• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 #include <trace/events/android_fs.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
ext4_inode_is_fast_symlink(struct inode * inode)148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
ext4_evict_inode(struct inode * inode)188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks)
265 		ext4_truncate(inode);
266 
267 	/*
268 	 * ext4_ext_truncate() doesn't reserve any slop when it
269 	 * restarts journal transactions; therefore there may not be
270 	 * enough credits left in the handle to remove the inode from
271 	 * the orphan list and set the dtime field.
272 	 */
273 	if (!ext4_handle_has_enough_credits(handle, 3)) {
274 		err = ext4_journal_extend(handle, 3);
275 		if (err > 0)
276 			err = ext4_journal_restart(handle, 3);
277 		if (err != 0) {
278 			ext4_warning(inode->i_sb,
279 				     "couldn't extend journal (err %d)", err);
280 		stop_handle:
281 			ext4_journal_stop(handle);
282 			ext4_orphan_del(NULL, inode);
283 			sb_end_intwrite(inode->i_sb);
284 			goto no_delete;
285 		}
286 	}
287 
288 	/*
289 	 * Kill off the orphan record which ext4_truncate created.
290 	 * AKPM: I think this can be inside the above `if'.
291 	 * Note that ext4_orphan_del() has to be able to cope with the
292 	 * deletion of a non-existent orphan - this is because we don't
293 	 * know if ext4_truncate() actually created an orphan record.
294 	 * (Well, we could do this if we need to, but heck - it works)
295 	 */
296 	ext4_orphan_del(handle, inode);
297 	EXT4_I(inode)->i_dtime	= get_seconds();
298 
299 	/*
300 	 * One subtle ordering requirement: if anything has gone wrong
301 	 * (transaction abort, IO errors, whatever), then we can still
302 	 * do these next steps (the fs will already have been marked as
303 	 * having errors), but we can't free the inode if the mark_dirty
304 	 * fails.
305 	 */
306 	if (ext4_mark_inode_dirty(handle, inode))
307 		/* If that failed, just do the required in-core inode clear. */
308 		ext4_clear_inode(inode);
309 	else
310 		ext4_free_inode(handle, inode);
311 	ext4_journal_stop(handle);
312 	sb_end_intwrite(inode->i_sb);
313 	return;
314 no_delete:
315 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
316 }
317 
318 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 	return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324 
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)329 void ext4_da_update_reserve_space(struct inode *inode,
330 					int used, int quota_claim)
331 {
332 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 	struct ext4_inode_info *ei = EXT4_I(inode);
334 
335 	spin_lock(&ei->i_block_reservation_lock);
336 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 	if (unlikely(used > ei->i_reserved_data_blocks)) {
338 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 			 "with only %d reserved data blocks",
340 			 __func__, inode->i_ino, used,
341 			 ei->i_reserved_data_blocks);
342 		WARN_ON(1);
343 		used = ei->i_reserved_data_blocks;
344 	}
345 
346 	/* Update per-inode reservations */
347 	ei->i_reserved_data_blocks -= used;
348 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349 
350 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351 
352 	/* Update quota subsystem for data blocks */
353 	if (quota_claim)
354 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 	else {
356 		/*
357 		 * We did fallocate with an offset that is already delayed
358 		 * allocated. So on delayed allocated writeback we should
359 		 * not re-claim the quota for fallocated blocks.
360 		 */
361 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 	}
363 
364 	/*
365 	 * If we have done all the pending block allocations and if
366 	 * there aren't any writers on the inode, we can discard the
367 	 * inode's preallocations.
368 	 */
369 	if ((ei->i_reserved_data_blocks == 0) &&
370 	    (atomic_read(&inode->i_writecount) == 0))
371 		ext4_discard_preallocations(inode);
372 }
373 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)374 static int __check_block_validity(struct inode *inode, const char *func,
375 				unsigned int line,
376 				struct ext4_map_blocks *map)
377 {
378 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 				   map->m_len)) {
380 		ext4_error_inode(inode, func, line, map->m_pblk,
381 				 "lblock %lu mapped to illegal pblock "
382 				 "(length %d)", (unsigned long) map->m_lblk,
383 				 map->m_len);
384 		return -EFSCORRUPTED;
385 	}
386 	return 0;
387 }
388 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 		       ext4_lblk_t len)
391 {
392 	int ret;
393 
394 	if (ext4_encrypted_inode(inode))
395 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
396 
397 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 	if (ret > 0)
399 		ret = 0;
400 
401 	return ret;
402 }
403 
404 #define check_block_validity(inode, map)	\
405 	__check_block_validity((inode), __func__, __LINE__, (map))
406 
407 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 				       struct inode *inode,
410 				       struct ext4_map_blocks *es_map,
411 				       struct ext4_map_blocks *map,
412 				       int flags)
413 {
414 	int retval;
415 
416 	map->m_flags = 0;
417 	/*
418 	 * There is a race window that the result is not the same.
419 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
420 	 * is that we lookup a block mapping in extent status tree with
421 	 * out taking i_data_sem.  So at the time the unwritten extent
422 	 * could be converted.
423 	 */
424 	down_read(&EXT4_I(inode)->i_data_sem);
425 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	} else {
429 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 					     EXT4_GET_BLOCKS_KEEP_SIZE);
431 	}
432 	up_read((&EXT4_I(inode)->i_data_sem));
433 
434 	/*
435 	 * We don't check m_len because extent will be collpased in status
436 	 * tree.  So the m_len might not equal.
437 	 */
438 	if (es_map->m_lblk != map->m_lblk ||
439 	    es_map->m_flags != map->m_flags ||
440 	    es_map->m_pblk != map->m_pblk) {
441 		printk("ES cache assertion failed for inode: %lu "
442 		       "es_cached ex [%d/%d/%llu/%x] != "
443 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
445 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 		       map->m_len, map->m_pblk, map->m_flags,
447 		       retval, flags);
448 	}
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451 
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 		    struct ext4_map_blocks *map, int flags)
476 {
477 	struct extent_status es;
478 	int retval;
479 	int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 	struct ext4_map_blocks orig_map;
482 
483 	memcpy(&orig_map, map, sizeof(*map));
484 #endif
485 
486 	map->m_flags = 0;
487 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 		  (unsigned long) map->m_lblk);
490 
491 	/*
492 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 	 */
494 	if (unlikely(map->m_len > INT_MAX))
495 		map->m_len = INT_MAX;
496 
497 	/* We can handle the block number less than EXT_MAX_BLOCKS */
498 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 		return -EFSCORRUPTED;
500 
501 	/* Lookup extent status tree firstly */
502 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 			map->m_pblk = ext4_es_pblock(&es) +
505 					map->m_lblk - es.es_lblk;
506 			map->m_flags |= ext4_es_is_written(&es) ?
507 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 			map->m_pblk = 0;
514 			retval = es.es_len - (map->m_lblk - es.es_lblk);
515 			if (retval > map->m_len)
516 				retval = map->m_len;
517 			map->m_len = retval;
518 			retval = 0;
519 		} else {
520 			BUG_ON(1);
521 		}
522 #ifdef ES_AGGRESSIVE_TEST
523 		ext4_map_blocks_es_recheck(handle, inode, map,
524 					   &orig_map, flags);
525 #endif
526 		goto found;
527 	}
528 
529 	/*
530 	 * Try to see if we can get the block without requesting a new
531 	 * file system block.
532 	 */
533 	down_read(&EXT4_I(inode)->i_data_sem);
534 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 					     EXT4_GET_BLOCKS_KEEP_SIZE);
537 	} else {
538 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 					     EXT4_GET_BLOCKS_KEEP_SIZE);
540 	}
541 	if (retval > 0) {
542 		unsigned int status;
543 
544 		if (unlikely(retval != map->m_len)) {
545 			ext4_warning(inode->i_sb,
546 				     "ES len assertion failed for inode "
547 				     "%lu: retval %d != map->m_len %d",
548 				     inode->i_ino, retval, map->m_len);
549 			WARN_ON(1);
550 		}
551 
552 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 		    !(status & EXTENT_STATUS_WRITTEN) &&
556 		    ext4_find_delalloc_range(inode, map->m_lblk,
557 					     map->m_lblk + map->m_len - 1))
558 			status |= EXTENT_STATUS_DELAYED;
559 		ret = ext4_es_insert_extent(inode, map->m_lblk,
560 					    map->m_len, map->m_pblk, status);
561 		if (ret < 0)
562 			retval = ret;
563 	}
564 	up_read((&EXT4_I(inode)->i_data_sem));
565 
566 found:
567 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 		ret = check_block_validity(inode, map);
569 		if (ret != 0)
570 			return ret;
571 	}
572 
573 	/* If it is only a block(s) look up */
574 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 		return retval;
576 
577 	/*
578 	 * Returns if the blocks have already allocated
579 	 *
580 	 * Note that if blocks have been preallocated
581 	 * ext4_ext_get_block() returns the create = 0
582 	 * with buffer head unmapped.
583 	 */
584 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 		/*
586 		 * If we need to convert extent to unwritten
587 		 * we continue and do the actual work in
588 		 * ext4_ext_map_blocks()
589 		 */
590 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 			return retval;
592 
593 	/*
594 	 * Here we clear m_flags because after allocating an new extent,
595 	 * it will be set again.
596 	 */
597 	map->m_flags &= ~EXT4_MAP_FLAGS;
598 
599 	/*
600 	 * New blocks allocate and/or writing to unwritten extent
601 	 * will possibly result in updating i_data, so we take
602 	 * the write lock of i_data_sem, and call get_block()
603 	 * with create == 1 flag.
604 	 */
605 	down_write(&EXT4_I(inode)->i_data_sem);
606 
607 	/*
608 	 * We need to check for EXT4 here because migrate
609 	 * could have changed the inode type in between
610 	 */
611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 	} else {
614 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
615 
616 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 			/*
618 			 * We allocated new blocks which will result in
619 			 * i_data's format changing.  Force the migrate
620 			 * to fail by clearing migrate flags
621 			 */
622 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 		}
624 
625 		/*
626 		 * Update reserved blocks/metadata blocks after successful
627 		 * block allocation which had been deferred till now. We don't
628 		 * support fallocate for non extent files. So we can update
629 		 * reserve space here.
630 		 */
631 		if ((retval > 0) &&
632 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 			ext4_da_update_reserve_space(inode, retval, 1);
634 	}
635 
636 	if (retval > 0) {
637 		unsigned int status;
638 
639 		if (unlikely(retval != map->m_len)) {
640 			ext4_warning(inode->i_sb,
641 				     "ES len assertion failed for inode "
642 				     "%lu: retval %d != map->m_len %d",
643 				     inode->i_ino, retval, map->m_len);
644 			WARN_ON(1);
645 		}
646 
647 		/*
648 		 * We have to zeroout blocks before inserting them into extent
649 		 * status tree. Otherwise someone could look them up there and
650 		 * use them before they are really zeroed. We also have to
651 		 * unmap metadata before zeroing as otherwise writeback can
652 		 * overwrite zeros with stale data from block device.
653 		 */
654 		if (flags & EXT4_GET_BLOCKS_ZERO &&
655 		    map->m_flags & EXT4_MAP_MAPPED &&
656 		    map->m_flags & EXT4_MAP_NEW) {
657 			ext4_lblk_t i;
658 
659 			for (i = 0; i < map->m_len; i++) {
660 				unmap_underlying_metadata(inode->i_sb->s_bdev,
661 							  map->m_pblk + i);
662 			}
663 			ret = ext4_issue_zeroout(inode, map->m_lblk,
664 						 map->m_pblk, map->m_len);
665 			if (ret) {
666 				retval = ret;
667 				goto out_sem;
668 			}
669 		}
670 
671 		/*
672 		 * If the extent has been zeroed out, we don't need to update
673 		 * extent status tree.
674 		 */
675 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677 			if (ext4_es_is_written(&es))
678 				goto out_sem;
679 		}
680 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683 		    !(status & EXTENT_STATUS_WRITTEN) &&
684 		    ext4_find_delalloc_range(inode, map->m_lblk,
685 					     map->m_lblk + map->m_len - 1))
686 			status |= EXTENT_STATUS_DELAYED;
687 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 					    map->m_pblk, status);
689 		if (ret < 0) {
690 			retval = ret;
691 			goto out_sem;
692 		}
693 	}
694 
695 out_sem:
696 	up_write((&EXT4_I(inode)->i_data_sem));
697 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698 		ret = check_block_validity(inode, map);
699 		if (ret != 0)
700 			return ret;
701 
702 		/*
703 		 * Inodes with freshly allocated blocks where contents will be
704 		 * visible after transaction commit must be on transaction's
705 		 * ordered data list.
706 		 */
707 		if (map->m_flags & EXT4_MAP_NEW &&
708 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
710 		    !IS_NOQUOTA(inode) &&
711 		    ext4_should_order_data(inode)) {
712 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713 				ret = ext4_jbd2_inode_add_wait(handle, inode);
714 			else
715 				ret = ext4_jbd2_inode_add_write(handle, inode);
716 			if (ret)
717 				return ret;
718 		}
719 	}
720 	return retval;
721 }
722 
723 /*
724  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725  * we have to be careful as someone else may be manipulating b_state as well.
726  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729 	unsigned long old_state;
730 	unsigned long new_state;
731 
732 	flags &= EXT4_MAP_FLAGS;
733 
734 	/* Dummy buffer_head? Set non-atomically. */
735 	if (!bh->b_page) {
736 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737 		return;
738 	}
739 	/*
740 	 * Someone else may be modifying b_state. Be careful! This is ugly but
741 	 * once we get rid of using bh as a container for mapping information
742 	 * to pass to / from get_block functions, this can go away.
743 	 */
744 	do {
745 		old_state = READ_ONCE(bh->b_state);
746 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747 	} while (unlikely(
748 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 			   struct buffer_head *bh, int flags)
753 {
754 	struct ext4_map_blocks map;
755 	int ret = 0;
756 
757 	if (ext4_has_inline_data(inode))
758 		return -ERANGE;
759 
760 	map.m_lblk = iblock;
761 	map.m_len = bh->b_size >> inode->i_blkbits;
762 
763 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 			      flags);
765 	if (ret > 0) {
766 		map_bh(bh, inode->i_sb, map.m_pblk);
767 		ext4_update_bh_state(bh, map.m_flags);
768 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 		ret = 0;
770 	}
771 	return ret;
772 }
773 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)774 int ext4_get_block(struct inode *inode, sector_t iblock,
775 		   struct buffer_head *bh, int create)
776 {
777 	return _ext4_get_block(inode, iblock, bh,
778 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
779 }
780 
781 /*
782  * Get block function used when preparing for buffered write if we require
783  * creating an unwritten extent if blocks haven't been allocated.  The extent
784  * will be converted to written after the IO is complete.
785  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)786 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
787 			     struct buffer_head *bh_result, int create)
788 {
789 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
790 		   inode->i_ino, create);
791 	return _ext4_get_block(inode, iblock, bh_result,
792 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
793 }
794 
795 /* Maximum number of blocks we map for direct IO at once. */
796 #define DIO_MAX_BLOCKS 4096
797 
798 /*
799  * Get blocks function for the cases that need to start a transaction -
800  * generally difference cases of direct IO and DAX IO. It also handles retries
801  * in case of ENOSPC.
802  */
ext4_get_block_trans(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int flags)803 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
804 				struct buffer_head *bh_result, int flags)
805 {
806 	int dio_credits;
807 	handle_t *handle;
808 	int retries = 0;
809 	int ret;
810 
811 	/* Trim mapping request to maximum we can map at once for DIO */
812 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
813 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
814 	dio_credits = ext4_chunk_trans_blocks(inode,
815 				      bh_result->b_size >> inode->i_blkbits);
816 retry:
817 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
818 	if (IS_ERR(handle))
819 		return PTR_ERR(handle);
820 
821 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
822 	ext4_journal_stop(handle);
823 
824 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
825 		goto retry;
826 	return ret;
827 }
828 
829 /* Get block function for DIO reads and writes to inodes without extents */
ext4_dio_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)830 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
831 		       struct buffer_head *bh, int create)
832 {
833 	/* We don't expect handle for direct IO */
834 	WARN_ON_ONCE(ext4_journal_current_handle());
835 
836 	if (!create)
837 		return _ext4_get_block(inode, iblock, bh, 0);
838 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
839 }
840 
841 /*
842  * Get block function for AIO DIO writes when we create unwritten extent if
843  * blocks are not allocated yet. The extent will be converted to written
844  * after IO is complete.
845  */
ext4_dio_get_block_unwritten_async(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)846 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
847 		sector_t iblock, struct buffer_head *bh_result,	int create)
848 {
849 	int ret;
850 
851 	/* We don't expect handle for direct IO */
852 	WARN_ON_ONCE(ext4_journal_current_handle());
853 
854 	ret = ext4_get_block_trans(inode, iblock, bh_result,
855 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
856 
857 	/*
858 	 * When doing DIO using unwritten extents, we need io_end to convert
859 	 * unwritten extents to written on IO completion. We allocate io_end
860 	 * once we spot unwritten extent and store it in b_private. Generic
861 	 * DIO code keeps b_private set and furthermore passes the value to
862 	 * our completion callback in 'private' argument.
863 	 */
864 	if (!ret && buffer_unwritten(bh_result)) {
865 		if (!bh_result->b_private) {
866 			ext4_io_end_t *io_end;
867 
868 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
869 			if (!io_end)
870 				return -ENOMEM;
871 			bh_result->b_private = io_end;
872 			ext4_set_io_unwritten_flag(inode, io_end);
873 		}
874 		set_buffer_defer_completion(bh_result);
875 	}
876 
877 	return ret;
878 }
879 
880 /*
881  * Get block function for non-AIO DIO writes when we create unwritten extent if
882  * blocks are not allocated yet. The extent will be converted to written
883  * after IO is complete from ext4_ext_direct_IO() function.
884  */
ext4_dio_get_block_unwritten_sync(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)885 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
886 		sector_t iblock, struct buffer_head *bh_result,	int create)
887 {
888 	int ret;
889 
890 	/* We don't expect handle for direct IO */
891 	WARN_ON_ONCE(ext4_journal_current_handle());
892 
893 	ret = ext4_get_block_trans(inode, iblock, bh_result,
894 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
895 
896 	/*
897 	 * Mark inode as having pending DIO writes to unwritten extents.
898 	 * ext4_ext_direct_IO() checks this flag and converts extents to
899 	 * written.
900 	 */
901 	if (!ret && buffer_unwritten(bh_result))
902 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903 
904 	return ret;
905 }
906 
ext4_dio_get_block_overwrite(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)907 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
908 		   struct buffer_head *bh_result, int create)
909 {
910 	int ret;
911 
912 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
913 		   inode->i_ino, create);
914 	/* We don't expect handle for direct IO */
915 	WARN_ON_ONCE(ext4_journal_current_handle());
916 
917 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
918 	/*
919 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
920 	 * that.
921 	 */
922 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923 
924 	return ret;
925 }
926 
927 
928 /*
929  * `handle' can be NULL if create is zero
930  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)931 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
932 				ext4_lblk_t block, int map_flags)
933 {
934 	struct ext4_map_blocks map;
935 	struct buffer_head *bh;
936 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
937 	int err;
938 
939 	J_ASSERT(handle != NULL || create == 0);
940 
941 	map.m_lblk = block;
942 	map.m_len = 1;
943 	err = ext4_map_blocks(handle, inode, &map, map_flags);
944 
945 	if (err == 0)
946 		return create ? ERR_PTR(-ENOSPC) : NULL;
947 	if (err < 0)
948 		return ERR_PTR(err);
949 
950 	bh = sb_getblk(inode->i_sb, map.m_pblk);
951 	if (unlikely(!bh))
952 		return ERR_PTR(-ENOMEM);
953 	if (map.m_flags & EXT4_MAP_NEW) {
954 		J_ASSERT(create != 0);
955 		J_ASSERT(handle != NULL);
956 
957 		/*
958 		 * Now that we do not always journal data, we should
959 		 * keep in mind whether this should always journal the
960 		 * new buffer as metadata.  For now, regular file
961 		 * writes use ext4_get_block instead, so it's not a
962 		 * problem.
963 		 */
964 		lock_buffer(bh);
965 		BUFFER_TRACE(bh, "call get_create_access");
966 		err = ext4_journal_get_create_access(handle, bh);
967 		if (unlikely(err)) {
968 			unlock_buffer(bh);
969 			goto errout;
970 		}
971 		if (!buffer_uptodate(bh)) {
972 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
973 			set_buffer_uptodate(bh);
974 		}
975 		unlock_buffer(bh);
976 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
977 		err = ext4_handle_dirty_metadata(handle, inode, bh);
978 		if (unlikely(err))
979 			goto errout;
980 	} else
981 		BUFFER_TRACE(bh, "not a new buffer");
982 	return bh;
983 errout:
984 	brelse(bh);
985 	return ERR_PTR(err);
986 }
987 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)988 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
989 			       ext4_lblk_t block, int map_flags)
990 {
991 	struct buffer_head *bh;
992 
993 	bh = ext4_getblk(handle, inode, block, map_flags);
994 	if (IS_ERR(bh))
995 		return bh;
996 	if (!bh || buffer_uptodate(bh))
997 		return bh;
998 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
999 	wait_on_buffer(bh);
1000 	if (buffer_uptodate(bh))
1001 		return bh;
1002 	put_bh(bh);
1003 	return ERR_PTR(-EIO);
1004 }
1005 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1006 int ext4_walk_page_buffers(handle_t *handle,
1007 			   struct buffer_head *head,
1008 			   unsigned from,
1009 			   unsigned to,
1010 			   int *partial,
1011 			   int (*fn)(handle_t *handle,
1012 				     struct buffer_head *bh))
1013 {
1014 	struct buffer_head *bh;
1015 	unsigned block_start, block_end;
1016 	unsigned blocksize = head->b_size;
1017 	int err, ret = 0;
1018 	struct buffer_head *next;
1019 
1020 	for (bh = head, block_start = 0;
1021 	     ret == 0 && (bh != head || !block_start);
1022 	     block_start = block_end, bh = next) {
1023 		next = bh->b_this_page;
1024 		block_end = block_start + blocksize;
1025 		if (block_end <= from || block_start >= to) {
1026 			if (partial && !buffer_uptodate(bh))
1027 				*partial = 1;
1028 			continue;
1029 		}
1030 		err = (*fn)(handle, bh);
1031 		if (!ret)
1032 			ret = err;
1033 	}
1034 	return ret;
1035 }
1036 
1037 /*
1038  * To preserve ordering, it is essential that the hole instantiation and
1039  * the data write be encapsulated in a single transaction.  We cannot
1040  * close off a transaction and start a new one between the ext4_get_block()
1041  * and the commit_write().  So doing the jbd2_journal_start at the start of
1042  * prepare_write() is the right place.
1043  *
1044  * Also, this function can nest inside ext4_writepage().  In that case, we
1045  * *know* that ext4_writepage() has generated enough buffer credits to do the
1046  * whole page.  So we won't block on the journal in that case, which is good,
1047  * because the caller may be PF_MEMALLOC.
1048  *
1049  * By accident, ext4 can be reentered when a transaction is open via
1050  * quota file writes.  If we were to commit the transaction while thus
1051  * reentered, there can be a deadlock - we would be holding a quota
1052  * lock, and the commit would never complete if another thread had a
1053  * transaction open and was blocking on the quota lock - a ranking
1054  * violation.
