1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_KVMALLOC] = "kvmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_PAGE_GET] = "page get",
49 [FAULT_ALLOC_BIO] = "alloc bio",
50 [FAULT_ALLOC_NID] = "alloc nid",
51 [FAULT_ORPHAN] = "orphan",
52 [FAULT_BLOCK] = "no more block",
53 [FAULT_DIR_DEPTH] = "too big dir depth",
54 [FAULT_EVICT_INODE] = "evict_inode fail",
55 [FAULT_TRUNCATE] = "truncate fail",
56 [FAULT_IO] = "IO error",
57 [FAULT_CHECKPOINT] = "checkpoint error",
58 };
59
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate)60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 unsigned int rate)
62 {
63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65 if (rate) {
66 atomic_set(&ffi->inject_ops, 0);
67 ffi->inject_rate = rate;
68 ffi->inject_type = (1 << FAULT_MAX) - 1;
69 } else {
70 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 .scan_objects = f2fs_shrink_scan,
78 .count_objects = f2fs_shrink_count,
79 .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83 Opt_gc_background,
84 Opt_disable_roll_forward,
85 Opt_norecovery,
86 Opt_discard,
87 Opt_nodiscard,
88 Opt_noheap,
89 Opt_heap,
90 Opt_user_xattr,
91 Opt_nouser_xattr,
92 Opt_acl,
93 Opt_noacl,
94 Opt_active_logs,
95 Opt_disable_ext_identify,
96 Opt_inline_xattr,
97 Opt_noinline_xattr,
98 Opt_inline_xattr_size,
99 Opt_inline_data,
100 Opt_inline_dentry,
101 Opt_noinline_dentry,
102 Opt_flush_merge,
103 Opt_noflush_merge,
104 Opt_nobarrier,
105 Opt_fastboot,
106 Opt_extent_cache,
107 Opt_noextent_cache,
108 Opt_noinline_data,
109 Opt_data_flush,
110 Opt_reserve_root,
111 Opt_resgid,
112 Opt_resuid,
113 Opt_mode,
114 Opt_io_size_bits,
115 Opt_fault_injection,
116 Opt_lazytime,
117 Opt_nolazytime,
118 Opt_quota,
119 Opt_noquota,
120 Opt_usrquota,
121 Opt_grpquota,
122 Opt_prjquota,
123 Opt_usrjquota,
124 Opt_grpjquota,
125 Opt_prjjquota,
126 Opt_offusrjquota,
127 Opt_offgrpjquota,
128 Opt_offprjjquota,
129 Opt_jqfmt_vfsold,
130 Opt_jqfmt_vfsv0,
131 Opt_jqfmt_vfsv1,
132 Opt_whint,
133 Opt_alloc,
134 Opt_fsync,
135 Opt_test_dummy_encryption,
136 Opt_err,
137 };
138
139 static match_table_t f2fs_tokens = {
140 {Opt_gc_background, "background_gc=%s"},
141 {Opt_disable_roll_forward, "disable_roll_forward"},
142 {Opt_norecovery, "norecovery"},
143 {Opt_discard, "discard"},
144 {Opt_nodiscard, "nodiscard"},
145 {Opt_noheap, "no_heap"},
146 {Opt_heap, "heap"},
147 {Opt_user_xattr, "user_xattr"},
148 {Opt_nouser_xattr, "nouser_xattr"},
149 {Opt_acl, "acl"},
150 {Opt_noacl, "noacl"},
151 {Opt_active_logs, "active_logs=%u"},
152 {Opt_disable_ext_identify, "disable_ext_identify"},
153 {Opt_inline_xattr, "inline_xattr"},
154 {Opt_noinline_xattr, "noinline_xattr"},
155 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 {Opt_inline_data, "inline_data"},
157 {Opt_inline_dentry, "inline_dentry"},
158 {Opt_noinline_dentry, "noinline_dentry"},
159 {Opt_flush_merge, "flush_merge"},
160 {Opt_noflush_merge, "noflush_merge"},
161 {Opt_nobarrier, "nobarrier"},
162 {Opt_fastboot, "fastboot"},
163 {Opt_extent_cache, "extent_cache"},
164 {Opt_noextent_cache, "noextent_cache"},
165 {Opt_noinline_data, "noinline_data"},
166 {Opt_data_flush, "data_flush"},
167 {Opt_reserve_root, "reserve_root=%u"},
168 {Opt_resgid, "resgid=%u"},
169 {Opt_resuid, "resuid=%u"},
170 {Opt_mode, "mode=%s"},
171 {Opt_io_size_bits, "io_bits=%u"},
172 {Opt_fault_injection, "fault_injection=%u"},
173 {Opt_lazytime, "lazytime"},
174 {Opt_nolazytime, "nolazytime"},
175 {Opt_quota, "quota"},
176 {Opt_noquota, "noquota"},
177 {Opt_usrquota, "usrquota"},
178 {Opt_grpquota, "grpquota"},
179 {Opt_prjquota, "prjquota"},
180 {Opt_usrjquota, "usrjquota=%s"},
181 {Opt_grpjquota, "grpjquota=%s"},
182 {Opt_prjjquota, "prjjquota=%s"},
183 {Opt_offusrjquota, "usrjquota="},
184 {Opt_offgrpjquota, "grpjquota="},
185 {Opt_offprjjquota, "prjjquota="},
186 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 {Opt_whint, "whint_mode=%s"},
190 {Opt_alloc, "alloc_mode=%s"},
191 {Opt_fsync, "fsync_mode=%s"},
192 {Opt_test_dummy_encryption, "test_dummy_encryption"},
193 {Opt_err, NULL},
194 };
195
f2fs_msg(struct super_block * sb,const char * level,const char * fmt,...)196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198 struct va_format vaf;
199 va_list args;
200
201 va_start(args, fmt);
202 vaf.fmt = fmt;
203 vaf.va = &args;
204 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 va_end(args);
206 }
207
limit_reserve_root(struct f2fs_sb_info * sbi)208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210 block_t limit = (sbi->user_block_count << 1) / 1000;
211
212 /* limit is 0.2% */
213 if (test_opt(sbi, RESERVE_ROOT) &&
214 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 f2fs_msg(sbi->sb, KERN_INFO,
217 "Reduce reserved blocks for root = %u",
218 F2FS_OPTION(sbi).root_reserved_blocks);
219 }
220 if (!test_opt(sbi, RESERVE_ROOT) &&
221 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 f2fs_msg(sbi->sb, KERN_INFO,
226 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 from_kuid_munged(&init_user_ns,
228 F2FS_OPTION(sbi).s_resuid),
229 from_kgid_munged(&init_user_ns,
230 F2FS_OPTION(sbi).s_resgid));
231 }
232
init_once(void * foo)233 static void init_once(void *foo)
234 {
235 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237 inode_init_once(&fi->vfs_inode);
238 }
239
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 substring_t *args)
245 {
246 struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 char *qname;
248 int ret = -EINVAL;
249
250 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 f2fs_msg(sb, KERN_ERR,
252 "Cannot change journaled "
253 "quota options when quota turned on");
254 return -EINVAL;
255 }
256 if (f2fs_sb_has_quota_ino(sb)) {
257 f2fs_msg(sb, KERN_INFO,
258 "QUOTA feature is enabled, so ignore qf_name");
259 return 0;
260 }
261
262 qname = match_strdup(args);
263 if (!qname) {
264 f2fs_msg(sb, KERN_ERR,
265 "Not enough memory for storing quotafile name");
266 return -EINVAL;
267 }
268 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 ret = 0;
271 else
272 f2fs_msg(sb, KERN_ERR,
273 "%s quota file already specified",
274 QTYPE2NAME(qtype));
275 goto errout;
276 }
277 if (strchr(qname, '/')) {
278 f2fs_msg(sb, KERN_ERR,
279 "quotafile must be on filesystem root");
280 goto errout;
281 }
282 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 set_opt(sbi, QUOTA);
284 return 0;
285 errout:
286 kfree(qname);
287 return ret;
288 }
289
f2fs_clear_qf_name(struct super_block * sb,int qtype)290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292 struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 " when quota turned on");
297 return -EINVAL;
298 }
299 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 return 0;
302 }
303
f2fs_check_quota_options(struct f2fs_sb_info * sbi)304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306 /*
307 * We do the test below only for project quotas. 'usrquota' and
308 * 'grpquota' mount options are allowed even without quota feature
309 * to support legacy quotas in quota files.
310 */
311 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 "Cannot enable project quota enforcement.");
314 return -1;
315 }
316 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 if (test_opt(sbi, USRQUOTA) &&
320 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 clear_opt(sbi, USRQUOTA);
322
323 if (test_opt(sbi, GRPQUOTA) &&
324 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 clear_opt(sbi, GRPQUOTA);
326
327 if (test_opt(sbi, PRJQUOTA) &&
328 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 clear_opt(sbi, PRJQUOTA);
330
331 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 test_opt(sbi, PRJQUOTA)) {
333 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 "format mixing");
335 return -1;
336 }
337
338 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 "not specified");
341 return -1;
342 }
343 }
344
345 if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 f2fs_msg(sbi->sb, KERN_INFO,
347 "QUOTA feature is enabled, so ignore jquota_fmt");
348 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 }
350 if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 f2fs_msg(sbi->sb, KERN_INFO,
352 "Filesystem with quota feature cannot be mounted RDWR "
353 "without CONFIG_QUOTA");
354 return -1;
355 }
356 return 0;
357 }
358 #endif
359
parse_options(struct super_block * sb,char * options)360 static int parse_options(struct super_block *sb, char *options)
361 {
362 struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 struct request_queue *q;
364 substring_t args[MAX_OPT_ARGS];
365 char *p, *name;
366 int arg = 0;
367 kuid_t uid;
368 kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 int ret;
371 #endif
372
373 if (!options)
374 return 0;
375
376 while ((p = strsep(&options, ",")) != NULL) {
377 int token;
378 if (!*p)
379 continue;
380 /*
381 * Initialize args struct so we know whether arg was
382 * found; some options take optional arguments.
