• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
__register_binfmt(struct linux_binfmt * fmt,int insert)75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
unregister_binfmt(struct linux_binfmt * fmt)88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
put_binfmt(struct linux_binfmt * fmt)97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
path_noexec(const struct path * path)102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
SYSCALL_DEFINE1(uselib,const char __user *,library)115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 	unsigned int gup_flags = FOLL_FORCE;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 
204 	if (write)
205 		gup_flags |= FOLL_WRITE;
206 
207 	/*
208 	 * We are doing an exec().  'current' is the process
209 	 * doing the exec and bprm->mm is the new process's mm.
210 	 */
211 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 			&page, NULL);
213 	if (ret <= 0)
214 		return NULL;
215 
216 	if (write) {
217 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 		unsigned long ptr_size, limit;
219 
220 		/*
221 		 * Since the stack will hold pointers to the strings, we
222 		 * must account for them as well.
223 		 *
224 		 * The size calculation is the entire vma while each arg page is
225 		 * built, so each time we get here it's calculating how far it
226 		 * is currently (rather than each call being just the newly
227 		 * added size from the arg page).  As a result, we need to
228 		 * always add the entire size of the pointers, so that on the
229 		 * last call to get_arg_page() we'll actually have the entire
230 		 * correct size.
231 		 */
232 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
233 		if (ptr_size > ULONG_MAX - size)
234 			goto fail;
235 		size += ptr_size;
236 
237 		acct_arg_size(bprm, size / PAGE_SIZE);
238 
239 		/*
240 		 * We've historically supported up to 32 pages (ARG_MAX)
241 		 * of argument strings even with small stacks
242 		 */
243 		if (size <= ARG_MAX)
244 			return page;
245 
246 		/*
247 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
248 		 * (whichever is smaller) for the argv+env strings.
249 		 * This ensures that:
250 		 *  - the remaining binfmt code will not run out of stack space,
251 		 *  - the program will have a reasonable amount of stack left
252 		 *    to work from.
253 		 */
254 		limit = _STK_LIM / 4 * 3;
255 		limit = min(limit, rlimit(RLIMIT_STACK) / 4);
256 		if (size > limit)
257 			goto fail;
258 	}
259 
260 	return page;
261 
262 fail:
263 	put_page(page);
264 	return NULL;
265 }
266 
put_arg_page(struct page * page)267 static void put_arg_page(struct page *page)
268 {
269 	put_page(page);
270 }
271 
free_arg_pages(struct linux_binprm * bprm)272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 		struct page *page)
278 {
279 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281 
__bprm_mm_init(struct linux_binprm * bprm)282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284 	int err;
285 	struct vm_area_struct *vma = NULL;
286 	struct mm_struct *mm = bprm->mm;
287 
288 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289 	if (!vma)
290 		return -ENOMEM;
291 
292 	if (down_write_killable(&mm->mmap_sem)) {
293 		err = -EINTR;
294 		goto err_free;
295 	}
296 	vma->vm_mm = mm;
297 
298 	/*
299 	 * Place the stack at the largest stack address the architecture
300 	 * supports. Later, we'll move this to an appropriate place. We don't
301 	 * use STACK_TOP because that can depend on attributes which aren't
302 	 * configured yet.
303 	 */
304 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
305 	vma->vm_end = STACK_TOP_MAX;
306 	vma->vm_start = vma->vm_end - PAGE_SIZE;
307 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
308 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
309 	INIT_LIST_HEAD(&vma->anon_vma_chain);
310 
311 	err = insert_vm_struct(mm, vma);
312 	if (err)
313 		goto err;
314 
315 	mm->stack_vm = mm->total_vm = 1;
316 	arch_bprm_mm_init(mm, vma);
317 	up_write(&mm->mmap_sem);
318 	bprm->p = vma->vm_end - sizeof(void *);
319 	return 0;
320 err:
321 	up_write(&mm->mmap_sem);
322 err_free:
323 	bprm->vma = NULL;
324 	kmem_cache_free(vm_area_cachep, vma);
325 	return err;
326 }
327 
valid_arg_len(struct linux_binprm * bprm,long len)328 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 {
330 	return len <= MAX_ARG_STRLEN;
331 }
332 
333 #else
334 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)335 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
336 {
337 }
338 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)339 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		int write)
341 {
342 	struct page *page;
343 
344 	page = bprm->page[pos / PAGE_SIZE];
345 	if (!page && write) {
346 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
347 		if (!page)
348 			return NULL;
349 		bprm->page[pos / PAGE_SIZE] = page;
350 	}
351 
352 	return page;
353 }
354 
put_arg_page(struct page * page)355 static void put_arg_page(struct page *page)
356 {
357 }
358 
free_arg_page(struct linux_binprm * bprm,int i)359 static void free_arg_page(struct linux_binprm *bprm, int i)
360 {
361 	if (bprm->page[i]) {
362 		__free_page(bprm->page[i]);
363 		bprm->page[i] = NULL;
364 	}
365 }
366 
free_arg_pages(struct linux_binprm * bprm)367 static void free_arg_pages(struct linux_binprm *bprm)
368 {
369 	int i;
370 
371 	for (i = 0; i < MAX_ARG_PAGES; i++)
372 		free_arg_page(bprm, i);
373 }
374 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)375 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
376 		struct page *page)
377 {
378 }
379 
__bprm_mm_init(struct linux_binprm * bprm)380 static int __bprm_mm_init(struct linux_binprm *bprm)
381 {
382 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
383 	return 0;
384 }
385 
valid_arg_len(struct linux_binprm * bprm,long len)386 static bool valid_arg_len(struct linux_binprm *bprm, long len)
387 {
388 	return len <= bprm->p;
389 }
390 
391 #endif /* CONFIG_MMU */
392 
393 /*
394  * Create a new mm_struct and populate it with a temporary stack
395  * vm_area_struct.  We don't have enough context at this point to set the stack
396  * flags, permissions, and offset, so we use temporary values.  We'll update
397  * them later in setup_arg_pages().
398  */
bprm_mm_init(struct linux_binprm * bprm)399 static int bprm_mm_init(struct linux_binprm *bprm)
400 {
401 	int err;
402 	struct mm_struct *mm = NULL;
403 
404 	bprm->mm = mm = mm_alloc();
405 	err = -ENOMEM;
406 	if (!mm)
407 		goto err;
408 
409 	err = __bprm_mm_init(bprm);
410 	if (err)
411 		goto err;
412 
413 	return 0;
414 
415 err:
416 	if (mm) {
417 		bprm->mm = NULL;
418 		mmdrop(mm);
419 	}
420 
421 	return err;
422 }
423 
424 struct user_arg_ptr {
425 #ifdef CONFIG_COMPAT
426 	bool is_compat;
427 #endif
428 	union {
429 		const char __user *const __user *native;
430 #ifdef CONFIG_COMPAT
431 		const compat_uptr_t __user *compat;
432 #endif
433 	} ptr;
434 };
435 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)436 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
437 {
438 	const char __user *native;
439 
440 #ifdef CONFIG_COMPAT
441 	if (unlikely(argv.is_compat)) {
442 		compat_uptr_t compat;
443 
444 		if (get_user(compat, argv.ptr.compat + nr))
445 			return ERR_PTR(-EFAULT);
446 
447 		return compat_ptr(compat);
448 	}
449 #endif
450 
451 	if (get_user(native, argv.ptr.native + nr))
452 		return ERR_PTR(-EFAULT);
453 
454 	return native;
455 }
456 
457 /*
458  * count() counts the number of strings in array ARGV.