1055  *
1056  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1057  * will _not_ run commit under these circumstances because handle->h_ref
1058  * is elevated.  We'll still have enough credits for the tiny quotafile
1059  * write.
1060  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1061 int do_journal_get_write_access(handle_t *handle,
1062 				struct buffer_head *bh)
1063 {
1064 	int dirty = buffer_dirty(bh);
1065 	int ret;
1066 
1067 	if (!buffer_mapped(bh) || buffer_freed(bh))
1068 		return 0;
1069 	/*
1070 	 * __block_write_begin() could have dirtied some buffers. Clean
1071 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1072 	 * otherwise about fs integrity issues. Setting of the dirty bit
1073 	 * by __block_write_begin() isn't a real problem here as we clear
1074 	 * the bit before releasing a page lock and thus writeback cannot
1075 	 * ever write the buffer.
1076 	 */
1077 	if (dirty)
1078 		clear_buffer_dirty(bh);
1079 	BUFFER_TRACE(bh, "get write access");
1080 	ret = ext4_journal_get_write_access(handle, bh);
1081 	if (!ret && dirty)
1082 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1083 	return ret;
1084 }
1085 
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1087 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1088 				  get_block_t *get_block)
1089 {
1090 	unsigned from = pos & (PAGE_SIZE - 1);
1091 	unsigned to = from + len;
1092 	struct inode *inode = page->mapping->host;
1093 	unsigned block_start, block_end;
1094 	sector_t block;
1095 	int err = 0;
1096 	unsigned blocksize = inode->i_sb->s_blocksize;
1097 	unsigned bbits;
1098 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1099 	bool decrypt = false;
1100 
1101 	BUG_ON(!PageLocked(page));
1102 	BUG_ON(from > PAGE_SIZE);
1103 	BUG_ON(to > PAGE_SIZE);
1104 	BUG_ON(from > to);
1105 
1106 	if (!page_has_buffers(page))
1107 		create_empty_buffers(page, blocksize, 0);
1108 	head = page_buffers(page);
1109 	bbits = ilog2(blocksize);
1110 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111 
1112 	for (bh = head, block_start = 0; bh != head || !block_start;
1113 	    block++, block_start = block_end, bh = bh->b_this_page) {
1114 		block_end = block_start + blocksize;
1115 		if (block_end <= from || block_start >= to) {
1116 			if (PageUptodate(page)) {
1117 				if (!buffer_uptodate(bh))
1118 					set_buffer_uptodate(bh);
1119 			}
1120 			continue;
1121 		}
1122 		if (buffer_new(bh))
1123 			clear_buffer_new(bh);
1124 		if (!buffer_mapped(bh)) {
1125 			WARN_ON(bh->b_size != blocksize);
1126 			err = get_block(inode, block, bh, 1);
1127 			if (err)
1128 				break;
1129 			if (buffer_new(bh)) {
1130 				unmap_underlying_metadata(bh->b_bdev,
1131 							  bh->b_blocknr);
1132 				if (PageUptodate(page)) {
1133 					clear_buffer_new(bh);
1134 					set_buffer_uptodate(bh);
1135 					mark_buffer_dirty(bh);
1136 					continue;
1137 				}
1138 				if (block_end > to || block_start < from)
1139 					zero_user_segments(page, to, block_end,
1140 							   block_start, from);
1141 				continue;
1142 			}
1143 		}
1144 		if (PageUptodate(page)) {
1145 			if (!buffer_uptodate(bh))
1146 				set_buffer_uptodate(bh);
1147 			continue;
1148 		}
1149 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1150 		    !buffer_unwritten(bh) &&
1151 		    (block_start < from || block_end > to)) {
1152 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1153 			*wait_bh++ = bh;
1154 			decrypt = ext4_encrypted_inode(inode) &&
1155 				S_ISREG(inode->i_mode);
1156 		}
1157 	}
1158 	/*
1159 	 * If we issued read requests, let them complete.
1160 	 */
1161 	while (wait_bh > wait) {
1162 		wait_on_buffer(*--wait_bh);
1163 		if (!buffer_uptodate(*wait_bh))
1164 			err = -EIO;
1165 	}
1166 	if (unlikely(err))
1167 		page_zero_new_buffers(page, from, to);
1168 	else if (decrypt)
1169 		err = fscrypt_decrypt_page(page->mapping->host, page,
1170 				PAGE_SIZE, 0, page->index);
1171 	return err;
1172 }
1173 #endif
1174 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1175 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1176 			    loff_t pos, unsigned len, unsigned flags,
1177 			    struct page **pagep, void **fsdata)
1178 {
1179 	struct inode *inode = mapping->host;
1180 	int ret, needed_blocks;
1181 	handle_t *handle;
1182 	int retries = 0;
1183 	struct page *page;
1184 	pgoff_t index;
1185 	unsigned from, to;
1186 
1187 	if (trace_android_fs_datawrite_start_enabled()) {
1188 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1189 
1190 		path = android_fstrace_get_pathname(pathbuf,
1191 						    MAX_TRACE_PATHBUF_LEN,
1192 						    inode);
1193 		trace_android_fs_datawrite_start(inode, pos, len,
1194 						 current->pid, path,
1195 						 current->comm);
1196 	}
1197 	trace_ext4_write_begin(inode, pos, len, flags);
1198 	/*
1199 	 * Reserve one block more for addition to orphan list in case
1200 	 * we allocate blocks but write fails for some reason
1201 	 */
1202 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1203 	index = pos >> PAGE_SHIFT;
1204 	from = pos & (PAGE_SIZE - 1);
1205 	to = from + len;
1206 
1207 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1208 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1209 						    flags, pagep);
1210 		if (ret < 0)
1211 			return ret;
1212 		if (ret == 1)
1213 			return 0;
1214 	}
1215 
1216 	/*
1217 	 * grab_cache_page_write_begin() can take a long time if the
1218 	 * system is thrashing due to memory pressure, or if the page
1219 	 * is being written back.  So grab it first before we start
1220 	 * the transaction handle.  This also allows us to allocate
1221 	 * the page (if needed) without using GFP_NOFS.
1222 	 */
1223 retry_grab:
1224 	page = grab_cache_page_write_begin(mapping, index, flags);
1225 	if (!page)
1226 		return -ENOMEM;
1227 	unlock_page(page);
1228 
1229 retry_journal:
1230 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1231 	if (IS_ERR(handle)) {
1232 		put_page(page);
1233 		return PTR_ERR(handle);
1234 	}
1235 
1236 	lock_page(page);
1237 	if (page->mapping != mapping) {
1238 		/* The page got truncated from under us */
1239 		unlock_page(page);
1240 		put_page(page);
1241 		ext4_journal_stop(handle);
1242 		goto retry_grab;
1243 	}
1244 	/* In case writeback began while the page was unlocked */
1245 	wait_for_stable_page(page);
1246 
1247 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1248 	if (ext4_should_dioread_nolock(inode))
1249 		ret = ext4_block_write_begin(page, pos, len,
1250 					     ext4_get_block_unwritten);
1251 	else
1252 		ret = ext4_block_write_begin(page, pos, len,
1253 					     ext4_get_block);
1254 #else
1255 	if (ext4_should_dioread_nolock(inode))
1256 		ret = __block_write_begin(page, pos, len,
1257 					  ext4_get_block_unwritten);
1258 	else
1259 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1260 #endif
1261 	if (!ret && ext4_should_journal_data(inode)) {
1262 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1263 					     from, to, NULL,
1264 					     do_journal_get_write_access);
1265 	}
1266 
1267 	if (ret) {
1268 		unlock_page(page);
1269 		/*
1270 		 * __block_write_begin may have instantiated a few blocks
1271 		 * outside i_size.  Trim these off again. Don't need
1272 		 * i_size_read because we hold i_mutex.
1273 		 *
1274 		 * Add inode to orphan list in case we crash before
1275 		 * truncate finishes
1276 		 */
1277 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1278 			ext4_orphan_add(handle, inode);
1279 
1280 		ext4_journal_stop(handle);
1281 		if (pos + len > inode->i_size) {
1282 			ext4_truncate_failed_write(inode);
1283 			/*
1284 			 * If truncate failed early the inode might
1285 			 * still be on the orphan list; we need to
1286 			 * make sure the inode is removed from the
1287 			 * orphan list in that case.
1288 			 */
1289 			if (inode->i_nlink)
1290 				ext4_orphan_del(NULL, inode);
1291 		}
1292 
1293 		if (ret == -ENOSPC &&
1294 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1295 			goto retry_journal;
1296 		put_page(page);
1297 		return ret;
1298 	}
1299 	*pagep = page;
1300 	return ret;
1301 }
1302 
1303 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1304 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1305 {
1306 	int ret;
1307 	if (!buffer_mapped(bh) || buffer_freed(bh))
1308 		return 0;
1309 	set_buffer_uptodate(bh);
1310 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1311 	clear_buffer_meta(bh);
1312 	clear_buffer_prio(bh);
1313 	return ret;
1314 }
1315 
1316 /*
1317  * We need to pick up the new inode size which generic_commit_write gave us
1318  * `file' can be NULL - eg, when called from page_symlink().
1319  *
1320  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1321  * buffers are managed internally.
1322  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1323 static int ext4_write_end(struct file *file,
1324 			  struct address_space *mapping,
1325 			  loff_t pos, unsigned len, unsigned copied,
1326 			  struct page *page, void *fsdata)
1327 {
1328 	handle_t *handle = ext4_journal_current_handle();
1329 	struct inode *inode = mapping->host;
1330 	loff_t old_size = inode->i_size;
1331 	int ret = 0, ret2;
1332 	int i_size_changed = 0;
1333 
1334 	trace_android_fs_datawrite_end(inode, pos, len);
1335 	trace_ext4_write_end(inode, pos, len, copied);
1336 	if (ext4_has_inline_data(inode)) {
1337 		ret = ext4_write_inline_data_end(inode, pos, len,
1338 						 copied, page);
1339 		if (ret < 0) {
1340 			unlock_page(page);
1341 			put_page(page);
1342 			goto errout;
1343 		}
1344 		copied = ret;
1345 	} else
1346 		copied = block_write_end(file, mapping, pos,
1347 					 len, copied, page, fsdata);
1348 	/*
1349 	 * it's important to update i_size while still holding page lock:
1350 	 * page writeout could otherwise come in and zero beyond i_size.
1351 	 */
1352 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1353 	unlock_page(page);
1354 	put_page(page);
1355 
1356 	if (old_size < pos)
1357 		pagecache_isize_extended(inode, old_size, pos);
1358 	/*
1359 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1360 	 * makes the holding time of page lock longer. Second, it forces lock
1361 	 * ordering of page lock and transaction start for journaling
1362 	 * filesystems.
1363 	 */
1364 	if (i_size_changed)
1365 		ext4_mark_inode_dirty(handle, inode);
1366 
1367 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1368 		/* if we have allocated more blocks and copied
1369 		 * less. We will have blocks allocated outside
1370 		 * inode->i_size. So truncate them
1371 		 */
1372 		ext4_orphan_add(handle, inode);
1373 errout:
1374 	ret2 = ext4_journal_stop(handle);
1375 	if (!ret)
1376 		ret = ret2;
1377 
1378 	if (pos + len > inode->i_size) {
1379 		ext4_truncate_failed_write(inode);
1380 		/*
1381 		 * If truncate failed early the inode might still be
1382 		 * on the orphan list; we need to make sure the inode
1383 		 * is removed from the orphan list in that case.
1384 		 */
1385 		if (inode->i_nlink)
1386 			ext4_orphan_del(NULL, inode);
1387 	}
1388 
1389 	return ret ? ret : copied;
1390 }
1391 
1392 /*
1393  * This is a private version of page_zero_new_buffers() which doesn't
1394  * set the buffer to be dirty, since in data=journalled mode we need
1395  * to call ext4_handle_dirty_metadata() instead.
1396  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1397 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1398 					    struct page *page,
1399 					    unsigned from, unsigned to)
1400 {
1401 	unsigned int block_start = 0, block_end;
1402 	struct buffer_head *head, *bh;
1403 
1404 	bh = head = page_buffers(page);
1405 	do {
1406 		block_end = block_start + bh->b_size;
1407 		if (buffer_new(bh)) {
1408 			if (block_end > from && block_start < to) {
1409 				if (!PageUptodate(page)) {
1410 					unsigned start, size;
1411 
1412 					start = max(from, block_start);
1413 					size = min(to, block_end) - start;
1414 
1415 					zero_user(page, start, size);
1416 					write_end_fn(handle, bh);
1417 				}
1418 				clear_buffer_new(bh);
1419 			}
1420 		}
1421 		block_start = block_end;
1422 		bh = bh->b_this_page;
1423 	} while (bh != head);
1424 }
1425 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1426 static int ext4_journalled_write_end(struct file *file,
1427 				     struct address_space *mapping,
1428 				     loff_t pos, unsigned len, unsigned copied,
1429 				     struct page *page, void *fsdata)
1430 {
1431 	handle_t *handle = ext4_journal_current_handle();
1432 	struct inode *inode = mapping->host;
1433 	loff_t old_size = inode->i_size;
1434 	int ret = 0, ret2;
1435 	int partial = 0;
1436 	unsigned from, to;
1437 	int size_changed = 0;
1438 
1439 	trace_android_fs_datawrite_end(inode, pos, len);
1440 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1441 	from = pos & (PAGE_SIZE - 1);
1442 	to = from + len;
1443 
1444 	BUG_ON(!ext4_handle_valid(handle));
1445 
1446 	if (ext4_has_inline_data(inode)) {
1447 		ret = ext4_write_inline_data_end(inode, pos, len,
1448 						 copied, page);
1449 		if (ret < 0) {
1450 			unlock_page(page);
1451 			put_page(page);
1452 			goto errout;
1453 		}
1454 		copied = ret;
1455 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1456 		copied = 0;
1457 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1458 	} else {
1459 		if (unlikely(copied < len))
1460 			ext4_journalled_zero_new_buffers(handle, page,
1461 							 from + copied, to);
1462 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1463 					     from + copied, &partial,
1464 					     write_end_fn);
1465 		if (!partial)
1466 			SetPageUptodate(page);
1467 	}
1468 	size_changed = ext4_update_inode_size(inode, pos + copied);
1469 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1470 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1471 	unlock_page(page);
1472 	put_page(page);
1473 
1474 	if (old_size < pos)
1475 		pagecache_isize_extended(inode, old_size, pos);
1476 
1477 	if (size_changed) {
1478 		ret2 = ext4_mark_inode_dirty(handle, inode);
1479 		if (!ret)
1480 			ret = ret2;
1481 	}
1482 
1483 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1484 		/* if we have allocated more blocks and copied
1485 		 * less. We will have blocks allocated outside
1486 		 * inode->i_size. So truncate them
1487 		 */
1488 		ext4_orphan_add(handle, inode);
1489 
1490 errout:
1491 	ret2 = ext4_journal_stop(handle);
1492 	if (!ret)
1493 		ret = ret2;
1494 	if (pos + len > inode->i_size) {
1495 		ext4_truncate_failed_write(inode);
1496 		/*
1497 		 * If truncate failed early the inode might still be
1498 		 * on the orphan list; we need to make sure the inode
1499 		 * is removed from the orphan list in that case.
1500 		 */
1501 		if (inode->i_nlink)
1502 			ext4_orphan_del(NULL, inode);
1503 	}
1504 
1505 	return ret ? ret : copied;
1506 }
1507 
1508 /*
1509  * Reserve space for a single cluster
1510  */
ext4_da_reserve_space(struct inode * inode)1511 static int ext4_da_reserve_space(struct inode *inode)
1512 {
1513 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1514 	struct ext4_inode_info *ei = EXT4_I(inode);
1515 	int ret;
1516 
1517 	/*
1518 	 * We will charge metadata quota at writeout time; this saves
1519 	 * us from metadata over-estimation, though we may go over by
1520 	 * a small amount in the end.  Here we just reserve for data.
1521 	 */
1522 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1523 	if (ret)
1524 		return ret;
1525 
1526 	spin_lock(&ei->i_block_reservation_lock);
1527 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1528 		spin_unlock(&ei->i_block_reservation_lock);
1529 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1530 		return -ENOSPC;
1531 	}
1532 	ei->i_reserved_data_blocks++;
1533 	trace_ext4_da_reserve_space(inode);
1534 	spin_unlock(&ei->i_block_reservation_lock);
1535 
1536 	return 0;       /* success */
1537 }
1538 
ext4_da_release_space(struct inode * inode,int to_free)1539 static void ext4_da_release_space(struct inode *inode, int to_free)
1540 {
1541 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1542 	struct ext4_inode_info *ei = EXT4_I(inode);
1543 
1544 	if (!to_free)
1545 		return;		/* Nothing to release, exit */
1546 
1547 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1548 
1549 	trace_ext4_da_release_space(inode, to_free);
1550 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1551 		/*
1552 		 * if there aren't enough reserved blocks, then the
1553 		 * counter is messed up somewhere.  Since this
1554 		 * function is called from invalidate page, it's
1555 		 * harmless to return without any action.
1556 		 */
1557 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1558 			 "ino %lu, to_free %d with only %d reserved "
1559 			 "data blocks", inode->i_ino, to_free,
1560 			 ei->i_reserved_data_blocks);
1561 		WARN_ON(1);
1562 		to_free = ei->i_reserved_data_blocks;
1563 	}
1564 	ei->i_reserved_data_blocks -= to_free;
1565 
1566 	/* update fs dirty data blocks counter */
1567 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1568 
1569 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570 
1571 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1572 }
1573 
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1574 static void ext4_da_page_release_reservation(struct page *page,
1575 					     unsigned int offset,
1576 					     unsigned int length)
1577 {
1578 	int to_release = 0, contiguous_blks = 0;
1579 	struct buffer_head *head, *bh;
1580 	unsigned int curr_off = 0;
1581 	struct inode *inode = page->mapping->host;
1582 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1583 	unsigned int stop = offset + length;
1584 	int num_clusters;
1585 	ext4_fsblk_t lblk;
1586 
1587 	BUG_ON(stop > PAGE_SIZE || stop < length);
1588 
1589 	head = page_buffers(page);
1590 	bh = head;
1591 	do {
1592 		unsigned int next_off = curr_off + bh->b_size;
1593 
1594 		if (next_off > stop)
1595 			break;
1596 
1597 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1598 			to_release++;
1599 			contiguous_blks++;
1600 			clear_buffer_delay(bh);
1601 		} else if (contiguous_blks) {
1602 			lblk = page->index <<
1603 			       (PAGE_SHIFT - inode->i_blkbits);
1604 			lblk += (curr_off >> inode->i_blkbits) -
1605 				contiguous_blks;
1606 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1607 			contiguous_blks = 0;
1608 		}
1609 		curr_off = next_off;
1610 	} while ((bh = bh->b_this_page) != head);
1611 
1612 	if (contiguous_blks) {
1613 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1614 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1615 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1616 	}
1617 
1618 	/* If we have released all the blocks belonging to a cluster, then we
1619 	 * need to release the reserved space for that cluster. */
1620 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1621 	while (num_clusters > 0) {
1622 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1623 			((num_clusters - 1) << sbi->s_cluster_bits);
1624 		if (sbi->s_cluster_ratio == 1 ||
1625 		    !ext4_find_delalloc_cluster(inode, lblk))
1626 			ext4_da_release_space(inode, 1);
1627 
1628 		num_clusters--;
1629 	}
1630 }
1631 
1632 /*
1633  * Delayed allocation stuff
1634  */
1635 
1636 struct mpage_da_data {
1637 	struct inode *inode;
1638 	struct writeback_control *wbc;
1639 
1640 	pgoff_t first_page;	/* The first page to write */
1641 	pgoff_t next_page;	/* Current page to examine */
1642 	pgoff_t last_page;	/* Last page to examine */
1643 	/*
1644 	 * Extent to map - this can be after first_page because that can be
1645 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1646 	 * is delalloc or unwritten.
1647 	 */
1648 	struct ext4_map_blocks map;
1649 	struct ext4_io_submit io_submit;	/* IO submission data */
1650 };
1651 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1652 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1653 				       bool invalidate)
1654 {
1655 	int nr_pages, i;
1656 	pgoff_t index, end;
1657 	struct pagevec pvec;
1658 	struct inode *inode = mpd->inode;
1659 	struct address_space *mapping = inode->i_mapping;
1660 
1661 	/* This is necessary when next_page == 0. */
1662 	if (mpd->first_page >= mpd->next_page)
1663 		return;
1664 
1665 	index = mpd->first_page;
1666 	end   = mpd->next_page - 1;
1667 	if (invalidate) {
1668 		ext4_lblk_t start, last;
1669 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1670 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1671 		ext4_es_remove_extent(inode, start, last - start + 1);
1672 	}
1673 
1674 	pagevec_init(&pvec, 0);
1675 	while (index <= end) {
1676 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1677 		if (nr_pages == 0)
1678 			break;
1679 		for (i = 0; i < nr_pages; i++) {
1680 			struct page *page = pvec.pages[i];
1681 			if (page->index > end)
1682 				break;
1683 			BUG_ON(!PageLocked(page));
1684 			BUG_ON(PageWriteback(page));
1685 			if (invalidate) {
1686 				if (page_mapped(page))
1687 					clear_page_dirty_for_io(page);
1688 				block_invalidatepage(page, 0, PAGE_SIZE);
1689 				ClearPageUptodate(page);
1690 			}
1691 			unlock_page(page);
1692 		}
1693 		index = pvec.pages[nr_pages - 1]->index + 1;
1694 		pagevec_release(&pvec);
1695 	}
1696 }
1697 
ext4_print_free_blocks(struct inode * inode)1698 static void ext4_print_free_blocks(struct inode *inode)
1699 {
1700 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1701 	struct super_block *sb = inode->i_sb;
1702 	struct ext4_inode_info *ei = EXT4_I(inode);
1703 
1704 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1705 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1706 			ext4_count_free_clusters(sb)));
1707 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1708 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1709 	       (long long) EXT4_C2B(EXT4_SB(sb),
1710 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1711 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1712 	       (long long) EXT4_C2B(EXT4_SB(sb),
1713 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1714 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1715 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1716 		 ei->i_reserved_data_blocks);
1717 	return;
1718 }
1719 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1720 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1721 {
1722 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1723 }
1724 
1725 /*
1726  * This function is grabs code from the very beginning of
1727  * ext4_map_blocks, but assumes that the caller is from delayed write
1728  * time. This function looks up the requested blocks and sets the
1729  * buffer delay bit under the protection of i_data_sem.
1730  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1731 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1732 			      struct ext4_map_blocks *map,
1733 			      struct buffer_head *bh)
1734 {
1735 	struct extent_status es;
1736 	int retval;
1737 	sector_t invalid_block = ~((sector_t) 0xffff);
1738 #ifdef ES_AGGRESSIVE_TEST
1739 	struct ext4_map_blocks orig_map;
1740 
1741 	memcpy(&orig_map, map, sizeof(*map));
1742 #endif
1743 
1744 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1745 		invalid_block = ~0;
1746 
1747 	map->m_flags = 0;
1748 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1749 		  "logical block %lu\n", inode->i_ino, map->m_len,
1750 		  (unsigned long) map->m_lblk);
1751 
1752 	/* Lookup extent status tree firstly */
1753 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1754 		if (ext4_es_is_hole(&es)) {
1755 			retval = 0;
1756 			down_read(&EXT4_I(inode)->i_data_sem);
1757 			goto add_delayed;
1758 		}
1759 
1760 		/*
1761 		 * Delayed extent could be allocated by fallocate.
