1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
__register_binfmt(struct linux_binfmt * fmt,int insert)75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
unregister_binfmt(struct linux_binfmt * fmt)88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
put_binfmt(struct linux_binfmt * fmt)97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
path_noexec(const struct path * path)102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
SYSCALL_DEFINE1(uselib,const char __user *,library)115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202 #endif
203
204 if (write)
205 gup_flags |= FOLL_WRITE;
206
207 /*
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
210 */
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 &page, NULL);
213 if (ret <= 0)
214 return NULL;
215
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 unsigned long ptr_size, limit;
219
220 /*
221 * Since the stack will hold pointers to the strings, we
222 * must account for them as well.
223 *
224 * The size calculation is the entire vma while each arg page is
225 * built, so each time we get here it's calculating how far it
226 * is currently (rather than each call being just the newly
227 * added size from the arg page). As a result, we need to
228 * always add the entire size of the pointers, so that on the
229 * last call to get_arg_page() we'll actually have the entire
230 * correct size.
231 */
232 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
233 if (ptr_size > ULONG_MAX - size)
234 goto fail;
235 size += ptr_size;
236
237 acct_arg_size(bprm, size / PAGE_SIZE);
238
239 /*
240 * We've historically supported up to 32 pages (ARG_MAX)
241 * of argument strings even with small stacks
242 */
243 if (size <= ARG_MAX)
244 return page;
245
246 /*
247 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
248 * (whichever is smaller) for the argv+env strings.
249 * This ensures that:
250 * - the remaining binfmt code will not run out of stack space,
251 * - the program will have a reasonable amount of stack left
252 * to work from.
253 */
254 limit = _STK_LIM / 4 * 3;
255 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
256 if (size > limit)
257 goto fail;
258 }
259
260 return page;
261
262 fail:
263 put_page(page);
264 return NULL;
265 }
266
put_arg_page(struct page * page)267 static void put_arg_page(struct page *page)
268 {
269 put_page(page);
270 }
271
free_arg_pages(struct linux_binprm * bprm)272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 struct page *page)
278 {
279 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281
__bprm_mm_init(struct linux_binprm * bprm)282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284 int err;
285 struct vm_area_struct *vma = NULL;
286 struct mm_struct *mm = bprm->mm;
287
288 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289 if (!vma)
290 return -ENOMEM;
291
292 if (down_write_killable(&mm->mmap_sem)) {
293 err = -EINTR;
294 goto err_free;
295 }
296 vma->vm_mm = mm;
297
298 /*
299 * Place the stack at the largest stack address the architecture
300 * supports. Later, we'll move this to an appropriate place. We don't
301 * use STACK_TOP because that can depend on attributes which aren't
302 * configured yet.
303 */
304 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
305 vma->vm_end = STACK_TOP_MAX;
306 vma->vm_start = vma->vm_end - PAGE_SIZE;
307 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
308 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
309 INIT_LIST_HEAD(&vma->anon_vma_chain);
310
311 err = insert_vm_struct(mm, vma);
312 if (err)
313 goto err;
314
315 mm->stack_vm = mm->total_vm = 1;
316 arch_bprm_mm_init(mm, vma);
317 up_write(&mm->mmap_sem);
318 bprm->p = vma->vm_end - sizeof(void *);
319 return 0;
320 err:
321 up_write(&mm->mmap_sem);
322 err_free:
323 bprm->vma = NULL;
324 kmem_cache_free(vm_area_cachep, vma);
325 return err;
326 }
327
valid_arg_len(struct linux_binprm * bprm,long len)328 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 {
330 return len <= MAX_ARG_STRLEN;
331 }
332
333 #else
334
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)335 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
336 {
337 }
338
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)339 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 int write)
341 {
342 struct page *page;
343
344 page = bprm->page[pos / PAGE_SIZE];
345 if (!page && write) {
346 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
347 if (!page)
348 return NULL;
349 bprm->page[pos / PAGE_SIZE] = page;
350 }
351
352 return page;
353 }
354
put_arg_page(struct page * page)355 static void put_arg_page(struct page *page)
356 {
357 }
358
free_arg_page(struct linux_binprm * bprm,int i)359 static void free_arg_page(struct linux_binprm *bprm, int i)
360 {
361 if (bprm->page[i]) {
362 __free_page(bprm->page[i]);
363 bprm->page[i] = NULL;
364 }
365 }
366
free_arg_pages(struct linux_binprm * bprm)367 static void free_arg_pages(struct linux_binprm *bprm)
368 {
369 int i;
370
371 for (i = 0; i < MAX_ARG_PAGES; i++)
372 free_arg_page(bprm, i);
373 }
374
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)375 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
376 struct page *page)
377 {
378 }
379
__bprm_mm_init(struct linux_binprm * bprm)380 static int __bprm_mm_init(struct linux_binprm *bprm)
381 {
382 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
383 return 0;
384 }
385
valid_arg_len(struct linux_binprm * bprm,long len)386 static bool valid_arg_len(struct linux_binprm *bprm, long len)
387 {
388 return len <= bprm->p;
389 }
390
391 #endif /* CONFIG_MMU */
392
393 /*
394 * Create a new mm_struct and populate it with a temporary stack
395 * vm_area_struct. We don't have enough context at this point to set the stack
396 * flags, permissions, and offset, so we use temporary values. We'll update
397 * them later in setup_arg_pages().
398 */
bprm_mm_init(struct linux_binprm * bprm)399 static int bprm_mm_init(struct linux_binprm *bprm)
400 {
401 int err;
402 struct mm_struct *mm = NULL;
403
404 bprm->mm = mm = mm_alloc();
405 err = -ENOMEM;
406 if (!mm)
407 goto err;
408
409 err = __bprm_mm_init(bprm);
410 if (err)
411 goto err;
412
413 return 0;
414
415 err:
416 if (mm) {
417 bprm->mm = NULL;
418 mmdrop(mm);
419 }
420
421 return err;
422 }
423
424 struct user_arg_ptr {
425 #ifdef CONFIG_COMPAT
426 bool is_compat;
427 #endif
428 union {
429 const char __user *const __user *native;
430 #ifdef CONFIG_COMPAT
431 const compat_uptr_t __user *compat;
432 #endif
433 } ptr;
434 };
435
get_user_arg_ptr(struct user_arg_ptr argv,int nr)436 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
437 {
438 const char __user *native;
439
440 #ifdef CONFIG_COMPAT
441 if (unlikely(argv.is_compat)) {
442 compat_uptr_t compat;
443
444 if (get_user(compat, argv.ptr.compat + nr))
445 return ERR_PTR(-EFAULT);
446
447 return compat_ptr(compat);
448 }
449 #endif
450
451 if (get_user(native, argv.ptr.native + nr))
452 return ERR_PTR(-EFAULT);
453
454 return native;
455 }
456
457 /*
458 * count() counts the number of strings in array ARGV.