459  */
count(struct user_arg_ptr argv,int max)460 static int count(struct user_arg_ptr argv, int max)
461 {
462 	int i = 0;
463 
464 	if (argv.ptr.native != NULL) {
465 		for (;;) {
466 			const char __user *p = get_user_arg_ptr(argv, i);
467 
468 			if (!p)
469 				break;
470 
471 			if (IS_ERR(p))
472 				return -EFAULT;
473 
474 			if (i >= max)
475 				return -E2BIG;
476 			++i;
477 
478 			if (fatal_signal_pending(current))
479 				return -ERESTARTNOHAND;
480 			cond_resched();
481 		}
482 	}
483 	return i;
484 }
485 
486 /*
487  * 'copy_strings()' copies argument/environment strings from the old
488  * processes's memory to the new process's stack.  The call to get_user_pages()
489  * ensures the destination page is created and not swapped out.
490  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)491 static int copy_strings(int argc, struct user_arg_ptr argv,
492 			struct linux_binprm *bprm)
493 {
494 	struct page *kmapped_page = NULL;
495 	char *kaddr = NULL;
496 	unsigned long kpos = 0;
497 	int ret;
498 
499 	while (argc-- > 0) {
500 		const char __user *str;
501 		int len;
502 		unsigned long pos;
503 
504 		ret = -EFAULT;
505 		str = get_user_arg_ptr(argv, argc);
506 		if (IS_ERR(str))
507 			goto out;
508 
509 		len = strnlen_user(str, MAX_ARG_STRLEN);
510 		if (!len)
511 			goto out;
512 
513 		ret = -E2BIG;
514 		if (!valid_arg_len(bprm, len))
515 			goto out;
516 
517 		/* We're going to work our way backwords. */
518 		pos = bprm->p;
519 		str += len;
520 		bprm->p -= len;
521 
522 		while (len > 0) {
523 			int offset, bytes_to_copy;
524 
525 			if (fatal_signal_pending(current)) {
526 				ret = -ERESTARTNOHAND;
527 				goto out;
528 			}
529 			cond_resched();
530 
531 			offset = pos % PAGE_SIZE;
532 			if (offset == 0)
533 				offset = PAGE_SIZE;
534 
535 			bytes_to_copy = offset;
536 			if (bytes_to_copy > len)
537 				bytes_to_copy = len;
538 
539 			offset -= bytes_to_copy;
540 			pos -= bytes_to_copy;
541 			str -= bytes_to_copy;
542 			len -= bytes_to_copy;
543 
544 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
545 				struct page *page;
546 
547 				page = get_arg_page(bprm, pos, 1);
548 				if (!page) {
549 					ret = -E2BIG;
550 					goto out;
551 				}
552 
553 				if (kmapped_page) {
554 					flush_kernel_dcache_page(kmapped_page);
555 					kunmap(kmapped_page);
556 					put_arg_page(kmapped_page);
557 				}
558 				kmapped_page = page;
559 				kaddr = kmap(kmapped_page);
560 				kpos = pos & PAGE_MASK;
561 				flush_arg_page(bprm, kpos, kmapped_page);
562 			}
563 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
564 				ret = -EFAULT;
565 				goto out;
566 			}
567 		}
568 	}
569 	ret = 0;
570 out:
571 	if (kmapped_page) {
572 		flush_kernel_dcache_page(kmapped_page);
573 		kunmap(kmapped_page);
574 		put_arg_page(kmapped_page);
575 	}
576 	return ret;
577 }
578 
579 /*
580  * Like copy_strings, but get argv and its values from kernel memory.
581  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)582 int copy_strings_kernel(int argc, const char *const *__argv,
583 			struct linux_binprm *bprm)
584 {
585 	int r;
586 	mm_segment_t oldfs = get_fs();
587 	struct user_arg_ptr argv = {
588 		.ptr.native = (const char __user *const  __user *)__argv,
589 	};
590 
591 	set_fs(KERNEL_DS);
592 	r = copy_strings(argc, argv, bprm);
593 	set_fs(oldfs);
594 
595 	return r;
596 }
597 EXPORT_SYMBOL(copy_strings_kernel);
598 
599 #ifdef CONFIG_MMU
600 
601 /*
602  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
603  * the binfmt code determines where the new stack should reside, we shift it to
604  * its final location.  The process proceeds as follows:
605  *
606  * 1) Use shift to calculate the new vma endpoints.
607  * 2) Extend vma to cover both the old and new ranges.  This ensures the
608  *    arguments passed to subsequent functions are consistent.
609  * 3) Move vma's page tables to the new range.
610  * 4) Free up any cleared pgd range.
611  * 5) Shrink the vma to cover only the new range.
612  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)613 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
614 {
615 	struct mm_struct *mm = vma->vm_mm;
616 	unsigned long old_start = vma->vm_start;
617 	unsigned long old_end = vma->vm_end;
618 	unsigned long length = old_end - old_start;
619 	unsigned long new_start = old_start - shift;
620 	unsigned long new_end = old_end - shift;
621 	struct mmu_gather tlb;
622 
623 	BUG_ON(new_start > new_end);
624 
625 	/*
626 	 * ensure there are no vmas between where we want to go
627 	 * and where we are
628 	 */
629 	if (vma != find_vma(mm, new_start))
630 		return -EFAULT;
631 
632 	/*
633 	 * cover the whole range: [new_start, old_end)
634 	 */
635 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
636 		return -ENOMEM;
637 
638 	/*
639 	 * move the page tables downwards, on failure we rely on
640 	 * process cleanup to remove whatever mess we made.
641 	 */
642 	if (length != move_page_tables(vma, old_start,
643 				       vma, new_start, length, false))
644 		return -ENOMEM;
645 
646 	lru_add_drain();
647 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
648 	if (new_end > old_start) {
649 		/*
650 		 * when the old and new regions overlap clear from new_end.
651 		 */
652 		free_pgd_range(&tlb, new_end, old_end, new_end,
653 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
654 	} else {
655 		/*
656 		 * otherwise, clean from old_start; this is done to not touch
657 		 * the address space in [new_end, old_start) some architectures
658 		 * have constraints on va-space that make this illegal (IA64) -
659 		 * for the others its just a little faster.
