• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011
3  * Boaz Harrosh <ooo@electrozaur.com>
4  *
5  * This file is part of the objects raid engine (ore).
6  *
7  * It is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with "ore". If not, write to the Free Software Foundation, Inc:
13  *	"Free Software Foundation <info@fsf.org>"
14  */
15 
16 #include <linux/gfp.h>
17 #include <linux/async_tx.h>
18 
19 #include "ore_raid.h"
20 
21 #undef ORE_DBGMSG2
22 #define ORE_DBGMSG2 ORE_DBGMSG
23 
_raid_page_alloc(void)24 static struct page *_raid_page_alloc(void)
25 {
26 	return alloc_page(GFP_KERNEL);
27 }
28 
_raid_page_free(struct page * p)29 static void _raid_page_free(struct page *p)
30 {
31 	__free_page(p);
32 }
33 
34 /* This struct is forward declare in ore_io_state, but is private to here.
35  * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
36  *
37  * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
38  * Ascending page index access is sp2d(p-minor, c-major). But storage is
39  * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
40  * API.
41  */
42 struct __stripe_pages_2d {
43 	/* Cache some hot path repeated calculations */
44 	unsigned parity;
45 	unsigned data_devs;
46 	unsigned pages_in_unit;
47 
48 	bool needed ;
49 
50 	/* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
51 	struct __1_page_stripe {
52 		bool alloc;
53 		unsigned write_count;
54 		struct async_submit_ctl submit;
55 		struct dma_async_tx_descriptor *tx;
56 
57 		/* The size of this array is data_devs + parity */
58 		struct page **pages;
59 		struct page **scribble;
60 		/* bool array, size of this array is data_devs */
61 		char *page_is_read;
62 	} _1p_stripes[];
63 };
64 
65 /* This can get bigger then a page. So support multiple page allocations
66  * _sp2d_free should be called even if _sp2d_alloc fails (by returning
67  * none-zero).
68  */
_sp2d_alloc(unsigned pages_in_unit,unsigned group_width,unsigned parity,struct __stripe_pages_2d ** psp2d)69 static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
70 		       unsigned parity, struct __stripe_pages_2d **psp2d)
71 {
72 	struct __stripe_pages_2d *sp2d;
73 	unsigned data_devs = group_width - parity;
74 	struct _alloc_all_bytes {
75 		struct __alloc_stripe_pages_2d {
76 			struct __stripe_pages_2d sp2d;
77 			struct __1_page_stripe _1p_stripes[pages_in_unit];
78 		} __asp2d;
79 		struct __alloc_1p_arrays {
80 			struct page *pages[group_width];
81 			struct page *scribble[group_width];
82 			char page_is_read[data_devs];
83 		} __a1pa[pages_in_unit];
84 	} *_aab;
85 	struct __alloc_1p_arrays *__a1pa;
86 	struct __alloc_1p_arrays *__a1pa_end;
87 	const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]);
88 	unsigned num_a1pa, alloc_size, i;
89 
90 	/* FIXME: check these numbers in ore_verify_layout */
91 	BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE);
92 	BUG_ON(sizeof__a1pa > PAGE_SIZE);
93 
94 	if (sizeof(*_aab) > PAGE_SIZE) {
95 		num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa;
96 		alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa;
97 	} else {
98 		num_a1pa = pages_in_unit;
99 		alloc_size = sizeof(*_aab);
100 	}
101 
102 	_aab = kzalloc(alloc_size, GFP_KERNEL);
103 	if (unlikely(!_aab)) {
104 		ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
105 		return -ENOMEM;
106 	}
107 
108 	sp2d = &_aab->__asp2d.sp2d;
109 	*psp2d = sp2d; /* From here Just call _sp2d_free */
110 
111 	__a1pa = _aab->__a1pa;
112 	__a1pa_end = __a1pa + num_a1pa;
113 
114 	for (i = 0; i < pages_in_unit; ++i) {
115 		if (unlikely(__a1pa >= __a1pa_end)) {
116 			num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
117 							pages_in_unit - i);
118 
119 			__a1pa = kcalloc(num_a1pa, sizeof__a1pa, GFP_KERNEL);