459 */
count(struct user_arg_ptr argv,int max)460 static int count(struct user_arg_ptr argv, int max)
461 {
462 int i = 0;
463
464 if (argv.ptr.native != NULL) {
465 for (;;) {
466 const char __user *p = get_user_arg_ptr(argv, i);
467
468 if (!p)
469 break;
470
471 if (IS_ERR(p))
472 return -EFAULT;
473
474 if (i >= max)
475 return -E2BIG;
476 ++i;
477
478 if (fatal_signal_pending(current))
479 return -ERESTARTNOHAND;
480 cond_resched();
481 }
482 }
483 return i;
484 }
485
486 /*
487 * 'copy_strings()' copies argument/environment strings from the old
488 * processes's memory to the new process's stack. The call to get_user_pages()
489 * ensures the destination page is created and not swapped out.
490 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)491 static int copy_strings(int argc, struct user_arg_ptr argv,
492 struct linux_binprm *bprm)
493 {
494 struct page *kmapped_page = NULL;
495 char *kaddr = NULL;
496 unsigned long kpos = 0;
497 int ret;
498
499 while (argc-- > 0) {
500 const char __user *str;
501 int len;
502 unsigned long pos;
503
504 ret = -EFAULT;
505 str = get_user_arg_ptr(argv, argc);
506 if (IS_ERR(str))
507 goto out;
508
509 len = strnlen_user(str, MAX_ARG_STRLEN);
510 if (!len)
511 goto out;
512
513 ret = -E2BIG;
514 if (!valid_arg_len(bprm, len))
515 goto out;
516
517 /* We're going to work our way backwords. */
518 pos = bprm->p;
519 str += len;
520 bprm->p -= len;
521
522 while (len > 0) {
523 int offset, bytes_to_copy;
524
525 if (fatal_signal_pending(current)) {
526 ret = -ERESTARTNOHAND;
527 goto out;
528 }
529 cond_resched();
530
531 offset = pos % PAGE_SIZE;
532 if (offset == 0)
533 offset = PAGE_SIZE;
534
535 bytes_to_copy = offset;
536 if (bytes_to_copy > len)
537 bytes_to_copy = len;
538
539 offset -= bytes_to_copy;
540 pos -= bytes_to_copy;
541 str -= bytes_to_copy;
542 len -= bytes_to_copy;
543
544 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
545 struct page *page;
546
547 page = get_arg_page(bprm, pos, 1);
548 if (!page) {
549 ret = -E2BIG;
550 goto out;
551 }
552
553 if (kmapped_page) {
554 flush_kernel_dcache_page(kmapped_page);
555 kunmap(kmapped_page);
556 put_arg_page(kmapped_page);
557 }
558 kmapped_page = page;
559 kaddr = kmap(kmapped_page);
560 kpos = pos & PAGE_MASK;
561 flush_arg_page(bprm, kpos, kmapped_page);
562 }
563 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
564 ret = -EFAULT;
565 goto out;
566 }
567 }
568 }
569 ret = 0;
570 out:
571 if (kmapped_page) {
572 flush_kernel_dcache_page(kmapped_page);
573 kunmap(kmapped_page);
574 put_arg_page(kmapped_page);
575 }
576 return ret;
577 }
578
579 /*
580 * Like copy_strings, but get argv and its values from kernel memory.
581 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)582 int copy_strings_kernel(int argc, const char *const *__argv,
583 struct linux_binprm *bprm)
584 {
585 int r;
586 mm_segment_t oldfs = get_fs();
587 struct user_arg_ptr argv = {
588 .ptr.native = (const char __user *const __user *)__argv,
589 };
590
591 set_fs(KERNEL_DS);
592 r = copy_strings(argc, argv, bprm);
593 set_fs(oldfs);
594
595 return r;
596 }
597 EXPORT_SYMBOL(copy_strings_kernel);
598
599 #ifdef CONFIG_MMU
600
601 /*
602 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
603 * the binfmt code determines where the new stack should reside, we shift it to
604 * its final location. The process proceeds as follows:
605 *
606 * 1) Use shift to calculate the new vma endpoints.
607 * 2) Extend vma to cover both the old and new ranges. This ensures the
608 * arguments passed to subsequent functions are consistent.
609 * 3) Move vma's page tables to the new range.
610 * 4) Free up any cleared pgd range.
611 * 5) Shrink the vma to cover only the new range.
612 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)613 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
614 {
615 struct mm_struct *mm = vma->vm_mm;
616 unsigned long old_start = vma->vm_start;
617 unsigned long old_end = vma->vm_end;
618 unsigned long length = old_end - old_start;
619 unsigned long new_start = old_start - shift;
620 unsigned long new_end = old_end - shift;
621 struct mmu_gather tlb;
622
623 BUG_ON(new_start > new_end);
624
625 /*
626 * ensure there are no vmas between where we want to go
627 * and where we are
628 */
629 if (vma != find_vma(mm, new_start))
630 return -EFAULT;
631
632 /*
633 * cover the whole range: [new_start, old_end)
634 */
635 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
636 return -ENOMEM;
637
638 /*
639 * move the page tables downwards, on failure we rely on
640 * process cleanup to remove whatever mess we made.
641 */
642 if (length != move_page_tables(vma, old_start,
643 vma, new_start, length, false))
644 return -ENOMEM;
645
646 lru_add_drain();
647 tlb_gather_mmu(&tlb, mm, old_start, old_end);
648 if (new_end > old_start) {
649 /*
650 * when the old and new regions overlap clear from new_end.
651 */
652 free_pgd_range(&tlb, new_end, old_end, new_end,
653 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
654 } else {
655 /*
656 * otherwise, clean from old_start; this is done to not touch
657 * the address space in [new_end, old_start) some architectures
658 * have constraints on va-space that make this illegal (IA64) -
659 * for the others its just a little faster.
660 */
661 free_pgd_range(&tlb, old_start, old_end, new_end,
662 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 }
664 tlb_finish_mmu(&tlb, old_start, old_end);
665
666 /*
667 * Shrink the vma to just the new range. Always succeeds.
668 */
669 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
670
671 return 0;
672 }
673
674 /*
675 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
676 * the stack is optionally relocated, and some extra space is added.