660 		 */
661 		free_pgd_range(&tlb, old_start, old_end, new_end,
662 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 	}
664 	tlb_finish_mmu(&tlb, old_start, old_end);
665 
666 	/*
667 	 * Shrink the vma to just the new range.  Always succeeds.
668 	 */
669 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
670 
671 	return 0;
672 }
673 
674 /*
675  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
676  * the stack is optionally relocated, and some extra space is added.
677  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)678 int setup_arg_pages(struct linux_binprm *bprm,
679 		    unsigned long stack_top,
680 		    int executable_stack)
681 {
682 	unsigned long ret;
683 	unsigned long stack_shift;
684 	struct mm_struct *mm = current->mm;
685 	struct vm_area_struct *vma = bprm->vma;
686 	struct vm_area_struct *prev = NULL;
687 	unsigned long vm_flags;
688 	unsigned long stack_base;
689 	unsigned long stack_size;
690 	unsigned long stack_expand;
691 	unsigned long rlim_stack;
692 
693 #ifdef CONFIG_STACK_GROWSUP
694 	/* Limit stack size */
695 	stack_base = rlimit_max(RLIMIT_STACK);
696 	if (stack_base > STACK_SIZE_MAX)
697 		stack_base = STACK_SIZE_MAX;
698 
699 	/* Add space for stack randomization. */
700 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
701 
702 	/* Make sure we didn't let the argument array grow too large. */
703 	if (vma->vm_end - vma->vm_start > stack_base)
704 		return -ENOMEM;
705 
706 	stack_base = PAGE_ALIGN(stack_top - stack_base);
707 
708 	stack_shift = vma->vm_start - stack_base;
709 	mm->arg_start = bprm->p - stack_shift;
710 	bprm->p = vma->vm_end - stack_shift;
711 #else
712 	stack_top = arch_align_stack(stack_top);
713 	stack_top = PAGE_ALIGN(stack_top);
714 
715 	if (unlikely(stack_top < mmap_min_addr) ||
716 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
717 		return -ENOMEM;
718 
719 	stack_shift = vma->vm_end - stack_top;
720 
721 	bprm->p -= stack_shift;
722 	mm->arg_start = bprm->p;
723 #endif
724 
725 	if (bprm->loader)
726 		bprm->loader -= stack_shift;
727 	bprm->exec -= stack_shift;
728 
729 	if (down_write_killable(&mm->mmap_sem))
730 		return -EINTR;
731 
732 	vm_flags = VM_STACK_FLAGS;
733 
734 	/*
735 	 * Adjust stack execute permissions; explicitly enable for
736 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
737 	 * (arch default) otherwise.
738 	 */
739 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
740 		vm_flags |= VM_EXEC;
741 	else if (executable_stack == EXSTACK_DISABLE_X)
742 		vm_flags &= ~VM_EXEC;
743 	vm_flags |= mm->def_flags;
744 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
745 
746 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
747 			vm_flags);
748 	if (ret)
749 		goto out_unlock;
750 	BUG_ON(prev != vma);
751 
752 	/* Move stack pages down in memory. */
753 	if (stack_shift) {
754 		ret = shift_arg_pages(vma, stack_shift);
755 		if (ret)
756 			goto out_unlock;
757 	}
758 
759 	/* mprotect_fixup is overkill to remove the temporary stack flags */
760 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
761 
762 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
763 	stack_size = vma->vm_end - vma->vm_start;
764 	/*
765 	 * Align this down to a page boundary as expand_stack
766 	 * will align it up.
767 	 */
768 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
769 #ifdef CONFIG_STACK_GROWSUP
770 	if (stack_size + stack_expand > rlim_stack)
771 		stack_base = vma->vm_start + rlim_stack;
772 	else
773 		stack_base = vma->vm_end + stack_expand;
774 #else
775 	if (stack_size + stack_expand > rlim_stack)
776 		stack_base = vma->vm_end - rlim_stack;
777 	else
778 		stack_base = vma->vm_start - stack_expand;
779 #endif
780 	current->mm->start_stack = bprm->p;
781 	ret = expand_stack(vma, stack_base);
782 	if (ret)
783 		ret = -EFAULT;
784 
785 out_unlock:
786 	up_write(&mm->mmap_sem);
787 	return ret;
788 }
789 EXPORT_SYMBOL(setup_arg_pages);
790 
791 #else
792 
793 /*
794  * Transfer the program arguments and environment from the holding pages
795  * onto the stack. The provided stack pointer is adjusted accordingly.
796  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)797 int transfer_args_to_stack(struct linux_binprm *bprm,
798 			   unsigned long *sp_location)
799 {
800 	unsigned long index, stop, sp;
801 	int ret = 0;
802 
803 	stop = bprm->p >> PAGE_SHIFT;
804 	sp = *sp_location;
805 
806 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
807 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
808 		char *src = kmap(bprm->page[index]) + offset;
809 		sp -= PAGE_SIZE - offset;
810 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
811 			ret = -EFAULT;
812 		kunmap(bprm->page[index]);
813 		if (ret)
814 			goto out;
815 	}
816 
817 	*sp_location = sp;
818 
819 out:
820 	return ret;
821 }
822 EXPORT_SYMBOL(transfer_args_to_stack);
823 
824 #endif /* CONFIG_MMU */
825 
do_open_execat(int fd,struct filename * name,int flags)826 static struct file *do_open_execat(int fd, struct filename *name, int flags)
827 {
828 	struct file *file;
829 	int err;
830 	struct open_flags open_exec_flags = {
831 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
832 		.acc_mode = MAY_EXEC,
833 		.intent = LOOKUP_OPEN,
834 		.lookup_flags = LOOKUP_FOLLOW,
835 	};
836 
837 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
838 		return ERR_PTR(-EINVAL);
839 	if (flags & AT_SYMLINK_NOFOLLOW)
840 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
841 	if (flags & AT_EMPTY_PATH)
842 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
843 
844 	file = do_filp_open(fd, name, &open_exec_flags);
845 	if (IS_ERR(file))
846 		goto out;
847 
848 	err = -EACCES;
849 	if (!S_ISREG(file_inode(file)->i_mode))
850 		goto exit;
851 
852 	if (path_noexec(&file->f_path))
853 		goto exit;
854 
855 	err = deny_write_access(file);
856 	if (err)
857 		goto exit;
858 
859 	if (name->name[0] != '\0')
860 		fsnotify_open(file);
861 
862 out:
863 	return file;
864 
865 exit:
866 	fput(file);
867 	return ERR_PTR(err);
868 }
869 
open_exec(const char * name)870 struct file *open_exec(const char *name)
871 {
872 	struct filename *filename = getname_kernel(name);
873 	struct file *f = ERR_CAST(filename);
874 
875 	if (!IS_ERR(filename)) {
876 		f = do_open_execat(AT_FDCWD, filename, 0);
877 		putname(filename);
878 	}
879 	return f;
880 }
881 EXPORT_SYMBOL(open_exec);
882 
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)883 int kernel_read(struct file *file, loff_t offset,
884 		char *addr, unsigned long count)
885 {
886 	mm_segment_t old_fs;
887 	loff_t pos = offset;
888 	int result;
889 
890 	old_fs = get_fs();
891 	set_fs(get_ds());