383 */
384 args[0].to = args[0].from = NULL;
385 token = match_token(p, f2fs_tokens, args);
386
387 switch (token) {
388 case Opt_gc_background:
389 name = match_strdup(&args[0]);
390
391 if (!name)
392 return -ENOMEM;
393 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 set_opt(sbi, BG_GC);
395 clear_opt(sbi, FORCE_FG_GC);
396 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 clear_opt(sbi, BG_GC);
398 clear_opt(sbi, FORCE_FG_GC);
399 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 set_opt(sbi, BG_GC);
401 set_opt(sbi, FORCE_FG_GC);
402 } else {
403 kfree(name);
404 return -EINVAL;
405 }
406 kfree(name);
407 break;
408 case Opt_disable_roll_forward:
409 set_opt(sbi, DISABLE_ROLL_FORWARD);
410 break;
411 case Opt_norecovery:
412 /* this option mounts f2fs with ro */
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 if (!f2fs_readonly(sb))
415 return -EINVAL;
416 break;
417 case Opt_discard:
418 q = bdev_get_queue(sb->s_bdev);
419 if (blk_queue_discard(q)) {
420 set_opt(sbi, DISCARD);
421 } else if (!f2fs_sb_has_blkzoned(sb)) {
422 f2fs_msg(sb, KERN_WARNING,
423 "mounting with \"discard\" option, but "
424 "the device does not support discard");
425 }
426 break;
427 case Opt_nodiscard:
428 if (f2fs_sb_has_blkzoned(sb)) {
429 f2fs_msg(sb, KERN_WARNING,
430 "discard is required for zoned block devices");
431 return -EINVAL;
432 }
433 clear_opt(sbi, DISCARD);
434 break;
435 case Opt_noheap:
436 set_opt(sbi, NOHEAP);
437 break;
438 case Opt_heap:
439 clear_opt(sbi, NOHEAP);
440 break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 case Opt_user_xattr:
443 set_opt(sbi, XATTR_USER);
444 break;
445 case Opt_nouser_xattr:
446 clear_opt(sbi, XATTR_USER);
447 break;
448 case Opt_inline_xattr:
449 set_opt(sbi, INLINE_XATTR);
450 break;
451 case Opt_noinline_xattr:
452 clear_opt(sbi, INLINE_XATTR);
453 break;
454 case Opt_inline_xattr_size:
455 if (args->from && match_int(args, &arg))
456 return -EINVAL;
457 set_opt(sbi, INLINE_XATTR_SIZE);
458 F2FS_OPTION(sbi).inline_xattr_size = arg;
459 break;
460 #else
461 case Opt_user_xattr:
462 f2fs_msg(sb, KERN_INFO,
463 "user_xattr options not supported");
464 break;
465 case Opt_nouser_xattr:
466 f2fs_msg(sb, KERN_INFO,
467 "nouser_xattr options not supported");
468 break;
469 case Opt_inline_xattr:
470 f2fs_msg(sb, KERN_INFO,
471 "inline_xattr options not supported");
472 break;
473 case Opt_noinline_xattr:
474 f2fs_msg(sb, KERN_INFO,
475 "noinline_xattr options not supported");
476 break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 case Opt_acl:
480 set_opt(sbi, POSIX_ACL);
481 break;
482 case Opt_noacl:
483 clear_opt(sbi, POSIX_ACL);
484 break;
485 #else
486 case Opt_acl:
487 f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 break;
489 case Opt_noacl:
490 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 break;
492 #endif
493 case Opt_active_logs:
494 if (args->from && match_int(args, &arg))
495 return -EINVAL;
496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 return -EINVAL;
498 F2FS_OPTION(sbi).active_logs = arg;
499 break;
500 case Opt_disable_ext_identify:
501 set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 break;
503 case Opt_inline_data:
504 set_opt(sbi, INLINE_DATA);
505 break;
506 case Opt_inline_dentry:
507 set_opt(sbi, INLINE_DENTRY);
508 break;
509 case Opt_noinline_dentry:
510 clear_opt(sbi, INLINE_DENTRY);
511 break;
512 case Opt_flush_merge:
513 set_opt(sbi, FLUSH_MERGE);
514 break;
515 case Opt_noflush_merge:
516 clear_opt(sbi, FLUSH_MERGE);
517 break;
518 case Opt_nobarrier:
519 set_opt(sbi, NOBARRIER);
520 break;
521 case Opt_fastboot:
522 set_opt(sbi, FASTBOOT);
523 break;
524 case Opt_extent_cache:
525 set_opt(sbi, EXTENT_CACHE);
526 break;
527 case Opt_noextent_cache:
528 clear_opt(sbi, EXTENT_CACHE);
529 break;
530 case Opt_noinline_data:
531 clear_opt(sbi, INLINE_DATA);
532 break;
533 case Opt_data_flush:
534 set_opt(sbi, DATA_FLUSH);
535 break;
536 case Opt_reserve_root:
537 if (args->from && match_int(args, &arg))
538 return -EINVAL;
539 if (test_opt(sbi, RESERVE_ROOT)) {
540 f2fs_msg(sb, KERN_INFO,
541 "Preserve previous reserve_root=%u",
542 F2FS_OPTION(sbi).root_reserved_blocks);
543 } else {
544 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 set_opt(sbi, RESERVE_ROOT);
546 }
547 break;
548 case Opt_resuid:
549 if (args->from && match_int(args, &arg))
550 return -EINVAL;
551 uid = make_kuid(current_user_ns(), arg);
552 if (!uid_valid(uid)) {
553 f2fs_msg(sb, KERN_ERR,
554 "Invalid uid value %d", arg);
555 return -EINVAL;
556 }
557 F2FS_OPTION(sbi).s_resuid = uid;
558 break;
559 case Opt_resgid:
560 if (args->from && match_int(args, &arg))
561 return -EINVAL;
562 gid = make_kgid(current_user_ns(), arg);
563 if (!gid_valid(gid)) {
564 f2fs_msg(sb, KERN_ERR,
565 "Invalid gid value %d", arg);
566 return -EINVAL;
567 }
568 F2FS_OPTION(sbi).s_resgid = gid;
569 break;
570 case Opt_mode:
571 name = match_strdup(&args[0]);
572
573 if (!name)
574 return -ENOMEM;
575 if (strlen(name) == 8 &&
576 !strncmp(name, "adaptive", 8)) {
577 if (f2fs_sb_has_blkzoned(sb)) {
578 f2fs_msg(sb, KERN_WARNING,
579 "adaptive mode is not allowed with "
580 "zoned block device feature");
581 kfree(name);
582 return -EINVAL;
583 }
584 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 } else if (strlen(name) == 3 &&
586 !strncmp(name, "lfs", 3)) {
587 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 } else {
589 kfree(name);
590 return -EINVAL;
591 }
592 kfree(name);
593 break;
594 case Opt_io_size_bits:
595 if (args->from && match_int(args, &arg))
596 return -EINVAL;
597 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 f2fs_msg(sb, KERN_WARNING,
599 "Not support %d, larger than %d",
600 1 << arg, BIO_MAX_PAGES);
601 return -EINVAL;
602 }
603 F2FS_OPTION(sbi).write_io_size_bits = arg;
604 break;
605 case Opt_fault_injection:
606 if (args->from && match_int(args, &arg))
607 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 f2fs_build_fault_attr(sbi, arg);
610 set_opt(sbi, FAULT_INJECTION);
611 #else
612 f2fs_msg(sb, KERN_INFO,
613 "FAULT_INJECTION was not selected");
614 #endif
615 break;
616 case Opt_lazytime:
617 sb->s_flags |= MS_LAZYTIME;
618 break;
619 case Opt_nolazytime:
620 sb->s_flags &= ~MS_LAZYTIME;
621 break;
622 #ifdef CONFIG_QUOTA
623 case Opt_quota:
624 case Opt_usrquota:
625 set_opt(sbi, USRQUOTA);
626 break;
627 case Opt_grpquota:
628 set_opt(sbi, GRPQUOTA);
629 break;
630 case Opt_prjquota:
631 set_opt(sbi, PRJQUOTA);
632 break;
633 case Opt_usrjquota:
634 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 if (ret)
636 return ret;
637 break;
638 case Opt_grpjquota:
639 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 if (ret)
641 return ret;
642 break;
643 case Opt_prjjquota:
644 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 if (ret)
646 return ret;
647 break;
648 case Opt_offusrjquota:
649 ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 if (ret)
651 return ret;
652 break;
653 case Opt_offgrpjquota:
654 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 if (ret)
656 return ret;
657 break;
658 case Opt_offprjjquota:
659 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 if (ret)
661 return ret;
662 break;
663 case Opt_jqfmt_vfsold:
664 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 break;
666 case Opt_jqfmt_vfsv0:
667 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 break;
669 case Opt_jqfmt_vfsv1:
670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 break;
672 case Opt_noquota:
673 clear_opt(sbi, QUOTA);
674 clear_opt(sbi, USRQUOTA);
675 clear_opt(sbi, GRPQUOTA);
676 clear_opt(sbi, PRJQUOTA);
677 break;
678 #else
679 case Opt_quota:
680 case Opt_usrquota:
681 case Opt_grpquota:
682 case Opt_prjquota:
683 case Opt_usrjquota:
684 case Opt_grpjquota:
685 case Opt_prjjquota:
686 case Opt_offusrjquota:
687 case Opt_offgrpjquota:
688 case Opt_offprjjquota:
689 case Opt_jqfmt_vfsold:
690 case Opt_jqfmt_vfsv0:
691 case Opt_jqfmt_vfsv1:
692 case Opt_noquota:
693 f2fs_msg(sb, KERN_INFO,
694 "quota operations not supported");
695 break;
696 #endif
697 case Opt_whint:
698 name = match_strdup(&args[0]);
699 if (!name)
700 return -ENOMEM;
701 if (strlen(name) == 10 &&
702 !strncmp(name, "user-based", 10)) {
703 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 } else if (strlen(name) == 3 &&
705 !strncmp(name, "off", 3)) {
706 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 } else if (strlen(name) == 8 &&
708 !strncmp(name, "fs-based", 8)) {
709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 } else {
711 kfree(name);
712 return -EINVAL;
713 }
714 kfree(name);
715 break;
716 case Opt_alloc:
717 name = match_strdup(&args[0]);
718 if (!name)
719 return -ENOMEM;
720
721 if (strlen(name) == 7 &&
722 !strncmp(name, "default", 7)) {
723 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 } else if (strlen(name) == 5 &&
725 !strncmp(name, "reuse", 5)) {
726 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 } else {
728 kfree(name);
729 return -EINVAL;
730 }
731 kfree(name);
732 break;
733 case Opt_fsync:
734 name = match_strdup(&args[0]);
735 if (!name)
736 return -ENOMEM;
737 if (strlen(name) == 5 &&
738 !strncmp(name, "posix", 5)) {
739 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 } else if (strlen(name) == 6 &&
741 !strncmp(name, "strict", 6)) {
742 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 } else {
744 kfree(name);
745 return -EINVAL;
746 }
747 kfree(name);
748 break;
749 case Opt_test_dummy_encryption:
750 #ifdef CONFIG_F2FS_FS_ENCRYPTION
751 if (!f2fs_sb_has_encrypt(sb)) {
752 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
753 return -EINVAL;
754 }
755
756 F2FS_OPTION(sbi).test_dummy_encryption = true;
757 f2fs_msg(sb, KERN_INFO,
758 "Test dummy encryption mode enabled");
759 #else
760 f2fs_msg(sb, KERN_INFO,
761 "Test dummy encryption mount option ignored");
762 #endif
763 break;
764 default:
765 f2fs_msg(sb, KERN_ERR,
766 "Unrecognized mount option \"%s\" or missing value",
767 p);
768 return -EINVAL;
769 }
770 }
771 #ifdef CONFIG_QUOTA
772 if (f2fs_check_quota_options(sbi))
773 return -EINVAL;
774 #endif
775
776 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
777 f2fs_msg(sb, KERN_ERR,
778 "Should set mode=lfs with %uKB-sized IO",
779 F2FS_IO_SIZE_KB(sbi));
780 return -EINVAL;
781 }
782
783 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
784 if (!f2fs_sb_has_extra_attr(sb) ||
785 !f2fs_sb_has_flexible_inline_xattr(sb)) {
786 f2fs_msg(sb, KERN_ERR,
787 "extra_attr or flexible_inline_xattr "
788 "feature is off");
789 return -EINVAL;
790 }
791 if (!test_opt(sbi, INLINE_XATTR)) {
792 f2fs_msg(sb, KERN_ERR,
793 "inline_xattr_size option should be "
794 "set with inline_xattr option");
795 return -EINVAL;
796 }
797 if (!F2FS_OPTION(sbi).inline_xattr_size ||
798 F2FS_OPTION(sbi).inline_xattr_size >=
799 DEF_ADDRS_PER_INODE -
800 F2FS_TOTAL_EXTRA_ATTR_SIZE -
801 DEF_INLINE_RESERVED_SIZE -
802 DEF_MIN_INLINE_SIZE) {
803 f2fs_msg(sb, KERN_ERR,
804 "inline xattr size is out of range");
805 return -EINVAL;
806 }
807 }
808
809 /* Not pass down write hints if the number of active logs is lesser
810 * than NR_CURSEG_TYPE.
811 */
812 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
813 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
814 return 0;
815 }
816
f2fs_alloc_inode(struct super_block * sb)817 static struct inode *f2fs_alloc_inode(struct super_block *sb)
818 {
819 struct f2fs_inode_info *fi;
820
821 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
822 if (!fi)
823 return NULL;
824
825 init_once((void *) fi);
826
827 /* Initialize f2fs-specific inode info */
828 atomic_set(&fi->dirty_pages, 0);
829 fi->i_current_depth = 1;
830 init_rwsem(&fi->i_sem);
831 INIT_LIST_HEAD(&fi->dirty_list);
832 INIT_LIST_HEAD(&fi->gdirty_list);
833 INIT_LIST_HEAD(&fi->inmem_ilist);
834 INIT_LIST_HEAD(&fi->inmem_pages);
835 mutex_init(&fi->inmem_lock);
836 init_rwsem(&fi->dio_rwsem[READ]);
837 init_rwsem(&fi->dio_rwsem[WRITE]);
838 init_rwsem(&fi->i_mmap_sem);
839 init_rwsem(&fi->i_xattr_sem);
840
841 /* Will be used by directory only */
842 fi->i_dir_level = F2FS_SB(sb)->dir_level;
843
844 return &fi->vfs_inode;
845 }
846
f2fs_drop_inode(struct inode * inode)847 static int f2fs_drop_inode(struct inode *inode)
848 {
849 int ret;
850 /*
851 * This is to avoid a deadlock condition like below.