677 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)678 int setup_arg_pages(struct linux_binprm *bprm,
679 unsigned long stack_top,
680 int executable_stack)
681 {
682 unsigned long ret;
683 unsigned long stack_shift;
684 struct mm_struct *mm = current->mm;
685 struct vm_area_struct *vma = bprm->vma;
686 struct vm_area_struct *prev = NULL;
687 unsigned long vm_flags;
688 unsigned long stack_base;
689 unsigned long stack_size;
690 unsigned long stack_expand;
691 unsigned long rlim_stack;
692
693 #ifdef CONFIG_STACK_GROWSUP
694 /* Limit stack size */
695 stack_base = rlimit_max(RLIMIT_STACK);
696 if (stack_base > STACK_SIZE_MAX)
697 stack_base = STACK_SIZE_MAX;
698
699 /* Add space for stack randomization. */
700 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
701
702 /* Make sure we didn't let the argument array grow too large. */
703 if (vma->vm_end - vma->vm_start > stack_base)
704 return -ENOMEM;
705
706 stack_base = PAGE_ALIGN(stack_top - stack_base);
707
708 stack_shift = vma->vm_start - stack_base;
709 mm->arg_start = bprm->p - stack_shift;
710 bprm->p = vma->vm_end - stack_shift;
711 #else
712 stack_top = arch_align_stack(stack_top);
713 stack_top = PAGE_ALIGN(stack_top);
714
715 if (unlikely(stack_top < mmap_min_addr) ||
716 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
717 return -ENOMEM;
718
719 stack_shift = vma->vm_end - stack_top;
720
721 bprm->p -= stack_shift;
722 mm->arg_start = bprm->p;
723 #endif
724
725 if (bprm->loader)
726 bprm->loader -= stack_shift;
727 bprm->exec -= stack_shift;
728
729 if (down_write_killable(&mm->mmap_sem))
730 return -EINTR;
731
732 vm_flags = VM_STACK_FLAGS;
733
734 /*
735 * Adjust stack execute permissions; explicitly enable for
736 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
737 * (arch default) otherwise.
738 */
739 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
740 vm_flags |= VM_EXEC;
741 else if (executable_stack == EXSTACK_DISABLE_X)
742 vm_flags &= ~VM_EXEC;
743 vm_flags |= mm->def_flags;
744 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
745
746 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
747 vm_flags);
748 if (ret)
749 goto out_unlock;
750 BUG_ON(prev != vma);
751
752 /* Move stack pages down in memory. */
753 if (stack_shift) {
754 ret = shift_arg_pages(vma, stack_shift);
755 if (ret)
756 goto out_unlock;
757 }
758
759 /* mprotect_fixup is overkill to remove the temporary stack flags */
760 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
761
762 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
763 stack_size = vma->vm_end - vma->vm_start;
764 /*
765 * Align this down to a page boundary as expand_stack
766 * will align it up.
767 */
768 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
769 #ifdef CONFIG_STACK_GROWSUP
770 if (stack_size + stack_expand > rlim_stack)
771 stack_base = vma->vm_start + rlim_stack;
772 else
773 stack_base = vma->vm_end + stack_expand;
774 #else
775 if (stack_size + stack_expand > rlim_stack)
776 stack_base = vma->vm_end - rlim_stack;
777 else
778 stack_base = vma->vm_start - stack_expand;
779 #endif
780 current->mm->start_stack = bprm->p;
781 ret = expand_stack(vma, stack_base);
782 if (ret)
783 ret = -EFAULT;
784
785 out_unlock:
786 up_write(&mm->mmap_sem);
787 return ret;
788 }
789 EXPORT_SYMBOL(setup_arg_pages);
790
791 #else
792
793 /*
794 * Transfer the program arguments and environment from the holding pages
795 * onto the stack. The provided stack pointer is adjusted accordingly.
796 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)797 int transfer_args_to_stack(struct linux_binprm *bprm,
798 unsigned long *sp_location)
799 {
800 unsigned long index, stop, sp;
801 int ret = 0;
802
803 stop = bprm->p >> PAGE_SHIFT;
804 sp = *sp_location;
805
806 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
807 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
808 char *src = kmap(bprm->page[index]) + offset;
809 sp -= PAGE_SIZE - offset;
810 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
811 ret = -EFAULT;
812 kunmap(bprm->page[index]);
813 if (ret)
814 goto out;
815 }
816
817 *sp_location = sp;
818
819 out:
820 return ret;
821 }
822 EXPORT_SYMBOL(transfer_args_to_stack);
823
824 #endif /* CONFIG_MMU */
825
do_open_execat(int fd,struct filename * name,int flags)826 static struct file *do_open_execat(int fd, struct filename *name, int flags)
827 {
828 struct file *file;
829 int err;
830 struct open_flags open_exec_flags = {
831 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
832 .acc_mode = MAY_EXEC,
833 .intent = LOOKUP_OPEN,
834 .lookup_flags = LOOKUP_FOLLOW,
835 };
836
837 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
838 return ERR_PTR(-EINVAL);
839 if (flags & AT_SYMLINK_NOFOLLOW)
840 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
841 if (flags & AT_EMPTY_PATH)
842 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
843
844 file = do_filp_open(fd, name, &open_exec_flags);
845 if (IS_ERR(file))
846 goto out;
847
848 err = -EACCES;
849 if (!S_ISREG(file_inode(file)->i_mode))
850 goto exit;
851
852 if (path_noexec(&file->f_path))
853 goto exit;
854
855 err = deny_write_access(file);
856 if (err)
857 goto exit;
858
859 if (name->name[0] != '\0')
860 fsnotify_open(file);
861
862 out:
863 return file;
864
865 exit:
866 fput(file);
867 return ERR_PTR(err);
868 }
869
open_exec(const char * name)870 struct file *open_exec(const char *name)
871 {
872 struct filename *filename = getname_kernel(name);
873 struct file *f = ERR_CAST(filename);
874
875 if (!IS_ERR(filename)) {
876 f = do_open_execat(AT_FDCWD, filename, 0);
877 putname(filename);
878 }
879 return f;
880 }
881 EXPORT_SYMBOL(open_exec);
882
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)883 int kernel_read(struct file *file, loff_t offset,
884 char *addr, unsigned long count)
885 {
886 mm_segment_t old_fs;
887 loff_t pos = offset;
888 int result;
889
890 old_fs = get_fs();
891 set_fs(get_ds());
892 /* The cast to a user pointer is valid due to the set_fs() */
893 result = vfs_read(file, (void __user *)addr, count, &pos);
894 set_fs(old_fs);
895 return result;
896 }
897
