 int name_len;
4417 int found_idx;
4418 char *found_data;
4419 int found_data_len;
4420 };
4421
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * vctx)4422 static int __find_xattr(int num, struct btrfs_key *di_key,
4423 const char *name, int name_len,
4424 const char *data, int data_len,
4425 u8 type, void *vctx)
4426 {
4427 struct find_xattr_ctx *ctx = vctx;
4428
4429 if (name_len == ctx->name_len &&
4430 strncmp(name, ctx->name, name_len) == 0) {
4431 ctx->found_idx = num;
4432 ctx->found_data_len = data_len;
4433 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4434 if (!ctx->found_data)
4435 return -ENOMEM;
4436 return 1;
4437 }
4438 return 0;
4439 }
4440
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4441 static int find_xattr(struct btrfs_root *root,
4442 struct btrfs_path *path,
4443 struct btrfs_key *key,
4444 const char *name, int name_len,
4445 char **data, int *data_len)
4446 {
4447 int ret;
4448 struct find_xattr_ctx ctx;
4449
4450 ctx.name = name;
4451 ctx.name_len = name_len;
4452 ctx.found_idx = -1;
4453 ctx.found_data = NULL;
4454 ctx.found_data_len = 0;
4455
4456 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4457 if (ret < 0)
4458 return ret;
4459
4460 if (ctx.found_idx == -1)
4461 return -ENOENT;
4462 if (data) {
4463 *data = ctx.found_data;
4464 *data_len = ctx.found_data_len;
4465 } else {
4466 kfree(ctx.found_data);
4467 }
4468 return ctx.found_idx;
4469 }
4470
4471
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4472 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4473 const char *name, int name_len,
4474 const char *data, int data_len,
4475 u8 type, void *ctx)
4476 {
4477 int ret;
4478 struct send_ctx *sctx = ctx;
4479 char *found_data = NULL;
4480 int found_data_len = 0;
4481
4482 ret = find_xattr(sctx->parent_root, sctx->right_path,
4483 sctx->cmp_key, name, name_len, &found_data,
4484 &found_data_len);
4485 if (ret == -ENOENT) {
4486 ret = __process_new_xattr(num, di_key, name, name_len, data,
4487 data_len, type, ctx);
4488 } else if (ret >= 0) {
4489 if (data_len != found_data_len ||
4490 memcmp(data, found_data, data_len)) {
4491 ret = __process_new_xattr(num, di_key, name, name_len,
4492 data, data_len, type, ctx);
4493 } else {
4494 ret = 0;
4495 }
4496 }
4497
4498 kfree(found_data);
4499 return ret;
4500 }
4501
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,u8 type,void * ctx)4502 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4503 const char *name, int name_len,
4504 const char *data, int data_len,
4505 u8 type, void *ctx)
4506 {
4507 int ret;
4508 struct send_ctx *sctx = ctx;
4509
4510 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4511 name, name_len, NULL, NULL);
4512 if (ret == -ENOENT)
4513 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4514 data_len, type, ctx);
4515 else if (ret >= 0)
4516 ret = 0;
4517
4518 return ret;
4519 }
4520
process_changed_xattr(struct send_ctx * sctx)4521 static int process_changed_xattr(struct send_ctx *sctx)
4522 {
4523 int ret = 0;
4524
4525 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4526 sctx->cmp_key, __process_changed_new_xattr, sctx);
4527 if (ret < 0)
4528 goto out;
4529 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4530 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4531
4532 out:
4533 return ret;
4534 }
4535
process_all_new_xattrs(struct send_ctx * sctx)4536 static int process_all_new_xattrs(struct send_ctx *sctx)
4537 {
4538 int ret;
4539 struct btrfs_root *root;
4540 struct btrfs_path *path;
4541 struct btrfs_key key;
4542 struct btrfs_key found_key;
4543 struct extent_buffer *eb;
4544 int slot;
4545
4546 path = alloc_path_for_send();
4547 if (!path)
4548 return -ENOMEM;
4549
4550 root = sctx->send_root;
4551
4552 key.objectid = sctx->cmp_key->objectid;
4553 key.type = BTRFS_XATTR_ITEM_KEY;
4554 key.offset = 0;
4555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4556 if (ret < 0)
4557 goto out;
4558
4559 while (1) {
4560 eb = path->nodes[0];
4561 slot = path->slots[0];
4562 if (slot >= btrfs_header_nritems(eb)) {
4563 ret = btrfs_next_leaf(root, path);
4564 if (ret < 0) {
4565 goto out;
4566 } else if (ret > 0) {
4567 ret = 0;
4568 break;
4569 }
4570 continue;
4571 }
4572
4573 btrfs_item_key_to_cpu(eb, &found_key, slot);
4574 if (found_key.objectid != key.objectid ||
4575 found_key.type != key.type) {
4576 ret = 0;
4577 goto out;
4578 }
4579
4580 ret = iterate_dir_item(root, path, &found_key,
4581 __process_new_xattr, sctx);
4582 if (ret < 0)
4583 goto out;
4584
4585 path->slots[0]++;
4586 }
4587
4588 out:
4589 btrfs_free_path(path);
4590 return ret;
4591 }
4592
fill_read_buf(struct send_ctx * sctx,u64 offset,u32 len)4593 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4594 {
4595 struct btrfs_root *root = sctx->send_root;
4596 struct btrfs_fs_info *fs_info = root->fs_info;
4597 struct inode *inode;
4598 struct page *page;
4599 char *addr;
4600 struct btrfs_key key;
4601 pgoff_t index = offset >> PAGE_SHIFT;
4602 pgoff_t last_index;
4603 unsigned pg_offset = offset & ~PAGE_MASK;
4604 ssize_t ret = 0;
4605
4606 key.objectid = sctx->cur_ino;
4607 key.type = BTRFS_INODE_ITEM_KEY;
4608 key.offset = 0;
4609
4610 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4611 if (IS_ERR(inode))
4612 return PTR_ERR(inode);
4613
4614 if (offset + len > i_size_read(inode)) {
4615 if (offset > i_size_read(inode))
4616 len = 0;
4617 else
4618 len = offset - i_size_read(inode);
4619 }
4620 if (len == 0)
4621 goto out;
4622
4623 last_index = (offset + len - 1) >> PAGE_SHIFT;
4624
4625 /* initial readahead */
4626 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4627 file_ra_state_init(&sctx->ra, inode->i_mapping);
4628 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4629 last_index - index + 1);
4630
4631 while (index <= last_index) {
4632 unsigned cur_len = min_t(unsigned, len,
4633 PAGE_SIZE - pg_offset);
4634 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4635 if (!page) {
4636 ret = -ENOMEM;
4637 break;
4638 }
4639
4640 if (!PageUptodate(page)) {
4641 btrfs_readpage(NULL, page);
4642 lock_page(page);
4643 if (!PageUptodate(page)) {
4644 unlock_page(page);
4645 put_page(page);
4646 ret = -EIO;
4647 break;
4648 }
4649 }
4650
4651 addr = kmap(page);
4652 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4653 kunmap(page);
4654 unlock_page(page);
4655 put_page(page);
4656 index++;
4657 pg_offset = 0;
4658 len -= cur_len;
4659 ret += cur_len;
4660 }
4661 out:
4662 iput(inode);
4663 return ret;
4664 }
4665
4666 /*
4667 * Read some bytes from the current inode/file and send a write command to
4668 * user space.
4669 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)4670 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4671 {
4672 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4673 int ret = 0;
4674 struct fs_path *p;
4675 ssize_t num_read = 0;
4676
4677 p = fs_path_alloc();
4678 if (!p)
4679 return -ENOMEM;
4680
4681 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4682
4683 num_read = fill_read_buf(sctx, offset, len);
4684 if (num_read <= 0) {
4685 if (num_read < 0)
4686 ret = num_read;
4687 goto out;
4688 }
4689
4690 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4691 if (ret < 0)
4692 goto out;
4693
4694 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4695 if (ret < 0)
4696 goto out;
4697
4698 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4699 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4700 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4701
4702 ret = send_cmd(sctx);
4703
4704 tlv_put_failure:
4705 out:
4706 fs_path_free(p);
4707 if (ret < 0)
4708 return ret;
4709 return num_read;
4710 }
4711
4712 /*
4713 * Send a clone command to user space.