120 			if (unlikely(!__a1pa)) {
121 				ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
122 					   num_a1pa);
123 				return -ENOMEM;
124 			}
125 			__a1pa_end = __a1pa + num_a1pa;
126 			/* First *pages is marked for kfree of the buffer */
127 			sp2d->_1p_stripes[i].alloc = true;
128 		}
129 
130 		sp2d->_1p_stripes[i].pages = __a1pa->pages;
131 		sp2d->_1p_stripes[i].scribble = __a1pa->scribble ;
132 		sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read;
133 		++__a1pa;
134 	}
135 
136 	sp2d->parity = parity;
137 	sp2d->data_devs = data_devs;
138 	sp2d->pages_in_unit = pages_in_unit;
139 	return 0;
140 }
141 
_sp2d_reset(struct __stripe_pages_2d * sp2d,const struct _ore_r4w_op * r4w,void * priv)142 static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
143 			const struct _ore_r4w_op *r4w, void *priv)
144 {
145 	unsigned data_devs = sp2d->data_devs;
146 	unsigned group_width = data_devs + sp2d->parity;
147 	int p, c;
148 
149 	if (!sp2d->needed)
150 		return;
151 
152 	for (c = data_devs - 1; c >= 0; --c)
153 		for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
154 			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
155 
156 			if (_1ps->page_is_read[c]) {
157 				struct page *page = _1ps->pages[c];
158 
159 				r4w->put_page(priv, page);
160 				_1ps->page_is_read[c] = false;
161 			}
162 		}
163 
164 	for (p = 0; p < sp2d->pages_in_unit; p++) {
165 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
166 
167 		memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
168 		_1ps->write_count = 0;
169 		_1ps->tx = NULL;
170 	}
171 
172 	sp2d->needed = false;
173 }
174 
_sp2d_free(struct __stripe_pages_2d * sp2d)175 static void _sp2d_free(struct __stripe_pages_2d *sp2d)
176 {
177 	unsigned i;
178 
179 	if (!sp2d)
180 		return;
181 
182 	for (i = 0; i < sp2d->pages_in_unit; ++i) {
183 		if (sp2d->_1p_stripes[i].alloc)
184 			kfree(sp2d->_1p_stripes[i].pages);
185 	}
186 
187 	kfree(sp2d);
188 }
189 
_sp2d_min_pg(struct __stripe_pages_2d * sp2d)190 static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
191 {
192 	unsigned p;
193 
194 	for (p = 0; p < sp2d->pages_in_unit; p++) {
195 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
196 
197 		if (_1ps->write_count)
198 			return p;
199 	}
200 
201 	return ~0;
202 }
203 
_sp2d_max_pg(struct __stripe_pages_2d * sp2d)204 static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
205 {
206 	int p;
207 
208 	for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
209 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
210 
211 		if (_1ps->write_count)
212 			return p;
213 	}
214 
215 	return ~0;
216 }
217 
_gen_xor_unit(struct __stripe_pages_2d * sp2d)218 static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
219 {
220 	unsigned p;
221 	unsigned tx_flags = ASYNC_TX_ACK;
222 
223 	if (sp2d->parity == 1)
224 		tx_flags |= ASYNC_TX_XOR_ZERO_DST;
225 
226 	for (p = 0; p < sp2d->pages_in_unit; p++) {
227 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
228 
229 		if (!_1ps->write_count)
230 			continue;
231 
232 		init_async_submit(&_1ps->submit, tx_flags,
233 			NULL, NULL, NULL, (addr_conv_t *)_1ps->scribble);
234 
235 		if (sp2d->parity == 1)
236 			_1ps->tx = async_xor(_1ps->pages[sp2d->data_devs],
237 						_1ps->pages, 0, sp2d->data_devs,
238 						PAGE_SIZE, &_1ps->submit);
239 		else /* parity == 2 */
240 			_1ps->tx = async_gen_syndrome(_1ps->pages, 0,
241 						sp2d->data_devs + sp2d->parity,
242 						PAGE_SIZE, &_1ps->submit);
243 	}
244 
245 	for (p = 0; p < sp2d->pages_in_unit; p++) {
246 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
247 		/* NOTE: We wait for HW synchronously (I don't have such HW
248 		 * to test with.) Is parallelism needed with today's multi
249 		 * cores?