1762 		 * So we need to check it.
1763 		 */
1764 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1765 			map_bh(bh, inode->i_sb, invalid_block);
1766 			set_buffer_new(bh);
1767 			set_buffer_delay(bh);
1768 			return 0;
1769 		}
1770 
1771 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1772 		retval = es.es_len - (iblock - es.es_lblk);
1773 		if (retval > map->m_len)
1774 			retval = map->m_len;
1775 		map->m_len = retval;
1776 		if (ext4_es_is_written(&es))
1777 			map->m_flags |= EXT4_MAP_MAPPED;
1778 		else if (ext4_es_is_unwritten(&es))
1779 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1780 		else
1781 			BUG_ON(1);
1782 
1783 #ifdef ES_AGGRESSIVE_TEST
1784 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1785 #endif
1786 		return retval;
1787 	}
1788 
1789 	/*
1790 	 * Try to see if we can get the block without requesting a new
1791 	 * file system block.
1792 	 */
1793 	down_read(&EXT4_I(inode)->i_data_sem);
1794 	if (ext4_has_inline_data(inode))
1795 		retval = 0;
1796 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1797 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1798 	else
1799 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1800 
1801 add_delayed:
1802 	if (retval == 0) {
1803 		int ret;
1804 		/*
1805 		 * XXX: __block_prepare_write() unmaps passed block,
1806 		 * is it OK?
1807 		 */
1808 		/*
1809 		 * If the block was allocated from previously allocated cluster,
1810 		 * then we don't need to reserve it again. However we still need
1811 		 * to reserve metadata for every block we're going to write.
1812 		 */
1813 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1814 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1815 			ret = ext4_da_reserve_space(inode);
1816 			if (ret) {
1817 				/* not enough space to reserve */
1818 				retval = ret;
1819 				goto out_unlock;
1820 			}
1821 		}
1822 
1823 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1824 					    ~0, EXTENT_STATUS_DELAYED);
1825 		if (ret) {
1826 			retval = ret;
1827 			goto out_unlock;
1828 		}
1829 
1830 		map_bh(bh, inode->i_sb, invalid_block);
1831 		set_buffer_new(bh);
1832 		set_buffer_delay(bh);
1833 	} else if (retval > 0) {
1834 		int ret;
1835 		unsigned int status;
1836 
1837 		if (unlikely(retval != map->m_len)) {
1838 			ext4_warning(inode->i_sb,
1839 				     "ES len assertion failed for inode "
1840 				     "%lu: retval %d != map->m_len %d",
1841 				     inode->i_ino, retval, map->m_len);
1842 			WARN_ON(1);
1843 		}
1844 
1845 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1846 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1847 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1848 					    map->m_pblk, status);
1849 		if (ret != 0)
1850 			retval = ret;
1851 	}
1852 
1853 out_unlock:
1854 	up_read((&EXT4_I(inode)->i_data_sem));
1855 
1856 	return retval;
1857 }
1858 
1859 /*
1860  * This is a special get_block_t callback which is used by
1861  * ext4_da_write_begin().  It will either return mapped block or
1862  * reserve space for a single block.
1863  *
1864  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1865  * We also have b_blocknr = -1 and b_bdev initialized properly
1866  *
1867  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1868  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1869  * initialized properly.
1870  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1871 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1872 			   struct buffer_head *bh, int create)
1873 {
1874 	struct ext4_map_blocks map;
1875 	int ret = 0;
1876 
1877 	BUG_ON(create == 0);
1878 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1879 
1880 	map.m_lblk = iblock;
1881 	map.m_len = 1;
1882 
1883 	/*
1884 	 * first, we need to know whether the block is allocated already
1885 	 * preallocated blocks are unmapped but should treated
1886 	 * the same as allocated blocks.
1887 	 */
1888 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1889 	if (ret <= 0)
1890 		return ret;
1891 
1892 	map_bh(bh, inode->i_sb, map.m_pblk);
1893 	ext4_update_bh_state(bh, map.m_flags);
1894 
1895 	if (buffer_unwritten(bh)) {
1896 		/* A delayed write to unwritten bh should be marked
1897 		 * new and mapped.  Mapped ensures that we don't do
1898 		 * get_block multiple times when we write to the same
1899 		 * offset and new ensures that we do proper zero out
1900 		 * for partial write.
1901 		 */
1902 		set_buffer_new(bh);
1903 		set_buffer_mapped(bh);
1904 	}
1905 	return 0;
1906 }
1907 
bget_one(handle_t * handle,struct buffer_head * bh)1908 static int bget_one(handle_t *handle, struct buffer_head *bh)
1909 {
1910 	get_bh(bh);
1911 	return 0;
1912 }
1913 
bput_one(handle_t * handle,struct buffer_head * bh)1914 static int bput_one(handle_t *handle, struct buffer_head *bh)
1915 {
1916 	put_bh(bh);
1917 	return 0;
1918 }
1919 
__ext4_journalled_writepage(struct page * page,unsigned int len)1920 static int __ext4_journalled_writepage(struct page *page,
1921 				       unsigned int len)
1922 {
1923 	struct address_space *mapping = page->mapping;
1924 	struct inode *inode = mapping->host;
1925 	struct buffer_head *page_bufs = NULL;
1926 	handle_t *handle = NULL;
1927 	int ret = 0, err = 0;
1928 	int inline_data = ext4_has_inline_data(inode);
1929 	struct buffer_head *inode_bh = NULL;
1930 
1931 	ClearPageChecked(page);
1932 
1933 	if (inline_data) {
1934 		BUG_ON(page->index != 0);
1935 		BUG_ON(len > ext4_get_max_inline_size(inode));
1936 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1937 		if (inode_bh == NULL)
1938 			goto out;
1939 	} else {
1940 		page_bufs = page_buffers(page);
1941 		if (!page_bufs) {
1942 			BUG();
1943 			goto out;
1944 		}
1945 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1946 				       NULL, bget_one);
1947 	}
1948 	/*
1949 	 * We need to release the page lock before we start the
1950 	 * journal, so grab a reference so the page won't disappear
1951 	 * out from under us.
1952 	 */
1953 	get_page(page);
1954 	unlock_page(page);
1955 
1956 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1957 				    ext4_writepage_trans_blocks(inode));
1958 	if (IS_ERR(handle)) {
1959 		ret = PTR_ERR(handle);
1960 		put_page(page);
1961 		goto out_no_pagelock;
1962 	}
1963 	BUG_ON(!ext4_handle_valid(handle));
1964 
1965 	lock_page(page);
1966 	put_page(page);
1967 	if (page->mapping != mapping) {
1968 		/* The page got truncated from under us */
1969 		ext4_journal_stop(handle);
1970 		ret = 0;
1971 		goto out;
1972 	}
1973 
1974 	if (inline_data) {
1975 		BUFFER_TRACE(inode_bh, "get write access");
1976 		ret = ext4_journal_get_write_access(handle, inode_bh);
1977 
1978 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1979 
1980 	} else {
1981 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 					     do_journal_get_write_access);
1983 
1984 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1985 					     write_end_fn);
1986 	}
1987 	if (ret == 0)
1988 		ret = err;
1989 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1990 	err = ext4_journal_stop(handle);
1991 	if (!ret)
1992 		ret = err;
1993 
1994 	if (!ext4_has_inline_data(inode))
1995 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1996 				       NULL, bput_one);
1997 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1998 out:
1999 	unlock_page(page);
2000 out_no_pagelock:
2001 	brelse(inode_bh);
2002 	return ret;
2003 }
2004 
2005 /*
2006  * Note that we don't need to start a transaction unless we're journaling data
2007  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2008  * need to file the inode to the transaction's list in ordered mode because if
2009  * we are writing back data added by write(), the inode is already there and if
2010  * we are writing back data modified via mmap(), no one guarantees in which
2011  * transaction the data will hit the disk. In case we are journaling data, we
2012  * cannot start transaction directly because transaction start ranks above page
2013  * lock so we have to do some magic.
2014  *
2015  * This function can get called via...
2016  *   - ext4_writepages after taking page lock (have journal handle)
2017  *   - journal_submit_inode_data_buffers (no journal handle)
2018  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2019  *   - grab_page_cache when doing write_begin (have journal handle)
2020  *
2021  * We don't do any block allocation in this function. If we have page with
2022  * multiple blocks we need to write those buffer_heads that are mapped. This
2023  * is important for mmaped based write. So if we do with blocksize 1K
2024  * truncate(f, 1024);
2025  * a = mmap(f, 0, 4096);
2026  * a[0] = 'a';
2027  * truncate(f, 4096);
2028  * we have in the page first buffer_head mapped via page_mkwrite call back
2029  * but other buffer_heads would be unmapped but dirty (dirty done via the
2030  * do_wp_page). So writepage should write the first block. If we modify
2031  * the mmap area beyond 1024 we will again get a page_fault and the
2032  * page_mkwrite callback will do the block allocation and mark the
2033  * buffer_heads mapped.
2034  *
2035  * We redirty the page if we have any buffer_heads that is either delay or
2036  * unwritten in the page.
2037  *
2038  * We can get recursively called as show below.
2039  *
2040  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2041  *		ext4_writepage()
2042  *
2043  * But since we don't do any block allocation we should not deadlock.
2044  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2045  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2046 static int ext4_writepage(struct page *page,
2047 			  struct writeback_control *wbc)
2048 {
2049 	int ret = 0;
2050 	loff_t size;
2051 	unsigned int len;
2052 	struct buffer_head *page_bufs = NULL;
2053 	struct inode *inode = page->mapping->host;
2054 	struct ext4_io_submit io_submit;
2055 	bool keep_towrite = false;
2056 
2057 	trace_ext4_writepage(page);
2058 	size = i_size_read(inode);
2059 	if (page->index == size >> PAGE_SHIFT)
2060 		len = size & ~PAGE_MASK;
2061 	else
2062 		len = PAGE_SIZE;
2063 
2064 	page_bufs = page_buffers(page);
2065 	/*
2066 	 * We cannot do block allocation or other extent handling in this
2067 	 * function. If there are buffers needing that, we have to redirty
2068 	 * the page. But we may reach here when we do a journal commit via
2069 	 * journal_submit_inode_data_buffers() and in that case we must write
2070 	 * allocated buffers to achieve data=ordered mode guarantees.
2071 	 *
2072 	 * Also, if there is only one buffer per page (the fs block
2073 	 * size == the page size), if one buffer needs block
2074 	 * allocation or needs to modify the extent tree to clear the
2075 	 * unwritten flag, we know that the page can't be written at
2076 	 * all, so we might as well refuse the write immediately.
2077 	 * Unfortunately if the block size != page size, we can't as
2078 	 * easily detect this case using ext4_walk_page_buffers(), but
2079 	 * for the extremely common case, this is an optimization that
2080 	 * skips a useless round trip through ext4_bio_write_page().
2081 	 */
2082 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2083 				   ext4_bh_delay_or_unwritten)) {
2084 		redirty_page_for_writepage(wbc, page);
2085 		if ((current->flags & PF_MEMALLOC) ||
2086 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2087 			/*
2088 			 * For memory cleaning there's no point in writing only
2089 			 * some buffers. So just bail out. Warn if we came here
2090 			 * from direct reclaim.
2091 			 */
2092 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2093 							== PF_MEMALLOC);
2094 			unlock_page(page);
2095 			return 0;
2096 		}
2097 		keep_towrite = true;
2098 	}
2099 
2100 	if (PageChecked(page) && ext4_should_journal_data(inode))
2101 		/*
2102 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2103 		 * doesn't seem much point in redirtying the page here.
2104 		 */
2105 		return __ext4_journalled_writepage(page, len);
2106 
2107 	ext4_io_submit_init(&io_submit, wbc);
2108 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2109 	if (!io_submit.io_end) {
2110 		redirty_page_for_writepage(wbc, page);
2111 		unlock_page(page);
2112 		return -ENOMEM;
2113 	}
2114 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2115 	ext4_io_submit(&io_submit);
2116 	/* Drop io_end reference we got from init */
2117 	ext4_put_io_end_defer(io_submit.io_end);
2118 	return ret;
2119 }
2120 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2121 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2122 {
2123 	int len;
2124 	loff_t size;
2125 	int err;
2126 
2127 	BUG_ON(page->index != mpd->first_page);
2128 	clear_page_dirty_for_io(page);
2129 	/*
2130 	 * We have to be very careful here!  Nothing protects writeback path
2131 	 * against i_size changes and the page can be writeably mapped into
2132 	 * page tables. So an application can be growing i_size and writing
2133 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2134 	 * write-protects our page in page tables and the page cannot get
2135 	 * written to again until we release page lock. So only after
2136 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2137 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2138 	 * on the barrier provided by TestClearPageDirty in
2139 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2140 	 * after page tables are updated.
2141 	 */
2142 	size = i_size_read(mpd->inode);
2143 	if (page->index == size >> PAGE_SHIFT)
2144 		len = size & ~PAGE_MASK;
2145 	else
2146 		len = PAGE_SIZE;
2147 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2148 	if (!err)
2149 		mpd->wbc->nr_to_write--;
2150 	mpd->first_page++;
2151 
2152 	return err;
2153 }
2154 
2155 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2156 
2157 /*
2158  * mballoc gives us at most this number of blocks...
2159  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2160  * The rest of mballoc seems to handle chunks up to full group size.
2161  */
2162 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2163 
2164 /*
2165  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2166  *
2167  * @mpd - extent of blocks
2168  * @lblk - logical number of the block in the file
2169  * @bh - buffer head we want to add to the extent
2170  *
2171  * The function is used to collect contig. blocks in the same state. If the
2172  * buffer doesn't require mapping for writeback and we haven't started the
2173  * extent of buffers to map yet, the function returns 'true' immediately - the
2174  * caller can write the buffer right away. Otherwise the function returns true
2175  * if the block has been added to the extent, false if the block couldn't be
2176  * added.
2177  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2178 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2179 				   struct buffer_head *bh)
2180 {
2181 	struct ext4_map_blocks *map = &mpd->map;
2182 
2183 	/* Buffer that doesn't need mapping for writeback? */
2184 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2185 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2186 		/* So far no extent to map => we write the buffer right away */
2187 		if (map->m_len == 0)
2188 			return true;
2189 		return false;
2190 	}
2191 
2192 	/* First block in the extent? */
2193 	if (map->m_len == 0) {
2194 		map->m_lblk = lblk;
2195 		map->m_len = 1;
2196 		map->m_flags = bh->b_state & BH_FLAGS;
2197 		return true;
2198 	}
2199 
2200 	/* Don't go larger than mballoc is willing to allocate */
2201 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2202 		return false;
2203 
2204 	/* Can we merge the block to our big extent? */
2205 	if (lblk == map->m_lblk + map->m_len &&
2206 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2207 		map->m_len++;
2208 		return true;
2209 	}
2210 	return false;
2211 }
2212 
2213 /*
2214  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2215  *
2216  * @mpd - extent of blocks for mapping
2217  * @head - the first buffer in the page
2218  * @bh - buffer we should start processing from
2219  * @lblk - logical number of the block in the file corresponding to @bh
2220  *
2221  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2222  * the page for IO if all buffers in this page were mapped and there's no
2223  * accumulated extent of buffers to map or add buffers in the page to the
2224  * extent of buffers to map. The function returns 1 if the caller can continue
2225  * by processing the next page, 0 if it should stop adding buffers to the
2226  * extent to map because we cannot extend it anymore. It can also return value
2227  * < 0 in case of error during IO submission.
2228  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2229 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2230 				   struct buffer_head *head,
2231 				   struct buffer_head *bh,
2232 				   ext4_lblk_t lblk)
2233 {
2234 	struct inode *inode = mpd->inode;
2235 	int err;
2236 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2237 							>> inode->i_blkbits;
2238 
2239 	do {
2240 		BUG_ON(buffer_locked(bh));
2241 
2242 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2243 			/* Found extent to map? */
2244 			if (mpd->map.m_len)
2245 				return 0;
2246 			/* Everything mapped so far and we hit EOF */
2247 			break;
2248 		}
2249 	} while (lblk++, (bh = bh->b_this_page) != head);
2250 	/* So far everything mapped? Submit the page for IO. */
2251 	if (mpd->map.m_len == 0) {
2252 		err = mpage_submit_page(mpd, head->b_page);
2253 		if (err < 0)
2254 			return err;
2255 	}
2256 	return lblk < blocks;
2257 }
2258 
2259 /*
2260  * mpage_map_buffers - update buffers corresponding to changed extent and
2261  *		       submit fully mapped pages for IO
2262  *
2263  * @mpd - description of extent to map, on return next extent to map
2264  *
2265  * Scan buffers corresponding to changed extent (we expect corresponding pages
2266  * to be already locked) and update buffer state according to new extent state.
2267  * We map delalloc buffers to their physical location, clear unwritten bits,
2268  * and mark buffers as uninit when we perform writes to unwritten extents
2269  * and do extent conversion after IO is finished. If the last page is not fully
2270  * mapped, we update @map to the next extent in the last page that needs
2271  * mapping. Otherwise we submit the page for IO.
2272  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2273 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2274 {
2275 	struct pagevec pvec;
2276 	int nr_pages, i;
2277 	struct inode *inode = mpd->inode;
2278 	struct buffer_head *head, *bh;
2279 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2280 	pgoff_t start, end;
2281 	ext4_lblk_t lblk;
2282 	sector_t pblock;
2283 	int err;
2284 
2285 	start = mpd->map.m_lblk >> bpp_bits;
2286 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2287 	lblk = start << bpp_bits;
2288 	pblock = mpd->map.m_pblk;
2289 
2290 	pagevec_init(&pvec, 0);
2291 	while (start <= end) {
2292 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2293 					  PAGEVEC_SIZE);
2294 		if (nr_pages == 0)
2295 			break;
2296 		for (i = 0; i < nr_pages; i++) {
2297 			struct page *page = pvec.pages[i];
2298 
2299 			if (page->index > end)
2300 				break;
2301 			/* Up to 'end' pages must be contiguous */
2302 			BUG_ON(page->index != start);
2303 			bh = head = page_buffers(page);
2304 			do {
2305 				if (lblk < mpd->map.m_lblk)
2306 					continue;
2307 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2308 					/*
2309 					 * Buffer after end of mapped extent.
2310 					 * Find next buffer in the page to map.
2311 					 */
2312 					mpd->map.m_len = 0;
2313 					mpd->map.m_flags = 0;
2314 					/*
2315 					 * FIXME: If dioread_nolock supports
2316 					 * blocksize < pagesize, we need to make
2317 					 * sure we add size mapped so far to
2318 					 * io_end->size as the following call
2319 					 * can submit the page for IO.
2320 					 */
2321 					err = mpage_process_page_bufs(mpd, head,
2322 								      bh, lblk);
2323 					pagevec_release(&pvec);
2324 					if (err > 0)
2325 						err = 0;
2326 					return err;
2327 				}
2328 				if (buffer_delay(bh)) {
2329 					clear_buffer_delay(bh);
2330 					bh->b_blocknr = pblock++;
2331 				}
2332 				clear_buffer_unwritten(bh);
2333 			} while (lblk++, (bh = bh->b_this_page) != head);
2334 
2335 			/*
2336 			 * FIXME: This is going to break if dioread_nolock
2337 			 * supports blocksize < pagesize as we will try to
2338 			 * convert potentially unmapped parts of inode.
2339 			 */
2340 			mpd->io_submit.io_end->size += PAGE_SIZE;
2341 			/* Page fully mapped - let IO run! */
2342 			err = mpage_submit_page(mpd, page);
2343 			if (err < 0) {
2344 				pagevec_release(&pvec);
2345 				return err;
2346 			}
2347 			start++;
2348 		}
2349 		pagevec_release(&pvec);
2350 	}
2351 	/* Extent fully mapped and matches with page boundary. We are done. */
2352 	mpd->map.m_len = 0;
2353 	mpd->map.m_flags = 0;
2354 	return 0;
2355 }
2356 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2357 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2358 {
2359 	struct inode *inode = mpd->inode;
2360 	struct ext4_map_blocks *map = &mpd->map;
2361 	int get_blocks_flags;
2362 	int err, dioread_nolock;
2363 
2364 	trace_ext4_da_write_pages_extent(inode, map);
2365 	/*
2366 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2367 	 * to convert an unwritten extent to be initialized (in the case
2368 	 * where we have written into one or more preallocated blocks).  It is
2369 	 * possible that we're going to need more metadata blocks than
2370 	 * previously reserved. However we must not fail because we're in
2371 	 * writeback and there is nothing we can do about it so it might result
2372 	 * in data loss.  So use reserved blocks to allocate metadata if
2373 	 * possible.
2374 	 *
2375 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2376 	 * the blocks in question are delalloc blocks.  This indicates
2377 	 * that the blocks and quotas has already been checked when
2378 	 * the data was copied into the page cache.
2379 	 */
2380 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2381 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2382 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2383 	dioread_nolock = ext4_should_dioread_nolock(inode);
2384 	if (dioread_nolock)
2385 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2386 	if (map->m_flags & (1 << BH_Delay))
2387 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2388 
2389 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2390 	if (err < 0)
2391 		return err;
2392 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2393 		if (!mpd->io_submit.io_end->handle &&
2394 		    ext4_handle_valid(handle)) {
2395 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2396 			handle->h_rsv_handle = NULL;
2397 		}
2398 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2399 	}
2400 
2401 	BUG_ON(map->m_len == 0);
2402 	if (map->m_flags & EXT4_MAP_NEW) {
2403 		struct block_device *bdev = inode->i_sb->s_bdev;
2404 		int i;
2405 
2406 		for (i = 0; i < map->m_len; i++)
2407 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2408 	}
2409 	return 0;
2410 }
2411 
2412 /*
2413  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414  *				 mpd->len and submit pages underlying it for IO
2415  *
2416  * @handle - handle for journal operations
2417  * @mpd - extent to map
2418  * @give_up_on_write - we set this to true iff there is a fatal error and there
2419  *                     is no hope of writing the data. The caller should discard
2420  *                     dirty pages to avoid infinite loops.
2421  *
2422  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424  * them to initialized or split the described range from larger unwritten
2425  * extent. Note that we need not map all the described range since allocation
2426  * can return less blocks or the range is covered by more unwritten extents. We
2427  * cannot map more because we are limited by reserved transaction credits. On
2428  * the other hand we always make sure that the last touched page is fully
2429  * mapped so that it can be written out (and thus forward progress is
2430  * guaranteed). After mapping we submit all mapped pages for IO.
2431  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2432 static int mpage_map_and_submit_extent(handle_t *handle,
2433 				       struct mpage_da_data *mpd,
2434 				       bool *give_up_on_write)
2435 {
2436 	struct inode *inode = mpd->inode;
2437 	struct ext4_map_blocks *map = &mpd->map;
2438 	int err;
2439 	loff_t disksize;
2440 	int progress = 0;
2441 
2442 	mpd->io_submit.io_end->offset =
2443 				((loff_t)map->m_lblk) << inode->i_blkbits;
2444 	do {
2445 		err = mpage_map_one_extent(handle, mpd);
2446 		if (err < 0) {
2447 			struct super_block *sb = inode->i_sb;
2448 
2449 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2450 				goto invalidate_dirty_pages;
2451 			/*
2452 			 * Let the uper layers retry transient errors.
2453 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2454 			 * is non-zero, a commit should free up blocks.