898 EXPORT_SYMBOL(kernel_read);
899
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)900 int kernel_read_file(struct file *file, void **buf, loff_t *size,
901 loff_t max_size, enum kernel_read_file_id id)
902 {
903 loff_t i_size, pos;
904 ssize_t bytes = 0;
905 int ret;
906
907 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
908 return -EINVAL;
909
910 ret = security_kernel_read_file(file, id);
911 if (ret)
912 return ret;
913
914 ret = deny_write_access(file);
915 if (ret)
916 return ret;
917
918 i_size = i_size_read(file_inode(file));
919 if (max_size > 0 && i_size > max_size) {
920 ret = -EFBIG;
921 goto out;
922 }
923 if (i_size <= 0) {
924 ret = -EINVAL;
925 goto out;
926 }
927
928 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
929 *buf = vmalloc(i_size);
930 if (!*buf) {
931 ret = -ENOMEM;
932 goto out;
933 }
934
935 pos = 0;
936 while (pos < i_size) {
937 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
938 i_size - pos);
939 if (bytes < 0) {
940 ret = bytes;
941 goto out;
942 }
943
944 if (bytes == 0)
945 break;
946 pos += bytes;
947 }
948
949 if (pos != i_size) {
950 ret = -EIO;
951 goto out_free;
952 }
953
954 ret = security_kernel_post_read_file(file, *buf, i_size, id);
955 if (!ret)
956 *size = pos;
957
958 out_free:
959 if (ret < 0) {
960 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
961 vfree(*buf);
962 *buf = NULL;
963 }
964 }
965
966 out:
967 allow_write_access(file);
968 return ret;
969 }
970 EXPORT_SYMBOL_GPL(kernel_read_file);
971
kernel_read_file_from_path(char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)972 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
973 loff_t max_size, enum kernel_read_file_id id)
974 {
975 struct file *file;
976 int ret;
977
978 if (!path || !*path)
979 return -EINVAL;
980
981 file = filp_open(path, O_RDONLY, 0);
982 if (IS_ERR(file))
983 return PTR_ERR(file);
984
985 ret = kernel_read_file(file, buf, size, max_size, id);
986 fput(file);
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
990
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)991 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
992 enum kernel_read_file_id id)
993 {
994 struct fd f = fdget(fd);
995 int ret = -EBADF;
996
997 if (!f.file)
998 goto out;
999
1000 ret = kernel_read_file(f.file, buf, size, max_size, id);
1001 out:
1002 fdput(f);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1006
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)1007 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1008 {
1009 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1010 if (res > 0)
1011 flush_icache_range(addr, addr + len);
1012 return res;
1013 }
1014 EXPORT_SYMBOL(read_code);
1015
exec_mmap(struct mm_struct * mm)1016 static int exec_mmap(struct mm_struct *mm)
1017 {
1018 struct task_struct *tsk;
1019 struct mm_struct *old_mm, *active_mm;
1020
1021 /* Notify parent that we're no longer interested in the old VM */
1022 tsk = current;
1023 old_mm = current->mm;
1024 mm_release(tsk, old_mm);
1025
1026 if (old_mm) {
1027 sync_mm_rss(old_mm);
1028 /*
1029 * Make sure that if there is a core dump in progress
1030 * for the old mm, we get out and die instead of going
1031 * through with the exec. We must hold mmap_sem around
1032 * checking core_state and changing tsk->mm.
1033 */
1034 down_read(&old_mm->mmap_sem);
1035 if (unlikely(old_mm->core_state)) {
1036 up_read(&old_mm->mmap_sem);
1037 return -EINTR;
1038 }
1039 }
1040 task_lock(tsk);
1041 active_mm = tsk->active_mm;
1042 tsk->mm = mm;
1043 tsk->active_mm = mm;
1044 activate_mm(active_mm, mm);
1045 tsk->mm->vmacache_seqnum = 0;
1046 vmacache_flush(tsk);
1047 task_unlock(tsk);
1048 if (old_mm) {
1049 up_read(&old_mm->mmap_sem);
1050 BUG_ON(active_mm != old_mm);
1051 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1052 mm_update_next_owner(old_mm);
1053 mmput(old_mm);
1054 return 0;
1055 }
1056 mmdrop(active_mm);
1057 return 0;
1058 }
1059
1060 /*
1061 * This function makes sure the current process has its own signal table,
1062 * so that flush_signal_handlers can later reset the handlers without
1063 * disturbing other processes. (Other processes might share the signal
1064 * table via the CLONE_SIGHAND option to clone().)
1065 */
de_thread(struct task_struct * tsk)1066 static int de_thread(struct task_struct *tsk)
1067 {
1068 struct signal_struct *sig = tsk->signal;
1069 struct sighand_struct *oldsighand = tsk->sighand;
1070 spinlock_t *lock = &oldsighand->siglock;
1071
1072 if (thread_group_empty(tsk))
1073 goto no_thread_group;
1074
1075 /*
1076 * Kill all other threads in the thread group.
1077 */
1078 spin_lock_irq(lock);
1079 if (signal_group_exit(sig)) {
1080 /*
1081 * Another group action in progress, just
1082 * return so that the signal is processed.
1083 */
1084 spin_unlock_irq(lock);
1085 return -EAGAIN;
1086 }
1087
1088 sig->group_exit_task = tsk;
1089 sig->notify_count = zap_other_threads(tsk);
1090 if (!thread_group_leader(tsk))
1091 sig->notify_count--;
1092
1093 while (sig->notify_count) {
1094 __set_current_state(TASK_KILLABLE);
1095 spin_unlock_irq(lock);
1096 schedule();
1097 if (unlikely(__fatal_signal_pending(tsk)))
1098 goto killed;
1099 spin_lock_irq(lock);
1100 }
1101 spin_unlock_irq(lock);
1102
1103 /*
1104 * At this point all other threads have exited, all we have to
1105 * do is to wait for the thread group leader to become inactive,
1106 * and to assume its PID:
1107 */
1108 if (!thread_group_leader(tsk)) {
1109 struct task_struct *leader = tsk->group_leader;
1110
1111 for (;;) {
1112 threadgroup_change_begin(tsk);
1113 write_lock_irq(&tasklist_lock);
1114 /*
1115 * Do this under tasklist_lock to ensure that
1116 * exit_notify() can't miss ->group_exit_task
1117 */
1118 sig->notify_count = -1;
1119 if (likely(leader->exit_state))
1120 break;
1121 __set_current_state(TASK_KILLABLE);
1122 write_unlock_irq(&tasklist_lock);
1123 threadgroup_change_end(tsk);
1124 schedule();
1125 if (unlikely(__fatal_signal_pending(tsk)))
1126 goto killed;
1127 }
1128
1129 /*
1130 * The only record we have of the real-time age of a
1131 * process, regardless of execs it's done, is start_time.