250 		 */
251 		async_tx_issue_pending(_1ps->tx);
252 	}
253 }
254 
_ore_add_stripe_page(struct __stripe_pages_2d * sp2d,struct ore_striping_info * si,struct page * page)255 void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
256 		       struct ore_striping_info *si, struct page *page)
257 {
258 	struct __1_page_stripe *_1ps;
259 
260 	sp2d->needed = true;
261 
262 	_1ps = &sp2d->_1p_stripes[si->cur_pg];
263 	_1ps->pages[si->cur_comp] = page;
264 	++_1ps->write_count;
265 
266 	si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
267 	/* si->cur_comp is advanced outside at main loop */
268 }
269 
_ore_add_sg_seg(struct ore_per_dev_state * per_dev,unsigned cur_len,bool not_last)270 void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
271 		     bool not_last)
272 {
273 	struct osd_sg_entry *sge;
274 
275 	ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
276 		     "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
277 		     per_dev->dev, cur_len, not_last, per_dev->cur_sg,
278 		     _LLU(per_dev->offset), per_dev->length,
279 		     per_dev->last_sgs_total);
280 
281 	if (!per_dev->cur_sg) {
282 		sge = per_dev->sglist;
283 
284 		/* First time we prepare two entries */
285 		if (per_dev->length) {
286 			++per_dev->cur_sg;
287 			sge->offset = per_dev->offset;
288 			sge->len = per_dev->length;
289 		} else {
290 			/* Here the parity is the first unit of this object.
291 			 * This happens every time we reach a parity device on
292 			 * the same stripe as the per_dev->offset. We need to
293 			 * just skip this unit.
294 			 */
295 			per_dev->offset += cur_len;
296 			return;
297 		}
298 	} else {
299 		/* finalize the last one */
300 		sge = &per_dev->sglist[per_dev->cur_sg - 1];
301 		sge->len = per_dev->length - per_dev->last_sgs_total;
302 	}
303 
304 	if (not_last) {
305 		/* Partly prepare the next one */
306 		struct osd_sg_entry *next_sge = sge + 1;
307 
308 		++per_dev->cur_sg;
309 		next_sge->offset = sge->offset + sge->len + cur_len;
310 		/* Save cur len so we know how mutch was added next time */
311 		per_dev->last_sgs_total = per_dev->length;
312 		next_sge->len = 0;
313 	} else if (!sge->len) {
314 		/* Optimize for when the last unit is a parity */
315 		--per_dev->cur_sg;
316 	}
317 }
318 
_alloc_read_4_write(struct ore_io_state * ios)319 static int _alloc_read_4_write(struct ore_io_state *ios)
320 {
321 	struct ore_layout *layout = ios->layout;
322 	int ret;
323 	/* We want to only read those pages not in cache so worst case
324 	 * is a stripe populated with every other page
325 	 */
326 	unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
327 
328 	ret = _ore_get_io_state(layout, ios->oc,
329 				layout->group_width * layout->mirrors_p1,
330 				sgs_per_dev, 0, &ios->ios_read_4_write);
331 	return ret;
332 }
333 
334 /* @si contains info of the to-be-inserted page. Update of @si should be
335  * maintained by caller. Specificaly si->dev, si->obj_offset, ...