2455 			 */
2456 			if ((err == -ENOMEM) ||
2457 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2458 				if (progress)
2459 					goto update_disksize;
2460 				return err;
2461 			}
2462 			ext4_msg(sb, KERN_CRIT,
2463 				 "Delayed block allocation failed for "
2464 				 "inode %lu at logical offset %llu with"
2465 				 " max blocks %u with error %d",
2466 				 inode->i_ino,
2467 				 (unsigned long long)map->m_lblk,
2468 				 (unsigned)map->m_len, -err);
2469 			ext4_msg(sb, KERN_CRIT,
2470 				 "This should not happen!! Data will "
2471 				 "be lost\n");
2472 			if (err == -ENOSPC)
2473 				ext4_print_free_blocks(inode);
2474 		invalidate_dirty_pages:
2475 			*give_up_on_write = true;
2476 			return err;
2477 		}
2478 		progress = 1;
2479 		/*
2480 		 * Update buffer state, submit mapped pages, and get us new
2481 		 * extent to map
2482 		 */
2483 		err = mpage_map_and_submit_buffers(mpd);
2484 		if (err < 0)
2485 			goto update_disksize;
2486 	} while (map->m_len);
2487 
2488 update_disksize:
2489 	/*
2490 	 * Update on-disk size after IO is submitted.  Races with
2491 	 * truncate are avoided by checking i_size under i_data_sem.
2492 	 */
2493 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2494 	if (disksize > EXT4_I(inode)->i_disksize) {
2495 		int err2;
2496 		loff_t i_size;
2497 
2498 		down_write(&EXT4_I(inode)->i_data_sem);
2499 		i_size = i_size_read(inode);
2500 		if (disksize > i_size)
2501 			disksize = i_size;
2502 		if (disksize > EXT4_I(inode)->i_disksize)
2503 			EXT4_I(inode)->i_disksize = disksize;
2504 		err2 = ext4_mark_inode_dirty(handle, inode);
2505 		up_write(&EXT4_I(inode)->i_data_sem);
2506 		if (err2)
2507 			ext4_error(inode->i_sb,
2508 				   "Failed to mark inode %lu dirty",
2509 				   inode->i_ino);
2510 		if (!err)
2511 			err = err2;
2512 	}
2513 	return err;
2514 }
2515 
2516 /*
2517  * Calculate the total number of credits to reserve for one writepages
2518  * iteration. This is called from ext4_writepages(). We map an extent of
2519  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2520  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2521  * bpp - 1 blocks in bpp different extents.
2522  */
ext4_da_writepages_trans_blocks(struct inode * inode)2523 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2524 {
2525 	int bpp = ext4_journal_blocks_per_page(inode);
2526 
2527 	return ext4_meta_trans_blocks(inode,
2528 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2529 }
2530 
2531 /*
2532  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2533  * 				 and underlying extent to map
2534  *
2535  * @mpd - where to look for pages
2536  *
2537  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2538  * IO immediately. When we find a page which isn't mapped we start accumulating
2539  * extent of buffers underlying these pages that needs mapping (formed by
2540  * either delayed or unwritten buffers). We also lock the pages containing
2541  * these buffers. The extent found is returned in @mpd structure (starting at
2542  * mpd->lblk with length mpd->len blocks).
2543  *
2544  * Note that this function can attach bios to one io_end structure which are
2545  * neither logically nor physically contiguous. Although it may seem as an
2546  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2547  * case as we need to track IO to all buffers underlying a page in one io_end.
2548  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2549 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2550 {
2551 	struct address_space *mapping = mpd->inode->i_mapping;
2552 	struct pagevec pvec;
2553 	unsigned int nr_pages;
2554 	long left = mpd->wbc->nr_to_write;
2555 	pgoff_t index = mpd->first_page;
2556 	pgoff_t end = mpd->last_page;
2557 	int tag;
2558 	int i, err = 0;
2559 	int blkbits = mpd->inode->i_blkbits;
2560 	ext4_lblk_t lblk;
2561 	struct buffer_head *head;
2562 
2563 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2564 		tag = PAGECACHE_TAG_TOWRITE;
2565 	else
2566 		tag = PAGECACHE_TAG_DIRTY;
2567 
2568 	pagevec_init(&pvec, 0);
2569 	mpd->map.m_len = 0;
2570 	mpd->next_page = index;
2571 	while (index <= end) {
2572 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2573 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2574 		if (nr_pages == 0)
2575 			goto out;
2576 
2577 		for (i = 0; i < nr_pages; i++) {
2578 			struct page *page = pvec.pages[i];
2579 
2580 			/*
2581 			 * At this point, the page may be truncated or
2582 			 * invalidated (changing page->mapping to NULL), or
2583 			 * even swizzled back from swapper_space to tmpfs file
2584 			 * mapping. However, page->index will not change
2585 			 * because we have a reference on the page.
2586 			 */
2587 			if (page->index > end)
2588 				goto out;
2589 
2590 			/*
2591 			 * Accumulated enough dirty pages? This doesn't apply
2592 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2593 			 * keep going because someone may be concurrently
2594 			 * dirtying pages, and we might have synced a lot of
2595 			 * newly appeared dirty pages, but have not synced all
2596 			 * of the old dirty pages.
2597 			 */
2598 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2599 				goto out;
2600 
2601 			/* If we can't merge this page, we are done. */
2602 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2603 				goto out;
2604 
2605 			lock_page(page);
2606 			/*
2607 			 * If the page is no longer dirty, or its mapping no
2608 			 * longer corresponds to inode we are writing (which
2609 			 * means it has been truncated or invalidated), or the
2610 			 * page is already under writeback and we are not doing
2611 			 * a data integrity writeback, skip the page
2612 			 */
2613 			if (!PageDirty(page) ||
2614 			    (PageWriteback(page) &&
2615 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2616 			    unlikely(page->mapping != mapping)) {
2617 				unlock_page(page);
2618 				continue;
2619 			}
2620 
2621 			wait_on_page_writeback(page);
2622 			BUG_ON(PageWriteback(page));
2623 
2624 			if (mpd->map.m_len == 0)
2625 				mpd->first_page = page->index;
2626 			mpd->next_page = page->index + 1;
2627 			/* Add all dirty buffers to mpd */
2628 			lblk = ((ext4_lblk_t)page->index) <<
2629 				(PAGE_SHIFT - blkbits);
2630 			head = page_buffers(page);
2631 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2632 			if (err <= 0)
2633 				goto out;
2634 			err = 0;
2635 			left--;
2636 		}
2637 		pagevec_release(&pvec);
2638 		cond_resched();
2639 	}
2640 	return 0;
2641 out:
2642 	pagevec_release(&pvec);
2643 	return err;
2644 }
2645 
__writepage(struct page * page,struct writeback_control * wbc,void * data)2646 static int __writepage(struct page *page, struct writeback_control *wbc,
2647 		       void *data)
2648 {
2649 	struct address_space *mapping = data;
2650 	int ret = ext4_writepage(page, wbc);
2651 	mapping_set_error(mapping, ret);
2652 	return ret;
2653 }
2654 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2655 static int ext4_writepages(struct address_space *mapping,
2656 			   struct writeback_control *wbc)
2657 {
2658 	pgoff_t	writeback_index = 0;
2659 	long nr_to_write = wbc->nr_to_write;
2660 	int range_whole = 0;
2661 	int cycled = 1;
2662 	handle_t *handle = NULL;
2663 	struct mpage_da_data mpd;
2664 	struct inode *inode = mapping->host;
2665 	int needed_blocks, rsv_blocks = 0, ret = 0;
2666 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2667 	bool done;
2668 	struct blk_plug plug;
2669 	bool give_up_on_write = false;
2670 
2671 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2672 	trace_ext4_writepages(inode, wbc);
2673 
2674 	if (dax_mapping(mapping)) {
2675 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2676 						  wbc);
2677 		goto out_writepages;
2678 	}
2679 
2680 	/*
2681 	 * No pages to write? This is mainly a kludge to avoid starting
2682 	 * a transaction for special inodes like journal inode on last iput()
2683 	 * because that could violate lock ordering on umount
2684 	 */
2685 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2686 		goto out_writepages;
2687 
2688 	if (ext4_should_journal_data(inode)) {
2689 		struct blk_plug plug;
2690 
2691 		blk_start_plug(&plug);
2692 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2693 		blk_finish_plug(&plug);
2694 		goto out_writepages;
2695 	}
2696 
2697 	/*
2698 	 * If the filesystem has aborted, it is read-only, so return
2699 	 * right away instead of dumping stack traces later on that
2700 	 * will obscure the real source of the problem.  We test
2701 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2702 	 * the latter could be true if the filesystem is mounted
2703 	 * read-only, and in that case, ext4_writepages should
2704 	 * *never* be called, so if that ever happens, we would want
2705 	 * the stack trace.
2706 	 */
2707 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2708 		ret = -EROFS;
2709 		goto out_writepages;
2710 	}
2711 
2712 	if (ext4_should_dioread_nolock(inode)) {
2713 		/*
2714 		 * We may need to convert up to one extent per block in
2715 		 * the page and we may dirty the inode.
2716 		 */
2717 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2718 	}
2719 
2720 	/*
2721 	 * If we have inline data and arrive here, it means that
2722 	 * we will soon create the block for the 1st page, so
2723 	 * we'd better clear the inline data here.
2724 	 */
2725 	if (ext4_has_inline_data(inode)) {
2726 		/* Just inode will be modified... */
2727 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2728 		if (IS_ERR(handle)) {
2729 			ret = PTR_ERR(handle);
2730 			goto out_writepages;
2731 		}
2732 		BUG_ON(ext4_test_inode_state(inode,
2733 				EXT4_STATE_MAY_INLINE_DATA));
2734 		ext4_destroy_inline_data(handle, inode);
2735 		ext4_journal_stop(handle);
2736 	}
2737 
2738 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2739 		range_whole = 1;
2740 
2741 	if (wbc->range_cyclic) {
2742 		writeback_index = mapping->writeback_index;
2743 		if (writeback_index)
2744 			cycled = 0;
2745 		mpd.first_page = writeback_index;
2746 		mpd.last_page = -1;
2747 	} else {
2748 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2749 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2750 	}
2751 
2752 	mpd.inode = inode;
2753 	mpd.wbc = wbc;
2754 	ext4_io_submit_init(&mpd.io_submit, wbc);
2755 retry:
2756 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2757 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2758 	done = false;
2759 	blk_start_plug(&plug);
2760 	while (!done && mpd.first_page <= mpd.last_page) {
2761 		/* For each extent of pages we use new io_end */
2762 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2763 		if (!mpd.io_submit.io_end) {
2764 			ret = -ENOMEM;
2765 			break;
2766 		}
2767 
2768 		/*
2769 		 * We have two constraints: We find one extent to map and we
2770 		 * must always write out whole page (makes a difference when
2771 		 * blocksize < pagesize) so that we don't block on IO when we
2772 		 * try to write out the rest of the page. Journalled mode is
2773 		 * not supported by delalloc.
2774 		 */
2775 		BUG_ON(ext4_should_journal_data(inode));
2776 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2777 
2778 		/* start a new transaction */
2779 		handle = ext4_journal_start_with_reserve(inode,
2780 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2781 		if (IS_ERR(handle)) {
2782 			ret = PTR_ERR(handle);
2783 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2784 			       "%ld pages, ino %lu; err %d", __func__,
2785 				wbc->nr_to_write, inode->i_ino, ret);
2786 			/* Release allocated io_end */
2787 			ext4_put_io_end(mpd.io_submit.io_end);
2788 			break;
2789 		}
2790 
2791 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2792 		ret = mpage_prepare_extent_to_map(&mpd);
2793 		if (!ret) {
2794 			if (mpd.map.m_len)
2795 				ret = mpage_map_and_submit_extent(handle, &mpd,
2796 					&give_up_on_write);
2797 			else {
2798 				/*
2799 				 * We scanned the whole range (or exhausted
2800 				 * nr_to_write), submitted what was mapped and
2801 				 * didn't find anything needing mapping. We are
2802 				 * done.
2803 				 */
2804 				done = true;
2805 			}
2806 		}
2807 		/*
2808 		 * Caution: If the handle is synchronous,
2809 		 * ext4_journal_stop() can wait for transaction commit
2810 		 * to finish which may depend on writeback of pages to
2811 		 * complete or on page lock to be released.  In that
2812 		 * case, we have to wait until after after we have
2813 		 * submitted all the IO, released page locks we hold,
2814 		 * and dropped io_end reference (for extent conversion
2815 		 * to be able to complete) before stopping the handle.
2816 		 */
2817 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2818 			ext4_journal_stop(handle);
2819 			handle = NULL;
2820 		}
2821 		/* Submit prepared bio */
2822 		ext4_io_submit(&mpd.io_submit);
2823 		/* Unlock pages we didn't use */
2824 		mpage_release_unused_pages(&mpd, give_up_on_write);
2825 		/*
2826 		 * Drop our io_end reference we got from init. We have
2827 		 * to be careful and use deferred io_end finishing if
2828 		 * we are still holding the transaction as we can
2829 		 * release the last reference to io_end which may end
2830 		 * up doing unwritten extent conversion.
2831 		 */
2832 		if (handle) {
2833 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2834 			ext4_journal_stop(handle);
2835 		} else
2836 			ext4_put_io_end(mpd.io_submit.io_end);
2837 
2838 		if (ret == -ENOSPC && sbi->s_journal) {
2839 			/*
2840 			 * Commit the transaction which would
2841 			 * free blocks released in the transaction
2842 			 * and try again
2843 			 */
2844 			jbd2_journal_force_commit_nested(sbi->s_journal);
2845 			ret = 0;
2846 			continue;
2847 		}
2848 		/* Fatal error - ENOMEM, EIO... */
2849 		if (ret)
2850 			break;
2851 	}
2852 	blk_finish_plug(&plug);
2853 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2854 		cycled = 1;
2855 		mpd.last_page = writeback_index - 1;
2856 		mpd.first_page = 0;
2857 		goto retry;
2858 	}
2859 
2860 	/* Update index */
2861 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2862 		/*
2863 		 * Set the writeback_index so that range_cyclic
2864 		 * mode will write it back later
2865 		 */
2866 		mapping->writeback_index = mpd.first_page;
2867 
2868 out_writepages:
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2872 	return ret;
2873 }
2874 
ext4_nonda_switch(struct super_block * sb)2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 	s64 free_clusters, dirty_clusters;
2878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879 
2880 	/*
2881 	 * switch to non delalloc mode if we are running low
2882 	 * on free block. The free block accounting via percpu
2883 	 * counters can get slightly wrong with percpu_counter_batch getting
2884 	 * accumulated on each CPU without updating global counters
2885 	 * Delalloc need an accurate free block accounting. So switch
2886 	 * to non delalloc when we are near to error range.
2887 	 */
2888 	free_clusters =
2889 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 	dirty_clusters =
2891 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 	/*
2893 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 	 */
2895 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 
2898 	if (2 * free_clusters < 3 * dirty_clusters ||
2899 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 		/*
2901 		 * free block count is less than 150% of dirty blocks
2902 		 * or free blocks is less than watermark
2903 		 */
2904 		return 1;
2905 	}
2906 	return 0;
2907 }
2908 
2909 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2910 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911 {
2912 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913 		return 1;
2914 
2915 	if (pos + len <= 0x7fffffffULL)
2916 		return 1;
2917 
2918 	/* We might need to update the superblock to set LARGE_FILE */
2919 	return 2;
2920 }
2921 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2922 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923 			       loff_t pos, unsigned len, unsigned flags,
2924 			       struct page **pagep, void **fsdata)
2925 {
2926 	int ret, retries = 0;
2927 	struct page *page;
2928 	pgoff_t index;
2929 	struct inode *inode = mapping->host;
2930 	handle_t *handle;
2931 
2932 	index = pos >> PAGE_SHIFT;
2933 
2934 	if (ext4_nonda_switch(inode->i_sb)) {
2935 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2936 		return ext4_write_begin(file, mapping, pos,
2937 					len, flags, pagep, fsdata);
2938 	}
2939 	*fsdata = (void *)0;
2940 	if (trace_android_fs_datawrite_start_enabled()) {
2941 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2942 
2943 		path = android_fstrace_get_pathname(pathbuf,
2944 						    MAX_TRACE_PATHBUF_LEN,
2945 						    inode);
2946 		trace_android_fs_datawrite_start(inode, pos, len,
2947 						 current->pid,
2948 						 path, current->comm);
2949 	}
2950 	trace_ext4_da_write_begin(inode, pos, len, flags);
2951 
2952 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2953 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2954 						      pos, len, flags,
2955 						      pagep, fsdata);
2956 		if (ret < 0)
2957 			return ret;
2958 		if (ret == 1)
2959 			return 0;
2960 	}
2961 
2962 	/*
2963 	 * grab_cache_page_write_begin() can take a long time if the
2964 	 * system is thrashing due to memory pressure, or if the page
2965 	 * is being written back.  So grab it first before we start
2966 	 * the transaction handle.  This also allows us to allocate
2967 	 * the page (if needed) without using GFP_NOFS.
2968 	 */
2969 retry_grab:
2970 	page = grab_cache_page_write_begin(mapping, index, flags);
2971 	if (!page)
2972 		return -ENOMEM;
2973 	unlock_page(page);
2974 
2975 	/*
2976 	 * With delayed allocation, we don't log the i_disksize update
2977 	 * if there is delayed block allocation. But we still need
2978 	 * to journalling the i_disksize update if writes to the end
2979 	 * of file which has an already mapped buffer.
2980 	 */
2981 retry_journal:
2982 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2983 				ext4_da_write_credits(inode, pos, len));
2984 	if (IS_ERR(handle)) {
2985 		put_page(page);
2986 		return PTR_ERR(handle);
2987 	}
2988 
2989 	lock_page(page);
2990 	if (page->mapping != mapping) {
2991 		/* The page got truncated from under us */
2992 		unlock_page(page);
2993 		put_page(page);
2994 		ext4_journal_stop(handle);
2995 		goto retry_grab;
2996 	}
2997 	/* In case writeback began while the page was unlocked */
2998 	wait_for_stable_page(page);
2999 
3000 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3001 	ret = ext4_block_write_begin(page, pos, len,
3002 				     ext4_da_get_block_prep);
3003 #else
3004 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3005 #endif
3006 	if (ret < 0) {
3007 		unlock_page(page);
3008 		ext4_journal_stop(handle);
3009 		/*
3010 		 * block_write_begin may have instantiated a few blocks
3011 		 * outside i_size.  Trim these off again. Don't need
3012 		 * i_size_read because we hold i_mutex.
3013 		 */
3014 		if (pos + len > inode->i_size)
3015 			ext4_truncate_failed_write(inode);
3016 
3017 		if (ret == -ENOSPC &&
3018 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3019 			goto retry_journal;
3020 
3021 		put_page(page);
3022 		return ret;
3023 	}
3024 
3025 	*pagep = page;
3026 	return ret;
3027 }
3028 
3029 /*
3030  * Check if we should update i_disksize
3031  * when write to the end of file but not require block allocation
3032  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3033 static int ext4_da_should_update_i_disksize(struct page *page,
3034 					    unsigned long offset)
3035 {
3036 	struct buffer_head *bh;
3037 	struct inode *inode = page->mapping->host;
3038 	unsigned int idx;
3039 	int i;
3040 
3041 	bh = page_buffers(page);
3042 	idx = offset >> inode->i_blkbits;
3043 
3044 	for (i = 0; i < idx; i++)
3045 		bh = bh->b_this_page;
3046 
3047 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3048 		return 0;
3049 	return 1;
3050 }
3051 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3052 static int ext4_da_write_end(struct file *file,
3053 			     struct address_space *mapping,
3054 			     loff_t pos, unsigned len, unsigned copied,
3055 			     struct page *page, void *fsdata)
3056 {
3057 	struct inode *inode = mapping->host;
3058 	int ret = 0, ret2;
3059 	handle_t *handle = ext4_journal_current_handle();
3060 	loff_t new_i_size;
3061 	unsigned long start, end;
3062 	int write_mode = (int)(unsigned long)fsdata;
3063 
3064 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3065 		return ext4_write_end(file, mapping, pos,
3066 				      len, copied, page, fsdata);
3067 
3068 	trace_android_fs_datawrite_end(inode, pos, len);
3069 	trace_ext4_da_write_end(inode, pos, len, copied);
3070 	start = pos & (PAGE_SIZE - 1);
3071 	end = start + copied - 1;
3072 
3073 	/*
3074 	 * generic_write_end() will run mark_inode_dirty() if i_size
3075 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3076 	 * into that.
3077 	 */
3078 	new_i_size = pos + copied;
3079 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3080 		if (ext4_has_inline_data(inode) ||
3081 		    ext4_da_should_update_i_disksize(page, end)) {
3082 			ext4_update_i_disksize(inode, new_i_size);
3083 			/* We need to mark inode dirty even if
3084 			 * new_i_size is less that inode->i_size
3085 			 * bu greater than i_disksize.(hint delalloc)
3086 			 */
3087 			ext4_mark_inode_dirty(handle, inode);
3088 		}
3089 	}
3090 
3091 	if (write_mode != CONVERT_INLINE_DATA &&
3092 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093 	    ext4_has_inline_data(inode))
3094 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3095 						     page);
3096 	else
3097 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3098 							page, fsdata);
3099 
3100 	copied = ret2;
3101 	if (ret2 < 0)
3102 		ret = ret2;
3103 	ret2 = ext4_journal_stop(handle);
3104 	if (!ret)
3105 		ret = ret2;
3106 
3107 	return ret ? ret : copied;
3108 }
3109 
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3110 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3111 				   unsigned int length)
3112 {
3113 	/*
3114 	 * Drop reserved blocks
3115 	 */
3116 	BUG_ON(!PageLocked(page));
3117 	if (!page_has_buffers(page))
3118 		goto out;
3119 
3120 	ext4_da_page_release_reservation(page, offset, length);
3121 
3122 out:
3123 	ext4_invalidatepage(page, offset, length);
3124 
3125 	return;
3126 }
3127 
3128 /*
3129  * Force all delayed allocation blocks to be allocated for a given inode.
3130  */
ext4_alloc_da_blocks(struct inode * inode)3131 int ext4_alloc_da_blocks(struct inode *inode)
3132 {
3133 	trace_ext4_alloc_da_blocks(inode);
3134 
3135 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3136 		return 0;
3137 
3138 	/*
3139 	 * We do something simple for now.  The filemap_flush() will
3140 	 * also start triggering a write of the data blocks, which is
3141 	 * not strictly speaking necessary (and for users of
3142 	 * laptop_mode, not even desirable).  However, to do otherwise
3143 	 * would require replicating code paths in:
3144 	 *
3145 	 * ext4_writepages() ->
3146 	 *    write_cache_pages() ---> (via passed in callback function)
3147 	 *        __mpage_da_writepage() -->
3148 	 *           mpage_add_bh_to_extent()
3149 	 *           mpage_da_map_blocks()
3150 	 *
3151 	 * The problem is that write_cache_pages(), located in
3152 	 * mm/page-writeback.c, marks pages clean in preparation for
3153 	 * doing I/O, which is not desirable if we're not planning on
3154 	 * doing I/O at all.
3155 	 *
3156 	 * We could call write_cache_pages(), and then redirty all of
3157 	 * the pages by calling redirty_page_for_writepage() but that
3158 	 * would be ugly in the extreme.  So instead we would need to
3159 	 * replicate parts of the code in the above functions,
3160 	 * simplifying them because we wouldn't actually intend to
3161 	 * write out the pages, but rather only collect contiguous
3162 	 * logical block extents, call the multi-block allocator, and
3163 	 * then update the buffer heads with the block allocations.