852 * writeback_single_inode(inode)
853 * - f2fs_write_data_page
854 * - f2fs_gc -> iput -> evict
855 * - inode_wait_for_writeback(inode)
856 */
857 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
858 if (!inode->i_nlink && !is_bad_inode(inode)) {
859 /* to avoid evict_inode call simultaneously */
860 atomic_inc(&inode->i_count);
861 spin_unlock(&inode->i_lock);
862
863 /* some remained atomic pages should discarded */
864 if (f2fs_is_atomic_file(inode))
865 drop_inmem_pages(inode);
866
867 /* should remain fi->extent_tree for writepage */
868 f2fs_destroy_extent_node(inode);
869
870 sb_start_intwrite(inode->i_sb);
871 f2fs_i_size_write(inode, 0);
872
873 if (F2FS_HAS_BLOCKS(inode))
874 f2fs_truncate(inode);
875
876 sb_end_intwrite(inode->i_sb);
877
878 spin_lock(&inode->i_lock);
879 atomic_dec(&inode->i_count);
880 }
881 trace_f2fs_drop_inode(inode, 0);
882 return 0;
883 }
884 ret = generic_drop_inode(inode);
885 trace_f2fs_drop_inode(inode, ret);
886 return ret;
887 }
888
f2fs_inode_dirtied(struct inode * inode,bool sync)889 int f2fs_inode_dirtied(struct inode *inode, bool sync)
890 {
891 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
892 int ret = 0;
893
894 spin_lock(&sbi->inode_lock[DIRTY_META]);
895 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
896 ret = 1;
897 } else {
898 set_inode_flag(inode, FI_DIRTY_INODE);
899 stat_inc_dirty_inode(sbi, DIRTY_META);
900 }
901 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
902 list_add_tail(&F2FS_I(inode)->gdirty_list,
903 &sbi->inode_list[DIRTY_META]);
904 inc_page_count(sbi, F2FS_DIRTY_IMETA);
905 }
906 spin_unlock(&sbi->inode_lock[DIRTY_META]);
907 return ret;
908 }
909
f2fs_inode_synced(struct inode * inode)910 void f2fs_inode_synced(struct inode *inode)
911 {
912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
913
914 spin_lock(&sbi->inode_lock[DIRTY_META]);
915 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
916 spin_unlock(&sbi->inode_lock[DIRTY_META]);
917 return;
918 }
919 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
920 list_del_init(&F2FS_I(inode)->gdirty_list);
921 dec_page_count(sbi, F2FS_DIRTY_IMETA);
922 }
923 clear_inode_flag(inode, FI_DIRTY_INODE);
924 clear_inode_flag(inode, FI_AUTO_RECOVER);
925 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
926 spin_unlock(&sbi->inode_lock[DIRTY_META]);
927 }
928
929 /*
930 * f2fs_dirty_inode() is called from __mark_inode_dirty()
931 *
932 * We should call set_dirty_inode to write the dirty inode through write_inode.
933 */
f2fs_dirty_inode(struct inode * inode,int flags)934 static void f2fs_dirty_inode(struct inode *inode, int flags)
935 {
936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937
938 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
939 inode->i_ino == F2FS_META_INO(sbi))
940 return;
941
942 if (flags == I_DIRTY_TIME)
943 return;
944
945 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
946 clear_inode_flag(inode, FI_AUTO_RECOVER);
947
948 f2fs_inode_dirtied(inode, false);
949 }
950
f2fs_i_callback(struct rcu_head * head)951 static void f2fs_i_callback(struct rcu_head *head)
952 {
953 struct inode *inode = container_of(head, struct inode, i_rcu);
954 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
955 }
956
f2fs_destroy_inode(struct inode * inode)957 static void f2fs_destroy_inode(struct inode *inode)
958 {
959 call_rcu(&inode->i_rcu, f2fs_i_callback);
960 }
961
destroy_percpu_info(struct f2fs_sb_info * sbi)962 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
963 {
964 percpu_counter_destroy(&sbi->alloc_valid_block_count);
965 percpu_counter_destroy(&sbi->total_valid_inode_count);
966 }
967
destroy_device_list(struct f2fs_sb_info * sbi)968 static void destroy_device_list(struct f2fs_sb_info *sbi)
969 {
970 int i;
971
972 for (i = 0; i < sbi->s_ndevs; i++) {
973 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
974 #ifdef CONFIG_BLK_DEV_ZONED
975 kfree(FDEV(i).blkz_type);
976 #endif
977 }
978 kfree(sbi->devs);
979 }
980
f2fs_put_super(struct super_block * sb)981 static void f2fs_put_super(struct super_block *sb)
982 {
983 struct f2fs_sb_info *sbi = F2FS_SB(sb);
984 int i;
985 bool dropped;
986
987 f2fs_quota_off_umount(sb);
988
989 /* prevent remaining shrinker jobs */
990 mutex_lock(&sbi->umount_mutex);
991
992 /*
993 * We don't need to do checkpoint when superblock is clean.
994 * But, the previous checkpoint was not done by umount, it needs to do
995 * clean checkpoint again.
996 */
997 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
998 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
999 struct cp_control cpc = {
1000 .reason = CP_UMOUNT,
1001 };
1002 write_checkpoint(sbi, &cpc);
1003 }
1004
1005 /* be sure to wait for any on-going discard commands */
1006 dropped = f2fs_wait_discard_bios(sbi);
1007
1008 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1009 struct cp_control cpc = {
1010 .reason = CP_UMOUNT | CP_TRIMMED,
1011 };
1012 write_checkpoint(sbi, &cpc);
1013 }
1014
1015 /* write_checkpoint can update stat informaion */
1016 f2fs_destroy_stats(sbi);
1017
1018 /*
1019 * normally superblock is clean, so we need to release this.
1020 * In addition, EIO will skip do checkpoint, we need this as well.
1021 */
1022 release_ino_entry(sbi, true);
1023
1024 f2fs_leave_shrinker(sbi);
1025 mutex_unlock(&sbi->umount_mutex);
1026
1027 /* our cp_error case, we can wait for any writeback page */
1028 f2fs_flush_merged_writes(sbi);
1029
1030 iput(sbi->node_inode);
1031 iput(sbi->meta_inode);
1032
1033 /* destroy f2fs internal modules */
1034 destroy_node_manager(sbi);
1035 destroy_segment_manager(sbi);
1036
1037 kfree(sbi->ckpt);
1038
1039 f2fs_unregister_sysfs(sbi);
1040
1041 sb->s_fs_info = NULL;
1042 if (sbi->s_chksum_driver)
1043 crypto_free_shash(sbi->s_chksum_driver);
1044 kfree(sbi->raw_super);
1045
1046 destroy_device_list(sbi);
1047 mempool_destroy(sbi->write_io_dummy);
1048 #ifdef CONFIG_QUOTA
1049 for (i = 0; i < MAXQUOTAS; i++)
1050 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1051 #endif
1052 destroy_percpu_info(sbi);
1053 for (i = 0; i < NR_PAGE_TYPE; i++)
1054 kfree(sbi->write_io[i]);
1055 kfree(sbi);
1056 }
1057
f2fs_sync_fs(struct super_block * sb,int sync)1058 int f2fs_sync_fs(struct super_block *sb, int sync)
1059 {
1060 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1061 int err = 0;
1062
1063 if (unlikely(f2fs_cp_error(sbi)))
1064 return 0;
1065
1066 trace_f2fs_sync_fs(sb, sync);
1067
1068 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1069 return -EAGAIN;
1070
1071 if (sync) {
1072 struct cp_control cpc;
1073
1074 cpc.reason = __get_cp_reason(sbi);
1075
1076 mutex_lock(&sbi->gc_mutex);
1077 err = write_checkpoint(sbi, &cpc);
1078 mutex_unlock(&sbi->gc_mutex);
1079 }
1080 f2fs_trace_ios(NULL, 1);
1081
1082 return err;
1083 }
1084
f2fs_freeze(struct super_block * sb)1085 static int f2fs_freeze(struct super_block *sb)
1086 {
1087 if (f2fs_readonly(sb))
1088 return 0;
1089
1090 /* IO error happened before */
1091 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1092 return -EIO;
1093
1094 /* must be clean, since sync_filesystem() was already called */
1095 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1096 return -EINVAL;
1097 return 0;
1098 }
1099
f2fs_unfreeze(struct super_block * sb)1100 static int f2fs_unfreeze(struct super_block *sb)
1101 {
1102 return 0;
1103 }
1104
1105 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1106 static int f2fs_statfs_project(struct super_block *sb,
1107 kprojid_t projid, struct kstatfs *buf)
1108 {
1109 struct kqid qid;
1110 struct dquot *dquot;
1111 u64 limit;
1112 u64 curblock;
1113
1114 qid = make_kqid_projid(projid);
1115 dquot = dqget(sb, qid);
1116 if (IS_ERR(dquot))
1117 return PTR_ERR(dquot);
1118 spin_lock(&dq_data_lock);
1119
1120 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1121 dquot->dq_dqb.dqb_bsoftlimit :
1122 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1123 if (limit && buf->f_blocks > limit) {
1124 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1125 buf->f_blocks = limit;
1126 buf->f_bfree = buf->f_bavail =
1127 (buf->f_blocks > curblock) ?
1128 (buf->f_blocks - curblock) : 0;
1129 }
1130
1131 limit = dquot->dq_dqb.dqb_isoftlimit ?