336  */
_add_to_r4w(struct ore_io_state * ios,struct ore_striping_info * si,struct page * page,unsigned pg_len)337 static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
338 		       struct page *page, unsigned pg_len)
339 {
340 	struct request_queue *q;
341 	struct ore_per_dev_state *per_dev;
342 	struct ore_io_state *read_ios;
343 	unsigned first_dev = si->dev - (si->dev %
344 			  (ios->layout->group_width * ios->layout->mirrors_p1));
345 	unsigned comp = si->dev - first_dev;
346 	unsigned added_len;
347 
348 	if (!ios->ios_read_4_write) {
349 		int ret = _alloc_read_4_write(ios);
350 
351 		if (unlikely(ret))
352 			return ret;
353 	}
354 
355 	read_ios = ios->ios_read_4_write;
356 	read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
357 
358 	per_dev = &read_ios->per_dev[comp];
359 	if (!per_dev->length) {
360 		per_dev->bio = bio_kmalloc(GFP_KERNEL,
361 					   ios->sp2d->pages_in_unit);
362 		if (unlikely(!per_dev->bio)) {
363 			ORE_DBGMSG("Failed to allocate BIO size=%u\n",
364 				     ios->sp2d->pages_in_unit);
365 			return -ENOMEM;
366 		}
367 		per_dev->offset = si->obj_offset;
368 		per_dev->dev = si->dev;
369 	} else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
370 		u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
371 
372 		_ore_add_sg_seg(per_dev, gap, true);
373 	}
374 	q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
375 	added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
376 				    si->obj_offset % PAGE_SIZE);
377 	if (unlikely(added_len != pg_len)) {
378 		ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
379 			      per_dev->bio->bi_vcnt);
380 		return -ENOMEM;
381 	}
382 
383 	per_dev->length += pg_len;
384 	return 0;
385 }
386 
387 /* read the beginning of an unaligned first page */
_add_to_r4w_first_page(struct ore_io_state * ios,struct page * page)388 static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
389 {
390 	struct ore_striping_info si;
391 	unsigned pg_len;
392 
393 	ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
394 
395 	pg_len = si.obj_offset % PAGE_SIZE;
396 	si.obj_offset -= pg_len;
397 
398 	ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
399 		   _LLU(si.obj_offset), pg_len, page->index, si.dev);
400 
401 	return _add_to_r4w(ios, &si, page, pg_len);
402 }
403 
404 /* read the end of an incomplete last page */
_add_to_r4w_last_page(struct ore_io_state * ios,u64 * offset)405 static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
406 {
407 	struct ore_striping_info si;
408 	struct page *page;
409 	unsigned pg_len, p, c;
410 
411 	ore_calc_stripe_info(ios->layout, *offset, 0, &si);
412 
413 	p = si.cur_pg;
414 	c = si.cur_comp;
415 	page = ios->sp2d->_1p_stripes[p].pages[c];
416 
417 	pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
418 	*offset += pg_len;
419 
420 	ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
421 		   p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
422 
423 	BUG_ON(!page);
424 
425 	return _add_to_r4w(ios, &si, page, pg_len);
426 }
427 
_mark_read4write_pages_uptodate(struct ore_io_state * ios,int ret)428 static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
429 {
430 	struct bio_vec *bv;
431 	unsigned i, d;
432 
433 	/* loop on all devices all pages */
434 	for (d = 0; d < ios->numdevs; d++) {
435 		struct bio *bio = ios->per_dev[d].bio;
436 
437 		if (!bio)
438 			continue;
439 
440 		bio_for_each_segment_all(bv, bio, i) {
441 			struct page *page = bv->bv_page;
442 
443 			SetPageUptodate(page);
444 			if (PageError(page))
445 				ClearPageError(page);
446 		}
447 	}
448 }
449 
450 /* read_4_write is hacked to read the start of the first stripe and/or
451  * the end of the last stripe. If needed, with an sg-gap at each device/page.
452  * It is assumed to be called after the to_be_written pages of the first stripe
453  * are populating ios->sp2d[][]
454  *
455  * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
456  * These pages are held at sp2d[p].pages[c] but with
457  * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
458  * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
459  * @uptodate=true, so we don't need to read it, only unlock, after IO.
460  *
461  * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
462  * to-be-written count, we should consider the xor-in-place mode.
463  * need_to_read_pages_count is the actual number of pages not present in cache.