3164 	 *
3165 	 * For now, though, we'll cheat by calling filemap_flush(),
3166 	 * which will map the blocks, and start the I/O, but not
3167 	 * actually wait for the I/O to complete.
3168 	 */
3169 	return filemap_flush(inode->i_mapping);
3170 }
3171 
3172 /*
3173  * bmap() is special.  It gets used by applications such as lilo and by
3174  * the swapper to find the on-disk block of a specific piece of data.
3175  *
3176  * Naturally, this is dangerous if the block concerned is still in the
3177  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3178  * filesystem and enables swap, then they may get a nasty shock when the
3179  * data getting swapped to that swapfile suddenly gets overwritten by
3180  * the original zero's written out previously to the journal and
3181  * awaiting writeback in the kernel's buffer cache.
3182  *
3183  * So, if we see any bmap calls here on a modified, data-journaled file,
3184  * take extra steps to flush any blocks which might be in the cache.
3185  */
ext4_bmap(struct address_space * mapping,sector_t block)3186 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3187 {
3188 	struct inode *inode = mapping->host;
3189 	journal_t *journal;
3190 	int err;
3191 
3192 	/*
3193 	 * We can get here for an inline file via the FIBMAP ioctl
3194 	 */
3195 	if (ext4_has_inline_data(inode))
3196 		return 0;
3197 
3198 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3199 			test_opt(inode->i_sb, DELALLOC)) {
3200 		/*
3201 		 * With delalloc we want to sync the file
3202 		 * so that we can make sure we allocate
3203 		 * blocks for file
3204 		 */
3205 		filemap_write_and_wait(mapping);
3206 	}
3207 
3208 	if (EXT4_JOURNAL(inode) &&
3209 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3210 		/*
3211 		 * This is a REALLY heavyweight approach, but the use of
3212 		 * bmap on dirty files is expected to be extremely rare:
3213 		 * only if we run lilo or swapon on a freshly made file
3214 		 * do we expect this to happen.
3215 		 *
3216 		 * (bmap requires CAP_SYS_RAWIO so this does not
3217 		 * represent an unprivileged user DOS attack --- we'd be
3218 		 * in trouble if mortal users could trigger this path at
3219 		 * will.)
3220 		 *
3221 		 * NB. EXT4_STATE_JDATA is not set on files other than
3222 		 * regular files.  If somebody wants to bmap a directory
3223 		 * or symlink and gets confused because the buffer
3224 		 * hasn't yet been flushed to disk, they deserve
3225 		 * everything they get.
3226 		 */
3227 
3228 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3229 		journal = EXT4_JOURNAL(inode);
3230 		jbd2_journal_lock_updates(journal);
3231 		err = jbd2_journal_flush(journal);
3232 		jbd2_journal_unlock_updates(journal);
3233 
3234 		if (err)
3235 			return 0;
3236 	}
3237 
3238 	return generic_block_bmap(mapping, block, ext4_get_block);
3239 }
3240 
ext4_readpage(struct file * file,struct page * page)3241 static int ext4_readpage(struct file *file, struct page *page)
3242 {
3243 	int ret = -EAGAIN;
3244 	struct inode *inode = page->mapping->host;
3245 
3246 	trace_ext4_readpage(page);
3247 
3248 	if (ext4_has_inline_data(inode))
3249 		ret = ext4_readpage_inline(inode, page);
3250 
3251 	if (ret == -EAGAIN)
3252 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3253 
3254 	return ret;
3255 }
3256 
3257 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3258 ext4_readpages(struct file *file, struct address_space *mapping,
3259 		struct list_head *pages, unsigned nr_pages)
3260 {
3261 	struct inode *inode = mapping->host;
3262 
3263 	/* If the file has inline data, no need to do readpages. */
3264 	if (ext4_has_inline_data(inode))
3265 		return 0;
3266 
3267 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3268 }
3269 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3270 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3271 				unsigned int length)
3272 {
3273 	trace_ext4_invalidatepage(page, offset, length);
3274 
3275 	/* No journalling happens on data buffers when this function is used */
3276 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3277 
3278 	block_invalidatepage(page, offset, length);
3279 }
3280 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3281 static int __ext4_journalled_invalidatepage(struct page *page,
3282 					    unsigned int offset,
3283 					    unsigned int length)
3284 {
3285 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3286 
3287 	trace_ext4_journalled_invalidatepage(page, offset, length);
3288 
3289 	/*
3290 	 * If it's a full truncate we just forget about the pending dirtying
3291 	 */
3292 	if (offset == 0 && length == PAGE_SIZE)
3293 		ClearPageChecked(page);
3294 
3295 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3296 }
3297 
3298 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3299 static void ext4_journalled_invalidatepage(struct page *page,
3300 					   unsigned int offset,
3301 					   unsigned int length)
3302 {
3303 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3304 }
3305 
ext4_releasepage(struct page * page,gfp_t wait)3306 static int ext4_releasepage(struct page *page, gfp_t wait)
3307 {
3308 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3309 
3310 	trace_ext4_releasepage(page);
3311 
3312 	/* Page has dirty journalled data -> cannot release */
3313 	if (PageChecked(page))
3314 		return 0;
3315 	if (journal)
3316 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3317 	else
3318 		return try_to_free_buffers(page);
3319 }
3320 
3321 #ifdef CONFIG_FS_DAX
3322 /*
3323  * Get block function for DAX IO and mmap faults. It takes care of converting
3324  * unwritten extents to written ones and initializes new / converted blocks
3325  * to zeros.
3326  */
ext4_dax_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3327 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3328 		       struct buffer_head *bh_result, int create)
3329 {
3330 	int ret;
3331 
3332 	ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3333 	if (!create)
3334 		return _ext4_get_block(inode, iblock, bh_result, 0);
3335 
3336 	ret = ext4_get_block_trans(inode, iblock, bh_result,
3337 				   EXT4_GET_BLOCKS_PRE_IO |
3338 				   EXT4_GET_BLOCKS_CREATE_ZERO);
3339 	if (ret < 0)
3340 		return ret;
3341 
3342 	if (buffer_unwritten(bh_result)) {
3343 		/*
3344 		 * We are protected by i_mmap_sem or i_mutex so we know block
3345 		 * cannot go away from under us even though we dropped
3346 		 * i_data_sem. Convert extent to written and write zeros there.
3347 		 */
3348 		ret = ext4_get_block_trans(inode, iblock, bh_result,
3349 					   EXT4_GET_BLOCKS_CONVERT |
3350 					   EXT4_GET_BLOCKS_CREATE_ZERO);
3351 		if (ret < 0)
3352 			return ret;
3353 	}
3354 	/*
3355 	 * At least for now we have to clear BH_New so that DAX code
3356 	 * doesn't attempt to zero blocks again in a racy way.
3357 	 */
3358 	clear_buffer_new(bh_result);
3359 	return 0;
3360 }
3361 #else
3362 /* Just define empty function, it will never get called. */
ext4_dax_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3363 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3364 		       struct buffer_head *bh_result, int create)
3365 {
3366 	BUG();
3367 	return 0;
3368 }
3369 #endif
3370 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3371 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3372 			    ssize_t size, void *private)
3373 {
3374         ext4_io_end_t *io_end = private;
3375 
3376 	/* if not async direct IO just return */
3377 	if (!io_end)
3378 		return 0;
3379 
3380 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3381 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3382 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3383 
3384 	/*
3385 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3386 	 * data was not written. Just clear the unwritten flag and drop io_end.
3387 	 */
3388 	if (size <= 0) {
3389 		ext4_clear_io_unwritten_flag(io_end);
3390 		size = 0;
3391 	}
3392 	io_end->offset = offset;
3393 	io_end->size = size;
3394 	ext4_put_io_end(io_end);
3395 
3396 	return 0;
3397 }
3398 
3399 /*
3400  * Handling of direct IO writes.
3401  *
3402  * For ext4 extent files, ext4 will do direct-io write even to holes,
3403  * preallocated extents, and those write extend the file, no need to
3404  * fall back to buffered IO.
3405  *
3406  * For holes, we fallocate those blocks, mark them as unwritten
3407  * If those blocks were preallocated, we mark sure they are split, but
3408  * still keep the range to write as unwritten.
3409  *
3410  * The unwritten extents will be converted to written when DIO is completed.
3411  * For async direct IO, since the IO may still pending when return, we
3412  * set up an end_io call back function, which will do the conversion
3413  * when async direct IO completed.
3414  *
3415  * If the O_DIRECT write will extend the file then add this inode to the
3416  * orphan list.  So recovery will truncate it back to the original size
3417  * if the machine crashes during the write.
3418  *
3419  */
ext4_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter)3420 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3421 {
3422 	struct file *file = iocb->ki_filp;
3423 	struct inode *inode = file->f_mapping->host;
3424 	ssize_t ret;
3425 	loff_t offset = iocb->ki_pos;
3426 	size_t count = iov_iter_count(iter);
3427 	int overwrite = 0;
3428 	get_block_t *get_block_func = NULL;
3429 	int dio_flags = 0;
3430 	loff_t final_size = offset + count;
3431 	int orphan = 0;
3432 	handle_t *handle;
3433 
3434 	if (final_size > inode->i_size) {
3435 		/* Credits for sb + inode write */
3436 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3437 		if (IS_ERR(handle)) {
3438 			ret = PTR_ERR(handle);
3439 			goto out;
3440 		}
3441 		ret = ext4_orphan_add(handle, inode);
3442 		if (ret) {
3443 			ext4_journal_stop(handle);
3444 			goto out;
3445 		}
3446 		orphan = 1;
3447 		ext4_update_i_disksize(inode, inode->i_size);
3448 		ext4_journal_stop(handle);
3449 	}
3450 
3451 	BUG_ON(iocb->private == NULL);
3452 
3453 	/*
3454 	 * Make all waiters for direct IO properly wait also for extent
3455 	 * conversion. This also disallows race between truncate() and
3456 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3457 	 */
3458 	inode_dio_begin(inode);
3459 
3460 	/* If we do a overwrite dio, i_mutex locking can be released */
3461 	overwrite = *((int *)iocb->private);
3462 
3463 	if (overwrite)
3464 		inode_unlock(inode);
3465 
3466 	/*
3467 	 * For extent mapped files we could direct write to holes and fallocate.
3468 	 *
3469 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3470 	 * parallel buffered read to expose the stale data before DIO complete
3471 	 * the data IO.
3472 	 *
3473 	 * As to previously fallocated extents, ext4 get_block will just simply
3474 	 * mark the buffer mapped but still keep the extents unwritten.
3475 	 *
3476 	 * For non AIO case, we will convert those unwritten extents to written
3477 	 * after return back from blockdev_direct_IO. That way we save us from
3478 	 * allocating io_end structure and also the overhead of offloading
3479 	 * the extent convertion to a workqueue.
3480 	 *
3481 	 * For async DIO, the conversion needs to be deferred when the
3482 	 * IO is completed. The ext4 end_io callback function will be
3483 	 * called to take care of the conversion work.  Here for async
3484 	 * case, we allocate an io_end structure to hook to the iocb.
3485 	 */
3486 	iocb->private = NULL;
3487 	if (overwrite)
3488 		get_block_func = ext4_dio_get_block_overwrite;
3489 	else if (IS_DAX(inode)) {
3490 		/*
3491 		 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3492 		 * writes need zeroing either because they can race with page
3493 		 * faults or because they use partial blocks.
3494 		 */
3495 		if (round_down(offset, i_blocksize(inode)) >= inode->i_size &&
3496 		    ext4_aligned_io(inode, offset, count))
3497 			get_block_func = ext4_dio_get_block;
3498 		else
3499 			get_block_func = ext4_dax_get_block;
3500 		dio_flags = DIO_LOCKING;
3501 	} else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3502 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3503 		get_block_func = ext4_dio_get_block;
3504 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3505 	} else if (is_sync_kiocb(iocb)) {
3506 		get_block_func = ext4_dio_get_block_unwritten_sync;
3507 		dio_flags = DIO_LOCKING;
3508 	} else {
3509 		get_block_func = ext4_dio_get_block_unwritten_async;
3510 		dio_flags = DIO_LOCKING;
3511 	}
3512 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3513 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3514 #endif
3515 	if (IS_DAX(inode)) {
3516 		ret = dax_do_io(iocb, inode, iter, get_block_func,
3517 				ext4_end_io_dio, dio_flags);
3518 	} else
3519 		ret = __blockdev_direct_IO(iocb, inode,
3520 					   inode->i_sb->s_bdev, iter,
3521 					   get_block_func,
3522 					   ext4_end_io_dio, NULL, dio_flags);
3523 
3524 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3525 						EXT4_STATE_DIO_UNWRITTEN)) {
3526 		int err;
3527 		/*
3528 		 * for non AIO case, since the IO is already
3529 		 * completed, we could do the conversion right here
3530 		 */
3531 		err = ext4_convert_unwritten_extents(NULL, inode,
3532 						     offset, ret);
3533 		if (err < 0)
3534 			ret = err;
3535 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3536 	}
3537 
3538 	inode_dio_end(inode);
3539 	/* take i_mutex locking again if we do a ovewrite dio */
3540 	if (overwrite)
3541 		inode_lock(inode);
3542 
3543 	if (ret < 0 && final_size > inode->i_size)
3544 		ext4_truncate_failed_write(inode);
3545 
3546 	/* Handle extending of i_size after direct IO write */
3547 	if (orphan) {
3548 		int err;
3549 
3550 		/* Credits for sb + inode write */
3551 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3552 		if (IS_ERR(handle)) {
3553 			/*
3554 			 * We wrote the data but cannot extend
3555 			 * i_size. Bail out. In async io case, we do
3556 			 * not return error here because we have
3557 			 * already submmitted the corresponding
3558 			 * bio. Returning error here makes the caller
3559 			 * think that this IO is done and failed
3560 			 * resulting in race with bio's completion
3561 			 * handler.
3562 			 */
3563 			if (!ret)
3564 				ret = PTR_ERR(handle);
3565 			if (inode->i_nlink)
3566 				ext4_orphan_del(NULL, inode);
3567 
3568 			goto out;
3569 		}
3570 		if (inode->i_nlink)
3571 			ext4_orphan_del(handle, inode);
3572 		if (ret > 0) {
3573 			loff_t end = offset + ret;
3574 			if (end > inode->i_size) {
3575 				ext4_update_i_disksize(inode, end);
3576 				i_size_write(inode, end);
3577 				/*
3578 				 * We're going to return a positive `ret'
3579 				 * here due to non-zero-length I/O, so there's
3580 				 * no way of reporting error returns from
3581 				 * ext4_mark_inode_dirty() to userspace.  So
3582 				 * ignore it.
3583 				 */
3584 				ext4_mark_inode_dirty(handle, inode);
3585 			}
3586 		}
3587 		err = ext4_journal_stop(handle);
3588 		if (ret == 0)
3589 			ret = err;
3590 	}
3591 out:
3592 	return ret;
3593 }
3594 
ext4_direct_IO_read(struct kiocb * iocb,struct iov_iter * iter)3595 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3596 {
3597 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3598 	struct inode *inode = mapping->host;
3599 	ssize_t ret;
3600 
3601 	/*
3602 	 * Shared inode_lock is enough for us - it protects against concurrent
3603 	 * writes & truncates and since we take care of writing back page cache,
3604 	 * we are protected against page writeback as well.
3605 	 */
3606 	inode_lock_shared(inode);
3607 	if (IS_DAX(inode)) {
3608 		ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3609 	} else {
3610 		size_t count = iov_iter_count(iter);
3611 
3612 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3613 						   iocb->ki_pos + count);
3614 		if (ret)
3615 			goto out_unlock;
3616 		ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3617 					   iter, ext4_dio_get_block,
3618 					   NULL, NULL, 0);
3619 	}
3620 out_unlock:
3621 	inode_unlock_shared(inode);
3622 	return ret;
3623 }
3624 
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3625 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3626 {
3627 	struct file *file = iocb->ki_filp;
3628 	struct inode *inode = file->f_mapping->host;
3629 	size_t count = iov_iter_count(iter);
3630 	loff_t offset = iocb->ki_pos;
3631 	ssize_t ret;
3632 	int rw = iov_iter_rw(iter);
3633 
3634 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3635 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3636 		return 0;
3637 #endif
3638 
3639 	/*
3640 	 * If we are doing data journalling we don't support O_DIRECT
3641 	 */
3642 	if (ext4_should_journal_data(inode))
3643 		return 0;
3644 
3645 	/* Let buffer I/O handle the inline data case. */
3646 	if (ext4_has_inline_data(inode))
3647 		return 0;
3648 
3649 	if (trace_android_fs_dataread_start_enabled() &&
3650 	    (rw == READ)) {
3651 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3652 
3653 		path = android_fstrace_get_pathname(pathbuf,
3654 						    MAX_TRACE_PATHBUF_LEN,
3655 						    inode);
3656 		trace_android_fs_dataread_start(inode, offset, count,
3657 						current->pid, path,
3658 						current->comm);
3659 	}
3660 	if (trace_android_fs_datawrite_start_enabled() &&
3661 	    (rw == WRITE)) {
3662 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3663 
3664 		path = android_fstrace_get_pathname(pathbuf,
3665 						    MAX_TRACE_PATHBUF_LEN,
3666 						    inode);
3667 		trace_android_fs_datawrite_start(inode, offset, count,
3668 						 current->pid, path,
3669 						 current->comm);
3670 	}
3671 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3672 	if (iov_iter_rw(iter) == READ)
3673 		ret = ext4_direct_IO_read(iocb, iter);
3674 	else
3675 		ret = ext4_direct_IO_write(iocb, iter);
3676 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3677 
3678 	if (trace_android_fs_dataread_start_enabled() &&
3679 	    (rw == READ))
3680 		trace_android_fs_dataread_end(inode, offset, count);
3681 	if (trace_android_fs_datawrite_start_enabled() &&
3682 	    (rw == WRITE))
3683 		trace_android_fs_datawrite_end(inode, offset, count);
3684 
3685 	return ret;
3686 }
3687 
3688 /*
3689  * Pages can be marked dirty completely asynchronously from ext4's journalling
3690  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3691  * much here because ->set_page_dirty is called under VFS locks.  The page is
3692  * not necessarily locked.
3693  *
3694  * We cannot just dirty the page and leave attached buffers clean, because the
3695  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3696  * or jbddirty because all the journalling code will explode.
3697  *
3698  * So what we do is to mark the page "pending dirty" and next time writepage
3699  * is called, propagate that into the buffers appropriately.
3700  */
ext4_journalled_set_page_dirty(struct page * page)3701 static int ext4_journalled_set_page_dirty(struct page *page)
3702 {
3703 	SetPageChecked(page);
3704 	return __set_page_dirty_nobuffers(page);
3705 }
3706 
3707 static const struct address_space_operations ext4_aops = {
3708 	.readpage		= ext4_readpage,
3709 	.readpages		= ext4_readpages,
3710 	.writepage		= ext4_writepage,
3711 	.writepages		= ext4_writepages,
3712 	.write_begin		= ext4_write_begin,
3713 	.write_end		= ext4_write_end,
3714 	.bmap			= ext4_bmap,
3715 	.invalidatepage		= ext4_invalidatepage,
3716 	.releasepage		= ext4_releasepage,
3717 	.direct_IO		= ext4_direct_IO,
3718 	.migratepage		= buffer_migrate_page,
3719 	.is_partially_uptodate  = block_is_partially_uptodate,
3720 	.error_remove_page	= generic_error_remove_page,
3721 };
3722 
3723 static const struct address_space_operations ext4_journalled_aops = {
3724 	.readpage		= ext4_readpage,
3725 	.readpages		= ext4_readpages,
3726 	.writepage		= ext4_writepage,
3727 	.writepages		= ext4_writepages,
3728 	.write_begin		= ext4_write_begin,
3729 	.write_end		= ext4_journalled_write_end,
3730 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3731 	.bmap			= ext4_bmap,
3732 	.invalidatepage		= ext4_journalled_invalidatepage,
3733 	.releasepage		= ext4_releasepage,
3734 	.direct_IO		= ext4_direct_IO,
3735 	.is_partially_uptodate  = block_is_partially_uptodate,
3736 	.error_remove_page	= generic_error_remove_page,
3737 };
3738 
3739 static const struct address_space_operations ext4_da_aops = {
3740 	.readpage		= ext4_readpage,
3741 	.readpages		= ext4_readpages,
3742 	.writepage		= ext4_writepage,
3743 	.writepages		= ext4_writepages,
3744 	.write_begin		= ext4_da_write_begin,
3745 	.write_end		= ext4_da_write_end,
3746 	.bmap			= ext4_bmap,
3747 	.invalidatepage		= ext4_da_invalidatepage,
3748 	.releasepage		= ext4_releasepage,
3749 	.direct_IO		= ext4_direct_IO,
3750 	.migratepage		= buffer_migrate_page,
3751 	.is_partially_uptodate  = block_is_partially_uptodate,
3752 	.error_remove_page	= generic_error_remove_page,
3753 };
3754 
ext4_set_aops(struct inode * inode)3755 void ext4_set_aops(struct inode *inode)
3756 {
3757 	switch (ext4_inode_journal_mode(inode)) {
3758 	case EXT4_INODE_ORDERED_DATA_MODE:
3759 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3760 		break;
3761 	case EXT4_INODE_JOURNAL_DATA_MODE:
3762 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3763 		return;
3764 	default:
3765 		BUG();
3766 	}
3767 	if (test_opt(inode->i_sb, DELALLOC))
3768 		inode->i_mapping->a_ops = &ext4_da_aops;
3769 	else
3770 		inode->i_mapping->a_ops = &ext4_aops;
3771 }
3772 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3773 static int __ext4_block_zero_page_range(handle_t *handle,
3774 		struct address_space *mapping, loff_t from, loff_t length)
3775 {
3776 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3777 	unsigned offset = from & (PAGE_SIZE-1);
3778 	unsigned blocksize, pos;
3779 	ext4_lblk_t iblock;
3780 	struct inode *inode = mapping->host;
3781 	struct buffer_head *bh;
3782 	struct page *page;
3783 	int err = 0;
3784 
3785 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3786 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3787 	if (!page)
3788 		return -ENOMEM;
3789 
3790 	blocksize = inode->i_sb->s_blocksize;
3791 
3792 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3793 
3794 	if (!page_has_buffers(page))
3795 		create_empty_buffers(page, blocksize, 0);
3796 
3797 	/* Find the buffer that contains "offset" */
3798 	bh = page_buffers(page);
3799 	pos = blocksize;
3800 	while (offset >= pos) {
3801 		bh = bh->b_this_page;
3802 		iblock++;
3803 		pos += blocksize;
3804 	}
3805 	if (buffer_freed(bh)) {
3806 		BUFFER_TRACE(bh, "freed: skip");
3807 		goto unlock;
3808 	}
3809 	if (!buffer_mapped(bh)) {
3810 		BUFFER_TRACE(bh, "unmapped");
3811 		ext4_get_block(inode, iblock, bh, 0);
3812 		/* unmapped? It's a hole - nothing to do */
3813 		if (!buffer_mapped(bh)) {
3814 			BUFFER_TRACE(bh, "still unmapped");
3815 			goto unlock;
3816 		}
3817 	}
3818 
3819 	/* Ok, it's mapped. Make sure it's up-to-date */
3820 	if (PageUptodate(page))
3821 		set_buffer_uptodate(bh);
3822 
3823 	if (!buffer_uptodate(bh)) {
3824 		err = -EIO;
3825 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3826 		wait_on_buffer(bh);
3827 		/* Uhhuh. Read error. Complain and punt. */
3828 		if (!buffer_uptodate(bh))
3829 			goto unlock;
3830 		if (S_ISREG(inode->i_mode) &&
3831 		    ext4_encrypted_inode(inode)) {
3832 			/* We expect the key to be set. */
3833 			BUG_ON(!fscrypt_has_encryption_key(inode));
3834 			BUG_ON(blocksize != PAGE_SIZE);
3835 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3836 						page, PAGE_SIZE, 0, page->index));
3837 		}
3838 	}
3839 	if (ext4_should_journal_data(inode)) {
3840 		BUFFER_TRACE(bh, "get write access");
3841 		err = ext4_journal_get_write_access(handle, bh);
3842 		if (err)
3843 			goto unlock;
3844 	}
3845 	zero_user(page, offset, length);
3846 	BUFFER_TRACE(bh, "zeroed end of block");
3847 
3848 	if (ext4_should_journal_data(inode)) {
3849 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3850 	} else {
3851 		err = 0;
3852 		mark_buffer_dirty(bh);
3853 		if (ext4_should_order_data(inode))
3854 			err = ext4_jbd2_inode_add_write(handle, inode);
3855 	}
3856 
3857 unlock:
3858 	unlock_page(page);
3859 	put_page(page);
3860 	return err;
3861 }
3862 
3863 /*
3864  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3865  * starting from file offset 'from'.  The range to be zero'd must
3866  * be contained with in one block.  If the specified range exceeds
3867  * the end of the block it will be shortened to end of the block
3868  * that cooresponds to 'from'
3869  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3870 static int ext4_block_zero_page_range(handle_t *handle,
3871 		struct address_space *mapping, loff_t from, loff_t length)
3872 {
3873 	struct inode *inode = mapping->host;
3874 	unsigned offset = from & (PAGE_SIZE-1);
3875 	unsigned blocksize = inode->i_sb->s_blocksize;
3876 	unsigned max = blocksize - (offset & (blocksize - 1));
3877 
3878 	/*
3879 	 * correct length if it does not fall between
3880 	 * 'from' and the end of the block
3881 	 */
3882 	if (length > max || length < 0)
3883 		length = max;
3884 
3885 	if (IS_DAX(inode))
3886 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3887 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3888 }
3889 
3890 /*
3891  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3892  * up to the end of the block which corresponds to `from'.