892 	/* The cast to a user pointer is valid due to the set_fs() */
893 	result = vfs_read(file, (void __user *)addr, count, &pos);
894 	set_fs(old_fs);
895 	return result;
896 }
897 
898 EXPORT_SYMBOL(kernel_read);
899 
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)900 int kernel_read_file(struct file *file, void **buf, loff_t *size,
901 		     loff_t max_size, enum kernel_read_file_id id)
902 {
903 	loff_t i_size, pos;
904 	ssize_t bytes = 0;
905 	int ret;
906 
907 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
908 		return -EINVAL;
909 
910 	ret = security_kernel_read_file(file, id);
911 	if (ret)
912 		return ret;
913 
914 	ret = deny_write_access(file);
915 	if (ret)
916 		return ret;
917 
918 	i_size = i_size_read(file_inode(file));
919 	if (max_size > 0 && i_size > max_size) {
920 		ret = -EFBIG;
921 		goto out;
922 	}
923 	if (i_size <= 0) {
924 		ret = -EINVAL;
925 		goto out;
926 	}
927 
928 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
929 		*buf = vmalloc(i_size);
930 	if (!*buf) {
931 		ret = -ENOMEM;
932 		goto out;
933 	}
934 
935 	pos = 0;
936 	while (pos < i_size) {
937 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
938 				    i_size - pos);
939 		if (bytes < 0) {
940 			ret = bytes;
941 			goto out;
942 		}
943 
944 		if (bytes == 0)
945 			break;
946 		pos += bytes;
947 	}
948 
949 	if (pos != i_size) {
950 		ret = -EIO;
951 		goto out_free;
952 	}
953 
954 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
955 	if (!ret)
956 		*size = pos;
957 
958 out_free:
959 	if (ret < 0) {
960 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
961 			vfree(*buf);
962 			*buf = NULL;
963 		}
964 	}
965 
966 out:
967 	allow_write_access(file);
968 	return ret;
969 }
970 EXPORT_SYMBOL_GPL(kernel_read_file);
971 
kernel_read_file_from_path(char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)972 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
973 			       loff_t max_size, enum kernel_read_file_id id)
974 {
975 	struct file *file;
976 	int ret;
977 
978 	if (!path || !*path)
979 		return -EINVAL;
980 
981 	file = filp_open(path, O_RDONLY, 0);
982 	if (IS_ERR(file))
983 		return PTR_ERR(file);
984 
985 	ret = kernel_read_file(file, buf, size, max_size, id);
986 	fput(file);
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
990 
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)991 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
992 			     enum kernel_read_file_id id)
993 {
994 	struct fd f = fdget(fd);
995 	int ret = -EBADF;
996 
997 	if (!f.file)
998 		goto out;
999 
1000 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1001 out:
1002 	fdput(f);
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1006 
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)1007 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1008 {
1009 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1010 	if (res > 0)
1011 		flush_icache_range(addr, addr + len);
1012 	return res;
1013 }
1014 EXPORT_SYMBOL(read_code);
1015 
exec_mmap(struct mm_struct * mm)1016 static int exec_mmap(struct mm_struct *mm)
1017 {
1018 	struct task_struct *tsk;
1019 	struct mm_struct *old_mm, *active_mm;
1020 
1021 	/* Notify parent that we're no longer interested in the old VM */
1022 	tsk = current;
1023 	old_mm = current->mm;
1024 	mm_release(tsk, old_mm);
1025 
1026 	if (old_mm) {
1027 		sync_mm_rss(old_mm);
1028 		/*
1029 		 * Make sure that if there is a core dump in progress
1030 		 * for the old mm, we get out and die instead of going
1031 		 * through with the exec.  We must hold mmap_sem around
1032 		 * checking core_state and changing tsk->mm.
1033 		 */
1034 		down_read(&old_mm->mmap_sem);
1035 		if (unlikely(old_mm->core_state)) {
1036 			up_read(&old_mm->mmap_sem);
1037 			return -EINTR;
1038 		}
1039 	}
1040 	task_lock(tsk);
1041 	active_mm = tsk->active_mm;
1042 	tsk->mm = mm;
1043 	tsk->active_mm = mm;
1044 	activate_mm(active_mm, mm);
1045 	tsk->mm->vmacache_seqnum = 0;
1046 	vmacache_flush(tsk);
1047 	task_unlock(tsk);
1048 	if (old_mm) {
1049 		up_read(&old_mm->mmap_sem);
1050 		BUG_ON(active_mm != old_mm);
1051 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1052 		mm_update_next_owner(old_mm);
1053 		mmput(old_mm);
1054 		return 0;
1055 	}
1056 	mmdrop(active_mm);
1057 	return 0;
1058 }
1059 
1060 /*
1061  * This function makes sure the current process has its own signal table,
1062  * so that flush_signal_handlers can later reset the handlers without
1063  * disturbing other processes.  (Other processes might share the signal
1064  * table via the CLONE_SIGHAND option to clone().)
1065  */
de_thread(struct task_struct * tsk)1066 static int de_thread(struct task_struct *tsk)
1067 {
1068 	struct signal_struct *sig = tsk->signal;
1069 	struct sighand_struct *oldsighand = tsk->sighand;
1070 	spinlock_t *lock = &oldsighand->siglock;
1071 
1072 	if (thread_group_empty(tsk))
1073 		goto no_thread_group;
1074 
1075 	/*
1076 	 * Kill all other threads in the thread group.
1077 	 */
1078 	spin_lock_irq(lock);
1079 	if (signal_group_exit(sig)) {
1080 		/*
1081 		 * Another group action in progress, just
1082 		 * return so that the signal is processed.
1083 		 */
1084 		spin_unlock_irq(lock);
1085 		return -EAGAIN;
1086 	}
1087 
1088 	sig->group_exit_task = tsk;
1089 	sig->notify_count = zap_other_threads(tsk);
1090 	if (!thread_group_leader(tsk))
1091 		sig->notify_count--;
1092 
1093 	while (sig->notify_count) {
1094 		__set_current_state(TASK_KILLABLE);
1095 		spin_unlock_irq(lock);
1096 		schedule();
1097 		if (unlikely(__fatal_signal_pending(tsk)))
1098 			goto killed;
1099 		spin_lock_irq(lock);
1100 	}
1101 	spin_unlock_irq(lock);
1102 
1103 	/*
1104 	 * At this point all other threads have exited, all we have to
1105 	 * do is to wait for the thread group leader to become inactive,
1106 	 * and to assume its PID:
1107 	 */
1108 	if (!thread_group_leader(tsk)) {
1109 		struct task_struct *leader = tsk->group_leader;
1110 
1111 		for (;;) {
1112 			threadgroup_change_begin(tsk);
1113 			write_lock_irq(&tasklist_lock);
1114 			/*
1115 			 * Do this under tasklist_lock to ensure that
1116 			 * exit_notify() can't miss ->group_exit_task
1117 			 */
1118 			sig->notify_count = -1;
1119 			if (likely(leader->exit_state))
1120 				break;
1121 			__set_current_state(TASK_KILLABLE);
1122 			write_unlock_irq(&tasklist_lock);
1123 			threadgroup_change_end(tsk);
1124 			schedule();
1125 			if (unlikely(__fatal_signal_pending(tsk)))
1126 				goto killed;
1127 		}
1128 
1129 		/*
1130 		 * The only record we have of the real-time age of a
1131 		 * process, regardless of execs it's done, is start_time.