464  * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
465  * approximation? In this mode the read pages are put in the empty places of
466  * ios->sp2d[p][*], xor is calculated the same way. These pages are
467  * allocated/freed and don't go through cache
468  */
_read_4_write_first_stripe(struct ore_io_state * ios)469 static int _read_4_write_first_stripe(struct ore_io_state *ios)
470 {
471 	struct ore_striping_info read_si;
472 	struct __stripe_pages_2d *sp2d = ios->sp2d;
473 	u64 offset = ios->si.first_stripe_start;
474 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
475 
476 	if (offset == ios->offset) /* Go to start collect $200 */
477 		goto read_last_stripe;
478 
479 	min_p = _sp2d_min_pg(sp2d);
480 	max_p = _sp2d_max_pg(sp2d);
481 
482 	ORE_DBGMSG("stripe_start=0x%llx ios->offset=0x%llx min_p=%d max_p=%d\n",
483 		   offset, ios->offset, min_p, max_p);
484 
485 	for (c = 0; ; c++) {
486 		ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
487 		read_si.obj_offset += min_p * PAGE_SIZE;
488 		offset += min_p * PAGE_SIZE;
489 		for (p = min_p; p <= max_p; p++) {
490 			struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
491 			struct page **pp = &_1ps->pages[c];
492 			bool uptodate;
493 
494 			if (*pp) {
495 				if (ios->offset % PAGE_SIZE)
496 					/* Read the remainder of the page */
497 					_add_to_r4w_first_page(ios, *pp);
498 				/* to-be-written pages start here */
499 				goto read_last_stripe;
500 			}
501 
502 			*pp = ios->r4w->get_page(ios->private, offset,
503 						 &uptodate);
504 			if (unlikely(!*pp))
505 				return -ENOMEM;
506 
507 			if (!uptodate)
508 				_add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
509 
510 			/* Mark read-pages to be cache_released */
511 			_1ps->page_is_read[c] = true;
512 			read_si.obj_offset += PAGE_SIZE;
513 			offset += PAGE_SIZE;
514 		}
515 		offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
516 	}
517 
518 read_last_stripe:
519 	return 0;
520 }
521 
_read_4_write_last_stripe(struct ore_io_state * ios)522 static int _read_4_write_last_stripe(struct ore_io_state *ios)
523 {
524 	struct ore_striping_info read_si;
525 	struct __stripe_pages_2d *sp2d = ios->sp2d;
526 	u64 offset;
527 	u64 last_stripe_end;
528 	unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
529 	unsigned c, p, min_p = sp2d->pages_in_unit, max_p = -1;
530 
531 	offset = ios->offset + ios->length;
532 	if (offset % PAGE_SIZE)
533 		_add_to_r4w_last_page(ios, &offset);
534 		/* offset will be aligned to next page */
535 
536 	last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
537 				 * bytes_in_stripe;
538 	if (offset == last_stripe_end) /* Optimize for the aligned case */
539 		goto read_it;
540 
541 	ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
542 	p = read_si.cur_pg;
543 	c = read_si.cur_comp;
544 
545 	if (min_p == sp2d->pages_in_unit) {
546 		/* Didn't do it yet */
547 		min_p = _sp2d_min_pg(sp2d);
548 		max_p = _sp2d_max_pg(sp2d);
549 	}
550 
551 	ORE_DBGMSG("offset=0x%llx stripe_end=0x%llx min_p=%d max_p=%d\n",
552 		   offset, last_stripe_end, min_p, max_p);
553 
554 	while (offset < last_stripe_end) {
555 		struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
556 
557 		if ((min_p <= p) && (p <= max_p)) {
558 			struct page *page;
559 			bool uptodate;
560 
561 			BUG_ON(_1ps->pages[c]);
562 			page = ios->r4w->get_page(ios->private, offset,
563 						  &uptodate);
564 			if (unlikely(!page))
565 				return -ENOMEM;
566 
567 			_1ps->pages[c] = page;
568 			/* Mark read-pages to be cache_released */
569 			_1ps->page_is_read[c] = true;
570 			if (!uptodate)
571 				_add_to_r4w(ios, &read_si, page, PAGE_SIZE);
572 		}
573 
574 		offset += PAGE_SIZE;
575 		if (p == (sp2d->pages_in_unit - 1)) {
576 			++c;
577 			p = 0;
578 			ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
579 		} else {
580 			read_si.obj_offset += PAGE_SIZE;
581 			++p;
582 		}
583 	}
584 
585 read_it:
586 	return 0;
587 }
588 
_read_4_write_execute(struct ore_io_state * ios)589 static int _read_4_write_execute(struct ore_io_state *ios)
590 {