1132 dquot->dq_dqb.dqb_isoftlimit :
1133 dquot->dq_dqb.dqb_ihardlimit;
1134 if (limit && buf->f_files > limit) {
1135 buf->f_files = limit;
1136 buf->f_ffree =
1137 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1138 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1139 }
1140
1141 spin_unlock(&dq_data_lock);
1142 dqput(dquot);
1143 return 0;
1144 }
1145 #endif
1146
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1147 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1148 {
1149 struct super_block *sb = dentry->d_sb;
1150 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1151 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1152 block_t total_count, user_block_count, start_count;
1153 u64 avail_node_count;
1154
1155 total_count = le64_to_cpu(sbi->raw_super->block_count);
1156 user_block_count = sbi->user_block_count;
1157 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1158 buf->f_type = F2FS_SUPER_MAGIC;
1159 buf->f_bsize = sbi->blocksize;
1160
1161 buf->f_blocks = total_count - start_count;
1162 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1163 sbi->current_reserved_blocks;
1164 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1165 buf->f_bavail = buf->f_bfree -
1166 F2FS_OPTION(sbi).root_reserved_blocks;
1167 else
1168 buf->f_bavail = 0;
1169
1170 avail_node_count = sbi->total_node_count - sbi->nquota_files -
1171 F2FS_RESERVED_NODE_NUM;
1172
1173 if (avail_node_count > user_block_count) {
1174 buf->f_files = user_block_count;
1175 buf->f_ffree = buf->f_bavail;
1176 } else {
1177 buf->f_files = avail_node_count;
1178 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1179 buf->f_bavail);
1180 }
1181
1182 buf->f_namelen = F2FS_NAME_LEN;
1183 buf->f_fsid.val[0] = (u32)id;
1184 buf->f_fsid.val[1] = (u32)(id >> 32);
1185
1186 #ifdef CONFIG_QUOTA
1187 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1188 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1189 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1190 }
1191 #endif
1192 return 0;
1193 }
1194
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1195 static inline void f2fs_show_quota_options(struct seq_file *seq,
1196 struct super_block *sb)
1197 {
1198 #ifdef CONFIG_QUOTA
1199 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1200
1201 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1202 char *fmtname = "";
1203
1204 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1205 case QFMT_VFS_OLD:
1206 fmtname = "vfsold";
1207 break;
1208 case QFMT_VFS_V0:
1209 fmtname = "vfsv0";
1210 break;
1211 case QFMT_VFS_V1:
1212 fmtname = "vfsv1";
1213 break;
1214 }
1215 seq_printf(seq, ",jqfmt=%s", fmtname);
1216 }
1217
1218 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1219 seq_show_option(seq, "usrjquota",
1220 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1221
1222 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1223 seq_show_option(seq, "grpjquota",
1224 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1225
1226 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1227 seq_show_option(seq, "prjjquota",
1228 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1229 #endif
1230 }
1231
f2fs_show_options(struct seq_file * seq,struct dentry * root)1232 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1233 {
1234 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1235
1236 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1237 if (test_opt(sbi, FORCE_FG_GC))
1238 seq_printf(seq, ",background_gc=%s", "sync");
1239 else
1240 seq_printf(seq, ",background_gc=%s", "on");
1241 } else {
1242 seq_printf(seq, ",background_gc=%s", "off");
1243 }
1244 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1245 seq_puts(seq, ",disable_roll_forward");
1246 if (test_opt(sbi, DISCARD))
1247 seq_puts(seq, ",discard");
1248 if (test_opt(sbi, NOHEAP))
1249 seq_puts(seq, ",no_heap");
1250 else
1251 seq_puts(seq, ",heap");
1252 #ifdef CONFIG_F2FS_FS_XATTR
1253 if (test_opt(sbi, XATTR_USER))
1254 seq_puts(seq, ",user_xattr");
1255 else
1256 seq_puts(seq, ",nouser_xattr");
1257 if (test_opt(sbi, INLINE_XATTR))
1258 seq_puts(seq, ",inline_xattr");
1259 else
1260 seq_puts(seq, ",noinline_xattr");
1261 if (test_opt(sbi, INLINE_XATTR_SIZE))
1262 seq_printf(seq, ",inline_xattr_size=%u",
1263 F2FS_OPTION(sbi).inline_xattr_size);
1264 #endif
1265 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1266 if (test_opt(sbi, POSIX_ACL))
1267 seq_puts(seq, ",acl");
1268 else
1269 seq_puts(seq, ",noacl");
1270 #endif
1271 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1272 seq_puts(seq, ",disable_ext_identify");
1273 if (test_opt(sbi, INLINE_DATA))
1274 seq_puts(seq, ",inline_data");
1275 else
1276 seq_puts(seq, ",noinline_data");
1277 if (test_opt(sbi, INLINE_DENTRY))
1278 seq_puts(seq, ",inline_dentry");
1279 else
1280 seq_puts(seq, ",noinline_dentry");
1281 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1282 seq_puts(seq, ",flush_merge");
1283 if (test_opt(sbi, NOBARRIER))
1284 seq_puts(seq, ",nobarrier");
1285 if (test_opt(sbi, FASTBOOT))
1286 seq_puts(seq, ",fastboot");
1287 if (test_opt(sbi, EXTENT_CACHE))
1288 seq_puts(seq, ",extent_cache");
1289 else
1290 seq_puts(seq, ",noextent_cache");
1291 if (test_opt(sbi, DATA_FLUSH))
1292 seq_puts(seq, ",data_flush");
1293
1294 seq_puts(seq, ",mode=");
1295 if (test_opt(sbi, ADAPTIVE))
1296 seq_puts(seq, "adaptive");
1297 else if (test_opt(sbi, LFS))
1298 seq_puts(seq, "lfs");
1299 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1300 if (test_opt(sbi, RESERVE_ROOT))
1301 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1302 F2FS_OPTION(sbi).root_reserved_blocks,
1303 from_kuid_munged(&init_user_ns,
1304 F2FS_OPTION(sbi).s_resuid),
1305 from_kgid_munged(&init_user_ns,
1306 F2FS_OPTION(sbi).s_resgid));
1307 if (F2FS_IO_SIZE_BITS(sbi))
1308 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1309 #ifdef CONFIG_F2FS_FAULT_INJECTION
1310 if (test_opt(sbi, FAULT_INJECTION))
1311 seq_printf(seq, ",fault_injection=%u",
1312 F2FS_OPTION(sbi).fault_info.inject_rate);
1313 #endif
1314 #ifdef CONFIG_QUOTA
1315 if (test_opt(sbi, QUOTA))
1316 seq_puts(seq, ",quota");
1317 if (test_opt(sbi, USRQUOTA))
1318 seq_puts(seq, ",usrquota");
1319 if (test_opt(sbi, GRPQUOTA))
1320 seq_puts(seq, ",grpquota");
1321 if (test_opt(sbi, PRJQUOTA))
1322 seq_puts(seq, ",prjquota");
1323 #endif
1324 f2fs_show_quota_options(seq, sbi->sb);
1325 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1326 seq_printf(seq, ",whint_mode=%s", "user-based");
1327 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1328 seq_printf(seq, ",whint_mode=%s", "fs-based");
1329 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1330 if (F2FS_OPTION(sbi).test_dummy_encryption)
1331 seq_puts(seq, ",test_dummy_encryption");
1332 #endif
1333
1334 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1335 seq_printf(seq, ",alloc_mode=%s", "default");
1336 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1337 seq_printf(seq, ",alloc_mode=%s", "reuse");
1338
1339 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1340 seq_printf(seq, ",fsync_mode=%s", "posix");
1341 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1342 seq_printf(seq, ",fsync_mode=%s", "strict");
1343 return 0;
1344 }
1345
default_options(struct f2fs_sb_info * sbi)1346 static void default_options(struct f2fs_sb_info *sbi)
1347 {
1348 /* init some FS parameters */
1349 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1350 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1351 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1352 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1353 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1354 F2FS_OPTION(sbi).test_dummy_encryption = false;
1355 sbi->readdir_ra = 1;
1356
1357 set_opt(sbi, BG_GC);
1358 set_opt(sbi, INLINE_XATTR);
1359 set_opt(sbi, INLINE_DATA);
1360 set_opt(sbi, INLINE_DENTRY);
1361 set_opt(sbi, EXTENT_CACHE);
1362 set_opt(sbi, NOHEAP);
1363 sbi->sb->s_flags |= MS_LAZYTIME;
1364 set_opt(sbi, FLUSH_MERGE);
1365 if (f2fs_sb_has_blkzoned(sbi->sb)) {
1366 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1367 set_opt(sbi, DISCARD);
1368 } else {
1369 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1370 }
1371
1372 #ifdef CONFIG_F2FS_FS_XATTR
1373 set_opt(sbi, XATTR_USER);
1374 #endif
1375 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1376 set_opt(sbi, POSIX_ACL);
1377 #endif
1378
1379 #ifdef CONFIG_F2FS_FAULT_INJECTION
1380 f2fs_build_fault_attr(sbi, 0);
1381 #endif
1382 }
1383
1384 #ifdef CONFIG_QUOTA
1385 static int f2fs_enable_quotas(struct super_block *sb);
1386 #endif
f2fs_remount(struct super_block * sb,int * flags,char * data)1387 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1388 {
1389 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1390 struct f2fs_mount_info org_mount_opt;
1391 unsigned long old_sb_flags;
1392 int err;
1393 bool need_restart_gc = false;
1394 bool need_stop_gc = false;
1395 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1396 #ifdef CONFIG_QUOTA
1397 int i, j;
1398 #endif
1399
1400 /*
1401 * Save the old mount options in case we
1402 * need to restore them.
1403 */
1404 org_mount_opt = sbi->mount_opt;
1405 old_sb_flags = sb->s_flags;
1406
1407 #ifdef CONFIG_QUOTA
1408 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1409 for (i = 0; i < MAXQUOTAS; i++) {
1410 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1411 org_mount_opt.s_qf_names[i] =
1412 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1413 GFP_KERNEL);
1414 if (!org_mount_opt.s_qf_names[i]) {
1415 for (j = 0; j < i; j++)
1416 kfree(org_mount_opt.s_qf_names[j]);
1417 return -ENOMEM;
1418 }
1419 } else {
1420 org_mount_opt.s_qf_names[i] = NULL;
1421 }
1422 }
1423 #endif
1424
1425 /* recover superblocks we couldn't write due to previous RO mount */
1426 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1427 err = f2fs_commit_super(sbi, false);
1428 f2fs_msg(sb, KERN_INFO,
1429 "Try to recover all the superblocks, ret: %d", err);
1430 if (!err)
1431 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1432 }
1433
1434 default_options(sbi);
1435
1436 /* parse mount options */
1437 err = parse_options(sb, data);
1438 if (err)
1439 goto restore_opts;
1440
1441 /*
1442 * Previous and new state of filesystem is RO,
1443 * so skip checking GC and FLUSH_MERGE conditions.
1444 */
1445 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1446 goto skip;
1447
1448 #ifdef CONFIG_QUOTA
1449 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1450 err = dquot_suspend(sb, -1);
1451 if (err < 0)
1452 goto restore_opts;
1453 } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1454 /* dquot_resume needs RW */
1455 sb->s_flags &= ~MS_RDONLY;
1456 if (sb_any_quota_suspended(sb)) {
1457 dquot_resume(sb, -1);
1458 } else if (f2fs_sb_has_quota_ino(sb)) {
1459 err = f2fs_enable_quotas(sb);
1460 if (err)
1461 goto restore_opts;
1462 }
1463 }
1464 #endif
1465 /* disallow enable/disable extent_cache dynamically */
1466 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1467 err = -EINVAL;
1468 f2fs_msg(sbi->sb, KERN_WARNING,
1469 "switch extent_cache option is not allowed");
1470 goto restore_opts;
1471 }
1472
1473 /*
1474 * We stop the GC thread if FS is mounted as RO
1475 * or if background_gc = off is passed in mount
1476 * option. Also sync the filesystem.
1477 */
1478 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1479 if (sbi->gc_thread) {
1480 stop_gc_thread(sbi);
1481 need_restart_gc = true;
1482 }
1483 } else if (!sbi->gc_thread) {
1484 err = start_gc_thread(sbi);
1485 if (err)
1486 goto restore_opts;
1487 need_stop_gc = true;
1488 }
1489
1490 if (*flags & MS_RDONLY ||
1491 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1492 writeback_inodes_sb(sb, WB_REASON_SYNC);
1493 sync_inodes_sb(sb);
1494
1495 set_sbi_flag(sbi, SBI_IS_DIRTY);
1496 set_sbi_flag(sbi, SBI_IS_CLOSE);
1497 f2fs_sync_fs(sb, 1);
1498 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1499 }
1500
1501 /*
1502 * We stop issue flush thread if FS is mounted as RO
1503 * or if flush_merge is not passed in mount option.