1132 		 * All the past CPU time is accumulated in signal_struct
1133 		 * from sister threads now dead.  But in this non-leader
1134 		 * exec, nothing survives from the original leader thread,
1135 		 * whose birth marks the true age of this process now.
1136 		 * When we take on its identity by switching to its PID, we
1137 		 * also take its birthdate (always earlier than our own).
1138 		 */
1139 		tsk->start_time = leader->start_time;
1140 		tsk->real_start_time = leader->real_start_time;
1141 
1142 		BUG_ON(!same_thread_group(leader, tsk));
1143 		BUG_ON(has_group_leader_pid(tsk));
1144 		/*
1145 		 * An exec() starts a new thread group with the
1146 		 * TGID of the previous thread group. Rehash the
1147 		 * two threads with a switched PID, and release
1148 		 * the former thread group leader:
1149 		 */
1150 
1151 		/* Become a process group leader with the old leader's pid.
1152 		 * The old leader becomes a thread of the this thread group.
1153 		 * Note: The old leader also uses this pid until release_task
1154 		 *       is called.  Odd but simple and correct.
1155 		 */
1156 		tsk->pid = leader->pid;
1157 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1158 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1159 		transfer_pid(leader, tsk, PIDTYPE_SID);
1160 
1161 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1162 		list_replace_init(&leader->sibling, &tsk->sibling);
1163 
1164 		tsk->group_leader = tsk;
1165 		leader->group_leader = tsk;
1166 
1167 		tsk->exit_signal = SIGCHLD;
1168 		leader->exit_signal = -1;
1169 
1170 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1171 		leader->exit_state = EXIT_DEAD;
1172 
1173 		/*
1174 		 * We are going to release_task()->ptrace_unlink() silently,
1175 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176 		 * the tracer wont't block again waiting for this thread.
1177 		 */
1178 		if (unlikely(leader->ptrace))
1179 			__wake_up_parent(leader, leader->parent);
1180 		write_unlock_irq(&tasklist_lock);
1181 		threadgroup_change_end(tsk);
1182 
1183 		release_task(leader);
1184 	}
1185 
1186 	sig->group_exit_task = NULL;
1187 	sig->notify_count = 0;
1188 
1189 no_thread_group:
1190 	/* we have changed execution domain */
1191 	tsk->exit_signal = SIGCHLD;
1192 
1193 	exit_itimers(sig);
1194 	flush_itimer_signals();
1195 
1196 	if (atomic_read(&oldsighand->count) != 1) {
1197 		struct sighand_struct *newsighand;
1198 		/*
1199 		 * This ->sighand is shared with the CLONE_SIGHAND
1200 		 * but not CLONE_THREAD task, switch to the new one.
1201 		 */
1202 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1203 		if (!newsighand)
1204 			return -ENOMEM;
1205 
1206 		atomic_set(&newsighand->count, 1);
1207 		memcpy(newsighand->action, oldsighand->action,
1208 		       sizeof(newsighand->action));
1209 
1210 		write_lock_irq(&tasklist_lock);
1211 		spin_lock(&oldsighand->siglock);
1212 		rcu_assign_pointer(tsk->sighand, newsighand);
1213 		spin_unlock(&oldsighand->siglock);
1214 		write_unlock_irq(&tasklist_lock);
1215 
1216 		__cleanup_sighand(oldsighand);
1217 	}
1218 
1219 	BUG_ON(!thread_group_leader(tsk));
1220 	return 0;
1221 
1222 killed:
1223 	/* protects against exit_notify() and __exit_signal() */
1224 	read_lock(&tasklist_lock);
1225 	sig->group_exit_task = NULL;
1226 	sig->notify_count = 0;
1227 	read_unlock(&tasklist_lock);
1228 	return -EAGAIN;
1229 }
1230 
get_task_comm(char * buf,struct task_struct * tsk)1231 char *get_task_comm(char *buf, struct task_struct *tsk)
1232 {
1233 	/* buf must be at least sizeof(tsk->comm) in size */
1234 	task_lock(tsk);
1235 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1236 	task_unlock(tsk);
1237 	return buf;
1238 }
1239 EXPORT_SYMBOL_GPL(get_task_comm);
1240 
1241 /*
1242  * These functions flushes out all traces of the currently running executable
1243  * so that a new one can be started
1244  */
1245 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1246 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1247 {
1248 	task_lock(tsk);
1249 	trace_task_rename(tsk, buf);
1250 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1251 	task_unlock(tsk);
1252 	perf_event_comm(tsk, exec);
1253 }
1254 
flush_old_exec(struct linux_binprm * bprm)1255 int flush_old_exec(struct linux_binprm * bprm)
1256 {
1257 	int retval;
1258 
1259 	/*
1260 	 * Make sure we have a private signal table and that
1261 	 * we are unassociated from the previous thread group.
1262 	 */
1263 	retval = de_thread(current);
1264 	if (retval)
1265 		goto out;
1266 
1267 	/*
1268 	 * Must be called _before_ exec_mmap() as bprm->mm is
1269 	 * not visibile until then. This also enables the update
1270 	 * to be lockless.
1271 	 */
1272 	set_mm_exe_file(bprm->mm, bprm->file);
1273 
1274 	/*
1275 	 * Release all of the old mmap stuff
1276 	 */
1277 	acct_arg_size(bprm, 0);
1278 	retval = exec_mmap(bprm->mm);
1279 	if (retval)
1280 		goto out;
1281 
1282 	bprm->mm = NULL;		/* We're using it now */
1283 
1284 	set_fs(USER_DS);
1285 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1286 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1287 	flush_thread();
1288 	current->personality &= ~bprm->per_clear;
1289 
1290 	/*
1291 	 * We have to apply CLOEXEC before we change whether the process is
1292 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1293 	 * trying to access the should-be-closed file descriptors of a process
1294 	 * undergoing exec(2).