591 	struct ore_io_state *ios_read;
592 	unsigned i;
593 	int ret;
594 
595 	ios_read = ios->ios_read_4_write;
596 	if (!ios_read)
597 		return 0;
598 
599 	/* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
600 	 * to check for per_dev->bio
601 	 */
602 	ios_read->pages = ios->pages;
603 
604 	/* Now read these devices */
605 	for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
606 		ret = _ore_read_mirror(ios_read, i);
607 		if (unlikely(ret))
608 			return ret;
609 	}
610 
611 	ret = ore_io_execute(ios_read); /* Synchronus execution */
612 	if (unlikely(ret)) {
613 		ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
614 		return ret;
615 	}
616 
617 	_mark_read4write_pages_uptodate(ios_read, ret);
618 	ore_put_io_state(ios_read);
619 	ios->ios_read_4_write = NULL; /* Might need a reuse at last stripe */
620 	return 0;
621 }
622 
623 /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
_ore_add_parity_unit(struct ore_io_state * ios,struct ore_striping_info * si,struct ore_per_dev_state * per_dev,unsigned cur_len,bool do_xor)624 int _ore_add_parity_unit(struct ore_io_state *ios,
625 			    struct ore_striping_info *si,
626 			    struct ore_per_dev_state *per_dev,
627 			    unsigned cur_len, bool do_xor)
628 {
629 	if (ios->reading) {
630 		if (per_dev->cur_sg >= ios->sgs_per_dev) {
631 			ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
632 				per_dev->cur_sg, ios->sgs_per_dev);
633 			return -ENOMEM;
634 		}
635 		_ore_add_sg_seg(per_dev, cur_len, true);
636 	} else {
637 		struct __stripe_pages_2d *sp2d = ios->sp2d;
638 		struct page **pages = ios->parity_pages + ios->cur_par_page;
639 		unsigned num_pages;
640 		unsigned array_start = 0;
641 		unsigned i;
642 		int ret;
643 
644 		si->cur_pg = _sp2d_min_pg(sp2d);
645 		num_pages  = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
646 
647 		if (!per_dev->length) {
648 			per_dev->offset += si->cur_pg * PAGE_SIZE;
649 			/* If first stripe, Read in all read4write pages
650 			 * (if needed) before we calculate the first parity.
651 			 */
652 			if (do_xor)
653 				_read_4_write_first_stripe(ios);
654 		}
655 		if (!cur_len && do_xor)
656 			/* If last stripe r4w pages of last stripe */
657 			_read_4_write_last_stripe(ios);
658 		_read_4_write_execute(ios);
659 
660 		for (i = 0; i < num_pages; i++) {
661 			pages[i] = _raid_page_alloc();
662 			if (unlikely(!pages[i]))
663 				return -ENOMEM;
664 
665 			++(ios->cur_par_page);
666 		}
667 
668 		BUG_ON(si->cur_comp < sp2d->data_devs);
669 		BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
670 
671 		ret = _ore_add_stripe_unit(ios,  &array_start, 0, pages,
672 					   per_dev, num_pages * PAGE_SIZE);
673 		if (unlikely(ret))
674 			return ret;
675 
676 		if (do_xor) {
677 			_gen_xor_unit(sp2d);
678 			_sp2d_reset(sp2d, ios->r4w, ios->private);
679 		}
680 	}
681 	return 0;
682 }
683 
_ore_post_alloc_raid_stuff(struct ore_io_state * ios)684 int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
685 {
686 	if (ios->parity_pages) {
687 		struct ore_layout *layout = ios->layout;
688 		unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
689 
690 		if (_sp2d_alloc(pages_in_unit, layout->group_width,
691 				layout->parity, &ios->sp2d)) {
692 			return -ENOMEM;
693 		}
694 	}
695 	return 0;
696 }
697 
_ore_free_raid_stuff(struct ore_io_state * ios)698 void _ore_free_raid_stuff(struct ore_io_state *ios)
699 {
700 	if (ios->sp2d) { /* writing and raid */
701 		unsigned i;
702 
703 		for (i = 0; i < ios->cur_par_page; i++) {
704 			struct page *page = ios->parity_pages[i];
705 
706 			if (page)
707 				_raid_page_free(page);
708 		}
709 		if (ios->extra_part_alloc)
710 			kfree(ios->parity_pages);
711 		/* If IO returned an error pages might need unlocking */
712 		_sp2d_reset(ios->sp2d, ios->r4w, ios->private);
713 		_sp2d_free(ios->sp2d);
714 	} else {
715 		/* Will only be set if raid reading && sglist is big */
716 		if (ios->extra_part_alloc)
717 			kfree(ios->per_dev[0].sglist);
718 	}
719 	if (ios->ios_read_4_write)
720 		ore_put_io_state(ios->ios_read_4_write);
721 }
722