4714 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)4715 static int send_clone(struct send_ctx *sctx,
4716 u64 offset, u32 len,
4717 struct clone_root *clone_root)
4718 {
4719 int ret = 0;
4720 struct fs_path *p;
4721 u64 gen;
4722
4723 btrfs_debug(sctx->send_root->fs_info,
4724 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4725 offset, len, clone_root->root->objectid, clone_root->ino,
4726 clone_root->offset);
4727
4728 p = fs_path_alloc();
4729 if (!p)
4730 return -ENOMEM;
4731
4732 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4733 if (ret < 0)
4734 goto out;
4735
4736 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4737 if (ret < 0)
4738 goto out;
4739
4740 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4741 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4743
4744 if (clone_root->root == sctx->send_root) {
4745 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4746 &gen, NULL, NULL, NULL, NULL);
4747 if (ret < 0)
4748 goto out;
4749 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4750 } else {
4751 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4752 }
4753 if (ret < 0)
4754 goto out;
4755
4756 /*
4757 * If the parent we're using has a received_uuid set then use that as
4758 * our clone source as that is what we will look for when doing a
4759 * receive.
4760 *
4761 * This covers the case that we create a snapshot off of a received
4762 * subvolume and then use that as the parent and try to receive on a
4763 * different host.
4764 */
4765 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4766 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4767 clone_root->root->root_item.received_uuid);
4768 else
4769 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4770 clone_root->root->root_item.uuid);
4771 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4772 le64_to_cpu(clone_root->root->root_item.ctransid));
4773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4774 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4775 clone_root->offset);
4776
4777 ret = send_cmd(sctx);
4778
4779 tlv_put_failure:
4780 out:
4781 fs_path_free(p);
4782 return ret;
4783 }
4784
4785 /*
4786 * Send an update extent command to user space.
4787 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)4788 static int send_update_extent(struct send_ctx *sctx,
4789 u64 offset, u32 len)
4790 {
4791 int ret = 0;
4792 struct fs_path *p;
4793
4794 p = fs_path_alloc();
4795 if (!p)
4796 return -ENOMEM;
4797
4798 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4799 if (ret < 0)
4800 goto out;
4801
4802 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4803 if (ret < 0)
4804 goto out;
4805
4806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4807 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4808 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4809
4810 ret = send_cmd(sctx);
4811
4812 tlv_put_failure:
4813 out:
4814 fs_path_free(p);
4815 return ret;
4816 }
4817
send_hole(struct send_ctx * sctx,u64 end)4818 static int send_hole(struct send_ctx *sctx, u64 end)
4819 {
4820 struct fs_path *p = NULL;
4821 u64 offset = sctx->cur_inode_last_extent;
4822 u64 len;
4823 int ret = 0;
4824
4825 p = fs_path_alloc();
4826 if (!p)
4827 return -ENOMEM;
4828 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4829 if (ret < 0)
4830 goto tlv_put_failure;
4831 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4832 while (offset < end) {
4833 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4834
4835 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4836 if (ret < 0)
4837 break;
4838 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4839 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4840 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4841 ret = send_cmd(sctx);
4842 if (ret < 0)
4843 break;
4844 offset += len;
4845 }
4846 tlv_put_failure:
4847 fs_path_free(p);
4848 return ret;
4849 }
4850
send_extent_data(struct send_ctx * sctx,const u64 offset,const u64 len)4851 static int send_extent_data(struct send_ctx *sctx,
4852 const u64 offset,
4853 const u64 len)
4854 {
4855 u64 sent = 0;
4856
4857 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4858 return send_update_extent(sctx, offset, len);
4859
4860 while (sent < len) {
4861 u64 size = len - sent;
4862 int ret;
4863
4864 if (size > BTRFS_SEND_READ_SIZE)
4865 size = BTRFS_SEND_READ_SIZE;
4866 ret = send_write(sctx, offset + sent, size);
4867 if (ret < 0)
4868 return ret;
4869 if (!ret)
4870 break;
4871 sent += ret;
4872 }
4873 return 0;
4874 }
4875
clone_range(struct send_ctx * sctx,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)4876 static int clone_range(struct send_ctx *sctx,
4877 struct clone_root *clone_root,
4878 const u64 disk_byte,
4879 u64 data_offset,
4880 u64 offset,
4881 u64 len)
4882 {
4883 struct btrfs_path *path;
4884 struct btrfs_key key;
4885 int ret;
4886
4887 path = alloc_path_for_send();
4888 if (!path)
4889 return -ENOMEM;
4890
4891 /*
4892 * We can't send a clone operation for the entire range if we find
4893 * extent items in the respective range in the source file that
4894 * refer to different extents or if we find holes.
4895 * So check for that and do a mix of clone and regular write/copy
4896 * operations if needed.
4897 *
4898 * Example:
4899 *
4900 * mkfs.btrfs -f /dev/sda
4901 * mount /dev/sda /mnt
4902 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4903 * cp --reflink=always /mnt/foo /mnt/bar
4904 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4905 * btrfs subvolume snapshot -r /mnt /mnt/snap
4906 *
4907 * If when we send the snapshot and we are processing file bar (which
4908 * has a higher inode number than foo) we blindly send a clone operation
4909 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4910 * a file bar that matches the content of file foo - iow, doesn't match
4911 * the content from bar in the original filesystem.
4912 */
4913 key.objectid = clone_root->ino;
4914 key.type = BTRFS_EXTENT_DATA_KEY;
4915 key.offset = clone_root->offset;
4916 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4917 if (ret < 0)
4918 goto out;
4919 if (ret > 0 && path->slots[0] > 0) {
4920 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4921 if (key.objectid == clone_root->ino &&
4922 key.type == BTRFS_EXTENT_DATA_KEY)
4923 path->slots[0]--;
4924 }
4925
4926 while (true) {
4927 struct extent_buffer *leaf = path->nodes[0];
4928 int slot = path->slots[0];
4929 struct btrfs_file_extent_item *ei;
4930 u8 type;
4931 u64 ext_len;
4932 u64 clone_len;
4933
4934 if (slot >= btrfs_header_nritems(leaf)) {
4935 ret = btrfs_next_leaf(clone_root->root, path);
4936 if (ret < 0)
4937 goto out;
4938 else if (ret > 0)
4939 break;
4940 continue;
4941 }
4942
4943 btrfs_item_key_to_cpu(leaf, &key, slot);
4944
4945 /*
4946 * We might have an implicit trailing hole (NO_HOLES feature
4947 * enabled). We deal with it after leaving this loop.