1295 	 */
1296 	do_close_on_exec(current->files);
1297 	return 0;
1298 
1299 out:
1300 	return retval;
1301 }
1302 EXPORT_SYMBOL(flush_old_exec);
1303 
would_dump(struct linux_binprm * bprm,struct file * file)1304 void would_dump(struct linux_binprm *bprm, struct file *file)
1305 {
1306 	struct inode *inode = file_inode(file);
1307 	if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1308 		struct user_namespace *old, *user_ns;
1309 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1310 
1311 		/* Ensure mm->user_ns contains the executable */
1312 		user_ns = old = bprm->mm->user_ns;
1313 		while ((user_ns != &init_user_ns) &&
1314 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1315 			user_ns = user_ns->parent;
1316 
1317 		if (old != user_ns) {
1318 			bprm->mm->user_ns = get_user_ns(user_ns);
1319 			put_user_ns(old);
1320 		}
1321 	}
1322 }
1323 EXPORT_SYMBOL(would_dump);
1324 
setup_new_exec(struct linux_binprm * bprm)1325 void setup_new_exec(struct linux_binprm * bprm)
1326 {
1327 	arch_pick_mmap_layout(current->mm);
1328 
1329 	/* This is the point of no return */
1330 	current->sas_ss_sp = current->sas_ss_size = 0;
1331 
1332 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1333 		set_dumpable(current->mm, SUID_DUMP_USER);
1334 	else
1335 		set_dumpable(current->mm, suid_dumpable);
1336 
1337 	perf_event_exec();
1338 	__set_task_comm(current, kbasename(bprm->filename), true);
1339 
1340 	/* Set the new mm task size. We have to do that late because it may
1341 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1342 	 * some architectures like powerpc
1343 	 */
1344 	current->mm->task_size = TASK_SIZE;
1345 
1346 	/* install the new credentials */
1347 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1348 	    !gid_eq(bprm->cred->gid, current_egid())) {
1349 		current->pdeath_signal = 0;
1350 	} else {
1351 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1352 			set_dumpable(current->mm, suid_dumpable);
1353 	}
1354 
1355 	/* An exec changes our domain. We are no longer part of the thread
1356 	   group */
1357 	current->self_exec_id++;
1358 	flush_signal_handlers(current, 0);
1359 }
1360 EXPORT_SYMBOL(setup_new_exec);
1361 
1362 /*
1363  * Prepare credentials and lock ->cred_guard_mutex.
1364  * install_exec_creds() commits the new creds and drops the lock.
1365  * Or, if exec fails before, free_bprm() should release ->cred and
1366  * and unlock.
1367  */
prepare_bprm_creds(struct linux_binprm * bprm)1368 int prepare_bprm_creds(struct linux_binprm *bprm)
1369 {
1370 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1371 		return -ERESTARTNOINTR;
1372 
1373 	bprm->cred = prepare_exec_creds();
1374 	if (likely(bprm->cred))
1375 		return 0;
1376 
1377 	mutex_unlock(&current->signal->cred_guard_mutex);
1378 	return -ENOMEM;
1379 }
1380 
free_bprm(struct linux_binprm * bprm)1381 static void free_bprm(struct linux_binprm *bprm)
1382 {
1383 	free_arg_pages(bprm);
1384 	if (bprm->cred) {
1385 		mutex_unlock(&current->signal->cred_guard_mutex);
1386 		abort_creds(bprm->cred);
1387 	}
1388 	if (bprm->file) {
1389 		allow_write_access(bprm->file);
1390 		fput(bprm->file);
1391 	}
1392 	/* If a binfmt changed the interp, free it. */
1393 	if (bprm->interp != bprm->filename)
1394 		kfree(bprm->interp);
1395 	kfree(bprm);
1396 }
1397 
bprm_change_interp(char * interp,struct linux_binprm * bprm)1398 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1399 {
1400 	/* If a binfmt changed the interp, free it first. */
1401 	if (bprm->interp != bprm->filename)
1402 		kfree(bprm->interp);
1403 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1404 	if (!bprm->interp)
1405 		return -ENOMEM;
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(bprm_change_interp);
1409 
1410 /*
1411  * install the new credentials for this executable
1412  */
install_exec_creds(struct linux_binprm * bprm)1413 void install_exec_creds(struct linux_binprm *bprm)
1414 {
1415 	security_bprm_committing_creds(bprm);
1416 
1417 	commit_creds(bprm->cred);
1418 	bprm->cred = NULL;
1419 
1420 	/*
1421 	 * Disable monitoring for regular users
1422 	 * when executing setuid binaries. Must
1423 	 * wait until new credentials are committed
1424 	 * by commit_creds() above
1425 	 */
1426 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1427 		perf_event_exit_task(current);
1428 	/*
1429 	 * cred_guard_mutex must be held at least to this point to prevent
1430 	 * ptrace_attach() from altering our determination of the task's
1431 	 * credentials; any time after this it may be unlocked.
1432 	 */
1433 	security_bprm_committed_creds(bprm);
1434 	mutex_unlock(&current->signal->cred_guard_mutex);
1435 }
1436 EXPORT_SYMBOL(install_exec_creds);
1437 
1438 /*
1439  * determine how safe it is to execute the proposed program
1440  * - the caller must hold ->cred_guard_mutex to protect against
1441  *   PTRACE_ATTACH or seccomp thread-sync
1442  */
check_unsafe_exec(struct linux_binprm * bprm)1443 static void check_unsafe_exec(struct linux_binprm *bprm)
1444 {
1445 	struct task_struct *p = current, *t;
1446 	unsigned n_fs;
1447 
1448 	if (p->ptrace) {
1449 		if (ptracer_capable(p, current_user_ns()))
1450 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1451 		else
1452 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1453 	}
1454 
1455 	/*
1456 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1457 	 * mess up.
1458 	 */
1459 	if (task_no_new_privs(current))
1460 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1461 
1462 	t = p;
1463 	n_fs = 1;
1464 	spin_lock(&p->fs->lock);
1465 	rcu_read_lock();
1466 	while_each_thread(p, t) {
1467 		if (t->fs == p->fs)
1468 			n_fs++;
1469 	}
1470 	rcu_read_unlock();
1471 
1472 	if (p->fs->users > n_fs)
1473 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1474 	else
1475 		p->fs->in_exec = 1;
1476 	spin_unlock(&p->fs->lock);
1477 }
1478 
bprm_fill_uid(struct linux_binprm * bprm)1479 static void bprm_fill_uid(struct linux_binprm *bprm)
1480 {
1481 	struct inode *inode;
1482 	unsigned int mode;
1483 	kuid_t uid;
1484 	kgid_t gid;
1485 
1486 	/*
1487 	 * Since this can be called multiple times (via prepare_binprm),
1488 	 * we must clear any previous work done when setting set[ug]id
1489 	 * bits from any earlier bprm->file uses (for example when run
1490 	 * first for a setuid script then again for its interpreter).