1504 */
1505 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1506 clear_opt(sbi, FLUSH_MERGE);
1507 destroy_flush_cmd_control(sbi, false);
1508 } else {
1509 err = create_flush_cmd_control(sbi);
1510 if (err)
1511 goto restore_gc;
1512 }
1513 skip:
1514 #ifdef CONFIG_QUOTA
1515 /* Release old quota file names */
1516 for (i = 0; i < MAXQUOTAS; i++)
1517 kfree(org_mount_opt.s_qf_names[i]);
1518 #endif
1519 /* Update the POSIXACL Flag */
1520 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1521 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1522
1523 limit_reserve_root(sbi);
1524 return 0;
1525 restore_gc:
1526 if (need_restart_gc) {
1527 if (start_gc_thread(sbi))
1528 f2fs_msg(sbi->sb, KERN_WARNING,
1529 "background gc thread has stopped");
1530 } else if (need_stop_gc) {
1531 stop_gc_thread(sbi);
1532 }
1533 restore_opts:
1534 #ifdef CONFIG_QUOTA
1535 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1536 for (i = 0; i < MAXQUOTAS; i++) {
1537 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1538 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1539 }
1540 #endif
1541 sbi->mount_opt = org_mount_opt;
1542 sb->s_flags = old_sb_flags;
1543 return err;
1544 }
1545
1546 #ifdef CONFIG_QUOTA
1547 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)1548 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1549 size_t len, loff_t off)
1550 {
1551 struct inode *inode = sb_dqopt(sb)->files[type];
1552 struct address_space *mapping = inode->i_mapping;
1553 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1554 int offset = off & (sb->s_blocksize - 1);
1555 int tocopy;
1556 size_t toread;
1557 loff_t i_size = i_size_read(inode);
1558 struct page *page;
1559 char *kaddr;
1560
1561 if (off > i_size)
1562 return 0;
1563
1564 if (off + len > i_size)
1565 len = i_size - off;
1566 toread = len;
1567 while (toread > 0) {
1568 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1569 repeat:
1570 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1571 if (IS_ERR(page)) {
1572 if (PTR_ERR(page) == -ENOMEM) {
1573 congestion_wait(BLK_RW_ASYNC, HZ/50);
1574 goto repeat;
1575 }
1576 return PTR_ERR(page);
1577 }
1578
1579 lock_page(page);
1580
1581 if (unlikely(page->mapping != mapping)) {
1582 f2fs_put_page(page, 1);
1583 goto repeat;
1584 }
1585 if (unlikely(!PageUptodate(page))) {
1586 f2fs_put_page(page, 1);
1587 return -EIO;
1588 }
1589
1590 kaddr = kmap_atomic(page);
1591 memcpy(data, kaddr + offset, tocopy);
1592 kunmap_atomic(kaddr);
1593 f2fs_put_page(page, 1);
1594
1595 offset = 0;
1596 toread -= tocopy;
1597 data += tocopy;
1598 blkidx++;
1599 }
1600 return len;
1601 }
1602
1603 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)1604 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1605 const char *data, size_t len, loff_t off)
1606 {
1607 struct inode *inode = sb_dqopt(sb)->files[type];
1608 struct address_space *mapping = inode->i_mapping;
1609 const struct address_space_operations *a_ops = mapping->a_ops;
1610 int offset = off & (sb->s_blocksize - 1);
1611 size_t towrite = len;
1612 struct page *page;
1613 char *kaddr;
1614 int err = 0;
1615 int tocopy;
1616
1617 while (towrite > 0) {
1618 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1619 towrite);
1620 retry:
1621 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1622 &page, NULL);
1623 if (unlikely(err)) {
1624 if (err == -ENOMEM) {
1625 congestion_wait(BLK_RW_ASYNC, HZ/50);
1626 goto retry;
1627 }
1628 break;
1629 }
1630
1631 kaddr = kmap_atomic(page);
1632 memcpy(kaddr + offset, data, tocopy);
1633 kunmap_atomic(kaddr);
1634 flush_dcache_page(page);
1635
1636 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1637 page, NULL);
1638 offset = 0;
1639 towrite -= tocopy;
1640 off += tocopy;
1641 data += tocopy;
1642 cond_resched();
1643 }
1644
1645 if (len == towrite)
1646 return err;
1647 inode->i_mtime = inode->i_ctime = current_time(inode);
1648 f2fs_mark_inode_dirty_sync(inode, false);
1649 return len - towrite;
1650 }
1651
f2fs_get_dquots(struct inode * inode)1652 static struct dquot **f2fs_get_dquots(struct inode *inode)
1653 {
1654 return F2FS_I(inode)->i_dquot;
1655 }
1656
f2fs_get_reserved_space(struct inode * inode)1657 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1658 {
1659 return &F2FS_I(inode)->i_reserved_quota;
1660 }
1661
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)1662 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1663 {
1664 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1665 F2FS_OPTION(sbi).s_jquota_fmt, type);
1666 }
1667
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)1668 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1669 {
1670 int enabled = 0;
1671 int i, err;
1672
1673 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1674 err = f2fs_enable_quotas(sbi->sb);
1675 if (err) {
1676 f2fs_msg(sbi->sb, KERN_ERR,
1677 "Cannot turn on quota_ino: %d", err);
1678 return 0;
1679 }
1680 return 1;
1681 }
1682
1683 for (i = 0; i < MAXQUOTAS; i++) {
1684 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1685 err = f2fs_quota_on_mount(sbi, i);
1686 if (!err) {
1687 enabled = 1;
1688 continue;
1689 }
1690 f2fs_msg(sbi->sb, KERN_ERR,
1691 "Cannot turn on quotas: %d on %d", err, i);
1692 }
1693 }
1694 return enabled;
1695 }
1696
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)1697 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1698 unsigned int flags)
1699 {
1700 struct inode *qf_inode;
1701 unsigned long qf_inum;
1702 int err;
1703
1704 BUG_ON(!f2fs_sb_has_quota_ino(sb));
1705
1706 qf_inum = f2fs_qf_ino(sb, type);
1707 if (!qf_inum)
1708 return -EPERM;
1709
1710 qf_inode = f2fs_iget(sb, qf_inum);
1711 if (IS_ERR(qf_inode)) {
1712 f2fs_msg(sb, KERN_ERR,
1713 "Bad quota inode %u:%lu", type, qf_inum);
1714 return PTR_ERR(qf_inode);
1715 }
1716
1717 /* Don't account quota for quota files to avoid recursion */
1718 qf_inode->i_flags |= S_NOQUOTA;
1719 err = dquot_enable(qf_inode, type, format_id, flags);
1720 iput(qf_inode);
1721 return err;
1722 }
1723
f2fs_enable_quotas(struct super_block * sb)1724 static int f2fs_enable_quotas(struct super_block *sb)
1725 {
1726 int type, err = 0;
1727 unsigned long qf_inum;
1728 bool quota_mopt[MAXQUOTAS] = {
1729 test_opt(F2FS_SB(sb), USRQUOTA),
1730 test_opt(F2FS_SB(sb), GRPQUOTA),
1731 test_opt(F2FS_SB(sb), PRJQUOTA),
1732 };
1733
1734 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1735 for (type = 0; type < MAXQUOTAS; type++) {
1736 qf_inum = f2fs_qf_ino(sb, type);
1737 if (qf_inum) {
1738 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1739 DQUOT_USAGE_ENABLED |
1740 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1741 if (err) {
1742 f2fs_msg(sb, KERN_ERR,
1743 "Failed to enable quota tracking "
1744 "(type=%d, err=%d). Please run "
1745 "fsck to fix.", type, err);
1746 for (type--; type >= 0; type--)
1747 dquot_quota_off(sb, type);
1748 return err;
1749 }
1750 }
1751 }
1752 return 0;
1753 }
1754
f2fs_quota_sync(struct super_block * sb,int type)1755 static int f2fs_quota_sync(struct super_block *sb, int type)
1756 {
1757 struct quota_info *dqopt = sb_dqopt(sb);
1758 int cnt;
1759 int ret;
1760
1761 ret = dquot_writeback_dquots(sb, type);
1762 if (ret)
1763 return ret;
1764
1765 /*
1766 * Now when everything is written we can discard the pagecache so
1767 * that userspace sees the changes.
1768 */
1769 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1770 if (type != -1 && cnt != type)
1771 continue;
1772 if (!sb_has_quota_active(sb, cnt))
1773 continue;
1774
1775 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1776 if (ret)
1777 return ret;
1778
1779 inode_lock(dqopt->files[cnt]);
1780 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1781 inode_unlock(dqopt->files[cnt]);
1782 }
1783 return 0;
1784 }
1785
f2fs_quota_on(struct super_block * sb,int type,int format_id,struct path * path)1786 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1787 struct path *path)
1788 {
1789 struct inode *inode;
1790 int err;
1791
1792 err = f2fs_quota_sync(sb, type);
1793 if (err)
1794 return err;
1795
1796 err = dquot_quota_on(sb, type, format_id, path);
1797 if (err)
1798 return err;
1799
1800 inode = d_inode(path->dentry);
1801
1802 inode_lock(inode);
1803 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1804 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1805 S_NOATIME | S_IMMUTABLE);
1806 inode_unlock(inode);
1807 f2fs_mark_inode_dirty_sync(inode, false);
1808
1809 return 0;
1810 }
1811
f2fs_quota_off(struct super_block * sb,int type)1812 static int f2fs_quota_off(struct super_block *sb, int type)
1813 {
1814 struct inode *inode = sb_dqopt(sb)->files[type];
1815 int err;
1816
1817 if (!inode || !igrab(inode))
1818 return dquot_quota_off(sb, type);
1819
1820 f2fs_quota_sync(sb, type);
1821
1822 err = dquot_quota_off(sb, type);
1823 if (err || f2fs_sb_has_quota_ino(sb))
1824 goto out_put;
1825
1826 inode_lock(inode);
1827 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1828 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1829 inode_unlock(inode);
1830 f2fs_mark_inode_dirty_sync(inode, false);
1831 out_put:
1832 iput(inode);
1833 return err;
1834 }
1835
f2fs_quota_off_umount(struct super_block * sb)1836 void f2fs_quota_off_umount(struct super_block *sb)
1837 {
1838 int type;
1839
1840 for (type = 0; type < MAXQUOTAS; type++)
1841 f2fs_quota_off(sb, type);
1842 }
1843
f2fs_get_projid(struct inode * inode,kprojid_t * projid)1844 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1845 {
1846 *projid = F2FS_I(inode)->i_projid;
1847 return 0;
1848 }
1849
1850 static const struct dquot_operations f2fs_quota_operations = {
1851 .get_reserved_space = f2fs_get_reserved_space,
1852 .write_dquot = dquot_commit,
1853 .acquire_dquot = dquot_acquire,
1854 .release_dquot = dquot_release,
1855 .mark_dirty = dquot_mark_dquot_dirty,
1856 .write_info = dquot_commit_info,
1857 .alloc_dquot = dquot_alloc,
1858 .destroy_dquot = dquot_destroy,
1859 .get_projid = f2fs_get_projid,
1860 .get_next_id = dquot_get_next_id,
1861 };
1862
1863 static const struct quotactl_ops f2fs_quotactl_ops = {
1864 .quota_on = f2fs_quota_on,
1865 .quota_off = f2fs_quota_off,
1866 .quota_sync = f2fs_quota_sync,
1867 .get_state = dquot_get_state,
1868 .set_info = dquot_set_dqinfo,
1869 .get_dqblk = dquot_get_dqblk,
1870 .set_dqblk = dquot_set_dqblk,
1871 .get_nextdqblk = dquot_get_next_dqblk,
1872 };
1873 #else
f2fs_quota_off_umount(struct super_block * sb)1874 void f2fs_quota_off_umount(struct super_block *sb)
1875 {
1876 }
1877 #endif
1878
1879 static const struct super_operations f2fs_sops = {
1880 .alloc_inode = f2fs_alloc_inode,
1881 .drop_inode = f2fs_drop_inode,
1882 .destroy_inode = f2fs_destroy_inode,
1883 .write_inode = f2fs_write_inode,
1884 .dirty_inode = f2fs_dirty_inode,
1885 .show_options = f2fs_show_options,
1886 #ifdef CONFIG_QUOTA
1887 .quota_read = f2fs_quota_read,
1888 .quota_write = f2fs_quota_write,
1889 .get_dquots = f2fs_get_dquots,
1890 #endif
1891 .evict_inode = f2fs_evict_inode,
1892 .put_super = f2fs_put_super,
1893 .sync_fs = f2fs_sync_fs,
1894 .freeze_fs = f2fs_freeze,
1895 .unfreeze_fs = f2fs_unfreeze,
1896 .statfs = f2fs_statfs,
1897 .remount_fs = f2fs_remount,
1898 };
1899
1900 #ifdef CONFIG_F2FS_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)1901 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1902 {
1903 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1904 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1905 ctx, len, NULL);
1906 }
1907
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1908 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1909 void *fs_data)
1910 {
1911 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1912
1913 /*
1914 * Encrypting the root directory is not allowed because fsck
1915 * expects lost+found directory to exist and remain unencrypted
1916 * if LOST_FOUND feature is enabled.
1917 *
1918 */
1919 if (f2fs_sb_has_lost_found(sbi->sb) &&
1920 inode->i_ino == F2FS_ROOT_INO(sbi))
1921 return -EPERM;
1922
1923 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1924 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1925 ctx, len, fs_data, XATTR_CREATE);
1926 }
1927
f2fs_dummy_context(struct inode * inode)1928 static bool f2fs_dummy_context(struct inode *inode)
1929 {
1930 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1931 }
1932
f2fs_max_namelen(struct inode * inode)1933 static unsigned f2fs_max_namelen(struct inode *inode)
1934 {
1935 return S_ISLNK(inode->i_mode) ?
1936 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1937 }
1938
1939 static const struct fscrypt_operations f2fs_cryptops = {
1940 .key_prefix = "f2fs:",
1941 .get_context = f2fs_get_context,
1942 .set_context = f2fs_set_context,
1943 .dummy_context = f2fs_dummy_context,
1944 .empty_dir = f2fs_empty_dir,
1945 .max_namelen = f2fs_max_namelen,
1946 };
1947 #endif
1948
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1949 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1950 u64 ino, u32 generation)
1951 {
1952 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1953 struct inode *inode;
1954
1955 if (check_nid_range(sbi, ino))
1956 return ERR_PTR(-ESTALE);
1957
1958 /*
1959 * f2fs_iget isn't quite right if the inode is currently unallocated!
1960 * However f2fs_iget currently does appropriate checks to handle stale
1961 * inodes so everything is OK.