1132 * All the past CPU time is accumulated in signal_struct
1133 * from sister threads now dead. But in this non-leader
1134 * exec, nothing survives from the original leader thread,
1135 * whose birth marks the true age of this process now.
1136 * When we take on its identity by switching to its PID, we
1137 * also take its birthdate (always earlier than our own).
1138 */
1139 tsk->start_time = leader->start_time;
1140 tsk->real_start_time = leader->real_start_time;
1141
1142 BUG_ON(!same_thread_group(leader, tsk));
1143 BUG_ON(has_group_leader_pid(tsk));
1144 /*
1145 * An exec() starts a new thread group with the
1146 * TGID of the previous thread group. Rehash the
1147 * two threads with a switched PID, and release
1148 * the former thread group leader:
1149 */
1150
1151 /* Become a process group leader with the old leader's pid.
1152 * The old leader becomes a thread of the this thread group.
1153 * Note: The old leader also uses this pid until release_task
1154 * is called. Odd but simple and correct.
1155 */
1156 tsk->pid = leader->pid;
1157 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1158 transfer_pid(leader, tsk, PIDTYPE_PGID);
1159 transfer_pid(leader, tsk, PIDTYPE_SID);
1160
1161 list_replace_rcu(&leader->tasks, &tsk->tasks);
1162 list_replace_init(&leader->sibling, &tsk->sibling);
1163
1164 tsk->group_leader = tsk;
1165 leader->group_leader = tsk;
1166
1167 tsk->exit_signal = SIGCHLD;
1168 leader->exit_signal = -1;
1169
1170 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1171 leader->exit_state = EXIT_DEAD;
1172
1173 /*
1174 * We are going to release_task()->ptrace_unlink() silently,
1175 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1176 * the tracer wont't block again waiting for this thread.
1177 */
1178 if (unlikely(leader->ptrace))
1179 __wake_up_parent(leader, leader->parent);
1180 write_unlock_irq(&tasklist_lock);
1181 threadgroup_change_end(tsk);
1182
1183 release_task(leader);
1184 }
1185
1186 sig->group_exit_task = NULL;
1187 sig->notify_count = 0;
1188
1189 no_thread_group:
1190 /* we have changed execution domain */
1191 tsk->exit_signal = SIGCHLD;
1192
1193 exit_itimers(sig);
1194 flush_itimer_signals();
1195
1196 if (atomic_read(&oldsighand->count) != 1) {
1197 struct sighand_struct *newsighand;
1198 /*
1199 * This ->sighand is shared with the CLONE_SIGHAND
1200 * but not CLONE_THREAD task, switch to the new one.
1201 */
1202 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1203 if (!newsighand)
1204 return -ENOMEM;
1205
1206 atomic_set(&newsighand->count, 1);
1207 memcpy(newsighand->action, oldsighand->action,
1208 sizeof(newsighand->action));
1209
1210 write_lock_irq(&tasklist_lock);
1211 spin_lock(&oldsighand->siglock);
1212 rcu_assign_pointer(tsk->sighand, newsighand);
1213 spin_unlock(&oldsighand->siglock);
1214 write_unlock_irq(&tasklist_lock);
1215
1216 __cleanup_sighand(oldsighand);
1217 }
1218
1219 BUG_ON(!thread_group_leader(tsk));
1220 return 0;
1221
1222 killed:
1223 /* protects against exit_notify() and __exit_signal() */
1224 read_lock(&tasklist_lock);
1225 sig->group_exit_task = NULL;
1226 sig->notify_count = 0;
1227 read_unlock(&tasklist_lock);
1228 return -EAGAIN;
1229 }
1230
get_task_comm(char * buf,struct task_struct * tsk)1231 char *get_task_comm(char *buf, struct task_struct *tsk)
1232 {
1233 /* buf must be at least sizeof(tsk->comm) in size */
1234 task_lock(tsk);
1235 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 return buf;
1238 }
1239 EXPORT_SYMBOL_GPL(get_task_comm);
1240
1241 /*
1242 * These functions flushes out all traces of the currently running executable
1243 * so that a new one can be started
1244 */
1245
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1246 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1247 {
1248 task_lock(tsk);
1249 trace_task_rename(tsk, buf);
1250 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1251 task_unlock(tsk);
1252 perf_event_comm(tsk, exec);
1253 }
1254
flush_old_exec(struct linux_binprm * bprm)1255 int flush_old_exec(struct linux_binprm * bprm)
1256 {
1257 int retval;
1258
1259 /*
1260 * Make sure we have a private signal table and that
1261 * we are unassociated from the previous thread group.
1262 */
1263 retval = de_thread(current);
1264 if (retval)
1265 goto out;
1266
1267 /*
1268 * Must be called _before_ exec_mmap() as bprm->mm is
1269 * not visibile until then. This also enables the update
1270 * to be lockless.
1271 */
1272 set_mm_exe_file(bprm->mm, bprm->file);
1273
1274 /*
1275 * Release all of the old mmap stuff
1276 */
1277 acct_arg_size(bprm, 0);
1278 retval = exec_mmap(bprm->mm);
1279 if (retval)
1280 goto out;
1281
1282 bprm->mm = NULL; /* We're using it now */
1283
1284 set_fs(USER_DS);
1285 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1286 PF_NOFREEZE | PF_NO_SETAFFINITY);
1287 flush_thread();
1288 current->personality &= ~bprm->per_clear;
1289
1290 /*
1291 * We have to apply CLOEXEC before we change whether the process is
1292 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1293 * trying to access the should-be-closed file descriptors of a process
1294 * undergoing exec(2).