1491 	 */
1492 	bprm->cred->euid = current_euid();
1493 	bprm->cred->egid = current_egid();
1494 
1495 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1496 		return;
1497 
1498 	if (task_no_new_privs(current))
1499 		return;
1500 
1501 	inode = file_inode(bprm->file);
1502 	mode = READ_ONCE(inode->i_mode);
1503 	if (!(mode & (S_ISUID|S_ISGID)))
1504 		return;
1505 
1506 	/* Be careful if suid/sgid is set */
1507 	inode_lock(inode);
1508 
1509 	/* reload atomically mode/uid/gid now that lock held */
1510 	mode = inode->i_mode;
1511 	uid = inode->i_uid;
1512 	gid = inode->i_gid;
1513 	inode_unlock(inode);
1514 
1515 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1516 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1517 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1518 		return;
1519 
1520 	if (mode & S_ISUID) {
1521 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1522 		bprm->cred->euid = uid;
1523 	}
1524 
1525 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1526 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1527 		bprm->cred->egid = gid;
1528 	}
1529 }
1530 
1531 /*
1532  * Fill the binprm structure from the inode.
1533  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1534  *
1535  * This may be called multiple times for binary chains (scripts for example).
1536  */
prepare_binprm(struct linux_binprm * bprm)1537 int prepare_binprm(struct linux_binprm *bprm)
1538 {
1539 	int retval;
1540 
1541 	bprm_fill_uid(bprm);
1542 
1543 	/* fill in binprm security blob */
1544 	retval = security_bprm_set_creds(bprm);
1545 	if (retval)
1546 		return retval;
1547 	bprm->cred_prepared = 1;
1548 
1549 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1550 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1551 }
1552 
1553 EXPORT_SYMBOL(prepare_binprm);
1554 
1555 /*
1556  * Arguments are '\0' separated strings found at the location bprm->p
1557  * points to; chop off the first by relocating brpm->p to right after
1558  * the first '\0' encountered.
1559  */
remove_arg_zero(struct linux_binprm * bprm)1560 int remove_arg_zero(struct linux_binprm *bprm)
1561 {
1562 	int ret = 0;
1563 	unsigned long offset;
1564 	char *kaddr;
1565 	struct page *page;
1566 
1567 	if (!bprm->argc)
1568 		return 0;
1569 
1570 	do {
1571 		offset = bprm->p & ~PAGE_MASK;
1572 		page = get_arg_page(bprm, bprm->p, 0);
1573 		if (!page) {
1574 			ret = -EFAULT;
1575 			goto out;
1576 		}
1577 		kaddr = kmap_atomic(page);
1578 
1579 		for (; offset < PAGE_SIZE && kaddr[offset];
1580 				offset++, bprm->p++)
1581 			;
1582 
1583 		kunmap_atomic(kaddr);
1584 		put_arg_page(page);
1585 	} while (offset == PAGE_SIZE);
1586 
1587 	bprm->p++;
1588 	bprm->argc--;
1589 	ret = 0;
1590 
1591 out:
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL(remove_arg_zero);
1595 
1596 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1597 /*
1598  * cycle the list of binary formats handler, until one recognizes the image
1599  */
search_binary_handler(struct linux_binprm * bprm)1600 int search_binary_handler(struct linux_binprm *bprm)
1601 {
1602 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1603 	struct linux_binfmt *fmt;
1604 	int retval;
1605 
1606 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1607 	if (bprm->recursion_depth > 5)
1608 		return -ELOOP;
1609 
1610 	retval = security_bprm_check(bprm);
1611 	if (retval)
1612 		return retval;
1613 
1614 	retval = -ENOENT;
1615  retry:
1616 	read_lock(&binfmt_lock);
1617 	list_for_each_entry(fmt, &formats, lh) {
1618 		if (!try_module_get(fmt->module))
1619 			continue;
1620 		read_unlock(&binfmt_lock);
1621 		bprm->recursion_depth++;
1622 		retval = fmt->load_binary(bprm);
1623 		read_lock(&binfmt_lock);
1624 		put_binfmt(fmt);
1625 		bprm->recursion_depth--;
1626 		if (retval < 0 && !bprm->mm) {
1627 			/* we got to flush_old_exec() and failed after it */
1628 			read_unlock(&binfmt_lock);
1629 			force_sigsegv(SIGSEGV, current);
1630 			return retval;
1631 		}
1632 		if (retval != -ENOEXEC || !bprm->file) {
1633 			read_unlock(&binfmt_lock);
1634 			return retval;
1635 		}
1636 	}
1637 	read_unlock(&binfmt_lock);
1638 
1639 	if (need_retry) {
1640 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1641 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1642 			return retval;
1643 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1644 			return retval;
1645 		need_retry = false;
1646 		goto retry;
1647 	}
1648 
1649 	return retval;
1650 }
1651 EXPORT_SYMBOL(search_binary_handler);
1652 
exec_binprm(struct linux_binprm * bprm)1653 static int exec_binprm(struct linux_binprm *bprm)
1654 {
1655 	pid_t old_pid, old_vpid;
1656 	int ret;
1657 
1658 	/* Need to fetch pid before load_binary changes it */
1659 	old_pid = current->pid;
1660 	rcu_read_lock();
1661 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1662 	rcu_read_unlock();
1663 
1664 	ret = search_binary_handler(bprm);
1665 	if (ret >= 0) {
1666 		audit_bprm(bprm);
1667 		trace_sched_process_exec(current, old_pid, bprm);
1668 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1669 		proc_exec_connector(current);
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 /*
1676  * sys_execve() executes a new program.
1677  */
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1678 static int do_execveat_common(int fd, struct filename *filename,
1679 			      struct user_arg_ptr argv,
1680 			      struct user_arg_ptr envp,
1681 			      int flags)
1682 {
1683 	char *pathbuf = NULL;
1684 	struct linux_binprm *bprm;
1685 	struct file *file;
1686 	struct files_struct *displaced;
1687 	int retval;
1688 
1689 	if (IS_ERR(filename))
1690 		return PTR_ERR(filename);
1691 
1692 	/*
1693 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1694 	 * set*uid() to execve() because too many poorly written programs
1695 	 * don't check setuid() return code.  Here we additionally recheck
1696 	 * whether NPROC limit is still exceeded.
1697 	 */
1698 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1699 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1700 		retval = -EAGAIN;
1701 		goto out_ret;
1702 	}
1703 
1704 	/* We're below the limit (still or again), so we don't want to make
1705 	 * further execve() calls fail. */
1706 	current->flags &= ~PF_NPROC_EXCEEDED;
1707 
1708 	retval = unshare_files(&displaced);
1709 	if (retval)
1710 		goto out_ret;
1711 
1712 	retval = -ENOMEM;
1713 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1714 	if (!bprm)
1715 		goto out_files;
1716 
1717 	retval = prepare_bprm_creds(bprm);
1718 	if (retval)
1719 		goto out_free;
1720 
1721 	check_unsafe_exec(bprm);
1722 	current->in_execve = 1;
1723 
1724 	file = do_open_execat(fd, filename, flags);
1725 	retval = PTR_ERR(file);
1726 	if (IS_ERR(file))
1727 		goto out_unmark;
1728 
1729 	sched_exec();
1730 
1731 	bprm->file = file;
1732 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1733 		bprm->filename = filename->name;
1734 	} else {
1735 		if (filename->name[0] == '\0')
1736 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1737 		else
1738 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1739 					    fd, filename->name);
1740 		if (!pathbuf) {
1741 			retval = -ENOMEM;
1742 			goto out_unmark;
1743 		}
1744 		/*
1745 		 * Record that a name derived from an O_CLOEXEC fd will be
1746 		 * inaccessible after exec. Relies on having exclusive access to
1747 		 * current->files (due to unshare_files above).