1962 */
1963 inode = f2fs_iget(sb, ino);
1964 if (IS_ERR(inode))
1965 return ERR_CAST(inode);
1966 if (unlikely(generation && inode->i_generation != generation)) {
1967 /* we didn't find the right inode.. */
1968 iput(inode);
1969 return ERR_PTR(-ESTALE);
1970 }
1971 return inode;
1972 }
1973
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1974 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1975 int fh_len, int fh_type)
1976 {
1977 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1978 f2fs_nfs_get_inode);
1979 }
1980
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1981 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1982 int fh_len, int fh_type)
1983 {
1984 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1985 f2fs_nfs_get_inode);
1986 }
1987
1988 static const struct export_operations f2fs_export_ops = {
1989 .fh_to_dentry = f2fs_fh_to_dentry,
1990 .fh_to_parent = f2fs_fh_to_parent,
1991 .get_parent = f2fs_get_parent,
1992 };
1993
max_file_blocks(void)1994 static loff_t max_file_blocks(void)
1995 {
1996 loff_t result = 0;
1997 loff_t leaf_count = ADDRS_PER_BLOCK;
1998
1999 /*
2000 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2001 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2002 * space in inode.i_addr, it will be more safe to reassign
2003 * result as zero.
2004 */
2005
2006 /* two direct node blocks */
2007 result += (leaf_count * 2);
2008
2009 /* two indirect node blocks */
2010 leaf_count *= NIDS_PER_BLOCK;
2011 result += (leaf_count * 2);
2012
2013 /* one double indirect node block */
2014 leaf_count *= NIDS_PER_BLOCK;
2015 result += leaf_count;
2016
2017 return result;
2018 }
2019
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2020 static int __f2fs_commit_super(struct buffer_head *bh,
2021 struct f2fs_super_block *super)
2022 {
2023 lock_buffer(bh);
2024 if (super)
2025 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2026 set_buffer_dirty(bh);
2027 unlock_buffer(bh);
2028
2029 /* it's rare case, we can do fua all the time */
2030 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2031 }
2032
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2033 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2034 struct buffer_head *bh)
2035 {
2036 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2037 (bh->b_data + F2FS_SUPER_OFFSET);
2038 struct super_block *sb = sbi->sb;
2039 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2040 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2041 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2042 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2043 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2044 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2045 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2046 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2047 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2048 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2049 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2050 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2051 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2052 u64 main_end_blkaddr = main_blkaddr +
2053 (segment_count_main << log_blocks_per_seg);
2054 u64 seg_end_blkaddr = segment0_blkaddr +
2055 (segment_count << log_blocks_per_seg);
2056
2057 if (segment0_blkaddr != cp_blkaddr) {
2058 f2fs_msg(sb, KERN_INFO,
2059 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2060 segment0_blkaddr, cp_blkaddr);
2061 return true;
2062 }
2063
2064 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2065 sit_blkaddr) {
2066 f2fs_msg(sb, KERN_INFO,
2067 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2068 cp_blkaddr, sit_blkaddr,
2069 segment_count_ckpt << log_blocks_per_seg);
2070 return true;
2071 }
2072
2073 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2074 nat_blkaddr) {
2075 f2fs_msg(sb, KERN_INFO,
2076 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2077 sit_blkaddr, nat_blkaddr,
2078 segment_count_sit << log_blocks_per_seg);
2079 return true;
2080 }
2081
2082 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2083 ssa_blkaddr) {
2084 f2fs_msg(sb, KERN_INFO,
2085 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2086 nat_blkaddr, ssa_blkaddr,
2087 segment_count_nat << log_blocks_per_seg);
2088 return true;
2089 }
2090
2091 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2092 main_blkaddr) {
2093 f2fs_msg(sb, KERN_INFO,
2094 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2095 ssa_blkaddr, main_blkaddr,
2096 segment_count_ssa << log_blocks_per_seg);
2097 return true;
2098 }
2099
2100 if (main_end_blkaddr > seg_end_blkaddr) {
2101 f2fs_msg(sb, KERN_INFO,
2102 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2103 main_blkaddr,
2104 segment0_blkaddr +
2105 (segment_count << log_blocks_per_seg),
2106 segment_count_main << log_blocks_per_seg);
2107 return true;
2108 } else if (main_end_blkaddr < seg_end_blkaddr) {
2109 int err = 0;
2110 char *res;
2111
2112 /* fix in-memory information all the time */
2113 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2114 segment0_blkaddr) >> log_blocks_per_seg);
2115
2116 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2117 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2118 res = "internally";
2119 } else {
2120 err = __f2fs_commit_super(bh, NULL);
2121 res = err ? "failed" : "done";
2122 }
2123 f2fs_msg(sb, KERN_INFO,
2124 "Fix alignment : %s, start(%u) end(%u) block(%u)",
2125 res, main_blkaddr,
2126 segment0_blkaddr +
2127 (segment_count << log_blocks_per_seg),
2128 segment_count_main << log_blocks_per_seg);
2129 if (err)
2130 return true;
2131 }
2132 return false;
2133 }
2134
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2135 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2136 struct buffer_head *bh)
2137 {
2138 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2139 (bh->b_data + F2FS_SUPER_OFFSET);
2140 struct super_block *sb = sbi->sb;
2141 unsigned int blocksize;
2142
2143 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2144 f2fs_msg(sb, KERN_INFO,
2145 "Magic Mismatch, valid(0x%x) - read(0x%x)",
2146 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2147 return 1;
2148 }
2149
2150 /* Currently, support only 4KB page cache size */
2151 if (F2FS_BLKSIZE != PAGE_SIZE) {
2152 f2fs_msg(sb, KERN_INFO,
2153 "Invalid page_cache_size (%lu), supports only 4KB\n",
2154 PAGE_SIZE);
2155 return 1;
2156 }
2157
2158 /* Currently, support only 4KB block size */
2159 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2160 if (blocksize != F2FS_BLKSIZE) {
2161 f2fs_msg(sb, KERN_INFO,
2162 "Invalid blocksize (%u), supports only 4KB\n",
2163 blocksize);
2164 return 1;
2165 }
2166
2167 /* check log blocks per segment */
2168 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2169 f2fs_msg(sb, KERN_INFO,
2170 "Invalid log blocks per segment (%u)\n",
2171 le32_to_cpu(raw_super->log_blocks_per_seg));
2172 return 1;
2173 }
2174
2175 /* Currently, support 512/1024/2048/4096 bytes sector size */
2176 if (le32_to_cpu(raw_super->log_sectorsize) >
2177 F2FS_MAX_LOG_SECTOR_SIZE ||
2178 le32_to_cpu(raw_super->log_sectorsize) <
2179 F2FS_MIN_LOG_SECTOR_SIZE) {
2180 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2181 le32_to_cpu(raw_super->log_sectorsize));
2182 return 1;
2183 }
2184 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2185 le32_to_cpu(raw_super->log_sectorsize) !=
2186 F2FS_MAX_LOG_SECTOR_SIZE) {
2187 f2fs_msg(sb, KERN_INFO,
2188 "Invalid log sectors per block(%u) log sectorsize(%u)",
2189 le32_to_cpu(raw_super->log_sectors_per_block),
2190 le32_to_cpu(raw_super->log_sectorsize));
2191 return 1;
2192 }
2193
2194 /* check reserved ino info */
2195 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2196 le32_to_cpu(raw_super->meta_ino) != 2 ||
2197 le32_to_cpu(raw_super->root_ino) != 3) {
2198 f2fs_msg(sb, KERN_INFO,
2199 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2200 le32_to_cpu(raw_super->node_ino),
2201 le32_to_cpu(raw_super->meta_ino),
2202 le32_to_cpu(raw_super->root_ino));
2203 return 1;
2204 }
2205
2206 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2207 f2fs_msg(sb, KERN_INFO,
2208 "Invalid segment count (%u)",
2209 le32_to_cpu(raw_super->segment_count));
2210 return 1;
2211 }
2212
2213 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2214 if (sanity_check_area_boundary(sbi, bh))
2215 return 1;
2216
2217 return 0;
2218 }
2219
sanity_check_ckpt(struct f2fs_sb_info * sbi)2220 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2221 {
2222 unsigned int total, fsmeta;
2223 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2224 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2225 unsigned int ovp_segments, reserved_segments;
2226 unsigned int main_segs, blocks_per_seg;
2227 int i;
2228
2229 total = le32_to_cpu(raw_super->segment_count);
2230 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2231 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2232 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2233 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2234 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2235
2236 if (unlikely(fsmeta >= total))
2237 return 1;
2238
2239 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2240 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2241
2242 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2243 ovp_segments == 0 || reserved_segments == 0)) {
2244 f2fs_msg(sbi->sb, KERN_ERR,
2245 "Wrong layout: check mkfs.f2fs version");
2246 return 1;
2247 }
2248
2249 main_segs = le32_to_cpu(raw_super->segment_count_main);
2250 blocks_per_seg = sbi->blocks_per_seg;
2251
2252 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2253 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2254 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2255 return 1;
2256 }
2257 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2258 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2259 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2260 return 1;
2261 }
2262
2263 if (unlikely(f2fs_cp_error(sbi))) {
2264 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2265 return 1;
2266 }
2267 return 0;
2268 }
2269
init_sb_info(struct f2fs_sb_info * sbi)2270 static void init_sb_info(struct f2fs_sb_info *sbi)
2271 {
2272 struct f2fs_super_block *raw_super = sbi->raw_super;
2273 int i, j;
2274
2275 sbi->log_sectors_per_block =
2276 le32_to_cpu(raw_super->log_sectors_per_block);
2277 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2278 sbi->blocksize = 1 << sbi->log_blocksize;
2279 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2280 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2281 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2282 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2283 sbi->total_sections = le32_to_cpu(raw_super->section_count);
2284 sbi->total_node_count =
2285 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2286 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2287 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2288 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2289 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2290 sbi->cur_victim_sec = NULL_SECNO;
2291 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2292
2293 sbi->dir_level = DEF_DIR_LEVEL;
2294 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2295 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2296 clear_sbi_flag(sbi, SBI_NEED_FSCK);
2297
2298 for (i = 0; i < NR_COUNT_TYPE; i++)
2299 atomic_set(&sbi->nr_pages[i], 0);
2300
2301 atomic_set(&sbi->wb_sync_req, 0);
2302
2303 INIT_LIST_HEAD(&sbi->s_list);
2304 mutex_init(&sbi->umount_mutex);
2305 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2306 for (j = HOT; j < NR_TEMP_TYPE; j++)
2307 mutex_init(&sbi->wio_mutex[i][j]);
2308 spin_lock_init(&sbi->cp_lock);
2309
2310 sbi->dirty_device = 0;
2311 spin_lock_init(&sbi->dev_lock);
2312
2313 init_rwsem(&sbi->sb_lock);
2314 }
2315
init_percpu_info(struct f2fs_sb_info * sbi)2316 static int init_percpu_info(struct f2fs_sb_info *sbi)
2317 {
2318 int err;
2319
2320 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2321 if (err)
2322 return err;
2323
2324 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2325 GFP_KERNEL);
2326 }
2327
2328 #ifdef CONFIG_BLK_DEV_ZONED
init_blkz_info(struct f2fs_sb_info * sbi,int devi)2329 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2330 {
2331 struct block_device *bdev = FDEV(devi).bdev;
2332 sector_t nr_sectors = bdev->bd_part->nr_sects;
2333 sector_t sector = 0;
2334 struct blk_zone *zones;
2335 unsigned int i, nr_zones;
2336 unsigned int n = 0;
2337 int err = -EIO;
2338
2339 if (!f2fs_sb_has_blkzoned(sbi->sb))
2340 return 0;
2341
2342 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2343 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2344 return -EINVAL;
2345 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2346 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2347 __ilog2_u32(sbi->blocks_per_blkz))
2348 return -EINVAL;
2349 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2350 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2351 sbi->log_blocks_per_blkz;
2352 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2353 FDEV(devi).nr_blkz++;
2354
2355 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2356 GFP_KERNEL);
2357 if (!FDEV(devi).blkz_type)
2358 return -ENOMEM;
2359
2360 #define F2FS_REPORT_NR_ZONES 4096
2361
2362 zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2363 F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2364 if (!zones)
2365 return -ENOMEM;
2366
2367 /* Get block zones type */
2368 while (zones && sector < nr_sectors) {
2369
2370 nr_zones = F2FS_REPORT_NR_ZONES;
2371 err = blkdev_report_zones(bdev, sector,
2372 zones, &nr_zones,
2373 GFP_KERNEL);
2374 if (err)
2375 break;
2376 if (!nr_zones) {
2377 err = -EIO;
2378 break;
2379 }
2380
2381 for (i = 0; i < nr_zones; i++) {
2382 FDEV(devi).blkz_type[n] = zones[i].type;
2383 sector += zones[i].len;
2384 n++;
2385 }
2386 }
2387
2388 kfree(zones);
2389
2390 return err;
2391 }
2392 #endif
2393
2394 /*
2395 * Read f2fs raw super block.