1295 */
1296 do_close_on_exec(current->files);
1297 return 0;
1298
1299 out:
1300 return retval;
1301 }
1302 EXPORT_SYMBOL(flush_old_exec);
1303
would_dump(struct linux_binprm * bprm,struct file * file)1304 void would_dump(struct linux_binprm *bprm, struct file *file)
1305 {
1306 struct inode *inode = file_inode(file);
1307 if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1308 struct user_namespace *old, *user_ns;
1309 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1310
1311 /* Ensure mm->user_ns contains the executable */
1312 user_ns = old = bprm->mm->user_ns;
1313 while ((user_ns != &init_user_ns) &&
1314 !privileged_wrt_inode_uidgid(user_ns, inode))
1315 user_ns = user_ns->parent;
1316
1317 if (old != user_ns) {
1318 bprm->mm->user_ns = get_user_ns(user_ns);
1319 put_user_ns(old);
1320 }
1321 }
1322 }
1323 EXPORT_SYMBOL(would_dump);
1324
setup_new_exec(struct linux_binprm * bprm)1325 void setup_new_exec(struct linux_binprm * bprm)
1326 {
1327 arch_pick_mmap_layout(current->mm);
1328
1329 /* This is the point of no return */
1330 current->sas_ss_sp = current->sas_ss_size = 0;
1331
1332 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1333 set_dumpable(current->mm, SUID_DUMP_USER);
1334 else
1335 set_dumpable(current->mm, suid_dumpable);
1336
1337 perf_event_exec();
1338 __set_task_comm(current, kbasename(bprm->filename), true);
1339
1340 /* Set the new mm task size. We have to do that late because it may
1341 * depend on TIF_32BIT which is only updated in flush_thread() on
1342 * some architectures like powerpc
1343 */
1344 current->mm->task_size = TASK_SIZE;
1345
1346 /* install the new credentials */
1347 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1348 !gid_eq(bprm->cred->gid, current_egid())) {
1349 current->pdeath_signal = 0;
1350 } else {
1351 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1352 set_dumpable(current->mm, suid_dumpable);
1353 }
1354
1355 /* An exec changes our domain. We are no longer part of the thread
1356 group */
1357 current->self_exec_id++;
1358 flush_signal_handlers(current, 0);
1359 }
1360 EXPORT_SYMBOL(setup_new_exec);
1361
1362 /*
1363 * Prepare credentials and lock ->cred_guard_mutex.
1364 * install_exec_creds() commits the new creds and drops the lock.
1365 * Or, if exec fails before, free_bprm() should release ->cred and
1366 * and unlock.
1367 */
prepare_bprm_creds(struct linux_binprm * bprm)1368 int prepare_bprm_creds(struct linux_binprm *bprm)
1369 {
1370 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1371 return -ERESTARTNOINTR;
1372
1373 bprm->cred = prepare_exec_creds();
1374 if (likely(bprm->cred))
1375 return 0;
1376
1377 mutex_unlock(¤t->signal->cred_guard_mutex);
1378 return -ENOMEM;
1379 }
1380
free_bprm(struct linux_binprm * bprm)1381 static void free_bprm(struct linux_binprm *bprm)
1382 {
1383 free_arg_pages(bprm);
1384 if (bprm->cred) {
1385 mutex_unlock(¤t->signal->cred_guard_mutex);
1386 abort_creds(bprm->cred);
1387 }
1388 if (bprm->file) {
1389 allow_write_access(bprm->file);
1390 fput(bprm->file);
1391 }
1392 /* If a binfmt changed the interp, free it. */
1393 if (bprm->interp != bprm->filename)
1394 kfree(bprm->interp);
1395 kfree(bprm);
1396 }
1397
bprm_change_interp(char * interp,struct linux_binprm * bprm)1398 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1399 {
1400 /* If a binfmt changed the interp, free it first. */
1401 if (bprm->interp != bprm->filename)
1402 kfree(bprm->interp);
1403 bprm->interp = kstrdup(interp, GFP_KERNEL);
1404 if (!bprm->interp)
1405 return -ENOMEM;
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(bprm_change_interp);
1409
1410 /*
1411 * install the new credentials for this executable
1412 */
install_exec_creds(struct linux_binprm * bprm)1413 void install_exec_creds(struct linux_binprm *bprm)
1414 {
1415 security_bprm_committing_creds(bprm);
1416
1417 commit_creds(bprm->cred);
1418 bprm->cred = NULL;
1419
1420 /*
1421 * Disable monitoring for regular users
1422 * when executing setuid binaries. Must
1423 * wait until new credentials are committed
1424 * by commit_creds() above
1425 */
1426 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1427 perf_event_exit_task(current);
1428 /*
1429 * cred_guard_mutex must be held at least to this point to prevent
1430 * ptrace_attach() from altering our determination of the task's
1431 * credentials; any time after this it may be unlocked.
1432 */
1433 security_bprm_committed_creds(bprm);
1434 mutex_unlock(¤t->signal->cred_guard_mutex);
1435 }
1436 EXPORT_SYMBOL(install_exec_creds);
1437
1438 /*
1439 * determine how safe it is to execute the proposed program
1440 * - the caller must hold ->cred_guard_mutex to protect against
1441 * PTRACE_ATTACH or seccomp thread-sync
1442 */
check_unsafe_exec(struct linux_binprm * bprm)1443 static void check_unsafe_exec(struct linux_binprm *bprm)
1444 {
1445 struct task_struct *p = current, *t;
1446 unsigned n_fs;
1447
1448 if (p->ptrace) {
1449 if (ptracer_capable(p, current_user_ns()))
1450 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1451 else
1452 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1453 }
1454
1455 /*
1456 * This isn't strictly necessary, but it makes it harder for LSMs to
1457 * mess up.
1458 */
1459 if (task_no_new_privs(current))
1460 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1461
1462 t = p;
1463 n_fs = 1;
1464 spin_lock(&p->fs->lock);
1465 rcu_read_lock();
1466 while_each_thread(p, t) {
1467 if (t->fs == p->fs)
1468 n_fs++;
1469 }
1470 rcu_read_unlock();
1471
1472 if (p->fs->users > n_fs)
1473 bprm->unsafe |= LSM_UNSAFE_SHARE;
1474 else
1475 p->fs->in_exec = 1;
1476 spin_unlock(&p->fs->lock);
1477 }
1478
bprm_fill_uid(struct linux_binprm * bprm)1479 static void bprm_fill_uid(struct linux_binprm *bprm)
1480 {
1481 struct inode *inode;
1482 unsigned int mode;
1483 kuid_t uid;
1484 kgid_t gid;
1485
1486 /*
1487 * Since this can be called multiple times (via prepare_binprm),
1488 * we must clear any previous work done when setting set[ug]id
1489 * bits from any earlier bprm->file uses (for example when run
1490 * first for a setuid script then again for its interpreter).
1491 */
1492 bprm->cred->euid = current_euid();
1493 bprm->cred->egid = current_egid();
1494
1495 if (!mnt_may_suid(bprm->file->f_path.mnt))
1496 return;
1497
1498 if (task_no_new_privs(current))
1499 return;
1500
1501 inode = file_inode(bprm->file);
1502 mode = READ_ONCE(inode->i_mode);
1503 if (!(mode & (S_ISUID|S_ISGID)))
1504 return;
1505
1506 /* Be careful if suid/sgid is set */
1507 inode_lock(inode);
1508
1509 /* reload atomically mode/uid/gid now that lock held */
1510 mode = inode->i_mode;
1511 uid = inode->i_uid;
1512 gid = inode->i_gid;
1513 inode_unlock(inode);
1514
1515 /* We ignore suid/sgid if there are no mappings for them in the ns */
1516 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1517 !kgid_has_mapping(bprm->cred->user_ns, gid))
1518 return;
1519
1520 if (mode & S_ISUID) {
1521 bprm->per_clear |= PER_CLEAR_ON_SETID;
1522 bprm->cred->euid = uid;
1523 }
1524
1525 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1526 bprm->per_clear |= PER_CLEAR_ON_SETID;
1527 bprm->cred->egid = gid;
1528 }
1529 }
1530
1531 /*
1532 * Fill the binprm structure from the inode.