3893  * This required during truncate. We need to physically zero the tail end
3894  * of that block so it doesn't yield old data if the file is later grown.
3895  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3896 static int ext4_block_truncate_page(handle_t *handle,
3897 		struct address_space *mapping, loff_t from)
3898 {
3899 	unsigned offset = from & (PAGE_SIZE-1);
3900 	unsigned length;
3901 	unsigned blocksize;
3902 	struct inode *inode = mapping->host;
3903 
3904 	/* If we are processing an encrypted inode during orphan list handling */
3905 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3906 		return 0;
3907 
3908 	blocksize = inode->i_sb->s_blocksize;
3909 	length = blocksize - (offset & (blocksize - 1));
3910 
3911 	return ext4_block_zero_page_range(handle, mapping, from, length);
3912 }
3913 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3914 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3915 			     loff_t lstart, loff_t length)
3916 {
3917 	struct super_block *sb = inode->i_sb;
3918 	struct address_space *mapping = inode->i_mapping;
3919 	unsigned partial_start, partial_end;
3920 	ext4_fsblk_t start, end;
3921 	loff_t byte_end = (lstart + length - 1);
3922 	int err = 0;
3923 
3924 	partial_start = lstart & (sb->s_blocksize - 1);
3925 	partial_end = byte_end & (sb->s_blocksize - 1);
3926 
3927 	start = lstart >> sb->s_blocksize_bits;
3928 	end = byte_end >> sb->s_blocksize_bits;
3929 
3930 	/* Handle partial zero within the single block */
3931 	if (start == end &&
3932 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3933 		err = ext4_block_zero_page_range(handle, mapping,
3934 						 lstart, length);
3935 		return err;
3936 	}
3937 	/* Handle partial zero out on the start of the range */
3938 	if (partial_start) {
3939 		err = ext4_block_zero_page_range(handle, mapping,
3940 						 lstart, sb->s_blocksize);
3941 		if (err)
3942 			return err;
3943 	}
3944 	/* Handle partial zero out on the end of the range */
3945 	if (partial_end != sb->s_blocksize - 1)
3946 		err = ext4_block_zero_page_range(handle, mapping,
3947 						 byte_end - partial_end,
3948 						 partial_end + 1);
3949 	return err;
3950 }
3951 
ext4_can_truncate(struct inode * inode)3952 int ext4_can_truncate(struct inode *inode)
3953 {
3954 	if (S_ISREG(inode->i_mode))
3955 		return 1;
3956 	if (S_ISDIR(inode->i_mode))
3957 		return 1;
3958 	if (S_ISLNK(inode->i_mode))
3959 		return !ext4_inode_is_fast_symlink(inode);
3960 	return 0;
3961 }
3962 
3963 /*
3964  * We have to make sure i_disksize gets properly updated before we truncate
3965  * page cache due to hole punching or zero range. Otherwise i_disksize update
3966  * can get lost as it may have been postponed to submission of writeback but
3967  * that will never happen after we truncate page cache.
3968  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3969 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3970 				      loff_t len)
3971 {
3972 	handle_t *handle;
3973 	loff_t size = i_size_read(inode);
3974 
3975 	WARN_ON(!inode_is_locked(inode));
3976 	if (offset > size || offset + len < size)
3977 		return 0;
3978 
3979 	if (EXT4_I(inode)->i_disksize >= size)
3980 		return 0;
3981 
3982 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3983 	if (IS_ERR(handle))
3984 		return PTR_ERR(handle);
3985 	ext4_update_i_disksize(inode, size);
3986 	ext4_mark_inode_dirty(handle, inode);
3987 	ext4_journal_stop(handle);
3988 
3989 	return 0;
3990 }
3991 
3992 /*
3993  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3994  * associated with the given offset and length
3995  *
3996  * @inode:  File inode
3997  * @offset: The offset where the hole will begin
3998  * @len:    The length of the hole
3999  *
4000  * Returns: 0 on success or negative on failure
4001  */
4002 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)4003 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4004 {
4005 	struct super_block *sb = inode->i_sb;
4006 	ext4_lblk_t first_block, stop_block;
4007 	struct address_space *mapping = inode->i_mapping;
4008 	loff_t first_block_offset, last_block_offset;
4009 	handle_t *handle;
4010 	unsigned int credits;
4011 	int ret = 0;
4012 
4013 	if (!S_ISREG(inode->i_mode))
4014 		return -EOPNOTSUPP;
4015 
4016 	trace_ext4_punch_hole(inode, offset, length, 0);
4017 
4018 	/*
4019 	 * Write out all dirty pages to avoid race conditions
4020 	 * Then release them.
4021 	 */
4022 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4023 		ret = filemap_write_and_wait_range(mapping, offset,
4024 						   offset + length - 1);
4025 		if (ret)
4026 			return ret;
4027 	}
4028 
4029 	inode_lock(inode);
4030 
4031 	/* No need to punch hole beyond i_size */
4032 	if (offset >= inode->i_size)
4033 		goto out_mutex;
4034 
4035 	/*
4036 	 * If the hole extends beyond i_size, set the hole
4037 	 * to end after the page that contains i_size
4038 	 */
4039 	if (offset + length > inode->i_size) {
4040 		length = inode->i_size +
4041 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4042 		   offset;
4043 	}
4044 
4045 	if (offset & (sb->s_blocksize - 1) ||
4046 	    (offset + length) & (sb->s_blocksize - 1)) {
4047 		/*
4048 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4049 		 * partial block
4050 		 */
4051 		ret = ext4_inode_attach_jinode(inode);
4052 		if (ret < 0)
4053 			goto out_mutex;
4054 
4055 	}
4056 
4057 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4058 	ext4_inode_block_unlocked_dio(inode);
4059 	inode_dio_wait(inode);
4060 
4061 	/*
4062 	 * Prevent page faults from reinstantiating pages we have released from
4063 	 * page cache.
4064 	 */
4065 	down_write(&EXT4_I(inode)->i_mmap_sem);
4066 	first_block_offset = round_up(offset, sb->s_blocksize);
4067 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4068 
4069 	/* Now release the pages and zero block aligned part of pages*/
4070 	if (last_block_offset > first_block_offset) {
4071 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4072 		if (ret)
4073 			goto out_dio;
4074 		truncate_pagecache_range(inode, first_block_offset,
4075 					 last_block_offset);
4076 	}
4077 
4078 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4079 		credits = ext4_writepage_trans_blocks(inode);
4080 	else
4081 		credits = ext4_blocks_for_truncate(inode);
4082 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4083 	if (IS_ERR(handle)) {
4084 		ret = PTR_ERR(handle);
4085 		ext4_std_error(sb, ret);
4086 		goto out_dio;
4087 	}
4088 
4089 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4090 				       length);
4091 	if (ret)
4092 		goto out_stop;
4093 
4094 	first_block = (offset + sb->s_blocksize - 1) >>
4095 		EXT4_BLOCK_SIZE_BITS(sb);
4096 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4097 
4098 	/* If there are no blocks to remove, return now */
4099 	if (first_block >= stop_block)
4100 		goto out_stop;
4101 
4102 	down_write(&EXT4_I(inode)->i_data_sem);
4103 	ext4_discard_preallocations(inode);
4104 
4105 	ret = ext4_es_remove_extent(inode, first_block,
4106 				    stop_block - first_block);
4107 	if (ret) {
4108 		up_write(&EXT4_I(inode)->i_data_sem);
4109 		goto out_stop;
4110 	}
4111 
4112 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4113 		ret = ext4_ext_remove_space(inode, first_block,
4114 					    stop_block - 1);
4115 	else
4116 		ret = ext4_ind_remove_space(handle, inode, first_block,
4117 					    stop_block);
4118 
4119 	up_write(&EXT4_I(inode)->i_data_sem);
4120 	if (IS_SYNC(inode))
4121 		ext4_handle_sync(handle);
4122 
4123 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4124 	ext4_mark_inode_dirty(handle, inode);
4125 	if (ret >= 0)
4126 		ext4_update_inode_fsync_trans(handle, inode, 1);
4127 out_stop:
4128 	ext4_journal_stop(handle);
4129 out_dio:
4130 	up_write(&EXT4_I(inode)->i_mmap_sem);
4131 	ext4_inode_resume_unlocked_dio(inode);
4132 out_mutex:
4133 	inode_unlock(inode);
4134 	return ret;
4135 }
4136 
ext4_inode_attach_jinode(struct inode * inode)4137 int ext4_inode_attach_jinode(struct inode *inode)
4138 {
4139 	struct ext4_inode_info *ei = EXT4_I(inode);
4140 	struct jbd2_inode *jinode;
4141 
4142 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4143 		return 0;
4144 
4145 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4146 	spin_lock(&inode->i_lock);
4147 	if (!ei->jinode) {
4148 		if (!jinode) {
4149 			spin_unlock(&inode->i_lock);
4150 			return -ENOMEM;
4151 		}
4152 		ei->jinode = jinode;
4153 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4154 		jinode = NULL;
4155 	}
4156 	spin_unlock(&inode->i_lock);
4157 	if (unlikely(jinode != NULL))
4158 		jbd2_free_inode(jinode);
4159 	return 0;
4160 }
4161 
4162 /*
4163  * ext4_truncate()
4164  *
4165  * We block out ext4_get_block() block instantiations across the entire
4166  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4167  * simultaneously on behalf of the same inode.
4168  *
4169  * As we work through the truncate and commit bits of it to the journal there
4170  * is one core, guiding principle: the file's tree must always be consistent on
4171  * disk.  We must be able to restart the truncate after a crash.
4172  *
4173  * The file's tree may be transiently inconsistent in memory (although it
4174  * probably isn't), but whenever we close off and commit a journal transaction,
4175  * the contents of (the filesystem + the journal) must be consistent and
4176  * restartable.  It's pretty simple, really: bottom up, right to left (although
4177  * left-to-right works OK too).
4178  *
4179  * Note that at recovery time, journal replay occurs *before* the restart of
4180  * truncate against the orphan inode list.
4181  *
4182  * The committed inode has the new, desired i_size (which is the same as
4183  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4184  * that this inode's truncate did not complete and it will again call
4185  * ext4_truncate() to have another go.  So there will be instantiated blocks
4186  * to the right of the truncation point in a crashed ext4 filesystem.  But
4187  * that's fine - as long as they are linked from the inode, the post-crash
4188  * ext4_truncate() run will find them and release them.
4189  */
ext4_truncate(struct inode * inode)4190 void ext4_truncate(struct inode *inode)
4191 {
4192 	struct ext4_inode_info *ei = EXT4_I(inode);
4193 	unsigned int credits;
4194 	handle_t *handle;
4195 	struct address_space *mapping = inode->i_mapping;
4196 
4197 	/*
4198 	 * There is a possibility that we're either freeing the inode
4199 	 * or it's a completely new inode. In those cases we might not
4200 	 * have i_mutex locked because it's not necessary.
4201 	 */
4202 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4203 		WARN_ON(!inode_is_locked(inode));
4204 	trace_ext4_truncate_enter(inode);
4205 
4206 	if (!ext4_can_truncate(inode))
4207 		return;
4208 
4209 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4210 
4211 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4212 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4213 
4214 	if (ext4_has_inline_data(inode)) {
4215 		int has_inline = 1;
4216 
4217 		ext4_inline_data_truncate(inode, &has_inline);
4218 		if (has_inline)
4219 			return;
4220 	}
4221 
4222 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4223 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4224 		if (ext4_inode_attach_jinode(inode) < 0)
4225 			return;
4226 	}
4227 
4228 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4229 		credits = ext4_writepage_trans_blocks(inode);
4230 	else
4231 		credits = ext4_blocks_for_truncate(inode);
4232 
4233 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4234 	if (IS_ERR(handle)) {
4235 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4236 		return;
4237 	}
4238 
4239 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4240 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4241 
4242 	/*
4243 	 * We add the inode to the orphan list, so that if this
4244 	 * truncate spans multiple transactions, and we crash, we will
4245 	 * resume the truncate when the filesystem recovers.  It also
4246 	 * marks the inode dirty, to catch the new size.
4247 	 *
4248 	 * Implication: the file must always be in a sane, consistent
4249 	 * truncatable state while each transaction commits.
4250 	 */
4251 	if (ext4_orphan_add(handle, inode))
4252 		goto out_stop;
4253 
4254 	down_write(&EXT4_I(inode)->i_data_sem);
4255 
4256 	ext4_discard_preallocations(inode);
4257 
4258 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4259 		ext4_ext_truncate(handle, inode);
4260 	else
4261 		ext4_ind_truncate(handle, inode);
4262 
4263 	up_write(&ei->i_data_sem);
4264 
4265 	if (IS_SYNC(inode))
4266 		ext4_handle_sync(handle);
4267 
4268 out_stop:
4269 	/*
4270 	 * If this was a simple ftruncate() and the file will remain alive,
4271 	 * then we need to clear up the orphan record which we created above.
4272 	 * However, if this was a real unlink then we were called by
4273 	 * ext4_evict_inode(), and we allow that function to clean up the
4274 	 * orphan info for us.
4275 	 */
4276 	if (inode->i_nlink)
4277 		ext4_orphan_del(handle, inode);
4278 
4279 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4280 	ext4_mark_inode_dirty(handle, inode);
4281 	ext4_journal_stop(handle);
4282 
4283 	trace_ext4_truncate_exit(inode);
4284 }
4285 
4286 /*
4287  * ext4_get_inode_loc returns with an extra refcount against the inode's
4288  * underlying buffer_head on success. If 'in_mem' is true, we have all
4289  * data in memory that is needed to recreate the on-disk version of this
4290  * inode.
4291  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4292 static int __ext4_get_inode_loc(struct inode *inode,
4293 				struct ext4_iloc *iloc, int in_mem)
4294 {
4295 	struct ext4_group_desc	*gdp;
4296 	struct buffer_head	*bh;
4297 	struct super_block	*sb = inode->i_sb;
4298 	ext4_fsblk_t		block;
4299 	int			inodes_per_block, inode_offset;
4300 
4301 	iloc->bh = NULL;
4302 	if (!ext4_valid_inum(sb, inode->i_ino))
4303 		return -EFSCORRUPTED;
4304 
4305 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4306 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4307 	if (!gdp)
4308 		return -EIO;
4309 
4310 	/*
4311 	 * Figure out the offset within the block group inode table
4312 	 */
4313 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4314 	inode_offset = ((inode->i_ino - 1) %
4315 			EXT4_INODES_PER_GROUP(sb));
4316 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4317 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4318 
4319 	bh = sb_getblk(sb, block);
4320 	if (unlikely(!bh))
4321 		return -ENOMEM;
4322 	if (!buffer_uptodate(bh)) {
4323 		lock_buffer(bh);
4324 
4325 		/*
4326 		 * If the buffer has the write error flag, we have failed
4327 		 * to write out another inode in the same block.  In this
4328 		 * case, we don't have to read the block because we may
4329 		 * read the old inode data successfully.
4330 		 */
4331 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4332 			set_buffer_uptodate(bh);
4333 
4334 		if (buffer_uptodate(bh)) {
4335 			/* someone brought it uptodate while we waited */
4336 			unlock_buffer(bh);
4337 			goto has_buffer;
4338 		}
4339 
4340 		/*
4341 		 * If we have all information of the inode in memory and this
4342 		 * is the only valid inode in the block, we need not read the
4343 		 * block.
4344 		 */
4345 		if (in_mem) {
4346 			struct buffer_head *bitmap_bh;
4347 			int i, start;
4348 
4349 			start = inode_offset & ~(inodes_per_block - 1);
4350 
4351 			/* Is the inode bitmap in cache? */
4352 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4353 			if (unlikely(!bitmap_bh))
4354 				goto make_io;
4355 
4356 			/*
4357 			 * If the inode bitmap isn't in cache then the
4358 			 * optimisation may end up performing two reads instead
4359 			 * of one, so skip it.
4360 			 */
4361 			if (!buffer_uptodate(bitmap_bh)) {
4362 				brelse(bitmap_bh);
4363 				goto make_io;
4364 			}
4365 			for (i = start; i < start + inodes_per_block; i++) {
4366 				if (i == inode_offset)
4367 					continue;
4368 				if (ext4_test_bit(i, bitmap_bh->b_data))
4369 					break;
4370 			}
4371 			brelse(bitmap_bh);
4372 			if (i == start + inodes_per_block) {
4373 				/* all other inodes are free, so skip I/O */
4374 				memset(bh->b_data, 0, bh->b_size);
4375 				set_buffer_uptodate(bh);
4376 				unlock_buffer(bh);
4377 				goto has_buffer;
4378 			}
4379 		}
4380 
4381 make_io:
4382 		/*
4383 		 * If we need to do any I/O, try to pre-readahead extra
4384 		 * blocks from the inode table.
4385 		 */
4386 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4387 			ext4_fsblk_t b, end, table;
4388 			unsigned num;
4389 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4390 
4391 			table = ext4_inode_table(sb, gdp);
4392 			/* s_inode_readahead_blks is always a power of 2 */
4393 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4394 			if (table > b)
4395 				b = table;
4396 			end = b + ra_blks;
4397 			num = EXT4_INODES_PER_GROUP(sb);
4398 			if (ext4_has_group_desc_csum(sb))
4399 				num -= ext4_itable_unused_count(sb, gdp);
4400 			table += num / inodes_per_block;
4401 			if (end > table)
4402 				end = table;
4403 			while (b <= end)
4404 				sb_breadahead(sb, b++);
4405 		}
4406 
4407 		/*
4408 		 * There are other valid inodes in the buffer, this inode
4409 		 * has in-inode xattrs, or we don't have this inode in memory.
4410 		 * Read the block from disk.