1748 		 */
1749 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1750 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1751 		bprm->filename = pathbuf;
1752 	}
1753 	bprm->interp = bprm->filename;
1754 
1755 	retval = bprm_mm_init(bprm);
1756 	if (retval)
1757 		goto out_unmark;
1758 
1759 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1760 	if ((retval = bprm->argc) < 0)
1761 		goto out;
1762 
1763 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1764 	if ((retval = bprm->envc) < 0)
1765 		goto out;
1766 
1767 	retval = prepare_binprm(bprm);
1768 	if (retval < 0)
1769 		goto out;
1770 
1771 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1772 	if (retval < 0)
1773 		goto out;
1774 
1775 	bprm->exec = bprm->p;
1776 	retval = copy_strings(bprm->envc, envp, bprm);
1777 	if (retval < 0)
1778 		goto out;
1779 
1780 	retval = copy_strings(bprm->argc, argv, bprm);
1781 	if (retval < 0)
1782 		goto out;
1783 
1784 	would_dump(bprm, bprm->file);
1785 
1786 	retval = exec_binprm(bprm);
1787 	if (retval < 0)
1788 		goto out;
1789 
1790 	/* execve succeeded */
1791 	current->fs->in_exec = 0;
1792 	current->in_execve = 0;
1793 	acct_update_integrals(current);
1794 	task_numa_free(current);
1795 	free_bprm(bprm);
1796 	kfree(pathbuf);
1797 	putname(filename);
1798 	if (displaced)
1799 		put_files_struct(displaced);
1800 	return retval;
1801 
1802 out:
1803 	if (bprm->mm) {
1804 		acct_arg_size(bprm, 0);
1805 		mmput(bprm->mm);
1806 	}
1807 
1808 out_unmark:
1809 	current->fs->in_exec = 0;
1810 	current->in_execve = 0;
1811 
1812 out_free:
1813 	free_bprm(bprm);
1814 	kfree(pathbuf);
1815 
1816 out_files:
1817 	if (displaced)
1818 		reset_files_struct(displaced);
1819 out_ret:
1820 	putname(filename);
1821 	return retval;
1822 }
1823 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1824 int do_execve(struct filename *filename,
1825 	const char __user *const __user *__argv,
1826 	const char __user *const __user *__envp)
1827 {
1828 	struct user_arg_ptr argv = { .ptr.native = __argv };
1829 	struct user_arg_ptr envp = { .ptr.native = __envp };
1830 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1831 }
1832 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1833 int do_execveat(int fd, struct filename *filename,
1834 		const char __user *const __user *__argv,
1835 		const char __user *const __user *__envp,
1836 		int flags)
1837 {
1838 	struct user_arg_ptr argv = { .ptr.native = __argv };
1839 	struct user_arg_ptr envp = { .ptr.native = __envp };
1840 
1841 	return do_execveat_common(fd, filename, argv, envp, flags);
1842 }
1843 
1844 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1845 static int compat_do_execve(struct filename *filename,
1846 	const compat_uptr_t __user *__argv,
1847 	const compat_uptr_t __user *__envp)
1848 {
1849 	struct user_arg_ptr argv = {
1850 		.is_compat = true,
1851 		.ptr.compat = __argv,
1852 	};
1853 	struct user_arg_ptr envp = {
1854 		.is_compat = true,
1855 		.ptr.compat = __envp,
1856 	};
1857 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1858 }
1859 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1860 static int compat_do_execveat(int fd, struct filename *filename,
1861 			      const compat_uptr_t __user *__argv,
1862 			      const compat_uptr_t __user *__envp,
1863 			      int flags)
1864 {
1865 	struct user_arg_ptr argv = {
1866 		.is_compat = true,
1867 		.ptr.compat = __argv,
1868 	};
1869 	struct user_arg_ptr envp = {
1870 		.is_compat = true,
1871 		.ptr.compat = __envp,
1872 	};
1873 	return do_execveat_common(fd, filename, argv, envp, flags);
1874 }
1875 #endif
1876 
set_binfmt(struct linux_binfmt * new)1877 void set_binfmt(struct linux_binfmt *new)
1878 {
1879 	struct mm_struct *mm = current->mm;
1880 
1881 	if (mm->binfmt)
1882 		module_put(mm->binfmt->module);
1883 
1884 	mm->binfmt = new;
1885 	if (new)
1886 		__module_get(new->module);
1887 }
1888 EXPORT_SYMBOL(set_binfmt);
1889 
1890 /*
1891  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1892  */
set_dumpable(struct mm_struct * mm,int value)1893 void set_dumpable(struct mm_struct *mm, int value)
1894 {
1895 	unsigned long old, new;
1896 
1897 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1898 		return;
1899 
1900 	do {
1901 		old = ACCESS_ONCE(mm->flags);
1902 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1903 	} while (cmpxchg(&mm->flags, old, new) != old);
1904 }
1905 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1906 SYSCALL_DEFINE3(execve,
1907 		const char __user *, filename,
1908 		const char __user *const __user *, argv,
1909 		const char __user *const __user *, envp)
1910 {
1911 	return do_execve(getname(filename), argv, envp);
1912 }
1913 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1914 SYSCALL_DEFINE5(execveat,
1915 		int, fd, const char __user *, filename,
1916 		const char __user *const __user *, argv,
1917 		const char __user *const __user *, envp,
1918 		int, flags)
1919 {
1920 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1921 
1922 	return do_execveat(fd,
1923 			   getname_flags(filename, lookup_flags, NULL),
1924 			   argv, envp, flags);
1925 }
1926 
1927 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1928 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1929 	const compat_uptr_t __user *, argv,
1930 	const compat_uptr_t __user *, envp)
1931 {
1932 	return compat_do_execve(getname(filename), argv, envp);
1933 }
1934 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)1935 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1936 		       const char __user *, filename,
1937 		       const compat_uptr_t __user *, argv,
1938 		       const compat_uptr_t __user *, envp,
1939 		       int,  flags)
1940 {
1941 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1942 
1943 	return compat_do_execveat(fd,
1944 				  getname_flags(filename, lookup_flags, NULL),
1945 				  argv, envp, flags);
1946 }
1947 #endif
1948