1533 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1534 *
1535 * This may be called multiple times for binary chains (scripts for example).
1536 */
prepare_binprm(struct linux_binprm * bprm)1537 int prepare_binprm(struct linux_binprm *bprm)
1538 {
1539 int retval;
1540
1541 bprm_fill_uid(bprm);
1542
1543 /* fill in binprm security blob */
1544 retval = security_bprm_set_creds(bprm);
1545 if (retval)
1546 return retval;
1547 bprm->cred_prepared = 1;
1548
1549 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1550 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1551 }
1552
1553 EXPORT_SYMBOL(prepare_binprm);
1554
1555 /*
1556 * Arguments are '\0' separated strings found at the location bprm->p
1557 * points to; chop off the first by relocating brpm->p to right after
1558 * the first '\0' encountered.
1559 */
remove_arg_zero(struct linux_binprm * bprm)1560 int remove_arg_zero(struct linux_binprm *bprm)
1561 {
1562 int ret = 0;
1563 unsigned long offset;
1564 char *kaddr;
1565 struct page *page;
1566
1567 if (!bprm->argc)
1568 return 0;
1569
1570 do {
1571 offset = bprm->p & ~PAGE_MASK;
1572 page = get_arg_page(bprm, bprm->p, 0);
1573 if (!page) {
1574 ret = -EFAULT;
1575 goto out;
1576 }
1577 kaddr = kmap_atomic(page);
1578
1579 for (; offset < PAGE_SIZE && kaddr[offset];
1580 offset++, bprm->p++)
1581 ;
1582
1583 kunmap_atomic(kaddr);
1584 put_arg_page(page);
1585 } while (offset == PAGE_SIZE);
1586
1587 bprm->p++;
1588 bprm->argc--;
1589 ret = 0;
1590
1591 out:
1592 return ret;
1593 }
1594 EXPORT_SYMBOL(remove_arg_zero);
1595
1596 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1597 /*
1598 * cycle the list of binary formats handler, until one recognizes the image
1599 */
search_binary_handler(struct linux_binprm * bprm)1600 int search_binary_handler(struct linux_binprm *bprm)
1601 {
1602 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1603 struct linux_binfmt *fmt;
1604 int retval;
1605
1606 /* This allows 4 levels of binfmt rewrites before failing hard. */
1607 if (bprm->recursion_depth > 5)
1608 return -ELOOP;
1609
1610 retval = security_bprm_check(bprm);
1611 if (retval)
1612 return retval;
1613
1614 retval = -ENOENT;
1615 retry:
1616 read_lock(&binfmt_lock);
1617 list_for_each_entry(fmt, &formats, lh) {
1618 if (!try_module_get(fmt->module))
1619 continue;
1620 read_unlock(&binfmt_lock);
1621 bprm->recursion_depth++;
1622 retval = fmt->load_binary(bprm);
1623 read_lock(&binfmt_lock);
1624 put_binfmt(fmt);
1625 bprm->recursion_depth--;
1626 if (retval < 0 && !bprm->mm) {
1627 /* we got to flush_old_exec() and failed after it */
1628 read_unlock(&binfmt_lock);
1629 force_sigsegv(SIGSEGV, current);
1630 return retval;
1631 }
1632 if (retval != -ENOEXEC || !bprm->file) {
1633 read_unlock(&binfmt_lock);
1634 return retval;
1635 }
1636 }
1637 read_unlock(&binfmt_lock);
1638
1639 if (need_retry) {
1640 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1641 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1642 return retval;
1643 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1644 return retval;
1645 need_retry = false;
1646 goto retry;
1647 }
1648
1649 return retval;
1650 }
1651 EXPORT_SYMBOL(search_binary_handler);
1652
exec_binprm(struct linux_binprm * bprm)1653 static int exec_binprm(struct linux_binprm *bprm)
1654 {
1655 pid_t old_pid, old_vpid;
1656 int ret;
1657
1658 /* Need to fetch pid before load_binary changes it */
1659 old_pid = current->pid;
1660 rcu_read_lock();
1661 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1662 rcu_read_unlock();
1663
1664 ret = search_binary_handler(bprm);
1665 if (ret >= 0) {
1666 audit_bprm(bprm);
1667 trace_sched_process_exec(current, old_pid, bprm);
1668 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1669 proc_exec_connector(current);
1670 }
1671
1672 return ret;
1673 }
1674
1675 /*
1676 * sys_execve() executes a new program.
1677 */
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1678 static int do_execveat_common(int fd, struct filename *filename,
1679 struct user_arg_ptr argv,
1680 struct user_arg_ptr envp,
1681 int flags)
1682 {
1683 char *pathbuf = NULL;
1684 struct linux_binprm *bprm;
1685 struct file *file;
1686 struct files_struct *displaced;
1687 int retval;
1688
1689 if (IS_ERR(filename))
1690 return PTR_ERR(filename);
1691
1692 /*
1693 * We move the actual failure in case of RLIMIT_NPROC excess from
1694 * set*uid() to execve() because too many poorly written programs
1695 * don't check setuid() return code. Here we additionally recheck
1696 * whether NPROC limit is still exceeded.
1697 */
1698 if ((current->flags & PF_NPROC_EXCEEDED) &&
1699 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1700 retval = -EAGAIN;
1701 goto out_ret;
1702 }
1703
1704 /* We're below the limit (still or again), so we don't want to make
1705 * further execve() calls fail. */
1706 current->flags &= ~PF_NPROC_EXCEEDED;
1707
1708 retval = unshare_files(&displaced);
1709 if (retval)
1710 goto out_ret;
1711
1712 retval = -ENOMEM;
1713 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1714 if (!bprm)
1715 goto out_files;
1716
1717 retval = prepare_bprm_creds(bprm);
1718 if (retval)
1719 goto out_free;
1720
1721 check_unsafe_exec(bprm);
1722 current->in_execve = 1;
1723
1724 file = do_open_execat(fd, filename, flags);
1725 retval = PTR_ERR(file);
1726 if (IS_ERR(file))
1727 goto out_unmark;
1728
1729 sched_exec();
1730
1731 bprm->file = file;
1732 if (fd == AT_FDCWD || filename->name[0] == '/') {
1733 bprm->filename = filename->name;
1734 } else {
1735 if (filename->name[0] == '\0')
1736 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1737 else
1738 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1739 fd, filename->name);
1740 if (!pathbuf) {
1741 retval = -ENOMEM;
1742 goto out_unmark;
1743 }
1744 /*
1745 * Record that a name derived from an O_CLOEXEC fd will be
1746 * inaccessible after exec. Relies on having exclusive access to
1747 * current->files (due to unshare_files above).