4411 		 */
4412 		trace_ext4_load_inode(inode);
4413 		get_bh(bh);
4414 		bh->b_end_io = end_buffer_read_sync;
4415 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4416 		wait_on_buffer(bh);
4417 		if (!buffer_uptodate(bh)) {
4418 			EXT4_ERROR_INODE_BLOCK(inode, block,
4419 					       "unable to read itable block");
4420 			brelse(bh);
4421 			return -EIO;
4422 		}
4423 	}
4424 has_buffer:
4425 	iloc->bh = bh;
4426 	return 0;
4427 }
4428 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4429 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4430 {
4431 	/* We have all inode data except xattrs in memory here. */
4432 	return __ext4_get_inode_loc(inode, iloc,
4433 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4434 }
4435 
ext4_set_inode_flags(struct inode * inode)4436 void ext4_set_inode_flags(struct inode *inode)
4437 {
4438 	unsigned int flags = EXT4_I(inode)->i_flags;
4439 	unsigned int new_fl = 0;
4440 
4441 	if (flags & EXT4_SYNC_FL)
4442 		new_fl |= S_SYNC;
4443 	if (flags & EXT4_APPEND_FL)
4444 		new_fl |= S_APPEND;
4445 	if (flags & EXT4_IMMUTABLE_FL)
4446 		new_fl |= S_IMMUTABLE;
4447 	if (flags & EXT4_NOATIME_FL)
4448 		new_fl |= S_NOATIME;
4449 	if (flags & EXT4_DIRSYNC_FL)
4450 		new_fl |= S_DIRSYNC;
4451 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4452 		new_fl |= S_DAX;
4453 	if (flags & EXT4_ENCRYPT_FL)
4454 		new_fl |= S_ENCRYPTED;
4455 	inode_set_flags(inode, new_fl,
4456 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4457 			S_ENCRYPTED);
4458 }
4459 
4460 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4461 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4462 {
4463 	unsigned int vfs_fl;
4464 	unsigned long old_fl, new_fl;
4465 
4466 	do {
4467 		vfs_fl = ei->vfs_inode.i_flags;
4468 		old_fl = ei->i_flags;
4469 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4470 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4471 				EXT4_DIRSYNC_FL);
4472 		if (vfs_fl & S_SYNC)
4473 			new_fl |= EXT4_SYNC_FL;
4474 		if (vfs_fl & S_APPEND)
4475 			new_fl |= EXT4_APPEND_FL;
4476 		if (vfs_fl & S_IMMUTABLE)
4477 			new_fl |= EXT4_IMMUTABLE_FL;
4478 		if (vfs_fl & S_NOATIME)
4479 			new_fl |= EXT4_NOATIME_FL;
4480 		if (vfs_fl & S_DIRSYNC)
4481 			new_fl |= EXT4_DIRSYNC_FL;
4482 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4483 }
4484 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4485 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4486 				  struct ext4_inode_info *ei)
4487 {
4488 	blkcnt_t i_blocks ;
4489 	struct inode *inode = &(ei->vfs_inode);
4490 	struct super_block *sb = inode->i_sb;
4491 
4492 	if (ext4_has_feature_huge_file(sb)) {
4493 		/* we are using combined 48 bit field */
4494 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4495 					le32_to_cpu(raw_inode->i_blocks_lo);
4496 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4497 			/* i_blocks represent file system block size */
4498 			return i_blocks  << (inode->i_blkbits - 9);
4499 		} else {
4500 			return i_blocks;
4501 		}
4502 	} else {
4503 		return le32_to_cpu(raw_inode->i_blocks_lo);
4504 	}
4505 }
4506 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4507 static inline void ext4_iget_extra_inode(struct inode *inode,
4508 					 struct ext4_inode *raw_inode,
4509 					 struct ext4_inode_info *ei)
4510 {
4511 	__le32 *magic = (void *)raw_inode +
4512 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4513 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4514 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4515 		ext4_find_inline_data_nolock(inode);
4516 	} else
4517 		EXT4_I(inode)->i_inline_off = 0;
4518 }
4519 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4520 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4521 {
4522 	if (!ext4_has_feature_project(inode->i_sb))
4523 		return -EOPNOTSUPP;
4524 	*projid = EXT4_I(inode)->i_projid;
4525 	return 0;
4526 }
4527 
ext4_iget(struct super_block * sb,unsigned long ino)4528 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4529 {
4530 	struct ext4_iloc iloc;
4531 	struct ext4_inode *raw_inode;
4532 	struct ext4_inode_info *ei;
4533 	struct inode *inode;
4534 	journal_t *journal = EXT4_SB(sb)->s_journal;
4535 	long ret;
4536 	loff_t size;
4537 	int block;
4538 	uid_t i_uid;
4539 	gid_t i_gid;
4540 	projid_t i_projid;
4541 
4542 	inode = iget_locked(sb, ino);
4543 	if (!inode)
4544 		return ERR_PTR(-ENOMEM);
4545 	if (!(inode->i_state & I_NEW))
4546 		return inode;
4547 
4548 	ei = EXT4_I(inode);
4549 	iloc.bh = NULL;
4550 
4551 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4552 	if (ret < 0)
4553 		goto bad_inode;
4554 	raw_inode = ext4_raw_inode(&iloc);
4555 
4556 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4557 		EXT4_ERROR_INODE(inode, "root inode unallocated");
4558 		ret = -EFSCORRUPTED;
4559 		goto bad_inode;
4560 	}
4561 
4562 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4563 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4564 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4565 		    EXT4_INODE_SIZE(inode->i_sb)) {
4566 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4567 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4568 				EXT4_INODE_SIZE(inode->i_sb));
4569 			ret = -EFSCORRUPTED;
4570 			goto bad_inode;
4571 		}
4572 	} else
4573 		ei->i_extra_isize = 0;
4574 
4575 	/* Precompute checksum seed for inode metadata */
4576 	if (ext4_has_metadata_csum(sb)) {
4577 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4578 		__u32 csum;
4579 		__le32 inum = cpu_to_le32(inode->i_ino);
4580 		__le32 gen = raw_inode->i_generation;
4581 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4582 				   sizeof(inum));
4583 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4584 					      sizeof(gen));
4585 	}
4586 
4587 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4588 		EXT4_ERROR_INODE(inode, "checksum invalid");
4589 		ret = -EFSBADCRC;
4590 		goto bad_inode;
4591 	}
4592 
4593 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4594 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4595 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4596 	if (ext4_has_feature_project(sb) &&
4597 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4598 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4599 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4600 	else
4601 		i_projid = EXT4_DEF_PROJID;
4602 
4603 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4604 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4605 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4606 	}
4607 	i_uid_write(inode, i_uid);
4608 	i_gid_write(inode, i_gid);
4609 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4610 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4611 
4612 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4613 	ei->i_inline_off = 0;
4614 	ei->i_dir_start_lookup = 0;
4615 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4616 	/* We now have enough fields to check if the inode was active or not.
4617 	 * This is needed because nfsd might try to access dead inodes
4618 	 * the test is that same one that e2fsck uses
4619 	 * NeilBrown 1999oct15
4620 	 */
4621 	if (inode->i_nlink == 0) {
4622 		if ((inode->i_mode == 0 ||
4623 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4624 		    ino != EXT4_BOOT_LOADER_INO) {
4625 			/* this inode is deleted */
4626 			ret = -ESTALE;
4627 			goto bad_inode;
4628 		}
4629 		/* The only unlinked inodes we let through here have
4630 		 * valid i_mode and are being read by the orphan
4631 		 * recovery code: that's fine, we're about to complete
4632 		 * the process of deleting those.
4633 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4634 		 * not initialized on a new filesystem. */
4635 	}
4636 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4637 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4638 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4639 	if (ext4_has_feature_64bit(sb))
4640 		ei->i_file_acl |=
4641 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4642 	inode->i_size = ext4_isize(raw_inode);
4643 	if ((size = i_size_read(inode)) < 0) {
4644 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4645 		ret = -EFSCORRUPTED;
4646 		goto bad_inode;
4647 	}
4648 	ei->i_disksize = inode->i_size;
4649 #ifdef CONFIG_QUOTA
4650 	ei->i_reserved_quota = 0;
4651 #endif
4652 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4653 	ei->i_block_group = iloc.block_group;
4654 	ei->i_last_alloc_group = ~0;
4655 	/*
4656 	 * NOTE! The in-memory inode i_data array is in little-endian order
4657 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4658 	 */
4659 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4660 		ei->i_data[block] = raw_inode->i_block[block];
4661 	INIT_LIST_HEAD(&ei->i_orphan);
4662 
4663 	/*
4664 	 * Set transaction id's of transactions that have to be committed
4665 	 * to finish f[data]sync. We set them to currently running transaction
4666 	 * as we cannot be sure that the inode or some of its metadata isn't
4667 	 * part of the transaction - the inode could have been reclaimed and
4668 	 * now it is reread from disk.
4669 	 */
4670 	if (journal) {
4671 		transaction_t *transaction;
4672 		tid_t tid;
4673 
4674 		read_lock(&journal->j_state_lock);
4675 		if (journal->j_running_transaction)
4676 			transaction = journal->j_running_transaction;
4677 		else
4678 			transaction = journal->j_committing_transaction;
4679 		if (transaction)
4680 			tid = transaction->t_tid;
4681 		else
4682 			tid = journal->j_commit_sequence;
4683 		read_unlock(&journal->j_state_lock);
4684 		ei->i_sync_tid = tid;
4685 		ei->i_datasync_tid = tid;
4686 	}
4687 
4688 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4689 		if (ei->i_extra_isize == 0) {
4690 			/* The extra space is currently unused. Use it. */
4691 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4692 					    EXT4_GOOD_OLD_INODE_SIZE;
4693 		} else {
4694 			ext4_iget_extra_inode(inode, raw_inode, ei);
4695 		}
4696 	}
4697 
4698 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4699 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4700 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4701 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4702 
4703 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4704 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4705 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4706 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4707 				inode->i_version |=
4708 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4709 		}
4710 	}
4711 
4712 	ret = 0;
4713 	if (ei->i_file_acl &&
4714 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4715 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4716 				 ei->i_file_acl);
4717 		ret = -EFSCORRUPTED;
4718 		goto bad_inode;
4719 	} else if (!ext4_has_inline_data(inode)) {
4720 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4721 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4722 			    (S_ISLNK(inode->i_mode) &&
4723 			     !ext4_inode_is_fast_symlink(inode))))
4724 				/* Validate extent which is part of inode */
4725 				ret = ext4_ext_check_inode(inode);
4726 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4727 			   (S_ISLNK(inode->i_mode) &&
4728 			    !ext4_inode_is_fast_symlink(inode))) {
4729 			/* Validate block references which are part of inode */
4730 			ret = ext4_ind_check_inode(inode);
4731 		}
4732 	}
4733 	if (ret)
4734 		goto bad_inode;
4735 
4736 	if (S_ISREG(inode->i_mode)) {
4737 		inode->i_op = &ext4_file_inode_operations;
4738 		inode->i_fop = &ext4_file_operations;
4739 		ext4_set_aops(inode);
4740 	} else if (S_ISDIR(inode->i_mode)) {
4741 		inode->i_op = &ext4_dir_inode_operations;
4742 		inode->i_fop = &ext4_dir_operations;
4743 	} else if (S_ISLNK(inode->i_mode)) {
4744 		if (ext4_encrypted_inode(inode)) {
4745 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4746 			ext4_set_aops(inode);
4747 		} else if (ext4_inode_is_fast_symlink(inode)) {
4748 			inode->i_link = (char *)ei->i_data;
4749 			inode->i_op = &ext4_fast_symlink_inode_operations;
4750 			nd_terminate_link(ei->i_data, inode->i_size,
4751 				sizeof(ei->i_data) - 1);
4752 		} else {
4753 			inode->i_op = &ext4_symlink_inode_operations;
4754 			ext4_set_aops(inode);
4755 		}
4756 		inode_nohighmem(inode);
4757 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4758 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4759 		inode->i_op = &ext4_special_inode_operations;
4760 		if (raw_inode->i_block[0])
4761 			init_special_inode(inode, inode->i_mode,
4762 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4763 		else
4764 			init_special_inode(inode, inode->i_mode,
4765 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4766 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4767 		make_bad_inode(inode);
4768 	} else {
4769 		ret = -EFSCORRUPTED;
4770 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4771 		goto bad_inode;
4772 	}
4773 	brelse(iloc.bh);
4774 	ext4_set_inode_flags(inode);
4775 	unlock_new_inode(inode);
4776 	return inode;
4777 
4778 bad_inode:
4779 	brelse(iloc.bh);
4780 	iget_failed(inode);
4781 	return ERR_PTR(ret);
4782 }
4783 
ext4_iget_normal(struct super_block * sb,unsigned long ino)4784 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4785 {
4786 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4787 		return ERR_PTR(-EFSCORRUPTED);
4788 	return ext4_iget(sb, ino);
4789 }
4790 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4791 static int ext4_inode_blocks_set(handle_t *handle,
4792 				struct ext4_inode *raw_inode,
4793 				struct ext4_inode_info *ei)
4794 {
4795 	struct inode *inode = &(ei->vfs_inode);
4796 	u64 i_blocks = inode->i_blocks;
4797 	struct super_block *sb = inode->i_sb;
4798 
4799 	if (i_blocks <= ~0U) {
4800 		/*
4801 		 * i_blocks can be represented in a 32 bit variable
4802 		 * as multiple of 512 bytes
4803 		 */
4804 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4805 		raw_inode->i_blocks_high = 0;
4806 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4807 		return 0;
4808 	}
4809 	if (!ext4_has_feature_huge_file(sb))
4810 		return -EFBIG;
4811 
4812 	if (i_blocks <= 0xffffffffffffULL) {
4813 		/*
4814 		 * i_blocks can be represented in a 48 bit variable
4815 		 * as multiple of 512 bytes
4816 		 */
4817 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4818 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4819 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4820 	} else {
4821 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4822 		/* i_block is stored in file system block size */
4823 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4824 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4825 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4826 	}
4827 	return 0;
4828 }
4829 
4830 struct other_inode {
4831 	unsigned long		orig_ino;
4832 	struct ext4_inode	*raw_inode;
4833 };
4834 
other_inode_match(struct inode * inode,unsigned long ino,void * data)4835 static int other_inode_match(struct inode * inode, unsigned long ino,
4836 			     void *data)
4837 {
4838 	struct other_inode *oi = (struct other_inode *) data;
4839 
4840 	if ((inode->i_ino != ino) ||
4841 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4842 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4843 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4844 		return 0;
4845 	spin_lock(&inode->i_lock);
4846 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4847 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4848 	    (inode->i_state & I_DIRTY_TIME)) {
4849 		struct ext4_inode_info	*ei = EXT4_I(inode);
4850 
4851 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4852 		spin_unlock(&inode->i_lock);
4853 
4854 		spin_lock(&ei->i_raw_lock);
4855 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4856 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4857 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4858 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4859 		spin_unlock(&ei->i_raw_lock);
4860 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4861 		return -1;
4862 	}
4863 	spin_unlock(&inode->i_lock);
4864 	return -1;
4865 }
4866 
4867 /*
4868  * Opportunistically update the other time fields for other inodes in
4869  * the same inode table block.
4870  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)4871 static void ext4_update_other_inodes_time(struct super_block *sb,
4872 					  unsigned long orig_ino, char *buf)
4873 {
4874 	struct other_inode oi;
4875 	unsigned long ino;
4876 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4877 	int inode_size = EXT4_INODE_SIZE(sb);
4878 
4879 	oi.orig_ino = orig_ino;
4880 	/*
4881 	 * Calculate the first inode in the inode table block.  Inode
4882 	 * numbers are one-based.  That is, the first inode in a block
4883 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4884 	 */
4885 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4886 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4887 		if (ino == orig_ino)
4888 			continue;
4889 		oi.raw_inode = (struct ext4_inode *) buf;
4890 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4891 	}
4892 }
4893 
4894 /*
4895  * Post the struct inode info into an on-disk inode location in the
4896  * buffer-cache.  This gobbles the caller's reference to the
4897  * buffer_head in the inode location struct.
4898  *
4899  * The caller must have write access to iloc->bh.
4900  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4901 static int ext4_do_update_inode(handle_t *handle,
4902 				struct inode *inode,
4903 				struct ext4_iloc *iloc)
4904 {
4905 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4906 	struct ext4_inode_info *ei = EXT4_I(inode);
4907 	struct buffer_head *bh = iloc->bh;
4908 	struct super_block *sb = inode->i_sb;
4909 	int err = 0, rc, block;
4910 	int need_datasync = 0, set_large_file = 0;
4911 	uid_t i_uid;
4912 	gid_t i_gid;
4913 	projid_t i_projid;
4914 
4915 	spin_lock(&ei->i_raw_lock);
4916 
4917 	/* For fields not tracked in the in-memory inode,
4918 	 * initialise them to zero for new inodes. */
4919 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4920 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4921 
4922 	ext4_get_inode_flags(ei);
4923 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4924 	i_uid = i_uid_read(inode);
4925 	i_gid = i_gid_read(inode);
4926 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4927 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4928 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4929 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4930 /*
4931  * Fix up interoperability with old kernels. Otherwise, old inodes get
4932  * re-used with the upper 16 bits of the uid/gid intact
4933  */
4934 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4935 			raw_inode->i_uid_high = 0;
4936 			raw_inode->i_gid_high = 0;
4937 		} else {
4938 			raw_inode->i_uid_high =
4939 				cpu_to_le16(high_16_bits(i_uid));
4940 			raw_inode->i_gid_high =
4941 				cpu_to_le16(high_16_bits(i_gid));
4942 		}
4943 	} else {
4944 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4945 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4946 		raw_inode->i_uid_high = 0;
4947 		raw_inode->i_gid_high = 0;
4948 	}
4949 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4950 
4951 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4952 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4953 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4954 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4955 
4956 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4957 	if (err) {
4958 		spin_unlock(&ei->i_raw_lock);
4959 		goto out_brelse;
4960 	}
4961 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4962 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4963 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4964 		raw_inode->i_file_acl_high =
4965 			cpu_to_le16(ei->i_file_acl >> 32);
4966 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4967 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4968 		ext4_isize_set(raw_inode, ei->i_disksize);
4969 		need_datasync = 1;
4970 	}
4971 	if (ei->i_disksize > 0x7fffffffULL) {
4972 		if (!ext4_has_feature_large_file(sb) ||
4973 				EXT4_SB(sb)->s_es->s_rev_level ==
4974 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4975 			set_large_file = 1;
4976 	}
4977 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4978 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4979 		if (old_valid_dev(inode->i_rdev)) {
4980 			raw_inode->i_block[0] =
4981 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4982 			raw_inode->i_block[1] = 0;
4983 		} else {
4984 			raw_inode->i_block[0] = 0;
4985 			raw_inode->i_block[1] =
4986 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4987 			raw_inode->i_block[2] = 0;
4988 		}
4989 	} else if (!ext4_has_inline_data(inode)) {
4990 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4991 			raw_inode->i_block[block] = ei->i_data[block];
4992 	}
4993 
4994 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4995 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4996 		if (ei->i_extra_isize) {
4997 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4998 				raw_inode->i_version_hi =
4999 					cpu_to_le32(inode->i_version >> 32);
5000 			raw_inode->i_extra_isize =
5001 				cpu_to_le16(ei->i_extra_isize);
5002 		}
5003 	}
5004 
5005 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5006 	       i_projid != EXT4_DEF_PROJID);
5007 
5008 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5009 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5010 		raw_inode->i_projid = cpu_to_le32(i_projid);
5011 
5012 	ext4_inode_csum_set(inode, raw_inode, ei);
5013 	spin_unlock(&ei->i_raw_lock);
5014 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5015 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5016 					      bh->b_data);
5017 
5018 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5019 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5020 	if (!err)
5021 		err = rc;
5022 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5023 	if (set_large_file) {
5024 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5025 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5026 		if (err)
5027 			goto out_brelse;
5028 		ext4_update_dynamic_rev(sb);
5029 		ext4_set_feature_large_file(sb);
5030 		ext4_handle_sync(handle);
5031 		err = ext4_handle_dirty_super(handle, sb);
5032 	}
5033 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5034 out_brelse:
5035 	brelse(bh);
5036 	ext4_std_error(inode->i_sb, err);
5037 	return err;
5038 }
5039 
5040 /*
5041  * ext4_write_inode()
5042  *
5043  * We are called from a few places:
5044  *
5045  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5046  *   Here, there will be no transaction running. We wait for any running
5047  *   transaction to commit.
5048  *
5049  * - Within flush work (sys_sync(), kupdate and such).
5050  *   We wait on commit, if told to.
5051  *
5052  * - Within iput_final() -> write_inode_now()
5053  *   We wait on commit, if told to.
5054  *
5055  * In all cases it is actually safe for us to return without doing anything,
5056  * because the inode has been copied into a raw inode buffer in
5057  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5058  * writeback.
5059  *
5060  * Note that we are absolutely dependent upon all inode dirtiers doing the
5061  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5062  * which we are interested.
5063  *
5064  * It would be a bug for them to not do this.  The code:
5065  *
5066  *	mark_inode_dirty(inode)
5067  *	stuff();
5068  *	inode->i_size = expr;
5069  *
5070  * is in error because write_inode() could occur while `stuff()' is running,
5071  * and the new i_size will be lost.  Plus the inode will no longer be on the
5072  * superblock's dirty inode list.
5073  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5074 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5075 {
5076 	int err;
5077 
5078 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5079 		return 0;
5080 
5081 	if (EXT4_SB(inode->i_sb)->s_journal) {
5082 		if (ext4_journal_current_handle()) {
5083 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5084 			dump_stack();
5085 			return -EIO;
5086 		}
5087 
5088 		/*
5089 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5090 		 * ext4_sync_fs() will force the commit after everything is
5091 		 * written.
5092 		 */
5093 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5094 			return 0;
5095 
5096 		err = ext4_force_commit(inode->i_sb);
5097 	} else {
5098 		struct ext4_iloc iloc;
5099 
5100 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5101 		if (err)
5102 			return err;
5103 		/*
5104 		 * sync(2) will flush the whole buffer cache. No need to do
5105 		 * it here separately for each inode.
5106 		 */
5107 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5108 			sync_dirty_buffer(iloc.bh);
5109 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5110 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5111 					 "IO error syncing inode");
5112 			err = -EIO;
5113 		}
5114 		brelse(iloc.bh);
5115 	}
5116 	return err;
5117 }
5118 
5119 /*
5120  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5121  * buffers that are attached to a page stradding i_size and are undergoing
5122  * commit. In that case we have to wait for commit to finish and try again.
5123  */
ext4_wait_for_tail_page_commit(struct inode * inode)5124 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5125 {
5126 	struct page *page;
5127 	unsigned offset;
5128 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5129 	tid_t commit_tid = 0;
5130 	int ret;
5131 
5132 	offset = inode->i_size & (PAGE_SIZE - 1);
5133 	/*
5134 	 * All buffers in the last page remain valid? Then there's nothing to
5135 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5136 	 * blocksize case
5137 	 */
5138 	if (offset > PAGE_SIZE - i_blocksize(inode))
5139 		return;
5140 	while (1) {
5141 		page = find_lock_page(inode->i_mapping,
5142 				      inode->i_size >> PAGE_SHIFT);
5143 		if (!page)
5144 			return;
5145 		ret = __ext4_journalled_invalidatepage(page, offset,
5146 						PAGE_SIZE - offset);
5147 		unlock_page(page);
5148 		put_page(page);
5149 		if (ret != -EBUSY)
5150 			return;
5151 		commit_tid = 0;
5152 		read_lock(&journal->j_state_lock);
5153 		if (journal->j_committing_transaction)
5154 			commit_tid = journal->j_committing_transaction->t_tid;
5155 		read_unlock(&journal->j_state_lock);
5156 		if (commit_tid)
5157 			jbd2_log_wait_commit(journal, commit_tid);
5158 	}
5159 }
5160 
5161 /*
5162  * ext4_setattr()
5163  *
5164  * Called from notify_change.
5165  *
5166  * We want to trap VFS attempts to truncate the file as soon as
5167  * possible.  In particular, we want to make sure that when the VFS
5168  * shrinks i_size, we put the inode on the orphan list and modify
5169  * i_disksize immediately, so that during the subsequent flushing of
5170  * dirty pages and freeing of disk blocks, we can guarantee that any
5171  * commit will leave the blocks being flushed in an unused state on
5172  * disk.  (On recovery, the inode will get truncated and the blocks will
5173  * be freed, so we have a strong guarantee that no future commit will
5174  * leave these blocks visible to the user.)
5175  *
5176  * Another thing we have to assure is that if we are in ordered mode
5177  * and inode is still attached to the committing transaction, we must
5178  * we start writeout of all the dirty pages which are being truncated.
5179  * This way we are sure that all the data written in the previous
5180  * transaction are already on disk (truncate waits for pages under
5181  * writeback).
5182  *
5183  * Called with inode->i_mutex down.
5184  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5185 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5186 {
5187 	struct inode *inode = d_inode(dentry);
5188 	int error, rc = 0;
5189 	int orphan = 0;
5190 	const unsigned int ia_valid = attr->ia_valid;
5191 
5192 	error = setattr_prepare(dentry, attr);
5193 	if (error)
5194 		return error;
5195 
5196 	if (is_quota_modification(inode, attr)) {
5197 		error = dquot_initialize(inode);
5198 		if (error)
5199 			return error;
5200 	}
5201 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5202 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5203 		handle_t *handle;
5204 
5205 		/* (user+group)*(old+new) structure, inode write (sb,
5206 		 * inode block, ? - but truncate inode update has it) */
5207 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5208 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5209 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5210 		if (IS_ERR(handle)) {
5211 			error = PTR_ERR(handle);
5212 			goto err_out;
5213 		}
5214 		error = dquot_transfer(inode, attr);
5215 		if (error) {
5216 			ext4_journal_stop(handle);
5217 			return error;
5218 		}
5219 		/* Update corresponding info in inode so that everything is in
5220 		 * one transaction */
5221 		if (attr->ia_valid & ATTR_UID)
5222 			inode->i_uid = attr->ia_uid;
5223 		if (attr->ia_valid & ATTR_GID)
5224 			inode->i_gid = attr->ia_gid;
5225 		error = ext4_mark_inode_dirty(handle, inode);
5226 		ext4_journal_stop(handle);
5227 	}
5228 
5229 	if (attr->ia_valid & ATTR_SIZE) {
5230 		handle_t *handle;
5231 		loff_t oldsize = inode->i_size;
5232 		int shrink = (attr->ia_size <= inode->i_size);
5233 
5234 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5235 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5236 
5237 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5238 				return -EFBIG;
5239 		}
5240 		if (!S_ISREG(inode->i_mode))
5241 			return -EINVAL;
5242 
5243 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5244 			inode_inc_iversion(inode);
5245 
5246 		if (ext4_should_order_data(inode) &&
5247 		    (attr->ia_size < inode->i_size)) {
5248 			error = ext4_begin_ordered_truncate(inode,
5249 							    attr->ia_size);
5250 			if (error)
5251 				goto err_out;
5252 		}
5253 		if (attr->ia_size != inode->i_size) {
5254 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5255 			if (IS_ERR(handle)) {
5256 				error = PTR_ERR(handle);
5257 				goto err_out;
5258 			}
5259 			if (ext4_handle_valid(handle) && shrink) {
5260 				error = ext4_orphan_add(handle, inode);
5261 				orphan = 1;
5262 			}
5263 			/*
5264 			 * Update c/mtime on truncate up, ext4_truncate() will
5265 			 * update c/mtime in shrink case below
5266 			 */
5267 			if (!shrink) {
5268 				inode->i_mtime = ext4_current_time(inode);
5269 				inode->i_ctime = inode->i_mtime;
5270 			}
5271 			down_write(&EXT4_I(inode)->i_data_sem);
5272 			EXT4_I(inode)->i_disksize = attr->ia_size;
5273 			rc = ext4_mark_inode_dirty(handle, inode);
5274 			if (!error)
5275 				error = rc;
5276 			/*
5277 			 * We have to update i_size under i_data_sem together
5278 			 * with i_disksize to avoid races with writeback code
5279 			 * running ext4_wb_update_i_disksize().