4948 */
4949 if (key.objectid != clone_root->ino ||
4950 key.type != BTRFS_EXTENT_DATA_KEY)
4951 break;
4952
4953 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4954 type = btrfs_file_extent_type(leaf, ei);
4955 if (type == BTRFS_FILE_EXTENT_INLINE) {
4956 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4957 ext_len = PAGE_ALIGN(ext_len);
4958 } else {
4959 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4960 }
4961
4962 if (key.offset + ext_len <= clone_root->offset)
4963 goto next;
4964
4965 if (key.offset > clone_root->offset) {
4966 /* Implicit hole, NO_HOLES feature enabled. */
4967 u64 hole_len = key.offset - clone_root->offset;
4968
4969 if (hole_len > len)
4970 hole_len = len;
4971 ret = send_extent_data(sctx, offset, hole_len);
4972 if (ret < 0)
4973 goto out;
4974
4975 len -= hole_len;
4976 if (len == 0)
4977 break;
4978 offset += hole_len;
4979 clone_root->offset += hole_len;
4980 data_offset += hole_len;
4981 }
4982
4983 if (key.offset >= clone_root->offset + len)
4984 break;
4985
4986 clone_len = min_t(u64, ext_len, len);
4987
4988 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4989 btrfs_file_extent_offset(leaf, ei) == data_offset)
4990 ret = send_clone(sctx, offset, clone_len, clone_root);
4991 else
4992 ret = send_extent_data(sctx, offset, clone_len);
4993
4994 if (ret < 0)
4995 goto out;
4996
4997 len -= clone_len;
4998 if (len == 0)
4999 break;
5000 offset += clone_len;
5001 clone_root->offset += clone_len;
5002 data_offset += clone_len;
5003 next:
5004 path->slots[0]++;
5005 }
5006
5007 if (len > 0)
5008 ret = send_extent_data(sctx, offset, len);
5009 else
5010 ret = 0;
5011 out:
5012 btrfs_free_path(path);
5013 return ret;
5014 }
5015
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)5016 static int send_write_or_clone(struct send_ctx *sctx,
5017 struct btrfs_path *path,
5018 struct btrfs_key *key,
5019 struct clone_root *clone_root)
5020 {
5021 int ret = 0;
5022 struct btrfs_file_extent_item *ei;
5023 u64 offset = key->offset;
5024 u64 len;
5025 u8 type;
5026 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5027
5028 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5029 struct btrfs_file_extent_item);
5030 type = btrfs_file_extent_type(path->nodes[0], ei);
5031 if (type == BTRFS_FILE_EXTENT_INLINE) {
5032 len = btrfs_file_extent_inline_len(path->nodes[0],
5033 path->slots[0], ei);
5034 /*
5035 * it is possible the inline item won't cover the whole page,
5036 * but there may be items after this page. Make
5037 * sure to send the whole thing
5038 */
5039 len = PAGE_ALIGN(len);
5040 } else {
5041 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5042 }
5043
5044 if (offset + len > sctx->cur_inode_size)
5045 len = sctx->cur_inode_size - offset;
5046 if (len == 0) {
5047 ret = 0;
5048 goto out;
5049 }
5050
5051 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5052 u64 disk_byte;
5053 u64 data_offset;
5054
5055 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5056 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5057 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5058 offset, len);
5059 } else {
5060 ret = send_extent_data(sctx, offset, len);
5061 }
5062 out:
5063 return ret;
5064 }
5065
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)5066 static int is_extent_unchanged(struct send_ctx *sctx,
5067 struct btrfs_path *left_path,
5068 struct btrfs_key *ekey)
5069 {
5070 int ret = 0;
5071 struct btrfs_key key;
5072 struct btrfs_path *path = NULL;
5073 struct extent_buffer *eb;
5074 int slot;
5075 struct btrfs_key found_key;
5076 struct btrfs_file_extent_item *ei;
5077 u64 left_disknr;
5078 u64 right_disknr;
5079 u64 left_offset;
5080 u64 right_offset;
5081 u64 left_offset_fixed;
5082 u64 left_len;
5083 u64 right_len;
5084 u64 left_gen;
5085 u64 right_gen;
5086 u8 left_type;
5087 u8 right_type;
5088
5089 path = alloc_path_for_send();
5090 if (!path)
5091 return -ENOMEM;
5092
5093 eb = left_path->nodes[0];
5094 slot = left_path->slots[0];
5095 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5096 left_type = btrfs_file_extent_type(eb, ei);
5097
5098 if (left_type != BTRFS_FILE_EXTENT_REG) {
5099 ret = 0;
5100 goto out;
5101 }
5102 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5103 left_len = btrfs_file_extent_num_bytes(eb, ei);
5104 left_offset = btrfs_file_extent_offset(eb, ei);
5105 left_gen = btrfs_file_extent_generation(eb, ei);
5106
5107 /*
5108 * Following comments will refer to these graphics. L is the left
5109 * extents which we are checking at the moment. 1-8 are the right
5110 * extents that we iterate.
5111 *
5112 * |-----L-----|
5113 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5114 *
5115 * |-----L-----|
5116 * |--1--|-2b-|...(same as above)
5117 *
5118 * Alternative situation. Happens on files where extents got split.
5119 * |-----L-----|
5120 * |-----------7-----------|-6-|
5121 *
5122 * Alternative situation. Happens on files which got larger.
5123 * |-----L-----|
5124 * |-8-|
5125 * Nothing follows after 8.
5126 */
5127
5128 key.objectid = ekey->objectid;
5129 key.type = BTRFS_EXTENT_DATA_KEY;
5130 key.offset = ekey->offset;
5131 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5132 if (ret < 0)
5133 goto out;
5134 if (ret) {
5135 ret = 0;
5136 goto out;
5137 }
5138
5139 /*
5140 * Handle special case where the right side has no extents at all.
5141 */
5142 eb = path->nodes[0];
5143 slot = path->slots[0];
5144 btrfs_item_key_to_cpu(eb, &found_key, slot);
5145 if (found_key.objectid != key.objectid ||
5146 found_key.type != key.type) {
5147 /* If we're a hole then just pretend nothing changed */
5148 ret = (left_disknr) ? 0 : 1;
5149 goto out;
5150 }
5151
5152 /*
5153 * We're now on 2a, 2b or 7.
5154 */
5155 key = found_key;
5156 while (key.offset < ekey->offset + left_len) {
5157 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5158 right_type = btrfs_file_extent_type(eb, ei);
5159 if (right_type != BTRFS_FILE_EXTENT_REG &&
5160 right_type != BTRFS_FILE_EXTENT_INLINE) {
5161 ret = 0;
5162 goto out;
5163 }
5164
5165 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5166 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5167 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5168 right_len = PAGE_ALIGN(right_len);
5169 } else {
5170 right_len = btrfs_file_extent_num_bytes(eb, ei);
5171 }
5172 right_offset = btrfs_file_extent_offset(eb, ei);
5173 right_gen = btrfs_file_extent_generation(eb, ei);
5174
5175 /*
5176 * Are we at extent 8? If yes, we know the extent is changed.
5177 * This may only happen on the first iteration.
5178 */
5179 if (found_key.offset + right_len <= ekey->offset) {
5180 /* If we're a hole just pretend nothing changed */
5181 ret = (left_disknr) ? 0 : 1;
5182 goto out;
5183 }
5184
5185 /*
5186 * We just wanted to see if when we have an inline extent, what
5187 * follows it is a regular extent (wanted to check the above
5188 * condition for inline extents too). This should normally not
5189 * happen but it's possible for example when we have an inline
5190 * compressed extent representing data with a size matching
5191 * the page size (currently the same as sector size).
5192 */
5193 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5194 ret = 0;
5195 goto out;
5196 }
5197
5198 left_offset_fixed = left_offset;
5199 if (key.offset < ekey->offset) {
5200 /* Fix the right offset for 2a and 7. */
5201 right_offset += ekey->offset - key.offset;
5202 } else {
5203 /* Fix the left offset for all behind 2a and 2b */
5204 left_offset_fixed += key.offset - ekey->offset;
5205 }
5206
5207 /*
5208 * Check if we have the same extent.
5209 */
5210 if (left_disknr != right_disknr ||
5211 left_offset_fixed != right_offset ||
5212 left_gen != right_gen) {
5213 ret = 0;
5214 goto out;
5215 }
5216
5217 /*
5218 * Go to the next extent.
5219 */
5220 ret = btrfs_next_item(sctx->parent_root, path);
5221 if (ret < 0)
5222 goto out;
5223 if (!ret) {
5224 eb = path->nodes[0];
5225 slot = path->slots[0];
5226 btrfs_item_key_to_cpu(eb, &found_key, slot);
5227 }
5228 if (ret || found_key.objectid != key.objectid ||
5229 found_key.type != key.type) {
5230 key.offset += right_len;
5231 break;
5232 }
5233 if (found_key.offset != key.offset + right_len) {
5234 ret = 0;
5235 goto out;
5236 }
5237 key = found_key;
5238 }
5239
5240 /*
5241 * We're now behind the left extent (treat as unchanged) or at the end
5242 * of the right side (treat as changed).