1748 */
1749 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1750 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1751 bprm->filename = pathbuf;
1752 }
1753 bprm->interp = bprm->filename;
1754
1755 retval = bprm_mm_init(bprm);
1756 if (retval)
1757 goto out_unmark;
1758
1759 bprm->argc = count(argv, MAX_ARG_STRINGS);
1760 if ((retval = bprm->argc) < 0)
1761 goto out;
1762
1763 bprm->envc = count(envp, MAX_ARG_STRINGS);
1764 if ((retval = bprm->envc) < 0)
1765 goto out;
1766
1767 retval = prepare_binprm(bprm);
1768 if (retval < 0)
1769 goto out;
1770
1771 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1772 if (retval < 0)
1773 goto out;
1774
1775 bprm->exec = bprm->p;
1776 retval = copy_strings(bprm->envc, envp, bprm);
1777 if (retval < 0)
1778 goto out;
1779
1780 retval = copy_strings(bprm->argc, argv, bprm);
1781 if (retval < 0)
1782 goto out;
1783
1784 would_dump(bprm, bprm->file);
1785
1786 retval = exec_binprm(bprm);
1787 if (retval < 0)
1788 goto out;
1789
1790 /* execve succeeded */
1791 current->fs->in_exec = 0;
1792 current->in_execve = 0;
1793 acct_update_integrals(current);
1794 task_numa_free(current);
1795 free_bprm(bprm);
1796 kfree(pathbuf);
1797 putname(filename);
1798 if (displaced)
1799 put_files_struct(displaced);
1800 return retval;
1801
1802 out:
1803 if (bprm->mm) {
1804 acct_arg_size(bprm, 0);
1805 mmput(bprm->mm);
1806 }
1807
1808 out_unmark:
1809 current->fs->in_exec = 0;
1810 current->in_execve = 0;
1811
1812 out_free:
1813 free_bprm(bprm);
1814 kfree(pathbuf);
1815
1816 out_files:
1817 if (displaced)
1818 reset_files_struct(displaced);
1819 out_ret:
1820 putname(filename);
1821 return retval;
1822 }
1823
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1824 int do_execve(struct filename *filename,
1825 const char __user *const __user *__argv,
1826 const char __user *const __user *__envp)
1827 {
1828 struct user_arg_ptr argv = { .ptr.native = __argv };
1829 struct user_arg_ptr envp = { .ptr.native = __envp };
1830 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1831 }
1832
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1833 int do_execveat(int fd, struct filename *filename,
1834 const char __user *const __user *__argv,
1835 const char __user *const __user *__envp,
1836 int flags)
1837 {
1838 struct user_arg_ptr argv = { .ptr.native = __argv };
1839 struct user_arg_ptr envp = { .ptr.native = __envp };
1840
1841 return do_execveat_common(fd, filename, argv, envp, flags);
1842 }
1843
1844 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1845 static int compat_do_execve(struct filename *filename,
1846 const compat_uptr_t __user *__argv,
1847 const compat_uptr_t __user *__envp)
1848 {
1849 struct user_arg_ptr argv = {
1850 .is_compat = true,
1851 .ptr.compat = __argv,
1852 };
1853 struct user_arg_ptr envp = {
1854 .is_compat = true,
1855 .ptr.compat = __envp,
1856 };
1857 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1858 }
1859
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1860 static int compat_do_execveat(int fd, struct filename *filename,
1861 const compat_uptr_t __user *__argv,
1862 const compat_uptr_t __user *__envp,
1863 int flags)
1864 {
1865 struct user_arg_ptr argv = {
1866 .is_compat = true,
1867 .ptr.compat = __argv,
1868 };
1869 struct user_arg_ptr envp = {
1870 .is_compat = true,
1871 .ptr.compat = __envp,
1872 };
1873 return do_execveat_common(fd, filename, argv, envp, flags);
1874 }
1875 #endif
1876
set_binfmt(struct linux_binfmt * new)1877 void set_binfmt(struct linux_binfmt *new)
1878 {
1879 struct mm_struct *mm = current->mm;
1880
1881 if (mm->binfmt)
1882 module_put(mm->binfmt->module);
1883
1884 mm->binfmt = new;
1885 if (new)
1886 __module_get(new->module);
1887 }
1888 EXPORT_SYMBOL(set_binfmt);
1889
1890 /*
1891 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1892 */
set_dumpable(struct mm_struct * mm,int value)1893 void set_dumpable(struct mm_struct *mm, int value)
1894 {
1895 unsigned long old, new;
1896
1897 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1898 return;
1899
1900 do {
1901 old = ACCESS_ONCE(mm->flags);
1902 new = (old & ~MMF_DUMPABLE_MASK) | value;
1903 } while (cmpxchg(&mm->flags, old, new) != old);
1904 }
1905
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1906 SYSCALL_DEFINE3(execve,
1907 const char __user *, filename,
1908 const char __user *const __user *, argv,
1909 const char __user *const __user *, envp)
1910 {
1911 return do_execve(getname(filename), argv, envp);
1912 }
1913
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1914 SYSCALL_DEFINE5(execveat,
1915 int, fd, const char __user *, filename,
1916 const char __user *const __user *, argv,
1917 const char __user *const __user *, envp,
1918 int, flags)
1919 {
1920 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1921
1922 return do_execveat(fd,
1923 getname_flags(filename, lookup_flags, NULL),
1924 argv, envp, flags);
1925 }
1926
1927 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1928 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1929 const compat_uptr_t __user *, argv,
1930 const compat_uptr_t __user *, envp)
1931 {
1932 return compat_do_execve(getname(filename), argv, envp);
1933 }
1934
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)1935 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1936 const char __user *, filename,
1937 const compat_uptr_t __user *, argv,
1938 const compat_uptr_t __user *, envp,
1939 int, flags)
1940 {
1941 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1942
1943 return compat_do_execveat(fd,
1944 getname_flags(filename, lookup_flags, NULL),
1945 argv, envp, flags);
1946 }
1947 #endif
1948