2396 * Because we have two copies of super block, so read both of them
2397 * to get the first valid one. If any one of them is broken, we pass
2398 * them recovery flag back to the caller.
2399 */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)2400 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2401 struct f2fs_super_block **raw_super,
2402 int *valid_super_block, int *recovery)
2403 {
2404 struct super_block *sb = sbi->sb;
2405 int block;
2406 struct buffer_head *bh;
2407 struct f2fs_super_block *super;
2408 int err = 0;
2409
2410 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2411 if (!super)
2412 return -ENOMEM;
2413
2414 for (block = 0; block < 2; block++) {
2415 bh = sb_bread(sb, block);
2416 if (!bh) {
2417 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2418 block + 1);
2419 err = -EIO;
2420 continue;
2421 }
2422
2423 /* sanity checking of raw super */
2424 if (sanity_check_raw_super(sbi, bh)) {
2425 f2fs_msg(sb, KERN_ERR,
2426 "Can't find valid F2FS filesystem in %dth superblock",
2427 block + 1);
2428 err = -EINVAL;
2429 brelse(bh);
2430 continue;
2431 }
2432
2433 if (!*raw_super) {
2434 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2435 sizeof(*super));
2436 *valid_super_block = block;
2437 *raw_super = super;
2438 }
2439 brelse(bh);
2440 }
2441
2442 /* Fail to read any one of the superblocks*/
2443 if (err < 0)
2444 *recovery = 1;
2445
2446 /* No valid superblock */
2447 if (!*raw_super)
2448 kfree(super);
2449 else
2450 err = 0;
2451
2452 return err;
2453 }
2454
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)2455 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2456 {
2457 struct buffer_head *bh;
2458 int err;
2459
2460 if ((recover && f2fs_readonly(sbi->sb)) ||
2461 bdev_read_only(sbi->sb->s_bdev)) {
2462 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2463 return -EROFS;
2464 }
2465
2466 /* write back-up superblock first */
2467 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2468 if (!bh)
2469 return -EIO;
2470 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2471 brelse(bh);
2472
2473 /* if we are in recovery path, skip writing valid superblock */
2474 if (recover || err)
2475 return err;
2476
2477 /* write current valid superblock */
2478 bh = sb_bread(sbi->sb, sbi->valid_super_block);
2479 if (!bh)
2480 return -EIO;
2481 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2482 brelse(bh);
2483 return err;
2484 }
2485
f2fs_scan_devices(struct f2fs_sb_info * sbi)2486 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2487 {
2488 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2489 unsigned int max_devices = MAX_DEVICES;
2490 int i;
2491
2492 /* Initialize single device information */
2493 if (!RDEV(0).path[0]) {
2494 #ifdef CONFIG_BLK_DEV_ZONED
2495 if (!bdev_is_zoned(sbi->sb->s_bdev))
2496 return 0;
2497 max_devices = 1;
2498 #else
2499 return 0;
2500 #endif
2501 }
2502
2503 /*
2504 * Initialize multiple devices information, or single
2505 * zoned block device information.
2506 */
2507 sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2508 max_devices, GFP_KERNEL);
2509 if (!sbi->devs)
2510 return -ENOMEM;
2511
2512 for (i = 0; i < max_devices; i++) {
2513
2514 if (i > 0 && !RDEV(i).path[0])
2515 break;
2516
2517 if (max_devices == 1) {
2518 /* Single zoned block device mount */
2519 FDEV(0).bdev =
2520 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2521 sbi->sb->s_mode, sbi->sb->s_type);
2522 } else {
2523 /* Multi-device mount */
2524 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2525 FDEV(i).total_segments =
2526 le32_to_cpu(RDEV(i).total_segments);
2527 if (i == 0) {
2528 FDEV(i).start_blk = 0;
2529 FDEV(i).end_blk = FDEV(i).start_blk +
2530 (FDEV(i).total_segments <<
2531 sbi->log_blocks_per_seg) - 1 +
2532 le32_to_cpu(raw_super->segment0_blkaddr);
2533 } else {
2534 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2535 FDEV(i).end_blk = FDEV(i).start_blk +
2536 (FDEV(i).total_segments <<
2537 sbi->log_blocks_per_seg) - 1;
2538 }
2539 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2540 sbi->sb->s_mode, sbi->sb->s_type);
2541 }
2542 if (IS_ERR(FDEV(i).bdev))
2543 return PTR_ERR(FDEV(i).bdev);
2544
2545 /* to release errored devices */
2546 sbi->s_ndevs = i + 1;
2547
2548 #ifdef CONFIG_BLK_DEV_ZONED
2549 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2550 !f2fs_sb_has_blkzoned(sbi->sb)) {
2551 f2fs_msg(sbi->sb, KERN_ERR,
2552 "Zoned block device feature not enabled\n");
2553 return -EINVAL;
2554 }
2555 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2556 if (init_blkz_info(sbi, i)) {
2557 f2fs_msg(sbi->sb, KERN_ERR,
2558 "Failed to initialize F2FS blkzone information");
2559 return -EINVAL;
2560 }
2561 if (max_devices == 1)
2562 break;
2563 f2fs_msg(sbi->sb, KERN_INFO,
2564 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2565 i, FDEV(i).path,
2566 FDEV(i).total_segments,
2567 FDEV(i).start_blk, FDEV(i).end_blk,
2568 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2569 "Host-aware" : "Host-managed");
2570 continue;
2571 }
2572 #endif
2573 f2fs_msg(sbi->sb, KERN_INFO,
2574 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2575 i, FDEV(i).path,
2576 FDEV(i).total_segments,
2577 FDEV(i).start_blk, FDEV(i).end_blk);
2578 }
2579 f2fs_msg(sbi->sb, KERN_INFO,
2580 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2581 return 0;
2582 }
2583
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)2584 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2585 {
2586 struct f2fs_sm_info *sm_i = SM_I(sbi);
2587
2588 /* adjust parameters according to the volume size */
2589 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2590 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2591 sm_i->dcc_info->discard_granularity = 1;
2592 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2593 }
2594 }
2595
f2fs_fill_super(struct super_block * sb,void * data,int silent)2596 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2597 {
2598 struct f2fs_sb_info *sbi;
2599 struct f2fs_super_block *raw_super;
2600 struct inode *root;
2601 int err;
2602 bool retry = true, need_fsck = false;
2603 char *options = NULL;
2604 int recovery, i, valid_super_block;
2605 struct curseg_info *seg_i;
2606
2607 try_onemore:
2608 err = -EINVAL;
2609 raw_super = NULL;
2610 valid_super_block = -1;
2611 recovery = 0;
2612
2613 /* allocate memory for f2fs-specific super block info */
2614 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2615 if (!sbi)
2616 return -ENOMEM;
2617
2618 sbi->sb = sb;
2619
2620 /* Load the checksum driver */
2621 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2622 if (IS_ERR(sbi->s_chksum_driver)) {
2623 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2624 err = PTR_ERR(sbi->s_chksum_driver);
2625 sbi->s_chksum_driver = NULL;
2626 goto free_sbi;
2627 }
2628
2629 /* set a block size */
2630 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2631 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2632 goto free_sbi;
2633 }
2634
2635 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2636 &recovery);
2637 if (err)
2638 goto free_sbi;
2639
2640 sb->s_fs_info = sbi;
2641 sbi->raw_super = raw_super;
2642
2643 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2644 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2645
2646 /* precompute checksum seed for metadata */
2647 if (f2fs_sb_has_inode_chksum(sb))
2648 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2649 sizeof(raw_super->uuid));
2650
2651 /*
2652 * The BLKZONED feature indicates that the drive was formatted with
2653 * zone alignment optimization. This is optional for host-aware
2654 * devices, but mandatory for host-managed zoned block devices.
2655 */
2656 #ifndef CONFIG_BLK_DEV_ZONED
2657 if (f2fs_sb_has_blkzoned(sb)) {
2658 f2fs_msg(sb, KERN_ERR,
2659 "Zoned block device support is not enabled\n");
2660 err = -EOPNOTSUPP;
2661 goto free_sb_buf;
2662 }
2663 #endif
2664 default_options(sbi);
2665 /* parse mount options */
2666 options = kstrdup((const char *)data, GFP_KERNEL);
2667 if (data && !options) {
2668 err = -ENOMEM;
2669 goto free_sb_buf;
2670 }
2671
2672 err = parse_options(sb, options);
2673 if (err)
2674 goto free_options;
2675
2676 sbi->max_file_blocks = max_file_blocks();
2677 sb->s_maxbytes = sbi->max_file_blocks <<
2678 le32_to_cpu(raw_super->log_blocksize);
2679 sb->s_max_links = F2FS_LINK_MAX;
2680 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2681
2682 #ifdef CONFIG_QUOTA
2683 sb->dq_op = &f2fs_quota_operations;
2684 if (f2fs_sb_has_quota_ino(sb))
2685 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2686 else
2687 sb->s_qcop = &f2fs_quotactl_ops;
2688 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2689
2690 if (f2fs_sb_has_quota_ino(sbi->sb)) {
2691 for (i = 0; i < MAXQUOTAS; i++) {
2692 if (f2fs_qf_ino(sbi->sb, i))
2693 sbi->nquota_files++;
2694 }
2695 }
2696 #endif
2697
2698 sb->s_op = &f2fs_sops;
2699 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2700 sb->s_cop = &f2fs_cryptops;
2701 #endif
2702 sb->s_xattr = f2fs_xattr_handlers;
2703 sb->s_export_op = &f2fs_export_ops;
2704 sb->s_magic = F2FS_SUPER_MAGIC;
2705 sb->s_time_gran = 1;
2706 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2707 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2708 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2709 sb->s_iflags |= SB_I_CGROUPWB;
2710
2711 /* init f2fs-specific super block info */
2712 sbi->valid_super_block = valid_super_block;
2713 mutex_init(&sbi->gc_mutex);
2714 mutex_init(&sbi->cp_mutex);
2715 init_rwsem(&sbi->node_write);
2716 init_rwsem(&sbi->node_change);
2717
2718 /* disallow all the data/node/meta page writes */
2719 set_sbi_flag(sbi, SBI_POR_DOING);
2720 spin_lock_init(&sbi->stat_lock);
2721
2722 /* init iostat info */
2723 spin_lock_init(&sbi->iostat_lock);
2724 sbi->iostat_enable = false;
2725
2726 for (i = 0; i < NR_PAGE_TYPE; i++) {
2727 int n = (i == META) ? 1: NR_TEMP_TYPE;
2728 int j;
2729
2730 sbi->write_io[i] = f2fs_kmalloc(sbi,
2731 n * sizeof(struct f2fs_bio_info),
2732 GFP_KERNEL);
2733 if (!sbi->write_io[i]) {
2734 err = -ENOMEM;
2735 goto free_options;
2736 }
2737
2738 for (j = HOT; j < n; j++) {
2739 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2740 sbi->write_io[i][j].sbi = sbi;
2741 sbi->write_io[i][j].bio = NULL;
2742 spin_lock_init(&sbi->write_io[i][j].io_lock);
2743 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2744 }
2745 }
2746
2747 init_rwsem(&sbi->cp_rwsem);
2748 init_waitqueue_head(&sbi->cp_wait);
2749 init_sb_info(sbi);
2750
2751 err = init_percpu_info(sbi);
2752 if (err)
2753 goto free_bio_info;
2754
2755 if (F2FS_IO_SIZE(sbi) > 1) {
2756 sbi->write_io_dummy =
2757 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2758 if (!sbi->write_io_dummy) {
2759 err = -ENOMEM;
2760 goto free_percpu;
2761 }
2762 }
2763
2764 /* get an inode for meta space */
2765 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2766 if (IS_ERR(sbi->meta_inode)) {
2767 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2768 err = PTR_ERR(sbi->meta_inode);
2769 goto free_io_dummy;
2770 }
2771
2772 err = get_valid_checkpoint(sbi);
2773 if (err) {
2774 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2775 goto free_meta_inode;
2776 }
2777
2778 /* Initialize device list */
2779 err = f2fs_scan_devices(sbi);
2780 if (err) {
2781 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2782 goto free_devices;
2783 }
2784
2785 sbi->total_valid_node_count =
2786 le32_to_cpu(sbi->ckpt->valid_node_count);
2787 percpu_counter_set(&sbi->total_valid_inode_count,
2788 le32_to_cpu(sbi->ckpt->valid_inode_count));
2789 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2790 sbi->total_valid_block_count =
2791 le64_to_cpu(sbi->ckpt->valid_block_count);
2792 sbi->last_valid_block_count = sbi->total_valid_block_count;
2793 sbi->reserved_blocks = 0;
2794 sbi->current_reserved_blocks = 0;
2795 limit_reserve_root(sbi);
2796
2797 for (i = 0; i < NR_INODE_TYPE; i++) {
2798 INIT_LIST_HEAD(&sbi->inode_list[i]);
2799 spin_lock_init(&sbi->inode_lock[i]);
2800 }
2801
2802 init_extent_cache_info(sbi);
2803
2804 init_ino_entry_info(sbi);
2805
2806 /* setup f2fs internal modules */
2807 err = build_segment_manager(sbi);
2808 if (err) {
2809 f2fs_msg(sb, KERN_ERR,
2810 "Failed to initialize F2FS segment manager");
2811 goto free_sm;
2812 }
2813 err = build_node_manager(sbi);
2814 if (err) {
2815 f2fs_msg(sb, KERN_ERR,
2816 "Failed to initialize F2FS node manager");
2817 goto free_nm;
2818 }
2819
2820 /* For write statistics */
2821 if (sb->s_bdev->bd_part)
2822 sbi->sectors_written_start =
2823 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2824
2825 /* Read accumulated write IO statistics if exists */
2826 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2827 if (__exist_node_summaries(sbi))
2828 sbi->kbytes_written =
2829 le64_to_cpu(seg_i->journal->info.kbytes_written);
2830
2831 build_gc_manager(sbi);
2832
2833 /* get an inode for node space */
2834 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2835 if (IS_ERR(sbi->node_inode)) {
2836 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2837 err = PTR_ERR(sbi->node_inode);
2838 goto free_nm;
2839 }
2840
2841 err = f2fs_build_stats(sbi);
2842 if (err)
2843 goto free_node_inode;
2844
2845 /* read root inode and dentry */
2846 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2847 if (IS_ERR(root)) {
2848 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2849 err = PTR_ERR(root);
2850 goto free_stats;
2851 }
2852 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2853 iput(root);
2854 err = -EINVAL;
2855 goto free_node_inode;
2856 }
2857
2858 sb->s_root = d_make_root(root); /* allocate root dentry */
2859 if (!sb->s_root) {
2860 err = -ENOMEM;
2861 goto free_root_inode;
2862 }
2863
2864 err = f2fs_register_sysfs(sbi);
2865 if (err)
2866 goto free_root_inode;
2867
2868 #ifdef CONFIG_QUOTA
2869 /*
2870 * Turn on quotas which were not enabled for read-only mounts if
2871 * filesystem has quota feature, so that they are updated correctly.