5243 */
5244 if (key.offset >= ekey->offset + left_len)
5245 ret = 1;
5246 else
5247 ret = 0;
5248
5249
5250 out:
5251 btrfs_free_path(path);
5252 return ret;
5253 }
5254
get_last_extent(struct send_ctx * sctx,u64 offset)5255 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5256 {
5257 struct btrfs_path *path;
5258 struct btrfs_root *root = sctx->send_root;
5259 struct btrfs_file_extent_item *fi;
5260 struct btrfs_key key;
5261 u64 extent_end;
5262 u8 type;
5263 int ret;
5264
5265 path = alloc_path_for_send();
5266 if (!path)
5267 return -ENOMEM;
5268
5269 sctx->cur_inode_last_extent = 0;
5270
5271 key.objectid = sctx->cur_ino;
5272 key.type = BTRFS_EXTENT_DATA_KEY;
5273 key.offset = offset;
5274 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5275 if (ret < 0)
5276 goto out;
5277 ret = 0;
5278 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5279 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5280 goto out;
5281
5282 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5283 struct btrfs_file_extent_item);
5284 type = btrfs_file_extent_type(path->nodes[0], fi);
5285 if (type == BTRFS_FILE_EXTENT_INLINE) {
5286 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5287 path->slots[0], fi);
5288 extent_end = ALIGN(key.offset + size,
5289 sctx->send_root->sectorsize);
5290 } else {
5291 extent_end = key.offset +
5292 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5293 }
5294 sctx->cur_inode_last_extent = extent_end;
5295 out:
5296 btrfs_free_path(path);
5297 return ret;
5298 }
5299
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5300 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5301 struct btrfs_key *key)
5302 {
5303 struct btrfs_file_extent_item *fi;
5304 u64 extent_end;
5305 u8 type;
5306 int ret = 0;
5307
5308 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5309 return 0;
5310
5311 if (sctx->cur_inode_last_extent == (u64)-1) {
5312 ret = get_last_extent(sctx, key->offset - 1);
5313 if (ret)
5314 return ret;
5315 }
5316
5317 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5318 struct btrfs_file_extent_item);
5319 type = btrfs_file_extent_type(path->nodes[0], fi);
5320 if (type == BTRFS_FILE_EXTENT_INLINE) {
5321 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5322 path->slots[0], fi);
5323 extent_end = ALIGN(key->offset + size,
5324 sctx->send_root->sectorsize);
5325 } else {
5326 extent_end = key->offset +
5327 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5328 }
5329
5330 if (path->slots[0] == 0 &&
5331 sctx->cur_inode_last_extent < key->offset) {
5332 /*
5333 * We might have skipped entire leafs that contained only
5334 * file extent items for our current inode. These leafs have
5335 * a generation number smaller (older) than the one in the
5336 * current leaf and the leaf our last extent came from, and
5337 * are located between these 2 leafs.
5338 */
5339 ret = get_last_extent(sctx, key->offset - 1);
5340 if (ret)
5341 return ret;
5342 }
5343
5344 if (sctx->cur_inode_last_extent < key->offset)
5345 ret = send_hole(sctx, key->offset);
5346 sctx->cur_inode_last_extent = extent_end;
5347 return ret;
5348 }
5349
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5350 static int process_extent(struct send_ctx *sctx,
5351 struct btrfs_path *path,
5352 struct btrfs_key *key)
5353 {
5354 struct clone_root *found_clone = NULL;
5355 int ret = 0;
5356
5357 if (S_ISLNK(sctx->cur_inode_mode))
5358 return 0;
5359
5360 if (sctx->parent_root && !sctx->cur_inode_new) {
5361 ret = is_extent_unchanged(sctx, path, key);
5362 if (ret < 0)
5363 goto out;
5364 if (ret) {
5365 ret = 0;
5366 goto out_hole;
5367 }
5368 } else {
5369 struct btrfs_file_extent_item *ei;
5370 u8 type;
5371
5372 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5373 struct btrfs_file_extent_item);
5374 type = btrfs_file_extent_type(path->nodes[0], ei);
5375 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5376 type == BTRFS_FILE_EXTENT_REG) {
5377 /*
5378 * The send spec does not have a prealloc command yet,
5379 * so just leave a hole for prealloc'ed extents until
5380 * we have enough commands queued up to justify rev'ing
5381 * the send spec.
5382 */
5383 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5384 ret = 0;
5385 goto out;
5386 }
5387
5388 /* Have a hole, just skip it. */
5389 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5390 ret = 0;
5391 goto out;
5392 }
5393 }
5394 }
5395
5396 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5397 sctx->cur_inode_size, &found_clone);
5398 if (ret != -ENOENT && ret < 0)
5399 goto out;
5400
5401 ret = send_write_or_clone(sctx, path, key, found_clone);
5402 if (ret)
5403 goto out;
5404 out_hole:
5405 ret = maybe_send_hole(sctx, path, key);
5406 out:
5407 return ret;
5408 }
5409
process_all_extents(struct send_ctx * sctx)5410 static int process_all_extents(struct send_ctx *sctx)
5411 {
5412 int ret;
5413 struct btrfs_root *root;
5414 struct btrfs_path *path;
5415 struct btrfs_key key;
5416 struct btrfs_key found_key;
5417 struct extent_buffer *eb;
5418 int slot;
5419
5420 root = sctx->send_root;
5421 path = alloc_path_for_send();
5422 if (!path)
5423 return -ENOMEM;
5424
5425 key.objectid = sctx->cmp_key->objectid;
5426 key.type = BTRFS_EXTENT_DATA_KEY;
5427 key.offset = 0;
5428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5429 if (ret < 0)
5430 goto out;
5431
5432 while (1) {
5433 eb = path->nodes[0];
5434 slot = path->slots[0];
5435
5436 if (slot >= btrfs_header_nritems(eb)) {
5437 ret = btrfs_next_leaf(root, path);
5438 if (ret < 0) {
5439 goto out;
5440 } else if (ret > 0) {
5441 ret = 0;
5442 break;
5443 }
5444 continue;
5445 }
5446
5447 btrfs_item_key_to_cpu(eb, &found_key, slot);
5448
5449 if (found_key.objectid != key.objectid ||
5450 found_key.type != key.type) {
5451 ret = 0;
5452 goto out;
5453 }
5454
5455 ret = process_extent(sctx, path, &found_key);
5456 if (ret < 0)
5457 goto out;
5458
5459 path->slots[0]++;
5460 }
5461
5462 out:
5463 btrfs_free_path(path);
5464 return ret;
5465 }
5466
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)5467 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5468 int *pending_move,
5469 int *refs_processed)
5470 {
5471 int ret = 0;
5472
5473 if (sctx->cur_ino == 0)
5474 goto out;
5475 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5476 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5477 goto out;
5478 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5479 goto out;
5480
5481 ret = process_recorded_refs(sctx, pending_move);
5482 if (ret < 0)
5483 goto out;
5484
5485 *refs_processed = 1;
5486 out:
5487 return ret;
5488 }
5489
finish_inode_if_needed(struct send_ctx * sctx,int at_end)5490 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5491 {
5492 int ret = 0;
5493 u64 left_mode;
5494 u64 left_uid;
5495 u64 left_gid;
5496 u64 right_mode;
5497 u64 right_uid;
5498 u64 right_gid;
5499 int need_chmod = 0;
5500 int need_chown = 0;
5501 int pending_move = 0;
5502 int refs_processed = 0;
5503
5504 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5505 &refs_processed);
5506 if (ret < 0)
5507 goto out;
5508
5509 /*
5510 * We have processed the refs and thus need to advance send_progress.
5511 * Now, calls to get_cur_xxx will take the updated refs of the current
5512 * inode into account.
5513 *
5514 * On the other hand, if our current inode is a directory and couldn't
5515 * be moved/renamed because its parent was renamed/moved too and it has
5516 * a higher inode number, we can only move/rename our current inode
5517 * after we moved/renamed its parent. Therefore in this case operate on
5518 * the old path (pre move/rename) of our current inode, and the
5519 * move/rename will be performed later.