5280 			 */
5281 			if (!error)
5282 				i_size_write(inode, attr->ia_size);
5283 			up_write(&EXT4_I(inode)->i_data_sem);
5284 			ext4_journal_stop(handle);
5285 			if (error) {
5286 				if (orphan)
5287 					ext4_orphan_del(NULL, inode);
5288 				goto err_out;
5289 			}
5290 		}
5291 		if (!shrink)
5292 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5293 
5294 		/*
5295 		 * Blocks are going to be removed from the inode. Wait
5296 		 * for dio in flight.  Temporarily disable
5297 		 * dioread_nolock to prevent livelock.
5298 		 */
5299 		if (orphan) {
5300 			if (!ext4_should_journal_data(inode)) {
5301 				ext4_inode_block_unlocked_dio(inode);
5302 				inode_dio_wait(inode);
5303 				ext4_inode_resume_unlocked_dio(inode);
5304 			} else
5305 				ext4_wait_for_tail_page_commit(inode);
5306 		}
5307 		down_write(&EXT4_I(inode)->i_mmap_sem);
5308 		/*
5309 		 * Truncate pagecache after we've waited for commit
5310 		 * in data=journal mode to make pages freeable.
5311 		 */
5312 		truncate_pagecache(inode, inode->i_size);
5313 		if (shrink)
5314 			ext4_truncate(inode);
5315 		up_write(&EXT4_I(inode)->i_mmap_sem);
5316 	}
5317 
5318 	if (!rc) {
5319 		setattr_copy(inode, attr);
5320 		mark_inode_dirty(inode);
5321 	}
5322 
5323 	/*
5324 	 * If the call to ext4_truncate failed to get a transaction handle at
5325 	 * all, we need to clean up the in-core orphan list manually.
5326 	 */
5327 	if (orphan && inode->i_nlink)
5328 		ext4_orphan_del(NULL, inode);
5329 
5330 	if (!rc && (ia_valid & ATTR_MODE))
5331 		rc = posix_acl_chmod(inode, inode->i_mode);
5332 
5333 err_out:
5334 	ext4_std_error(inode->i_sb, error);
5335 	if (!error)
5336 		error = rc;
5337 	return error;
5338 }
5339 
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)5340 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5341 		 struct kstat *stat)
5342 {
5343 	struct inode *inode;
5344 	unsigned long long delalloc_blocks;
5345 
5346 	inode = d_inode(dentry);
5347 	generic_fillattr(inode, stat);
5348 
5349 	/*
5350 	 * If there is inline data in the inode, the inode will normally not
5351 	 * have data blocks allocated (it may have an external xattr block).
5352 	 * Report at least one sector for such files, so tools like tar, rsync,
5353 	 * others doen't incorrectly think the file is completely sparse.
5354 	 */
5355 	if (unlikely(ext4_has_inline_data(inode)))
5356 		stat->blocks += (stat->size + 511) >> 9;
5357 
5358 	/*
5359 	 * We can't update i_blocks if the block allocation is delayed
5360 	 * otherwise in the case of system crash before the real block
5361 	 * allocation is done, we will have i_blocks inconsistent with
5362 	 * on-disk file blocks.
5363 	 * We always keep i_blocks updated together with real
5364 	 * allocation. But to not confuse with user, stat
5365 	 * will return the blocks that include the delayed allocation
5366 	 * blocks for this file.
5367 	 */
5368 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5369 				   EXT4_I(inode)->i_reserved_data_blocks);
5370 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5371 	return 0;
5372 }
5373 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5374 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5375 				   int pextents)
5376 {
5377 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5378 		return ext4_ind_trans_blocks(inode, lblocks);
5379 	return ext4_ext_index_trans_blocks(inode, pextents);
5380 }
5381 
5382 /*
5383  * Account for index blocks, block groups bitmaps and block group
5384  * descriptor blocks if modify datablocks and index blocks
5385  * worse case, the indexs blocks spread over different block groups
5386  *
5387  * If datablocks are discontiguous, they are possible to spread over
5388  * different block groups too. If they are contiguous, with flexbg,
5389  * they could still across block group boundary.
5390  *
5391  * Also account for superblock, inode, quota and xattr blocks
5392  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5393 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5394 				  int pextents)
5395 {
5396 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5397 	int gdpblocks;
5398 	int idxblocks;
5399 	int ret = 0;
5400 
5401 	/*
5402 	 * How many index blocks need to touch to map @lblocks logical blocks
5403 	 * to @pextents physical extents?
5404 	 */
5405 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5406 
5407 	ret = idxblocks;
5408 
5409 	/*
5410 	 * Now let's see how many group bitmaps and group descriptors need
5411 	 * to account
5412 	 */
5413 	groups = idxblocks + pextents;
5414 	gdpblocks = groups;
5415 	if (groups > ngroups)
5416 		groups = ngroups;
5417 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5418 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5419 
5420 	/* bitmaps and block group descriptor blocks */
5421 	ret += groups + gdpblocks;
5422 
5423 	/* Blocks for super block, inode, quota and xattr blocks */
5424 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5425 
5426 	return ret;
5427 }
5428 
5429 /*
5430  * Calculate the total number of credits to reserve to fit
5431  * the modification of a single pages into a single transaction,
5432  * which may include multiple chunks of block allocations.
5433  *
5434  * This could be called via ext4_write_begin()
5435  *
5436  * We need to consider the worse case, when
5437  * one new block per extent.
5438  */
ext4_writepage_trans_blocks(struct inode * inode)5439 int ext4_writepage_trans_blocks(struct inode *inode)
5440 {
5441 	int bpp = ext4_journal_blocks_per_page(inode);
5442 	int ret;
5443 
5444 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5445 
5446 	/* Account for data blocks for journalled mode */
5447 	if (ext4_should_journal_data(inode))
5448 		ret += bpp;
5449 	return ret;
5450 }
5451 
5452 /*
5453  * Calculate the journal credits for a chunk of data modification.
5454  *
5455  * This is called from DIO, fallocate or whoever calling
5456  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5457  *
5458  * journal buffers for data blocks are not included here, as DIO
5459  * and fallocate do no need to journal data buffers.
5460  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5461 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5462 {
5463 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5464 }
5465 
5466 /*
5467  * The caller must have previously called ext4_reserve_inode_write().
5468  * Give this, we know that the caller already has write access to iloc->bh.
5469  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5470 int ext4_mark_iloc_dirty(handle_t *handle,
5471 			 struct inode *inode, struct ext4_iloc *iloc)
5472 {
5473 	int err = 0;
5474 
5475 	if (IS_I_VERSION(inode))
5476 		inode_inc_iversion(inode);
5477 
5478 	/* the do_update_inode consumes one bh->b_count */
5479 	get_bh(iloc->bh);
5480 
5481 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5482 	err = ext4_do_update_inode(handle, inode, iloc);
5483 	put_bh(iloc->bh);
5484 	return err;
5485 }
5486 
5487 /*
5488  * On success, We end up with an outstanding reference count against
5489  * iloc->bh.  This _must_ be cleaned up later.
5490  */
5491 
5492 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5493 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5494 			 struct ext4_iloc *iloc)
5495 {
5496 	int err;
5497 
5498 	err = ext4_get_inode_loc(inode, iloc);
5499 	if (!err) {
5500 		BUFFER_TRACE(iloc->bh, "get_write_access");
5501 		err = ext4_journal_get_write_access(handle, iloc->bh);
5502 		if (err) {
5503 			brelse(iloc->bh);
5504 			iloc->bh = NULL;
5505 		}
5506 	}
5507 	ext4_std_error(inode->i_sb, err);
5508 	return err;
5509 }
5510 
5511 /*
5512  * Expand an inode by new_extra_isize bytes.
5513  * Returns 0 on success or negative error number on failure.
5514  */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5515 static int ext4_expand_extra_isize(struct inode *inode,
5516 				   unsigned int new_extra_isize,
5517 				   struct ext4_iloc iloc,
5518 				   handle_t *handle)
5519 {
5520 	struct ext4_inode *raw_inode;
5521 	struct ext4_xattr_ibody_header *header;
5522 
5523 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5524 		return 0;
5525 
5526 	raw_inode = ext4_raw_inode(&iloc);
5527 
5528 	header = IHDR(inode, raw_inode);
5529 
5530 	/* No extended attributes present */
5531 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5532 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5533 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5534 		       EXT4_I(inode)->i_extra_isize, 0,
5535 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5536 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5537 		return 0;
5538 	}
5539 
5540 	/* try to expand with EAs present */
5541 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5542 					  raw_inode, handle);
5543 }
5544 
5545 /*
5546  * What we do here is to mark the in-core inode as clean with respect to inode
5547  * dirtiness (it may still be data-dirty).
5548  * This means that the in-core inode may be reaped by prune_icache
5549  * without having to perform any I/O.  This is a very good thing,
5550  * because *any* task may call prune_icache - even ones which
5551  * have a transaction open against a different journal.
5552  *
5553  * Is this cheating?  Not really.  Sure, we haven't written the
5554  * inode out, but prune_icache isn't a user-visible syncing function.
5555  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5556  * we start and wait on commits.
5557  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5558 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5559 {
5560 	struct ext4_iloc iloc;
5561 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5562 	static unsigned int mnt_count;
5563 	int err, ret;
5564 
5565 	might_sleep();
5566 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5567 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5568 	if (err)
5569 		return err;
5570 	if (ext4_handle_valid(handle) &&
5571 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5572 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5573 		/*
5574 		 * We need extra buffer credits since we may write into EA block
5575 		 * with this same handle. If journal_extend fails, then it will
5576 		 * only result in a minor loss of functionality for that inode.
5577 		 * If this is felt to be critical, then e2fsck should be run to
5578 		 * force a large enough s_min_extra_isize.
5579 		 */
5580 		if ((jbd2_journal_extend(handle,
5581 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5582 			ret = ext4_expand_extra_isize(inode,
5583 						      sbi->s_want_extra_isize,
5584 						      iloc, handle);
5585 			if (ret) {
5586 				if (mnt_count !=
5587 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5588 					ext4_warning(inode->i_sb,
5589 					"Unable to expand inode %lu. Delete"
5590 					" some EAs or run e2fsck.",
5591 					inode->i_ino);
5592 					mnt_count =
5593 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5594 				}
5595 			}
5596 		}
5597 	}
5598 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5599 }
5600 
5601 /*
5602  * ext4_dirty_inode() is called from __mark_inode_dirty()
5603  *
5604  * We're really interested in the case where a file is being extended.
5605  * i_size has been changed by generic_commit_write() and we thus need
5606  * to include the updated inode in the current transaction.
5607  *
5608  * Also, dquot_alloc_block() will always dirty the inode when blocks
5609  * are allocated to the file.
5610  *
5611  * If the inode is marked synchronous, we don't honour that here - doing
5612  * so would cause a commit on atime updates, which we don't bother doing.
5613  * We handle synchronous inodes at the highest possible level.
5614  *
5615  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5616  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5617  * to copy into the on-disk inode structure are the timestamp files.
5618  */
ext4_dirty_inode(struct inode * inode,int flags)5619 void ext4_dirty_inode(struct inode *inode, int flags)
5620 {
5621 	handle_t *handle;
5622 
5623 	if (flags == I_DIRTY_TIME)
5624 		return;
5625 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5626 	if (IS_ERR(handle))
5627 		goto out;
5628 
5629 	ext4_mark_inode_dirty(handle, inode);
5630 
5631 	ext4_journal_stop(handle);
5632 out:
5633 	return;
5634 }
5635 
5636 #if 0
5637 /*
5638  * Bind an inode's backing buffer_head into this transaction, to prevent
5639  * it from being flushed to disk early.  Unlike
5640  * ext4_reserve_inode_write, this leaves behind no bh reference and
5641  * returns no iloc structure, so the caller needs to repeat the iloc
5642  * lookup to mark the inode dirty later.
5643  */
5644 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5645 {
5646 	struct ext4_iloc iloc;
5647 
5648 	int err = 0;
5649 	if (handle) {
5650 		err = ext4_get_inode_loc(inode, &iloc);
5651 		if (!err) {
5652 			BUFFER_TRACE(iloc.bh, "get_write_access");
5653 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5654 			if (!err)
5655 				err = ext4_handle_dirty_metadata(handle,
5656 								 NULL,
5657 								 iloc.bh);
5658 			brelse(iloc.bh);
5659 		}
5660 	}
5661 	ext4_std_error(inode->i_sb, err);
5662 	return err;
5663 }
5664 #endif
5665 
ext4_change_inode_journal_flag(struct inode * inode,int val)5666 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5667 {
5668 	journal_t *journal;
5669 	handle_t *handle;
5670 	int err;
5671 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5672 
5673 	/*
5674 	 * We have to be very careful here: changing a data block's
5675 	 * journaling status dynamically is dangerous.  If we write a
5676 	 * data block to the journal, change the status and then delete
5677 	 * that block, we risk forgetting to revoke the old log record
5678 	 * from the journal and so a subsequent replay can corrupt data.
5679 	 * So, first we make sure that the journal is empty and that
5680 	 * nobody is changing anything.
5681 	 */
5682 
5683 	journal = EXT4_JOURNAL(inode);
5684 	if (!journal)
5685 		return 0;
5686 	if (is_journal_aborted(journal))
5687 		return -EROFS;
5688 
5689 	/* Wait for all existing dio workers */
5690 	ext4_inode_block_unlocked_dio(inode);
5691 	inode_dio_wait(inode);
5692 
5693 	/*
5694 	 * Before flushing the journal and switching inode's aops, we have
5695 	 * to flush all dirty data the inode has. There can be outstanding
5696 	 * delayed allocations, there can be unwritten extents created by
5697 	 * fallocate or buffered writes in dioread_nolock mode covered by
5698 	 * dirty data which can be converted only after flushing the dirty
5699 	 * data (and journalled aops don't know how to handle these cases).
5700 	 */
5701 	if (val) {
5702 		down_write(&EXT4_I(inode)->i_mmap_sem);
5703 		err = filemap_write_and_wait(inode->i_mapping);
5704 		if (err < 0) {
5705 			up_write(&EXT4_I(inode)->i_mmap_sem);
5706 			ext4_inode_resume_unlocked_dio(inode);
5707 			return err;
5708 		}
5709 	}
5710 
5711 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5712 	jbd2_journal_lock_updates(journal);
5713 
5714 	/*
5715 	 * OK, there are no updates running now, and all cached data is
5716 	 * synced to disk.  We are now in a completely consistent state
5717 	 * which doesn't have anything in the journal, and we know that
5718 	 * no filesystem updates are running, so it is safe to modify
5719 	 * the inode's in-core data-journaling state flag now.
5720 	 */
5721 
5722 	if (val)
5723 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5724 	else {
5725 		err = jbd2_journal_flush(journal);
5726 		if (err < 0) {
5727 			jbd2_journal_unlock_updates(journal);
5728 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5729 			ext4_inode_resume_unlocked_dio(inode);
5730 			return err;
5731 		}
5732 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5733 	}
5734 	ext4_set_aops(inode);
5735 
5736 	jbd2_journal_unlock_updates(journal);
5737 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5738 
5739 	if (val)
5740 		up_write(&EXT4_I(inode)->i_mmap_sem);
5741 	ext4_inode_resume_unlocked_dio(inode);
5742 
5743 	/* Finally we can mark the inode as dirty. */
5744 
5745 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5746 	if (IS_ERR(handle))
5747 		return PTR_ERR(handle);
5748 
5749 	err = ext4_mark_inode_dirty(handle, inode);
5750 	ext4_handle_sync(handle);
5751 	ext4_journal_stop(handle);
5752 	ext4_std_error(inode->i_sb, err);
5753 
5754 	return err;
5755 }
5756 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5757 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5758 {
5759 	return !buffer_mapped(bh);
5760 }
5761 
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5762 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5763 {
5764 	struct page *page = vmf->page;
5765 	loff_t size;
5766 	unsigned long len;
5767 	int ret;
5768 	struct file *file = vma->vm_file;
5769 	struct inode *inode = file_inode(file);
5770 	struct address_space *mapping = inode->i_mapping;
5771 	handle_t *handle;
5772 	get_block_t *get_block;
5773 	int retries = 0;
5774 
5775 	sb_start_pagefault(inode->i_sb);
5776 	file_update_time(vma->vm_file);
5777 
5778 	down_read(&EXT4_I(inode)->i_mmap_sem);
5779 
5780 	ret = ext4_convert_inline_data(inode);
5781 	if (ret)
5782 		goto out_ret;
5783 
5784 	/* Delalloc case is easy... */
5785 	if (test_opt(inode->i_sb, DELALLOC) &&
5786 	    !ext4_should_journal_data(inode) &&
5787 	    !ext4_nonda_switch(inode->i_sb)) {
5788 		do {
5789 			ret = block_page_mkwrite(vma, vmf,
5790 						   ext4_da_get_block_prep);
5791 		} while (ret == -ENOSPC &&
5792 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5793 		goto out_ret;
5794 	}
5795 
5796 	lock_page(page);
5797 	size = i_size_read(inode);
5798 	/* Page got truncated from under us? */
5799 	if (page->mapping != mapping || page_offset(page) > size) {
5800 		unlock_page(page);
5801 		ret = VM_FAULT_NOPAGE;
5802 		goto out;
5803 	}
5804 
5805 	if (page->index == size >> PAGE_SHIFT)
5806 		len = size & ~PAGE_MASK;
5807 	else
5808 		len = PAGE_SIZE;
5809 	/*
5810 	 * Return if we have all the buffers mapped. This avoids the need to do
5811 	 * journal_start/journal_stop which can block and take a long time
5812 	 */
5813 	if (page_has_buffers(page)) {
5814 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5815 					    0, len, NULL,
5816 					    ext4_bh_unmapped)) {
5817 			/* Wait so that we don't change page under IO */
5818 			wait_for_stable_page(page);
5819 			ret = VM_FAULT_LOCKED;
5820 			goto out;
5821 		}
5822 	}
5823 	unlock_page(page);
5824 	/* OK, we need to fill the hole... */
5825 	if (ext4_should_dioread_nolock(inode))
5826 		get_block = ext4_get_block_unwritten;
5827 	else
5828 		get_block = ext4_get_block;
5829 retry_alloc:
5830 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5831 				    ext4_writepage_trans_blocks(inode));
5832 	if (IS_ERR(handle)) {
5833 		ret = VM_FAULT_SIGBUS;
5834 		goto out;
5835 	}
5836 	ret = block_page_mkwrite(vma, vmf, get_block);
5837 	if (!ret && ext4_should_journal_data(inode)) {
5838 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5839 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5840 			unlock_page(page);
5841 			ret = VM_FAULT_SIGBUS;
5842 			ext4_journal_stop(handle);
5843 			goto out;
5844 		}
5845 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5846 	}
5847 	ext4_journal_stop(handle);
5848 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5849 		goto retry_alloc;
5850 out_ret:
5851 	ret = block_page_mkwrite_return(ret);
5852 out:
5853 	up_read(&EXT4_I(inode)->i_mmap_sem);
5854 	sb_end_pagefault(inode->i_sb);
5855 	return ret;
5856 }
5857 
ext4_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)5858 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5859 {
5860 	struct inode *inode = file_inode(vma->vm_file);
5861 	int err;
5862 
5863 	down_read(&EXT4_I(inode)->i_mmap_sem);
5864 	err = filemap_fault(vma, vmf);
5865 	up_read(&EXT4_I(inode)->i_mmap_sem);
5866 
5867 	return err;
5868 }
5869 
5870 /*
5871  * Find the first extent at or after @lblk in an inode that is not a hole.
5872  * Search for @map_len blocks at most. The extent is returned in @result.
5873  *
5874  * The function returns 1 if we found an extent. The function returns 0 in
5875  * case there is no extent at or after @lblk and in that case also sets
5876  * @result->es_len to 0. In case of error, the error code is returned.
5877  */
ext4_get_next_extent(struct inode * inode,ext4_lblk_t lblk,unsigned int map_len,struct extent_status * result)5878 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5879 			 unsigned int map_len, struct extent_status *result)
5880 {
5881 	struct ext4_map_blocks map;
5882 	struct extent_status es = {};
5883 	int ret;
5884 
5885 	map.m_lblk = lblk;
5886 	map.m_len = map_len;
5887 
5888 	/*
5889 	 * For non-extent based files this loop may iterate several times since
5890 	 * we do not determine full hole size.
5891 	 */
5892 	while (map.m_len > 0) {
5893 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5894 		if (ret < 0)
5895 			return ret;
5896 		/* There's extent covering m_lblk? Just return it. */
5897 		if (ret > 0) {
5898 			int status;
5899 
5900 			ext4_es_store_pblock(result, map.m_pblk);
5901 			result->es_lblk = map.m_lblk;
5902 			result->es_len = map.m_len;
5903 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5904 				status = EXTENT_STATUS_UNWRITTEN;
5905 			else
5906 				status = EXTENT_STATUS_WRITTEN;
5907 			ext4_es_store_status(result, status);
5908 			return 1;
5909 		}
5910 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5911 						  map.m_lblk + map.m_len - 1,
5912 						  &es);
5913 		/* Is delalloc data before next block in extent tree? */
5914 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5915 			ext4_lblk_t offset = 0;
5916 
5917 			if (es.es_lblk < lblk)
5918 				offset = lblk - es.es_lblk;
5919 			result->es_lblk = es.es_lblk + offset;
5920 			ext4_es_store_pblock(result,
5921 					     ext4_es_pblock(&es) + offset);
5922 			result->es_len = es.es_len - offset;
5923 			ext4_es_store_status(result, ext4_es_status(&es));
5924 
5925 			return 1;
5926 		}
5927 		/* There's a hole at m_lblk, advance us after it */
5928 		map.m_lblk += map.m_len;
5929 		map_len -= map.m_len;
5930 		map.m_len = map_len;
5931 		cond_resched();
5932 	}
5933 	result->es_len = 0;
5934 	return 0;
5935 }
5936