2872 */
2873 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2874 err = f2fs_enable_quotas(sb);
2875 if (err) {
2876 f2fs_msg(sb, KERN_ERR,
2877 "Cannot turn on quotas: error %d", err);
2878 goto free_sysfs;
2879 }
2880 }
2881 #endif
2882 /* if there are nt orphan nodes free them */
2883 err = recover_orphan_inodes(sbi);
2884 if (err)
2885 goto free_meta;
2886
2887 /* recover fsynced data */
2888 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2889 /*
2890 * mount should be failed, when device has readonly mode, and
2891 * previous checkpoint was not done by clean system shutdown.
2892 */
2893 if (bdev_read_only(sb->s_bdev) &&
2894 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2895 err = -EROFS;
2896 goto free_meta;
2897 }
2898
2899 if (need_fsck)
2900 set_sbi_flag(sbi, SBI_NEED_FSCK);
2901
2902 if (!retry)
2903 goto skip_recovery;
2904
2905 err = recover_fsync_data(sbi, false);
2906 if (err < 0) {
2907 need_fsck = true;
2908 f2fs_msg(sb, KERN_ERR,
2909 "Cannot recover all fsync data errno=%d", err);
2910 goto free_meta;
2911 }
2912 } else {
2913 err = recover_fsync_data(sbi, true);
2914
2915 if (!f2fs_readonly(sb) && err > 0) {
2916 err = -EINVAL;
2917 f2fs_msg(sb, KERN_ERR,
2918 "Need to recover fsync data");
2919 goto free_meta;
2920 }
2921 }
2922 skip_recovery:
2923 /* recover_fsync_data() cleared this already */
2924 clear_sbi_flag(sbi, SBI_POR_DOING);
2925
2926 /*
2927 * If filesystem is not mounted as read-only then
2928 * do start the gc_thread.
2929 */
2930 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2931 /* After POR, we can run background GC thread.*/
2932 err = start_gc_thread(sbi);
2933 if (err)
2934 goto free_meta;
2935 }
2936 kfree(options);
2937
2938 /* recover broken superblock */
2939 if (recovery) {
2940 err = f2fs_commit_super(sbi, true);
2941 f2fs_msg(sb, KERN_INFO,
2942 "Try to recover %dth superblock, ret: %d",
2943 sbi->valid_super_block ? 1 : 2, err);
2944 }
2945
2946 f2fs_join_shrinker(sbi);
2947
2948 f2fs_tuning_parameters(sbi);
2949
2950 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2951 cur_cp_version(F2FS_CKPT(sbi)));
2952 f2fs_update_time(sbi, CP_TIME);
2953 f2fs_update_time(sbi, REQ_TIME);
2954 return 0;
2955
2956 free_meta:
2957 #ifdef CONFIG_QUOTA
2958 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
2959 f2fs_quota_off_umount(sbi->sb);
2960 #endif
2961 f2fs_sync_inode_meta(sbi);
2962 /*
2963 * Some dirty meta pages can be produced by recover_orphan_inodes()
2964 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2965 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2966 * falls into an infinite loop in sync_meta_pages().
2967 */
2968 truncate_inode_pages_final(META_MAPPING(sbi));
2969 #ifdef CONFIG_QUOTA
2970 free_sysfs:
2971 #endif
2972 f2fs_unregister_sysfs(sbi);
2973 free_root_inode:
2974 dput(sb->s_root);
2975 sb->s_root = NULL;
2976 free_stats:
2977 f2fs_destroy_stats(sbi);
2978 free_node_inode:
2979 release_ino_entry(sbi, true);
2980 truncate_inode_pages_final(NODE_MAPPING(sbi));
2981 iput(sbi->node_inode);
2982 free_nm:
2983 destroy_node_manager(sbi);
2984 free_sm:
2985 destroy_segment_manager(sbi);
2986 free_devices:
2987 destroy_device_list(sbi);
2988 kfree(sbi->ckpt);
2989 free_meta_inode:
2990 make_bad_inode(sbi->meta_inode);
2991 iput(sbi->meta_inode);
2992 free_io_dummy:
2993 mempool_destroy(sbi->write_io_dummy);
2994 free_percpu:
2995 destroy_percpu_info(sbi);
2996 free_bio_info:
2997 for (i = 0; i < NR_PAGE_TYPE; i++)
2998 kfree(sbi->write_io[i]);
2999 free_options:
3000 #ifdef CONFIG_QUOTA
3001 for (i = 0; i < MAXQUOTAS; i++)
3002 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3003 #endif
3004 kfree(options);
3005 free_sb_buf:
3006 kfree(raw_super);
3007 free_sbi:
3008 if (sbi->s_chksum_driver)
3009 crypto_free_shash(sbi->s_chksum_driver);
3010 kfree(sbi);
3011
3012 /* give only one another chance */
3013 if (retry) {
3014 retry = false;
3015 shrink_dcache_sb(sb);
3016 goto try_onemore;
3017 }
3018 return err;
3019 }
3020
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3021 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3022 const char *dev_name, void *data)
3023 {
3024 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3025 }
3026
kill_f2fs_super(struct super_block * sb)3027 static void kill_f2fs_super(struct super_block *sb)
3028 {
3029 if (sb->s_root) {
3030 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3031 stop_gc_thread(F2FS_SB(sb));
3032 stop_discard_thread(F2FS_SB(sb));
3033 }
3034 kill_block_super(sb);
3035 }
3036
3037 static struct file_system_type f2fs_fs_type = {
3038 .owner = THIS_MODULE,
3039 .name = "f2fs",
3040 .mount = f2fs_mount,
3041 .kill_sb = kill_f2fs_super,
3042 .fs_flags = FS_REQUIRES_DEV,
3043 };
3044 MODULE_ALIAS_FS("f2fs");
3045
init_inodecache(void)3046 static int __init init_inodecache(void)
3047 {
3048 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3049 sizeof(struct f2fs_inode_info), 0,
3050 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3051 if (!f2fs_inode_cachep)
3052 return -ENOMEM;
3053 return 0;
3054 }
3055
destroy_inodecache(void)3056 static void destroy_inodecache(void)
3057 {
3058 /*
3059 * Make sure all delayed rcu free inodes are flushed before we
3060 * destroy cache.
3061 */
3062 rcu_barrier();
3063 kmem_cache_destroy(f2fs_inode_cachep);
3064 }
3065
init_f2fs_fs(void)3066 static int __init init_f2fs_fs(void)
3067 {
3068 int err;
3069
3070 f2fs_build_trace_ios();
3071
3072 err = init_inodecache();
3073 if (err)
3074 goto fail;
3075 err = create_node_manager_caches();
3076 if (err)
3077 goto free_inodecache;
3078 err = create_segment_manager_caches();
3079 if (err)
3080 goto free_node_manager_caches;
3081 err = create_checkpoint_caches();
3082 if (err)
3083 goto free_segment_manager_caches;
3084 err = create_extent_cache();
3085 if (err)
3086 goto free_checkpoint_caches;
3087 err = f2fs_init_sysfs();
3088 if (err)
3089 goto free_extent_cache;
3090 err = register_shrinker(&f2fs_shrinker_info);
3091 if (err)
3092 goto free_sysfs;
3093 err = register_filesystem(&f2fs_fs_type);
3094 if (err)
3095 goto free_shrinker;
3096 err = f2fs_create_root_stats();
3097 if (err)
3098 goto free_filesystem;
3099 err = f2fs_init_post_read_processing();
3100 if (err)
3101 goto free_root_stats;
3102 return 0;
3103
3104 free_root_stats:
3105 f2fs_destroy_root_stats();
3106 free_filesystem:
3107 unregister_filesystem(&f2fs_fs_type);
3108 free_shrinker:
3109 unregister_shrinker(&f2fs_shrinker_info);
3110 free_sysfs:
3111 f2fs_exit_sysfs();
3112 free_extent_cache:
3113 destroy_extent_cache();
3114 free_checkpoint_caches:
3115 destroy_checkpoint_caches();
3116 free_segment_manager_caches:
3117 destroy_segment_manager_caches();
3118 free_node_manager_caches:
3119 destroy_node_manager_caches();
3120 free_inodecache:
3121 destroy_inodecache();
3122 fail:
3123 return err;
3124 }
3125
exit_f2fs_fs(void)3126 static void __exit exit_f2fs_fs(void)
3127 {
3128 f2fs_destroy_post_read_processing();
3129 f2fs_destroy_root_stats();
3130 unregister_filesystem(&f2fs_fs_type);
3131 unregister_shrinker(&f2fs_shrinker_info);
3132 f2fs_exit_sysfs();
3133 destroy_extent_cache();
3134 destroy_checkpoint_caches();
3135 destroy_segment_manager_caches();
3136 destroy_node_manager_caches();
3137 destroy_inodecache();
3138 f2fs_destroy_trace_ios();
3139 }
3140
3141 module_init(init_f2fs_fs)
3142 module_exit(exit_f2fs_fs)
3143
3144 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3145 MODULE_DESCRIPTION("Flash Friendly File System");
3146 MODULE_LICENSE("GPL");
3147
3148