5520 */
5521 if (refs_processed && !pending_move)
5522 sctx->send_progress = sctx->cur_ino + 1;
5523
5524 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5525 goto out;
5526 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5527 goto out;
5528
5529 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5530 &left_mode, &left_uid, &left_gid, NULL);
5531 if (ret < 0)
5532 goto out;
5533
5534 if (!sctx->parent_root || sctx->cur_inode_new) {
5535 need_chown = 1;
5536 if (!S_ISLNK(sctx->cur_inode_mode))
5537 need_chmod = 1;
5538 } else {
5539 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5540 NULL, NULL, &right_mode, &right_uid,
5541 &right_gid, NULL);
5542 if (ret < 0)
5543 goto out;
5544
5545 if (left_uid != right_uid || left_gid != right_gid)
5546 need_chown = 1;
5547 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5548 need_chmod = 1;
5549 }
5550
5551 if (S_ISREG(sctx->cur_inode_mode)) {
5552 if (need_send_hole(sctx)) {
5553 if (sctx->cur_inode_last_extent == (u64)-1 ||
5554 sctx->cur_inode_last_extent <
5555 sctx->cur_inode_size) {
5556 ret = get_last_extent(sctx, (u64)-1);
5557 if (ret)
5558 goto out;
5559 }
5560 if (sctx->cur_inode_last_extent <
5561 sctx->cur_inode_size) {
5562 ret = send_hole(sctx, sctx->cur_inode_size);
5563 if (ret)
5564 goto out;
5565 }
5566 }
5567 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5568 sctx->cur_inode_size);
5569 if (ret < 0)
5570 goto out;
5571 }
5572
5573 if (need_chown) {
5574 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5575 left_uid, left_gid);
5576 if (ret < 0)
5577 goto out;
5578 }
5579 if (need_chmod) {
5580 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5581 left_mode);
5582 if (ret < 0)
5583 goto out;
5584 }
5585
5586 /*
5587 * If other directory inodes depended on our current directory
5588 * inode's move/rename, now do their move/rename operations.
5589 */
5590 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5591 ret = apply_children_dir_moves(sctx);
5592 if (ret)
5593 goto out;
5594 /*
5595 * Need to send that every time, no matter if it actually
5596 * changed between the two trees as we have done changes to
5597 * the inode before. If our inode is a directory and it's
5598 * waiting to be moved/renamed, we will send its utimes when
5599 * it's moved/renamed, therefore we don't need to do it here.
5600 */
5601 sctx->send_progress = sctx->cur_ino + 1;
5602 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5603 if (ret < 0)
5604 goto out;
5605 }
5606
5607 out:
5608 return ret;
5609 }
5610
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5611 static int changed_inode(struct send_ctx *sctx,
5612 enum btrfs_compare_tree_result result)
5613 {
5614 int ret = 0;
5615 struct btrfs_key *key = sctx->cmp_key;
5616 struct btrfs_inode_item *left_ii = NULL;
5617 struct btrfs_inode_item *right_ii = NULL;
5618 u64 left_gen = 0;
5619 u64 right_gen = 0;
5620
5621 sctx->cur_ino = key->objectid;
5622 sctx->cur_inode_new_gen = 0;
5623 sctx->cur_inode_last_extent = (u64)-1;
5624
5625 /*
5626 * Set send_progress to current inode. This will tell all get_cur_xxx
5627 * functions that the current inode's refs are not updated yet. Later,
5628 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5629 */
5630 sctx->send_progress = sctx->cur_ino;
5631
5632 if (result == BTRFS_COMPARE_TREE_NEW ||
5633 result == BTRFS_COMPARE_TREE_CHANGED) {
5634 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5635 sctx->left_path->slots[0],
5636 struct btrfs_inode_item);
5637 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5638 left_ii);
5639 } else {
5640 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5641 sctx->right_path->slots[0],
5642 struct btrfs_inode_item);
5643 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5644 right_ii);
5645 }
5646 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5647 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5648 sctx->right_path->slots[0],
5649 struct btrfs_inode_item);
5650
5651 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5652 right_ii);
5653
5654 /*
5655 * The cur_ino = root dir case is special here. We can't treat
5656 * the inode as deleted+reused because it would generate a
5657 * stream that tries to delete/mkdir the root dir.
5658 */
5659 if (left_gen != right_gen &&
5660 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5661 sctx->cur_inode_new_gen = 1;
5662 }
5663
5664 if (result == BTRFS_COMPARE_TREE_NEW) {
5665 sctx->cur_inode_gen = left_gen;
5666 sctx->cur_inode_new = 1;
5667 sctx->cur_inode_deleted = 0;
5668 sctx->cur_inode_size = btrfs_inode_size(
5669 sctx->left_path->nodes[0], left_ii);
5670 sctx->cur_inode_mode = btrfs_inode_mode(
5671 sctx->left_path->nodes[0], left_ii);
5672 sctx->cur_inode_rdev = btrfs_inode_rdev(
5673 sctx->left_path->nodes[0], left_ii);
5674 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5675 ret = send_create_inode_if_needed(sctx);
5676 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5677 sctx->cur_inode_gen = right_gen;
5678 sctx->cur_inode_new = 0;
5679 sctx->cur_inode_deleted = 1;
5680 sctx->cur_inode_size = btrfs_inode_size(
5681 sctx->right_path->nodes[0], right_ii);
5682 sctx->cur_inode_mode = btrfs_inode_mode(
5683 sctx->right_path->nodes[0], right_ii);
5684 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5685 /*
5686 * We need to do some special handling in case the inode was
5687 * reported as changed with a changed generation number. This
5688 * means that the original inode was deleted and new inode
5689 * reused the same inum. So we have to treat the old inode as
5690 * deleted and the new one as new.
5691 */
5692 if (sctx->cur_inode_new_gen) {
5693 /*
5694 * First, process the inode as if it was deleted.
5695 */
5696 sctx->cur_inode_gen = right_gen;
5697 sctx->cur_inode_new = 0;
5698 sctx->cur_inode_deleted = 1;
5699 sctx->cur_inode_size = btrfs_inode_size(
5700 sctx->right_path->nodes[0], right_ii);
5701 sctx->cur_inode_mode = btrfs_inode_mode(
5702 sctx->right_path->nodes[0], right_ii);
5703 ret = process_all_refs(sctx,
5704 BTRFS_COMPARE_TREE_DELETED);
5705 if (ret < 0)
5706 goto out;
5707
5708 /*
5709 * Now process the inode as if it was new.
5710 */
5711 sctx->cur_inode_gen = left_gen;
5712 sctx->cur_inode_new = 1;
5713 sctx->cur_inode_deleted = 0;
5714 sctx->cur_inode_size = btrfs_inode_size(
5715 sctx->left_path->nodes[0], left_ii);
5716 sctx->cur_inode_mode = btrfs_inode_mode(
5717 sctx->left_path->nodes[0], left_ii);
5718 sctx->cur_inode_rdev = btrfs_inode_rdev(
5719 sctx->left_path->nodes[0], left_ii);
5720 ret = send_create_inode_if_needed(sctx);
5721 if (ret < 0)
5722 goto out;
5723
5724 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5725 if (ret < 0)
5726 goto out;
5727 /*
5728 * Advance send_progress now as we did not get into
5729 * process_recorded_refs_if_needed in the new_gen case.
5730 */
5731 sctx->send_progress = sctx->cur_ino + 1;
5732
5733 /*
5734 * Now process all extents and xattrs of the inode as if
5735 * they were all new.
5736 */
5737 ret = process_all_extents(sctx);
5738 if (ret < 0)
5739 goto out;
5740 ret = process_all_new_xattrs(sctx);
5741 if (ret < 0)
5742 goto out;
5743 } else {
5744 sctx->cur_inode_gen = left_gen;
5745 sctx->cur_inode_new = 0;
5746 sctx->cur_inode_new_gen = 0;
5747 sctx->cur_inode_deleted = 0;
5748 sctx->cur_inode_size = btrfs_inode_size(
5749 sctx->left_path->nodes[0], left_ii);
5750 sctx->cur_inode_mode = btrfs_inode_mode(
5751 sctx->left_path->nodes[0], left_ii);
5752 }
5753 }
5754
5755 out:
5756 return ret;
5757 }
5758
5759 /*
5760 * We have to process new refs before deleted refs, but compare_trees gives us
5761 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5762 * first and later process them in process_recorded_refs.
5763 * For the cur_inode_new_gen case, we skip recording completely because
5764 * changed_inode did already initiate processing of refs. The reason for this is
5765 * that in this case, compare_tree actually compares the refs of 2 different
5766 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5767 * refs of the right tree as deleted and all refs of the left tree as new.
5768 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5769 static int changed_ref(struct send_ctx *sctx,
5770 enum btrfs_compare_tree_result result)
5771 {
5772 int ret = 0;
5773
5774 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5775 inconsistent_snapshot_error(sctx, result, "reference");
5776 return -EIO;
5777 }
5778
5779 if (!sctx->cur_inode_new_gen &&
5780 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5781 if (result == BTRFS_COMPARE_TREE_NEW)
5782 ret = record_new_ref(sctx);
5783 else if (result == BTRFS_COMPARE_TREE_DELETED)
5784 ret = record_deleted_ref(sctx);
5785 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5786 ret = record_changed_ref(sctx);
5787 }
5788
5789 return ret;
5790 }
5791
5792 /*
5793 * Process new/deleted/changed xattrs. We skip processing in the
5794 * cur_inode_new_gen case because changed_inode did already initiate processing
5795 * of xattrs. The reason is the same as in changed_ref
5796 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5797 static int changed_xattr(struct send_ctx *sctx,
5798 enum btrfs_compare_tree_result result)
5799 {
5800 int ret = 0;
5801
5802 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5803 inconsistent_snapshot_error(sctx, result, "xattr");
5804 return -EIO;
5805 }
5806
5807 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5808 if (result == BTRFS_COMPARE_TREE_NEW)
5809 ret = process_new_xattr(sctx);
5810 else if (result == BTRFS_COMPARE_TREE_DELETED)
5811 ret = process_deleted_xattr(sctx);
5812 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5813 ret = process_changed_xattr(sctx);
5814 }
5815
5816 return ret;
5817 }
5818
5819 /*
5820 * Process new/deleted/changed extents. We skip processing in the
5821 * cur_inode_new_gen case because changed_inode did already initiate processing
5822 * of extents. The reason is the same as in changed_ref
5823 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)5824 static int changed_extent(struct send_ctx *sctx,
5825 enum btrfs_compare_tree_result result)
5826 {
5827 int ret = 0;
5828
5829 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5830
5831 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5832 struct extent_buffer *leaf_l;
5833 struct extent_buffer *leaf_r;
5834 struct btrfs_file_extent_item *ei_l;
5835 struct btrfs_file_extent_item *ei_r;
5836
5837 leaf_l = sctx->left_path->nodes[0];
5838 leaf_r = sctx->right_path->nodes[0];
5839 ei_l = btrfs_item_ptr(leaf_l,
5840 sctx->left_path->slots[0],
5841 struct btrfs_file_extent_item);
5842 ei_r = btrfs_item_ptr(leaf_r,
5843 sctx->right_path->slots[0],
5844 struct btrfs_file_extent_item);
5845
5846 /*
5847 * We may have found an extent item that has changed
5848 * only its disk_bytenr field and the corresponding
5849 * inode item was not updated. This case happens due to
5850 * very specific timings during relocation when a leaf
5851 * that contains file extent items is COWed while
5852 * relocation is ongoing and its in the stage where it
5853 * updates data pointers. So when this happens we can
5854 * safely ignore it since we know it's the same extent,
5855 * but just at different logical and physical locations
5856 * (when an extent is fully replaced with a new one, we
5857 * know the generation number must have changed too,
5858 * since snapshot creation implies committing the current
5859 * transaction, and the inode item must have been updated
5860 * as well).
5861 * This replacement of the disk_bytenr happens at
5862 * relocation.c:replace_file_extents() through
5863 * relocation.c:btrfs_reloc_cow_block().
5864 */
5865 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5866 btrfs_file_extent_generation(leaf_r, ei_r) &&
5867 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5868 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5869 btrfs_file_extent_compression(leaf_l, ei_l) ==
5870 btrfs_file_extent_compression(leaf_r, ei_r) &&
5871 btrfs_file_extent_encryption(leaf_l, ei_l) ==
5872 btrfs_file_extent_encryption(leaf_r, ei_r) &&
5873 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5874 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5875 btrfs_file_extent_type(leaf_l, ei_l) ==
5876 btrfs_file_extent_type(leaf_r, ei_r) &&
5877 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5878 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5879 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5880 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5881 btrfs_file_extent_offset(leaf_l, ei_l) ==
5882 btrfs_file_extent_offset(leaf_r, ei_r) &&
5883 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5884 btrfs_file_extent_num_bytes(leaf_r, ei_r))
5885 return 0;
5886 }
5887
5888 inconsistent_snapshot_error(sctx, result, "extent");
5889 return -EIO;
5890 }
5891
5892 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5893 if (result != BTRFS_COMPARE_TREE_DELETED)
5894 ret = process_extent(sctx, sctx->left_path,
5895 sctx->cmp_key);
5896 }
5897
5898 return ret;
5899 }
5900
dir_changed(struct send_ctx * sctx,u64 dir)5901 static int dir_changed(struct send_ctx *sctx, u64 dir)
5902 {
5903 u64 orig_gen, new_gen;
5904 int ret;
5905
5906 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5907 NULL, NULL);
5908 if (ret)
5909 return ret;
5910
5911 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5912 NULL, NULL, NULL);
5913 if (ret)
5914 return ret;
5915
5916 return (orig_gen != new_gen) ? 1 : 0;
5917 }
5918
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)5919 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5920 struct btrfs_key *key)
5921 {
5922 struct btrfs_inode_extref *extref;
5923 struct extent_buffer *leaf;
5924 u64 dirid = 0, last_dirid = 0;
5925 unsigned long ptr;
5926 u32 item_size;
5927 u32 cur_offset = 0;
5928 int ref_name_len;
5929 int ret = 0;
5930
5931 /* Easy case, just check this one dirid */
5932 if (key->type == BTRFS_INODE_REF_KEY) {
5933 dirid = key->offset;
5934
5935 ret = dir_changed(sctx, dirid);
5936 goto out;
5937 }
5938
5939 leaf = path->nodes[0];
5940 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5941 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5942 while (cur_offset < item_size) {
5943 extref = (struct btrfs_inode_extref *)(ptr +
5944 cur_offset);
5945 dirid = btrfs_inode_extref_parent(leaf, extref);
5946 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5947 cur_offset += ref_name_len + sizeof(*extref);
5948 if (dirid == last_dirid)
5949 continue;
5950 ret = dir_changed(sctx, dirid);
5951 if (ret)
5952 break;
5953 last_dirid = dirid;
5954 }
5955 out:
5956 return ret;
5957 }
5958
5959 /*
5960 * Updates compare related fields in sctx and simply forwards to the actual
5961 * changed_xxx functions.
5962 */
changed_cb(struct btrfs_root * left_root,struct btrfs_root * right_root,struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,void * ctx)5963 static int changed_cb(struct btrfs_root *left_root,
5964 struct btrfs_root *right_root,
5965 struct btrfs_path *left_path,
5966 struct btrfs_path *right_path,
5967 struct btrfs_key *key,
5968 enum btrfs_compare_tree_result result,
5969 void *ctx)
5970 {
5971 int ret = 0;
5972 struct send_ctx *sctx = ctx;
5973
5974 if (result == BTRFS_COMPARE_TREE_SAME) {
5975 if (key->type == BTRFS_INODE_REF_KEY ||
5976 key->type == BTRFS_INODE_EXTREF_KEY) {
5977 ret = compare_refs(sctx, left_path, key);
5978 if (!ret)
5979 return 0;
5980 if (ret < 0)
5981 return ret;
5982 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5983 return maybe_send_hole(sctx, left_path, key);
5984 } else {
5985 return 0;
5986 }
5987 result = BTRFS_COMPARE_TREE_CHANGED;
5988 ret = 0;
5989 }
5990
5991 sctx->left_path = left_path;
5992 sctx->right_path = right_path;
5993 sctx->cmp_key = key;
5994
5995 ret = finish_inode_if_needed(sctx, 0);
5996 if (ret < 0)
5997 goto out;
5998
5999 /* Ignore non-FS objects */
6000 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6001 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6002 goto out;
6003
6004 if (key->type == BTRFS_INODE_ITEM_KEY)
6005 ret = changed_inode(sctx, result);
6006 else if (key->type == BTRFS_INODE_REF_KEY ||
6007 key->type == BTRFS_INODE_EXTREF_KEY)
6008 ret = changed_ref(sctx, result);
6009 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6010 ret = changed_xattr(sctx, result);
6011 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6012 ret = changed_extent(sctx, result);
6013
6014 out:
6015 return ret;
6016 }
6017
full_send_tree(struct send_ctx * sctx)6018 static int full_send_tree(struct send_ctx *sctx)
6019 {
6020 int ret;
6021 struct btrfs_root *send_root = sctx->send_root;
6022 struct btrfs_key key;
6023 struct btrfs_key found_key;
6024 struct btrfs_path *path;
6025 struct extent_buffer *eb;
6026 int slot;
6027
6028 path = alloc_path_for_send();
6029 if (!path)
6030 return -ENOMEM;
6031
6032 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6033 key.type = BTRFS_INODE_ITEM_KEY;
6034 key.offset = 0;
6035
6036 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6037 if (ret < 0)
6038 goto out;
6039 if (ret)
6040 goto out_finish;
6041
6042 while (1) {
6043 eb = path->nodes[0];
6044 slot = path->slots[0];
6045 btrfs_item_key_to_cpu(eb, &found_key, slot);
6046
6047 ret = changed_cb(send_root, NULL, path, NULL,
6048 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6049 if (ret < 0)
6050 goto out;
6051
6052 key.objectid = found_key.objectid;
6053 key.type = found_key.type;
6054 key.offset = found_key.offset + 1;
6055
6056 ret = btrfs_next_item(send_root, path);
6057 if (ret < 0)
6058 goto out;
6059 if (ret) {
6060 ret = 0;
6061 break;
6062 }
6063 }
6064
6065 out_finish:
6066 ret = finish_inode_if_needed(sctx, 1);
6067
6068 out:
6069 btrfs_free_path(path);
6070 return ret;
6071 }
6072
send_subvol(struct send_ctx * sctx)6073 static int send_subvol(struct send_ctx *sctx)
6074 {
6075 int ret;
6076
6077 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6078 ret = send_header(sctx);
6079 if (ret < 0)
6080 goto out;
6081 }
6082
6083 ret = send_subvol_begin(sctx);
6084 if (ret < 0)
6085 goto out;
6086
6087 if (sctx->parent_root) {
6088 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6089 changed_cb, sctx);
6090 if (ret < 0)
6091 goto out;
6092 ret = finish_inode_if_needed(sctx, 1);
6093 if (ret < 0)
6094 goto out;
6095 } else {
6096 ret = full_send_tree(sctx);
6097 if (ret < 0)
6098 goto out;
6099 }
6100
6101 out:
6102 free_recorded_refs(sctx);
6103 return ret;
6104 }
6105
6106 /*
6107 * If orphan cleanup did remove any orphans from a root, it means the tree
6108 * was modified and therefore the commit root is not the same as the current
6109 * root anymore. This is a problem, because send uses the commit root and
6110 * therefore can see inode items that don't exist in the current root anymore,
6111 * and for example make calls to btrfs_iget, which will do tree lookups based
6112 * on the current root and not on the commit root. Those lookups will fail,
6113 * returning a -ESTALE error, and making send fail with that error. So make
6114 * sure a send does not see any orphans we have just removed, and that it will
6115 * see the same inodes regardless of whether a transaction commit happened
6116 * before it started (meaning that the commit root will be the same as the
6117 * current root) or not.
6118 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)6119 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6120 {
6121 int i;
6122 struct btrfs_trans_handle *trans = NULL;
6123
6124 again:
6125 if (sctx->parent_root &&
6126 sctx->parent_root->node != sctx->parent_root->commit_root)
6127 goto commit_trans;
6128
6129 for (i = 0; i < sctx->clone_roots_cnt; i++)
6130 if (sctx->clone_roots[i].root->node !=
6131 sctx->clone_roots[i].root->commit_root)
6132 goto commit_trans;
6133
6134 if (trans)
6135 return btrfs_end_transaction(trans, sctx->send_root);
6136
6137 return 0;
6138
6139 commit_trans:
6140 /* Use any root, all fs roots will get their commit roots updated. */
6141 if (!trans) {
6142 trans = btrfs_join_transaction(sctx->send_root);
6143 if (IS_ERR(trans))
6144 return PTR_ERR(trans);
6145 goto again;
6146 }
6147
6148 return btrfs_commit_transaction(trans, sctx->send_root);
6149 }
6150
btrfs_root_dec_send_in_progress(struct btrfs_root * root)6151 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6152 {
6153 spin_lock(&root->root_item_lock);
6154 root->send_in_progress--;
6155 /*
6156 * Not much left to do, we don't know why it's unbalanced and
6157 * can't blindly reset it to 0.
6158 */
6159 if (root->send_in_progress < 0)
6160 btrfs_err(root->fs_info,
6161 "send_in_progres unbalanced %d root %llu",
6162 root->send_in_progress, root->root_key.objectid);
6163 spin_unlock(&root->root_item_lock);
6164 }
6165
btrfs_ioctl_send(struct file * mnt_file,void __user * arg_)6166 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6167 {
6168 int ret = 0;
6169 struct btrfs_root *send_root;
6170 struct btrfs_root *clone_root;
6171 struct btrfs_fs_info *fs_info;
6172 struct btrfs_ioctl_send_args *arg = NULL;
6173 struct btrfs_key key;
6174 struct send_ctx *sctx = NULL;
6175 u32 i;
6176 u64 *clone_sources_tmp = NULL;
6177 int clone_sources_to_rollback = 0;
6178 unsigned alloc_size;
6179 int sort_clone_roots = 0;
6180 int index;
6181
6182 if (!capable(CAP_SYS_ADMIN))
6183 return -EPERM;
6184
6185 send_root = BTRFS_I(file_inode(mnt_file))->root;
6186 fs_info = send_root->fs_info;
6187
6188 /*
6189 * The subvolume must remain read-only during send, protect against
6190 * making it RW. This also protects against deletion.
6191 */
6192 spin_lock(&send_root->root_item_lock);
6193 send_root->send_in_progress++;
6194 spin_unlock(&send_root->root_item_lock);
6195
6196 /*
6197 * This is done when we lookup the root, it should already be complete
6198 * by the time we get here.
6199 */
6200 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6201
6202 /*
6203 * Userspace tools do the checks and warn the user if it's
6204 * not RO.
6205 */
6206 if (!btrfs_root_readonly(send_root)) {
6207 ret = -EPERM;
6208 goto out;
6209 }
6210
6211 arg = memdup_user(arg_, sizeof(*arg));
6212 if (IS_ERR(arg)) {
6213 ret = PTR_ERR(arg);
6214 arg = NULL;
6215 goto out;
6216 }
6217
6218 /*
6219 * Check that we don't overflow at later allocations, we request
6220 * clone_sources_count + 1 items, and compare to unsigned long inside
6221 * access_ok.
6222 */
6223 if (arg->clone_sources_count >
6224 ULONG_MAX / sizeof(struct clone_root) - 1) {
6225 ret = -EINVAL;
6226 goto out;
6227 }
6228
6229 if (!access_ok(VERIFY_READ, arg->clone_sources,
6230 sizeof(*arg->clone_sources) *
6231 arg->clone_sources_count)) {
6232 ret = -EFAULT;
6233 goto out;
6234 }
6235
6236 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6237 ret = -EINVAL;
6238 goto out;
6239 }
6240
6241 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6242 if (!sctx) {
6243 ret = -ENOMEM;
6244 goto out;
6245 }
6246
6247 INIT_LIST_HEAD(&sctx->new_refs);
6248 INIT_LIST_HEAD(&sctx->deleted_refs);
6249 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6250 INIT_LIST_HEAD(&sctx->name_cache_list);
6251
6252 sctx->flags = arg->flags;
6253
6254 sctx->send_filp = fget(arg->send_fd);
6255 if (!sctx->send_filp) {
6256 ret = -EBADF;
6257 goto out;
6258 }
6259
6260 sctx->send_root = send_root;
6261 /*
6262 * Unlikely but possible, if the subvolume is marked for deletion but
6263 * is slow to remove the directory entry, send can still be started
6264 */
6265 if (btrfs_root_dead(sctx->send_root)) {
6266 ret = -EPERM;
6267 goto out;
6268 }
6269
6270 sctx->clone_roots_cnt = arg->clone_sources_count;
6271
6272 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6273 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6274 if (!sctx->send_buf) {
6275 sctx->send_buf = vmalloc(sctx->send_max_size);
6276 if (!sctx->send_buf) {
6277 ret = -ENOMEM;
6278 goto out;
6279 }
6280 }
6281
6282 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6283 if (!sctx->read_buf) {
6284 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6285 if (!sctx->read_buf) {
6286 ret = -ENOMEM;
6287 goto out;
6288 }
6289 }
6290
6291 sctx->pending_dir_moves = RB_ROOT;
6292 sctx->waiting_dir_moves = RB_ROOT;
6293 sctx->orphan_dirs = RB_ROOT;
6294
6295 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6296
6297 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6298 if (!sctx->clone_roots) {
6299 sctx->clone_roots = vzalloc(alloc_size);
6300 if (!sctx->clone_roots) {
6301 ret = -ENOMEM;
6302 goto out;
6303 }
6304 }
6305
6306 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6307
6308 if (arg->clone_sources_count) {
6309 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6310 if (!clone_sources_tmp) {
6311 clone_sources_tmp = vmalloc(alloc_size);
6312 if (!clone_sources_tmp) {
6313 ret = -ENOMEM;
6314 goto out;
6315 }
6316 }
6317
6318 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6319 alloc_size);
6320 if (ret) {
6321 ret = -EFAULT;
6322 goto out;
6323 }
6324
6325 for (i = 0; i < arg->clone_sources_count; i++) {
6326 key.objectid = clone_sources_tmp[i];
6327 key.type = BTRFS_ROOT_ITEM_KEY;
6328 key.offset = (u64)-1;
6329
6330 index = srcu_read_lock(&fs_info->subvol_srcu);
6331
6332 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6333 if (IS_ERR(clone_root)) {
6334 srcu_read_unlock(&fs_info->subvol_srcu, index);
6335 ret = PTR_ERR(clone_root);
6336 goto out;
6337 }
6338 spin_lock(&clone_root->root_item_lock);
6339 if (!btrfs_root_readonly(clone_root) ||
6340 btrfs_root_dead(clone_root)) {
6341 spin_unlock(&clone_root->root_item_lock);
6342 srcu_read_unlock(&fs_info->subvol_srcu, index);
6343 ret = -EPERM;
6344 goto out;
6345 }
6346 clone_root->send_in_progress++;
6347 spin_unlock(&clone_root->root_item_lock);
6348 srcu_read_unlock(&fs_info->subvol_srcu, index);
6349
6350 sctx->clone_roots[i].root = clone_root;
6351 clone_sources_to_rollback = i + 1;
6352 }
6353 kvfree(clone_sources_tmp);
6354 clone_sources_tmp = NULL;
6355 }
6356
6357 if (arg->parent_root) {
6358 key.objectid = arg->parent_root;
6359 key.type = BTRFS_ROOT_ITEM_KEY;
6360 key.offset = (u64)-1;
6361
6362 index = srcu_read_lock(&fs_info->subvol_srcu);
6363
6364 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6365 if (IS_ERR(sctx->parent_root)) {
6366 srcu_read_unlock(&fs_info->subvol_srcu, index);
6367 ret = PTR_ERR(sctx->parent_root);
6368 goto out;
6369 }
6370
6371 spin_lock(&sctx->parent_root->root_item_lock);
6372 sctx->parent_root->send_in_progress++;
6373 if (!btrfs_root_readonly(sctx->parent_root) ||
6374 btrfs_root_dead(sctx->parent_root)) {
6375 spin_unlock(&sctx->parent_root->root_item_lock);
6376 srcu_read_unlock(&fs_info->subvol_srcu, index);
6377 ret = -EPERM;
6378 goto out;
6379 }
6380 spin_unlock(&sctx->parent_root->root_item_lock);
6381
6382 srcu_read_unlock(&fs_info->subvol_srcu, index);
6383 }
6384
6385 /*
6386 * Clones from send_root are allowed, but only if the clone source
6387 * is behind the current send position. This is checked while searching
6388 * for possible clone sources.
6389 */
6390 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6391
6392 /* We do a bsearch later */
6393 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6394 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6395 NULL);
6396 sort_clone_roots = 1;
6397
6398 ret = ensure_commit_roots_uptodate(sctx);
6399 if (ret)
6400 goto out;
6401
6402 current->journal_info = BTRFS_SEND_TRANS_STUB;
6403 ret = send_subvol(sctx);
6404 current->journal_info = NULL;
6405 if (ret < 0)
6406 goto out;
6407
6408 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6409 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6410 if (ret < 0)
6411 goto out;
6412 ret = send_cmd(sctx);
6413 if (ret < 0)
6414 goto out;
6415 }
6416
6417 out:
6418 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6419 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6420 struct rb_node *n;
6421 struct pending_dir_move *pm;
6422
6423 n = rb_first(&sctx->pending_dir_moves);
6424 pm = rb_entry(n, struct pending_dir_move, node);
6425 while (!list_empty(&pm->list)) {
6426 struct pending_dir_move *pm2;
6427
6428 pm2 = list_first_entry(&pm->list,
6429 struct pending_dir_move, list);
6430 free_pending_move(sctx, pm2);
6431 }
6432 free_pending_move(sctx, pm);
6433 }
6434
6435 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6436 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6437 struct rb_node *n;
6438 struct waiting_dir_move *dm;
6439
6440 n = rb_first(&sctx->waiting_dir_moves);
6441 dm = rb_entry(n, struct waiting_dir_move, node);
6442 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6443 kfree(dm);
6444 }
6445
6446 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6447 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6448 struct rb_node *n;
6449 struct orphan_dir_info *odi;
6450
6451 n = rb_first(&sctx->orphan_dirs);
6452 odi = rb_entry(n, struct orphan_dir_info, node);
6453 free_orphan_dir_info(sctx, odi);
6454 }
6455
6456 if (sort_clone_roots) {
6457 for (i = 0; i < sctx->clone_roots_cnt; i++)
6458 btrfs_root_dec_send_in_progress(
6459 sctx->clone_roots[i].root);
6460 } else {
6461 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6462 btrfs_root_dec_send_in_progress(
6463 sctx->clone_roots[i].root);
6464
6465 btrfs_root_dec_send_in_progress(send_root);
6466 }
6467 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6468 btrfs_root_dec_send_in_progress(sctx->parent_root);
6469
6470 kfree(arg);
6471 kvfree(clone_sources_tmp);
6472
6473 if (sctx) {
6474 if (sctx->send_filp)
6475 fput(sctx->send_filp);
6476
6477 kvfree(sctx->clone_roots);
6478 kvfree(sctx->send_buf);
6479 kvfree(sctx->read_buf);
6480
6481 name_cache_free(sctx);
6482
6483 kfree(sctx);
6484 }
6485
6486 return ret;
6487 }
6488